
Tόhoku Math. Journ.
25(1973), 145-155.

THE CONTACT STRUCTURES ON {SU(n + 1) x R/SU(n) x R}
a

AND {Sp(n) x SU(2)/Sp(n - 1) x SU(2)}
a
 OF BERGER

Dedicated to Professor Shigeo Sasaki on his 60th birthday

TAKASHI SAKAI

(Received April 22, 1972)

M. Berger has classified all simply connected normal homogeneous
Riemannian manifolds of positive curvature ([1]). In odd dimensional case
there are seven classes of such structures:

( i ) sphere of constant curvature,
(ii) {SU(n + 1) x R/SU(ri) x R}« (n ̂  2, 0 < a ^ π/2),
(iii) {Sp(n) x SU(2)/Sp(n - 1) x SU(2)}a (n^2,0<a^ π/2),
(iv) {Sp(n) x R/Sp(n - 1) x R}a (n ̂  2, 0 < a ^ π/2),
( v ) SO(9)/SO(7),
(vi) Sp(2)/SU(2),
(vii) SU(5)/Sp(2) x S1.

It is well known that (i) has a natural contact structure, that is, a
Sasakian structure of constant curvature.

In the present note we shall show that (ii) and (iii) have also natural
contact structures which relate closely to homogeneous Riemannian metrics,
and that these contact structures define S1 or S3-fiberings of these mani-
folds over complex or quaternionic protective spaces. For example in case
of (ii) we have the following.

THEOREM. {SU(n + 1) x R/SU(n) x R}a has a structure of regualr
compact simply connected Sasakian manifold of constant φ-holomorphic
sectional curvature 4 — 3/4 «/S2, where we have put β= λ/2(n +
Boothby- Wang's fibering is a principal circle bundle over complex protective
space of constant holomorphic sectional curvature 4 (cf. Theorem 2.2).

1. Preliminaries.

1.1 Let M2n+ί be a (2n + 1)-dimensional Riemannian manifold. Let
V denote the covariant differentiation, and R(X, Y)Z — ViXyY^MZ— VXVYZ +
VYVXZ be the curvature tensor. In the following " [ , ]" denotes the bracket
operation of Lie algebra of Lie group and " [ , ]M" denotes the bracket of
vector fields on the differentiable manifold M.

Now a 1-form η on M2n+1 is said to be a contact form if η A {drj)n Φ 0
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holds everywhere. First we shall show

LEMMA 1.1. Let ξ be a unit Killing vector field on M. Suppose that
the linear map: X—>R(ξ,X)ξ of Mm be of rank 2n at every point m
of My then ξ defines a contact structure on M. That is, if we put
?](X) = <f, X}, then rj is a contact form.

PROOF. We put φ(X) = -Vzξ. Note that φ(ζ) = 0 holds. Since ξ is
a unit Killing vector field, by Ricci's identity we have

(1.1) φ\X) = -Vφmξ = -Vζφ(X) + [ξ, φ(X)]M

= VfVxί - [ξ, Vxξ]M = R{X, ξ)ξ .

By the assumption of the lemma, on D = ζ1, φ2 and consequently φ has
maximal rank 2n. On the other hand we get

(1.2) dη{X, Y) = -2<φX, Y) .

That is {drj)n Φ 0 on D. Since η(ζ) = 1, η A {drj)n Φ 0 holds at every point
of M. q.e.d.

1.2 If a unit Killing vector field ζ on M2n+1 satisfies

(1.3) R(X, ξ)Y= k{<X, Y)ξ - (ξ, Y)X]

for some positive constant k, then (M, ξ, <,» is called a Sasakian manifold
([4]). Note that in this case sectional curvature of the plane section con-
taining ξ is a constant k. Next let ξίy ξ2, fs be three contact structures
on M. If <ίif ξj) = δid and [ίσ(1), ξσ{2)]M = csgnc7.fσ(3) hold, where c is a
constant and σ is a permutation of {1, 2, 3}, we say that {ζlf f2, ί3} defines
a contact 3-structure on M ([6]).

