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M. Berger has classified all simply connected normal homogeneous
Riemannian manifolds of positive curvature ([1]). In odd dimensional case
there are seven classes of such structures:

(i) sphere of constant curvature,

(ii) {SU(n + 1) x R/SU(n) X R}, (n = 2,0 < a = 7/2),

(iii) {Sp(n) x SUR)/Sp(n — 1) x SU@)}, (n = 2,0 < a < 7/2),

(iv) {Sp(n) x R/Sp(n — 1) X R}, (n=2,0 < a < 7/2),

(v) S009)/S0(7),

(vi) Sp(2)/SUQ2),

(vii) SUB)/Sp@) x S'.

It is well known that (i) has a natural contact structure, that is, a
Sasakian structure of constant curvature.

In the present note we shall show that (ii) and (iii) have also natural
contact structures which relate closely to homogeneous Riemannian metries,
and that these contact structures define S* or S°-fiberings of these mani-
folds over complex or quaternionic projective spaces. For example in case
of (ii) we have the following.

THEOREM. {SU(n + 1) X R/SU(n) X R}, has a structure of regualr
compact simply connected Sasakian mamnifold of constant g¢-holomorphic
sectional curvature 4 — 8/4- 5%, where we have put 5= 1V"2(n + 1)/nsin a.
Boothby- Wang’s fibering is a principal circle bundle over complex projective
space of comstant holomorphic sectional curvature 4 (¢f. Theorem 2.2).

1. Preliminaries.

1.1 Let M** be a (2n + 1)-dimensional Riemannian manifold. Let
V denote the covariant differentiation, and R(X, Y)Z = VizwiyZ — VxVyZ +
VyVxZ be the curvature tensor. In the following “[,]” denotes the bracket
operation of Lie algebra of Lie group and “[,],” denotes the bracket of
vector fields on the differentiable manifold M.

Now a 1-form 7 on M*"* is said to be a contact form if » A (dn)" = 0
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holds everywhere. First we shall show

LEMMA 1.1. Let & be a unit Killing vector field on M. Suppose that
the linear map: X — R(E, X)& of M, be of rank 2n at every point m
of M, them & defines a contact structure on M. That s, if we put
NX) = <&, X), then 7 is a contact form.

ProorF. We put ¢(X) = —V & Note that ¢(§) = 0 holds. Since ¢ is
a unit Killing vector field, by Riceci’s identity we have
(1.1) P(X) = —Vyné = —Ved(X) + [§, (X)]x
= V.Vi& — [§, Vié]ly = R(X, §)E .
By the assumption of the lemma, on D = &4, ¢* and consequently ¢ has
maximal rank 2n. On the other hand we get

1.2) dn(X,Y) = —24X,Y).

That is (d7)"+ 0 on D. Since 7(§) =1, » A (d))" # 0 holds at every point

of M. q.e.d.
1.2 If a unit Killing vector field ¢ on M*"* satisfies

(1.3) R(X, Y = k{{X, Y& — (&, X}

for some positive constant k, then (M, &, {, ) is called a Sasakian manifold
([4]). Note that in this case sectional curvature of the plane section con-
taining ¢ is a constant k. Next let &, &,, & be three contact structures
on M. If <&,&> = 0;; and [&,0), Eo]ly = ¢SgNR0-&,, hold, where ¢ is a
constant and ¢ is a permutation of {1, 2, 8}, we say that {&, &, &} defines
a contact 3-structure on M ([6]).

1.3 The curvature tensors of normal homogeneous Riemannian mani-
folds are well known. Let M = G/H be a normal homogeneous Riemannian
manifold, and & (resp. ) be the Lie algebra of G (resp. H). Let & =
9 + M be an orthogonal decomposition. Then M may be considered as
the tangent space to M at 7m(e), where 7= denotes the canonical projection
G — G/H and e is the unit element of G. Now we have for X, Y, Ze I

1.4) R(X, Y)Z = [[X, Y]s, Z] + 1/2:[[X, Y]n, Z]n
+ 1/4-[[Y, Z]n, X1a + 1/4:[[Z, X]n, Y]a ,

where [X, Y], (resp. [X, Y];) denotes the © (resp. IN)-component of [X, Y].
(See K. Nomizu [3]).