1.3 The curvature tensors of normal homogeneous Riemannian mani-
folds are well known. Let M = G/H be a normal homogeneous Riemannian
manifold, and ® (resp. φ) be the Lie algebra of G (resp. i ϊ ) . Let © =
φ + 3ft be an orthogonal decomposition. Then 3ft may be considered as
the tangent space to M at π(e), where π denotes the canonical projection
G-+G/H and e is the unit element of G. Now we have for X, Y, Ze 3ft

(1.4) i2(X, Y)Z = [[X, Y]» Z] + 1/2.[[X, Y]m, Z]m

+ 1/4.[[Y, Z]m, X]m + 1/4.UZ,X]n, Y]m ,

where [X, Y]9 (resp. [X, Γ]w) denotes the Q (resp. 3ft)-component of [X, Y].
(See K. Nomizu [3]).

2. {SI/(Λ + 1) x R/SU(n) x Λ}α. Throughout of this section we shall
follow the notation of I. Chavel ([2]). Let %n be the Lie algebra of
SU(n+ϊ). We choose on tyin a bi-invariant metric <X, Y) = -1/2 trace XΓ.
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Now if we put

Ajk = V^Tίβyy - SM)

= (ε« — e*y)

V~ΞΪk + ew)

1)}
Z = l

where ejk denotes the matr ix (δ y r δ Λ β ) 1 ^ r f ,^ Λ + i , then {Si, •••, S n ; -B<if C^; 1 ^
i < i ^ n + 1} forms an orthogonal frame for 3IW. Let 2tw_1 be t h e natura l ly
imbedded subalgebra of Stn wi th [5tw_1, Sn] = 0, and 2tn = §I%_i 0 SW be an
orthogonal decomposition. Define

© = a % 0 i 2
€>« = {̂ i, , Sw_!; cos αSw + sin αZ>; -Bri, C r i; 1 ̂  r < i <; }̂
3Kα = {sin aSn - cos αZ); Bift+i, Cjn+1; 1 ^ i ^ n) ,

where D denotes the unit vector of ϋ? and 0 < a ^ ττ/2. Then this decom-
position $a + S)?α of ©w defines the simply connected normal homogeneous
space M2

a

n+ι = {SU(n + 1) x B/SU(n) x R}a (See Berger [1] and Chavel
[2]). Note that M^+ι may be considered as SU(n + l)/SU(n). If we set
ξ = sin αS% - cos αD, e2i_! = B i Λ + 1, e2j = Cjn+ί then {ί, e2i_1, β2i; 1 ̂  i ^ n}
forms an orthonormal basis for S3ϊα. Note that [ξ,$a] = 0 holds.

Now we shall calculate the curvature tensor of M2

a

n+ι at ττ(e). Using
the multiplication table of [2], we have by direct calculation

LEMMA 2.1. If we put β — V2{n + ΐ)/n sin a, we get

(2.1) R(ξ,e2j)ξ
(2.2) R(ξ,e2j)e2k = -

(2.3) R(ξ, e^e^ = 0
(2.4)
(2.5) R(ξ, e2j_x)e2k - 0

(2.6) R(ξ, e ^ O ^ - i = -
(2.7) i ί ( e 2 i , e 2 A)e 2 Z = 8άιe2k - 3kιe2j

(2.8) i ϊ f e , e2k)e2l_γ = (1 - 1 / 4 - ^ ( ^
(2.9) Λ(βl,, βff)f = 0 (p, g = 1, 2,
(2.10) i2(e2i, e^Je,, - (2 - l/2^)δSkea^ + δdιe2k^ + (1 - 1/4-

(2.11) i2(β2J , β^Oe,,^ - - ( 2 - l/2-β*)δjke2l - (1 - ll^ff)Bsιe,k - δkle2j

(2.12)
(2.13)

Now f defines a left invariant vector field on Gn = exp ©„. Since
[f, Φ«] = 0 holds, dπ(ξ) defines a vector field on M2

a

n+ι which will be also
denoted by ξ. Then (2.1) ~ (2.6) show that the unit Killing vector field
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ξ on M2n+ί defines a Sasakian structure on M2n+ί In fact, if we put
Φ= -Vf, we have (1.3) with k = /S2/4 and

Φe2j-i = β/2-e2j, φe2j = -β/2 e2j_19 φ(ζ) = 0 .

Next (2.7) ~ (2.13) show that Ml%+1 is a Sasakian manifold of constant
0-holomorphic sectional curvature 4-3/4 /32. That is, every sectional curva-
ture of the plane section defined by {X, φX}, Xlξ is equal to a constant
4 — 3/4 «/S2. Note that SU(n + 1) x R acts on Aβ*+1 as an automorphism
group of this Sasakian structure. So £ is a regular contact structure
and we have the Boot hby-Wang's fibering of M2n+1. That is, M£"+1 is a
principal circle bundle over complx projective space of constant holomor-
phic sectional curvature 4, as is easily seen. Thus we have the following
theorem.

THEOREM 2.2. M2n+1 = {SU(n + ΐ)xR/SU(ri)xR}a has a structure of
regular compact simply connected Sasakian manifold of constant φ-holomor-
phic sectional curvature 4 — 3/4 /52. Boothby-Wang's fibering of M2

a

nJrl

is a principal circle bundle over complex projective space of constant
holomorphic sectional curvature 4.

REMARK 1. Note that the dimension of SU(n + 1) x R is (n + I)2.
This is the maximal dimension for the automorphism group of a connected
almost contact Riemannian manifold M2n+1. A result of S. Tanno ([5])
shows that in this case M must be of constant ^-holomorphic sectional
curvature.

REMARK 2. It is known that a Sasakian manifold of constant φ-
holomorphic sectional curvature 4 — 3/4 «/92 is of constant curvature if
and only if 4 — 3/4 «/32 is equal to 1/4 «/32 (= the sectional curvature of
the plane section containing ξ). But since β = λ/2(n + l)/n sin a, this
explains why M2n+1 can not be of constant curvature.

REMARK 3. M«n+1 is diffeomorphic φ-homothetically deformable in the
sense of S. Tanno ([5])) to a unit sphere.

3. {Sp(n) x SU(2)/Sp(n - 1) x SU(2)}a.

3.1 Let (Sn be the Lie algebra of Sp(ri). We shall consider Sp(ri) as
a subgroup of U(2n) as usual and put

Ai = V-iieu - en+in+i) i = 1, . . . , n
Bi = εin+i - εn+u i = 1, . . , n

n+i + εn+u) i = 1, . . , n
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Dik = Sue - Zu + εn+i»+k - Sn+kn+i 1 ^ i < k ^ n

E i k = V-ί{εik + eki - ε n + i n + k - ε n + k n + i ) 1 ^ i < k ^ n

Fik = βi +jb + £*•+* - ε^+ίfc ~ «»+*• 1 ^ i < ft ^ n

G ί f c - i / ^ ί e ^ + f c + ekn+i + ε n + i k + ε n + k . ) l ^ i < k ^ n ,

where εjk denotes the matrix (8^8^)^,,^. Then {Ai9 Biy d'Λ ^ ί ^ w;

Z)ίfc, jSίJb, F α , Gί&: 1 ^ i < k ^ n} forms a basis for ©Λ. First we list the

multiplication table for completeness.

[A,, Aj] = 0 [B,, Z?ife] = $ Λ - 3 * * ^

[Aί, Djk] = δίijE
r

ίA. — δifc^ [I?*, GiA;] = δ iy^ fc + 8ikEij

[AifEjk] = -di5Dik - 8ikDia [CifCs] = -δuDu

[Ai9 Fjk] = diάGik + 8ikGi3 [Ci, Djk] = δijGijc — SikGi5

[Aj, Gjk] = —dijFik — 8ikFij [d, Ejk] = 8i3-Fik + SikFiά

[Bi9 Bs\ = -§i5Di5 [Ci9 Fjk] = -δi5Eik - 8jkEi5

[Bif Cj] = δtjEu [Ci9 Gjk] = -8tjDik - 8ikDiS

[Ay, Dkl] = -8ikDsι + δuDjk + δjkDu - δόιDik

[Ay, ^ « ] = ~δikEόι - δuEjk + δjkEu + δ i z£/ ί &

[Ay, ^fcί] = —δikFάι — δuFjk + δjkFu + 5izjPifc

[Ay, Â z] = —δikGji — δuGjk + δjkGu + ^ z G ί Λ

[ ^ , £?w] = -δikDn - δuDjk - 8ikDtl - δnDik

[En, FM] = δikGόι + δuGj k + δjkGu + δάιGik

[Eij9 Gkϊ] = —δikF5ι — 8nFjk — δjkFu — δnFik

\Fih Fkl] = -8ikDi% - δuDjk - 8jkDn - δάιDik

[Fi3, Gkι] = 8ikEji + 8uEjk + δjkEu + δ5ιEik

[Giif Gkl] = -δikDόι - δuDjk - δjkDu - δάιDik .