2. {SUn + 1) x R/SUn) x R},. Throughout of this section we shall
follow the notation of I. Chavel ([2]). Let U, be the Lie algebra of
SU(n+1). We choose on 2, a bi-invariant metric (X,Y) = —1/2.trace XY.
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Now if we put
Ajk =1 "‘l(ejj - akk)
B;, = (81 — &)
Cir =V —1(gj + skj).
S; = VGG + D} 3 Lo

where ¢;, denotes the matrix (8;,04.)1<r,s<ns1y then {S,, «++, S,; B;;, C;j;; 1 =
1 < j < n + 1} forms an orthogonal frame for ,. Let 9,_, be the naturally
imbedded subalgebra of 2, with [¥,_,, S,] =0, and %, = A,_, B M be an
orthogonal decomposition. Define

S, =% DR
=18, -+, S,_ycosaS, + sinaD; B,;, C,;; 1 < r < j = n}
M, = {sinaS, — cosaD; Bj,s1, Cini; 1 <7 < n},

where D denotes the unit vector of R and 0 < a < 7/2. Then this decom-
position ., + M, of ®, defines the simply connected normal homogeneous
space M+ = {SU(n + 1) x R/SU(n) x R}, (See Berger [1] and Chavel
[2]). Note that M, may be considered as SU(n + 1)/SU(n). If we set
¢ = sinaS, — cos aD, ey, = Bjui., € = Cjuyy then {§, 61,651 <5 < n}
forms an orthonormal basis for M,. Note that [£,9.] = 0 holds.

Now we shall calculate the curvature tensor of M:2**' at w(e). Using
the multiplication table of [2], we have by direct calculation

LEMMA 2.1. If we put B8 = V2(n + 1)/nsina, we get

(2.1) R(E, e,)¢ = S'/4-e;

(2.2) R, ey)ex = —B/4-0;¢

(2'3) R(E, ezj)ezk—1 =0

(2.4) R, ey1)6 = B4+,

2.5) R(&, e,;_1)es =0

(2'6) R(E; e2j—1)ezk—1 = _32/4'51'11:5

2.7 R(ey;, ex)en = 018 — 0116y

(2.8) R(e,;, esr)eq— =1 — 1/4-8) (05201 — 011€241)

(2'9) R(e:ny eq)E =0 (p, q = 17 2, R 2”)

(2-10) R(eza’, ezk—l)ezz = (2 - 1/2',82)5jkezl—1 + B:ileﬂc—l + (1 - 1/4':82)5kzezj—1
(2.11)  R(ey, i—r)eu—s = —(2 — 1/2: 89050 — (L — 1/4- 805160 — ri€ss

(2'12) R(ezj—u ezk—l)ezl = (1 - 1/4',82)(611921: - aklezf)
(2°13) R(ezj—l, ezk—-x)ezl—l = leezk—1 - Bklezj—L .
Now & defines a left invariant vector field on G, = exp®,. Since

[¢, ©.] = 0 holds, dxn(¢) defines a vector field on M?"** which will be also
denoted by & Then (2.1)~(2.6) show that the unit Killing vector field
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& on M defines a Sasakian structure on MZ*'. In fact, if we put
¢ = —VE&, we have (1.3) with £ = 5°/4 and

Pesi_s = B2+, ¢e; = —p[2-€;_1, $(&) =0.

X = B[4 (=X + (&, X)9)

(96X, 9Y) = B4 (X, Y) — <&, XH<E, YD) .

Next (2.7)~(2.13) show that M is a Sasakian manifold of constant
¢-holomorphic sectional curvature 4—3/4.58° That is, every sectional curva-
ture of the plane section defined by {X, 4X}, X 1¢& is equal to a constant
4 — 3/4.6°. Note that SU(n + 1) X R acts on M2 as an automorphism
group of this Sasakian structure. So & is a regular contact structure
and we have the Boothby-Wang’s fibering of MZ**'. That is, Mi* is a
principal circle bundle over complx projective space of constant holomor-
phic sectional curvature 4, as is easily seen. Thus we have the following
theorem.

THEOREM 2.2. M:"*' = {SU(n + 1) x R/SU(n) X R}, has a structure of
regular compact simply connected Sasakian manifold of constant g-holomor-
phic sectional curvature 4 — 3/4.-5° Boothby- Wang’s fibering of M:"*
18 a principal circle dbundle over complex projective space of constant
holomorphic sectional curvature 4.

REMARK 1. Note that the dimension of SU(n + 1) x R is (n + 1)%
This is the maximal dimension for the automorphism group of a connected
almost contact Riemannian manifold M*"*'. A result of S. Tanno ([5])
shows that in this case M must be of constant ¢-holomorphic sectional
curvature.

REMARK 2. It is known that a Sasakian manifold of constant ¢-
holomorphic sectional curvature 4 — 3/4.5* is of constant curvature if
and only if 4 — 3/4.5* is equal to 1/4-5* (= the sectional curvature of
the plane section containing &). But since g = V'2(n + 1)/nsin «, this
explains why M:"*' can not be of constant curvature.

REMARK 3. M is diffeomorphic (D-homothetically deformable in the
sense of S. Tanno ([5])) to a unit sphere.

3. {Sp(n) x SU2)/Sp(n — 1) x SU2)}a.

3.1 Let &, be the Lie algebra of Sp(n). We shall consider Sp(n) as
a subgroup of U(2n) as usual and put

A=V —1(6; — Cprinss) T=1,42,m
Bi=¢€pni— € 1=1,c00,m

Ci=V —1(insi + Cupsi) t=1,44,1m
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D;, = €1 — € + Cppintr — Cnvinsi LS1<Ek=n
Ej =V —1E; + €t — Entinsr — Cnvinsd) 1=Z1<k=n
Fip = Cinir + Chnti — Cnpi — Cuurs 1L =S1<k=n
G =V —1(insr + Chnti T Cpvir + Enis) 10 <k =m,
where ¢;, denotes the matrix (9;.0:.)i<r.<0e Then {4, B;,C:1 <1< n;

Dy, By Fir, G 1 £ 7 < k < n} forms a basis for &,. First we list the
multiplication table for completeness.

[4:, A;] =0 [Bi, Dit]l = 0iFs — 0uk;
[Ai’ B]-] = BijGii [B«;, Ejk] = 5”Guc 1kG”
[Ah Cj] = —BijFii [Bi, ij] = Btzk szD”
[Ah Djk] = aijEik - aik %) [Bi’ Gik] - BzJEJk + szEu
[Ai, Ejk] = _3ﬁDik - 5~;kD~;j [Ci, Cj] = 5”D”

[Ai, ij] = 5«;:‘Gik + 3«:kGia‘ [Ciy Djk] = Bqu chw
[4;, Gl = —0,;Fy — 0u.Fy; [Ci, Ej]l = 0 Fs + 03
—0,; K,

[Bi, B]-] = _BHDH [Ci’ Fik] = u ik ngEu
[B;, C;] = diE;; [C, Gill = —0:;D — 051D
[Dij, Dkl] = _aiijl + ailek + BjkDil - 5thzk
[D:j, En] = — zk il 0u i+ 05 By + 0, Ey,
[.D”, Fkl] - it — 6il ik T aijil + leFik
[Dij, Gul = — mG:z — 0uGji, + 051Gy + 0,,Gy

[Eij’ -Ekl] = _3iijt - Bilek - 5jan - aleik
[Eijy, Ful = 04Gj + 0aGj + 0:Ga + 0,Gyy
[Eijy sz] = _8ik i Biszk - 3ij¢z - leFik
[F,-,-, Fk,] = _Biijl - Bilek - 3jkDu - ale’ik
[Fm sz] = O a1 T ailEik + BikEil + leEik
[Gii; le] = —Biijl - Bil-Djk - Bjk-Dil - leDik .