Now we shall define Aβ " 1 = {Sp(n) x SU(2)/Sp(n - 1) x Si7(2)}α

(See Berger [1] pp. 232). First choose the bi-invariant metrics (X, Y} =

-1/2.trace XY on ©., and <X, Y) = - l / 2 t a n 2 α trace XY on t x (Lie

algebra of SU(2)) with 0 < a < π/2. We set ®n = @Λ 0 t x where φ de-

notes the direct orthogonal sum of ideals &n and %γ. Put Z>! = AΛ, A = -B»,

J93 = C» and JEΊ = cot a Ά, E2 = cot a B, E3 = cot α C, where {A, B, C} is

a basis of tx with [ 1 , 5] - 2C, [C, i ] - 25, [B, C] = 2A. Then we have

[Aα>, A(2)] = 2 sgn (7Z?σ(3), [£/,(!), jE?ff(2)] = 2 cot α sgn σEσW .

Next set

φ α = {Hi = cos α A + sin aEt: 1 ^ i ^ 2; Aif Bif d : l ^ i ^ n - 1

Ay, l/V2Έijy 1/V~2-Fih l/VY-G^: 1 ^ i < j ^ n - 1}
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ma = {£< = sin aDi - cos aE{: 1 ̂  ί ^ 3

1/1/ 2". Din, l/VΎ-Ein, l/VT Fin, l/VT.Gin: l ^ ί ^ n - 1 ) .

Furthermore set Gn = exp ®n, Ha = exp φβ, and ilίj11"1 = GJHa, where
exp denotes the exponential mapping of the Lie algebra to the Lie group.
Let π: Gn —• Λβ*"1 be the canonical projection. Then the tangent space
of Jlfί*"1 at τr(e) may be identified with Ma by dπ. Now the normal
homogeneous Riemannian metric on Λβ*""1 is obtained by restricting the
metric on ®n to 2Wα x Tla and next translating with Gn. This MT"1 is
the homogeneous space {Sp(ri) x SU(2)/Sp(n - 1) x S£7(2)}α of Berger
(Berger's £ is tan a in our terminology.) Note that Miff1 may be identified
with Sp(n)/Sp(n - 1).

3.2 {£,: 1 ̂  i ^ 3; ««_, - l/l/2" Din, e2i = l/VY E^f^ = 1/VY-Fin,
f2i — 1/Λ/Ύ' Gin: 1 ̂  i ^ n — 1} forms an orthonormal basis for 3Kα.

We shall calculate explicitly the curvature tensor of ikβ71"1 at π(e).
For this purpose we shall give some formulas which are all easily derived
from the multiplication table.

(3.1)

Γ I T

Γ ZJ"
[•"1

[ft
[ft

,ftΓ
, ί j
,£.]
, ί s ]

[ft, Λ*]

[£.,

[fs,

£ 1
C2J

= 2 cos aHz

= 0
= 2 cos aζi
= — 2cosαf2

= — cosae2i

= cos ae2i_±

1 = cos af2i

= - c o s α / ^

_ o cos 2α Λ

sinα

_ 9 cos 2α £

sin α
= - o c o s 2 α f

sinα

[H2, H3]

[ft, f J
[ft, f2]
[ft, ίs]

[ f t , β2<~l]

[ft, e2i]
[H2, /2ί_!]

[ft, fu]

_1_ 9 ΛΛO Λ
3 T^ M tuι5 0

! + 2 COS 6

2 + 2 cos c

= 2 cos αJ?!
= — 2 cos α?3

= 0
= 2 cos αf 1

= -cosα/2 ί_!
= — cos af2i

= cos αβ 2 ί_!

= cos αe 2 ί

X.JL1 \

X,xl2

[H3,

[Ht,

[Ht,

Γ TJ

[ft,
[ft,
[ft,

ft]

£.]

e2i-i]

e2i]

Λi-i]
/«]

= 2 cos αiϊ2

= 2 cos aξ2

= — 2cosαfi
= 0

= — cos af2i
= cos afa-i

1 = -cosαe 2 ί

— cos ae2i_γ

[fi, e2ί_i] = -s inαβ 2 ί [f2, β2ί_i] = - s i n α / ^ [f3, e2i_J = - s i n α / 2 ί

[ίi, e2j = s i n a e 2 i _ 1 [f2, β2i] = - s i n α / 2 ί [f8, β2i] = s i n α / 2 < _ 1