Now we shall define M:" ' = {Sp(n) x SUR)/Sp(n — 1) x SU2)}.
(See Berger [1] pp. 232). First choose the bi-invariant metrics (X, Y) =
—1/2-trace XY on @,, and (X,Y) = —1/2-tan’a trace XY on 9, (Lie
algebra of SU2)) with 0 < @ < 7/2. We set ®, = &, P U, where @ de-
notes the direct orthogonal sum of ideals &, and %,. Put D, = A,, D, = B,,
D,=C, and E, = cota A, E, = cota B, E, = cota C, where {4, B, C} is
a basis of %, with [4, B] = 2C, [C, 4] = 2B, [B, C] = 24. Then we have

[D,yy, Doyl = 28gn 0D,y [E,uy, E.o] = 2cotasgnok,, .
Next set

Q.={H; =cosaD; + snak;:1<1<3;A4,B,C:1=<i=<n-1;
1V 2 -Dj,I\V2 . E;, 1V 2 -F;,1/V2:-Gi1<i<j<n-—1)
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M, = {& =sinaD;, —cosaE;:1<i<3;
WD, IVE B IV Fo, IV E Gl =i<n—1).

Furthermore set G, = exp®,, H, = exp 9., and M:"* = G,/H,, where
exp denotes the exponential mapping of the Lie algebra to the Lie group.
Let 7: G, — M} be the canonical projection. Then the tangent space
of Mi** at m(e) may be identified with M, by dz. Now the normal
homogeneous Riemannian metric on M:*' is obtained by restricting the
metric on &, to M, x M, and next translating with G,. This M* is
the homogeneous space {Sp(n) x SU@2)/Sp(n — 1) x SU2)}, of Berger
(Berger’s ¢ is tan a in our terminology.) Note that M5 may be identified
with Sp(n)/Sp(n — 1).

32 {£:1<i<8jex,=11V2-Diy, =1V 2 -Eip, foss = 1V 2 Fy,
fu=11V"2:G;,: 1 <i < n— 1} forms an orthonormal basis for ..

We shall calculate explicitly the curvature tensor of Mi"' at z(e).
For this purpose we shall give some formulas which are all easily derived
from the multiplication table.

(3.1) [H, H) =2cosaH, [H,H)] =2cosaH, |[H;, H] = 2cosaH,

[Hl’ 51] =0 [H2y 51] = —2co8 a‘fa [Hs, 51] = 2 cos aEz
[H,&] =2cosat, [H,&] =0 [H;, &) = —2cosaé,
[H, ] = —2cosaé, [Hy, &] = 2cosad, [H;,&] =0
[Hyy 1] = —cosae,; [H,, €] = —cos afy_, [Hy, ey ,] = —cosafy
[H, e;] =cosae, ., [H,e;]l = —cosafy [H; e;] = cosafy.,
[H17f2i—1] = COS afzi [HZy f2i—1] = COS A€y;_, [Hs, fZi-—l] = —COS «¢,;
[H, fu] = —cosafy, ., [H, fu] = cosaey [H,, fu] = cosaey_,
3.2 [6,&] = —2°82%: . 95cosaH,
sin «
[527 Ea] = _zco.s 2a 51 + 2 COS aHl
sin «
[6,86] = —2%8 2a & + 2cos aH,
sin
[§,) €] = —sinaey [& €0a] = —sinaf, ., [&, €u] = —sinafy
[51, ezi] = sin ae,;_, [Ez, ezi] = —sin Af [Ea, ezi] = sin af;_,
[§1) foun] = sinafy [&, fusl = sinae, ,  [&, fu] = —sin ae,
[51, fzi] = —sin afzi—-l [52, fzi] = sin ae,; [53, fzi] = sin aey;_y
(3.3) [€2j—1s €] = ~1/2:Dj, € .
le.is, €] = —0;,sinaé, — 0;,cos aH, + 1/2-E;,

[€si—1y for—a] = — 0 sin aé, — 0, cos aH, + 1/2-F,
[eZi—U fzk] = _ajk Sin a53 - 551, COoSs a.FIa - 1/2'ij
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[e21, €21 = —1/2-D;; € 9.
[€s5, for—i] = 0 sin aé, + d;, cos aH, + 1/2-Gj,
le.i, f] = —dpsinaé, — 0;, cos aH, — 1/2-F,
[fzj—-l, fzk-ll = _1/2’Dak € '@a
[feizs, fur] = O sinaé, + 0;, cos aH, + 1/2-E;,
[fey ful = —1/2:Dj,€ Q. -
Now we shall calculate the curvature tensor of M:i"™' at m(e). By

(1.4) and (8.1)~(8.3) direct calculation gives the following.

LEMMA 3.1. The curvature tensor of Mi" at 7w(e) is given as follows:

8.4) R(&;, &), = 1/sin*w-&; (1 # J)

R(&;, )&, =0 (¢, 7, k are distinct)

R(El, 52)324;—1 = —B/z'fzi R(Szy Ea)ezi—q = _,8/2'921: R(S:-n El)ezi—x = -6/2‘f2i—1
€y = B/z'fzi—1 €y = ,8/2'62,-_1 €y = "‘B/z'fh
fzi-—1 = “,6’/2‘62«; f2i—1 = —B/z‘fzi f2i—1 = )8/2'62i—-1
fu = Bl2-ey, fu = Bl2-ey, fu = Bl2-ey

(8.5) R, e, )8 = sin’afd-e,;,
R(&,, e.;)&; = sin* a/4-e,;
R, )6 = sin*a/d- fi
R(En fZi)éi = Sin2 a/4'f2i (,L = 1, 2’ 3: 1 é .7 é In)
(3°6) R(Su eZi——l)Ez = —,8/4'f2i R(Szy fzi—1)§1 = ,8/4'32-:
53 = ,3/4'fzi—1 Es = ,8/4-'f2|'
R(&,, e,)é; = B4+ fa R(&,, f2)é, = — B4y,
& = 3/4'f2i & = *,8/4'.]021'—1
R, fau s = —pBl4-ey R(&, e)8, = — B[4+ [
& = —pBl4d-ey, & = Bld-ey,
R(&,, fu)é. = fl4-ey_, R(&;, €.)¢, = — B[4 fu
& = _8/4'3% & = —6/4'ezi—1
R(fz, 6zi—1)51 = B/"‘Lfm R(Es, f2i——1)§l = ,8/4'ezi—1
& = _,3/4'ezi & = —6/4'f2i
R(&;, €,:)¢, = — B4 fun R(,, f)é, = Bl4-ey;
& = Bl4-ey_, & = B4+ fui
(38.7) R, egii)ery, = —sin’ a/4:0;6, R(&,, fui)ey. =0
e; =0 €; = — /40,6,
Sria = — Bl4+0:5¢, Sri = —sin*a/4:0,;¢,
fzj = ,8/4‘5”'52 fo = _/8/4'54;;'53
R, ex)esi, =0 R(&;, fu)esion = Bl4:04€,
e,; = —sin® /406, e; =0
fzj—x = “3/4'8i552 fzi—l = ,8/4'5ij53
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(3.8)

(3.9

R(,, €x)f2
R(Eu fzi—l)ezj—l
€sj
fzi—1
Sai
R(En fzi)ezj—-l
(23]
fzj—l
Soi
R(EZ’ ezi—i)ezj—-1
€,5
f2j—1
fzj
R(ézy ezi)ezj—-x
€25
fzj—1
Sei

R(ez1, €:5-1)Ek
R(ezi—u ezi)sl
&
&
Ry, f2i-)6
&
&
R(ezi—u ij)El
&
&
R(es:, )¢

R(ezi—u e2j—1)62k—1
€21
Sor
Sae

R(eyi_s, €55)€00
st
S
Sar

R(ezi—n fzj—l)ezk—l
(7

ka—-l

T. SAKAI
= _3/4' 3ij§3 R(Ez, fzi)fzi = —sin’ 05/4- 61’:'52
= ,3/4‘3ij53 R(&, €16, = —sin® a/4+0;;&,
= B[4-0;5¢, e; = —B/4-0:é,
= —sin’ @/4-0;;¢, foize = Bl4-0;&,
=0 S =0
= — B[40, R, e)es;. = B[4+0:56,
= Bl4-0:;&, e; = —sin’a/4-0;;&,
=0 fza’—1 =0
= —sin’ @/4-0,§, foi = Bl4-0:&
= —sin’ a/4'5ij52 R(Es, fzi—1)ezj~1 = _;3/4‘5453'51
= B[4:0:;&s & =0
=0 Seios = —sin® a/4-6;;5,
= —B/4-0:5¢ foi = Bl4:0:6,
= — B[40, R(&, fa)ess, =0
= —sin®* a/4-0;;&, e; = —B[4:0:6,
= /8/4'64'3'51 Seio = _/6)/4'51'7'52
=0 fu = —sin’ a/4-0;;6,
=0 (k= 1, 2, 3) R(ezi’ f25—1)51 = ,8/'2-3,;j52
=0 s&z = —,8/2‘5ij51
= —,8/2'5ij53 & =0
= B/2:0¢, R(ey, f24)é = B2+0;;&,
= /8/2'5«51'53 & =0
=0 & = —B/2-0:;,
= —B[2:0:, R(fus, fuim)ée =0 (B =1,2,3)
= _,8/2'5«51'52 R(fm‘—u fzj)sl =0
= ,3/2'5“'51 & = ,3/2’5~;j§3
=0 & = —p[2:0:6,
=0(k=1,23 R(fu s =0(k=1273)
= 1/2+(05625—1 — 0;1€2i—1)
= B[4+ (015 — 0;€2)
= B4 Oifoj—1 — Ojifriz)
= ,3/4'(5ikfzj - 5jkfz«;)

= 1/4-(20;16,; + B0j18s + 2305621
—1/4+(B0:1655—1 + 20,451 + 2/30;;€51—1)
,8/4'(5«ckfzj + Bjkfzi - 23iif2k)
_,8/4'(5ikf2j—1 + ajkfﬁ—-l - 23ijf2k—1)

= 1/4'(25ikf2j—-1 + Bajkfzi—x + 286iff2k—l)
= _,8/4'(3ikf2j + 5ikf2i - 23z‘jfzk)

= —1/4-(B0:;1€2_, + 20,15, + 2/30;;€31_1)
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R(ezi—n fzj—l)fzk = ,3/4'(5ikezj + Bjkezi - 25ijezk)
R(esicsy fri)eosemr = 1/4+(20:f25 + BOjifo + 2805 2)
e = Bl4+(0irSeis + Osufris — 20:5f01)
ooy = — B[4+ (01855 + 0;40 — 20;564;)
foo = —1/4+(B0i1s5_1 + 205,51 + 280;5€5_1)
R(ezi, ezj)ezk—-l = 6/4'(5%92]'—1 - 5jkezi—l)
6 = 1/2+(0:4625 — 0;1,€:)
fzk—1 = ,3/4'(5ikf2j—1 - 6jkf2i—-1)
fzk = ,6’/4 (aikfzj - Bjkfzi)
R(ezi, fzj—1)ezlc—1 = ,8/4'(5ikf2j + Bjkfzi - zaijfzk)
6y = 1/4+(20;1.f 55— + B0;1Sfeis + 280:5fo1—1)
Somr = —1/4(B0sxes5 + 2051655 + 280;5641)
S = — B[4+ (0ik€sis + Oji€a1 — 20505, ,)
R(ezi, fzj)ezk—l = _,8/4'(5ikf2j»-1 + 51’kf2i—1 - zaijfzk—l)
0 = 1/4+(20;.f5 + BOiife + 280:if2)
fzk—L = ,8/4'(5ik62j—1 + BjkeZi—l - 28723'621;»-1)
fao = —1/4-(B0se:; + 205,y + 250;6:)
R(fui 1y foj-1)oh = B4+ (0ir€25-1 — 051€2i_1)
e = B/4+(0:18:5 — 0j1€2)
f2k~1 = 1/2'(5ikf2j——1 - 8.1'kf2i—-l)
lec = ,3/4'(3ikf2j - 3jkf2i)
R(foisiy foi)lonos = B4+(0i1805 + 051 — 20;5€,)
by, = — B4+ (0518551 + 05121 — 20;;€5_1)
fzk—l = 1/4'(25ikfzj + Bajkfzi + 2,83ijfzk)
fzk = 1/4'(,85ikf2j—1 + 26jkf2i—1 + 2,85ijfzk—-1)
R(f2y foi)eai— = B[4+ (0irs5—1 — 0j1si—1)
6 = (B[4 (051025 — 0j12)
fzk—-1 = ,8/4’(5ikfzj—1 - Bjkui—-l)
Ja = 1/2'(5ikf2j - 5J'kf2i) )

where we have put B = 2—sin’ a.

3.3 First we shall consider M = Sp(n)/Sp(n — 1). In this case,
since ad 9.,5; = 0 hold for ¢ =1, 2, 3 because of (3.2), &, &, & define vector
fields on M!" by dr, which will be denoted &, &, & again. (3.4), (3.5),
and Lemma 1.1 show that &, &,, & are contact structures on M:%'. Since
¢’s are mutually orthogonal and [, &owluint = 2§, holds by (3.2),
(6, &, &) defines a contact 3-structure on M:»'. Let D denote the dis-
tribution defined by {&, &, &}. It is an involutive distribution by (3.2).
Now we have

THEOREM 3.2. int has a contact 3-structure (&, &, &). The maximal
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integral manifold of D is a totally geodesic submanifold which is a sphere
St of comstant curvature 1. M:5 has a structure of S*-bundle over M:L/S?
which 1is a quaternionic projective space and whose metric s that of
symmetric space of rank 1 with sectional curvature 1/2 < K(o) < 2.
Furthermore curvatures of My satisfy the following:

(i) The sectional curvatures of the plane sections spanmed by &; (2 =
1,2,8) and X 1L &, &, & are equal to a constant 1/4.

(ii) in=t 4s of comstant ¢,-holomorphic sectional curvature 5/4 for i =
1,2,3. That 1is, every sectional curvature of plane section {X, ¢;(X)},
X 1 &,6&,¢& is a constant 5/4 where we have put ¢, = —VéE,.

ProoF. The integral manifold of ® may be identified with M}, =
SU(2) which is simply connected and of constant curvature 1. Next we
shall show that M:. has a structure of S°®-bundle over quaternionic pro-
jective space. We put G, = Sp(n), H= Sp(n—1), and K = Sp(n—1) x SU(2).
Then we have the bundle structure (see Steenrod [7])

4n—

ot = @G,/H— G,/K = the quaternionic projective space .

The fibre of this bundle is K/H = S*® (= the maximal integral manifold of
®) and the group of this bundle is SU(2).

The statements (i) and (ii) of the theorem may be proved by direct
but very complicated calculation with full use of Lemma 3.1. We omitt
the calculation. g.e.d.

3.4 Finally we shall consider M:*'={Sp(n) x SU(2)/Sp(n—1) x SU(2)}..
In this general case &, &, & € M, do not define global vector fields on M3
via dr. Take a neighborhood U of 0 in M, which is mapped diffeomor-
phically onto a neighborhood V of 7(e) under woexp|2,. Then 7,9, exp,é;
defines a vector field & over gV for ge G. By the same arguments as
3.3, {9, &9, &7} defines a contact 3-structure over gV. Sinceon gV Ng'V,
L, oL, maps &2 onto &, so {£”, gV} defines a contact structure in the
wider sense for ¢ = 1,2, 3 (See S. Sasaki [4]). Now since ad §, leaves the
subspace spanned by &, &, & invariant, {§, &, &} defines a distribution 9,
on M:** by dr. Then we have the following theorem which may be
proved by the same way as Theorem 3.2.

THEOREM 3.3. M:"' has a contact 3-structure {£\”, &9, &, gV}ee 0
the wider sense. The maximal integral manifold of D, is a totally geodesic
submanifold which is a sphere S® of constant curvature 1/sin . Mi"~" has
a structure of S*-bundle over M:i*'/S*® which is a quaternionic projective
space and whose metric is that of a symmetric space of rank 1 with
sectional curvature 1/2 < K(o) < 2. Furthermore curvatures of Mi
satisfy the following:
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(i) The sectional curvatures of the plane sections spanned by &2 and
X 1 &9, &9 &9 are equal to a constant sin® /4.

(i) M is of constant {-holomorphic sectional curvature 2—3/4-sin’a
for i =1,2 3 and ge G. That is, every sectional curvature of the plane
section {X, ¢(X)}, X 1&2, &9 & is a constant 2 — 3/4-sin® @, where we
have put ¢ = —VEP,

REMARK 1. The structure group of the bundle Mi'— Mi'/S® is
SU@2) x SU(2) unless a = x/2.

REMARK 2. The contact structure &7, &, £ are not contact metric
structure in the sense of S. Sasaki ([4]). But they relate closely to the
homogeneous Riemannian metrics as the above theorem shows.
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