[ίi, Λ -i] = sin α/2< [ί2, /2 ί_J = sin αβ2ί_ : [f3, /2 ί_J = - s i n αβ2i

[ίi, ΛJ = - s i n α / ^ i [ί2, /2<] = s i n α e 2 ί [f3, /2<] = s i n α e , ^

(3.3) [e2j_l9 e2k^] = -1/2 JDifc e φ α

[β2J -i, ^i] = — ̂ A; sin aζx - δiA; cos aΈLγ + l/2 Ejk

[%-i, Λft-J = -δ i J f c sin αf2 - δjk cos afl"2 + l/2 Fίk

[%-!, ΛJ = - ^ jfe sin αf3 - δ iΛ cos aH3 + l/2 GSk
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[e2j, Λi-,] = δj i sin αf8 + δjk cos αff8 + 1/2- Gjk

[%, /,J = - δ ί t sin of, - <?rt cos aH2 - 1/2-Fjk

:i-i, Λ*] = Sjk sin aζ, + δjk cos α ^ + l/2 # iJ fc

f,J = - l / 2 . β / f c e § β .

Now we shall calculate the curvature tensor of Λfί*"1 at π(e). By
(1.4) and (3.1) ~ (3.3) direct calculation gives the following.

LEMMA 3.1. The curvature tensor of Mίn~ι at π(e) is given as follows:

(3.4) R(ξi9 £,)£, = 1/sin* α fy (i Φ j)
i, ξj)ξk = 0 (i, j , k are distinct)

'•,,_, = -β/2-f2i i2(ί2,f3)e2ί-i = -/3/2 e2ί R{ξ^ξι)e2i_1=-βl2-f2i_ι

e2i = . i δ / 2 /2<_1 e2i = β/2-e^ e2i =-β/2 f2i

iθ/O/5 /* θ!Om -P -F OlO o
2i—1 — /3/£i*V2i J 2i—1 — Hl^* J 2i J 2i—1 — M/^ 1 ^2i—1

/« = /S/2 e2ί_ ι / „ = ̂ . β , , . ! /2 i = /3/2 e2{

•2j)ξi = sin 2«/4 e2ί

2i-i)fi = s i ^ α ^ /jjy.!

^f, = sin2 α/4-Λί (i = 1, 2, 3:1 ̂  j ^ Λ)

(3.7)

(3.6) Λίfuβ^Of, = -/3/4 / 2 i Λ(e,,/«_i)fi = /5/4 e2i

f3 = β/A'fu., ξ, =

-R(f2, e;

-B(fx, e

fa

*£
2ί-l)

2i)fl

ft

2 ΐ ) e 2

fa

3

fa

e2;_i

&2j

fa
ί ί - l

β 2 i

- /3/4 / 2 ί

= -/9/4 e2ί

= /3/4 /2 ί j
= - β / 4 e2ί

= -/3/4 /2 ί_! J

= β/4-e2i-i

— — sin2 α/4 δίyf! j

- 0

- -0/4.3,,-e,
= β/A-δij^

- 0 J

= — s infα^ δtfft

= — i8/4 δiyf2

^\^2> /

f

21 ft
"2i-l

ί

^2ί)6

3

fs

2

)fl

f2

%

/ 2 3

'•23-1

e2j

Λi-i

- -ββ f*-!

= β/4: e2i^

= ~~ββl± eL
= β/ί'eu^
= -iS/4 / M

= /5/4 e2ί

= βl^'fu-i

= 0
= —ββ δijξy

= — sin 2α/4 δwf
= -/9/4 δi;, f3

= ββ δijξi

= 0
i = /3/4 δi3-f3
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= 0 ft, = 0

e2j = β/i δidξ3 e2j = -

fii-i — 0 fu-i = 0
hj£i fu =

. .... e2j = 0
3-1 = 0 ftj-i = -

fu —

fώeu-i = 0

hjίi fu-i = -ββ δijξi
= 0 fu = -an* aj A-δtJi

(3.8) R{eH_u eu_tfh = 0 (k = 1, 2, 3) R(e2i> f 2 } _ x ) ^ =
etf)fi = 0 ξ2 = -ββ-δtfr

hA f3 = 0

.f23-l)ζl= ββ δiiξz f2 = 0
f2 = 0 fa = -β/2'δ^
ξ3 = -β/2-δtiξ, R{f2i-i, fu-dh = 0 (k = 1, 2, 3)

,,Λy)fi = 0
ί, = β/2 δtjζt

= 0 f3 = -β/2'δtiξt

= 0(k = l,2, 3) Λ(/«, Λy)ft = 0 (ft = 1, 2, 3)

(3.9) -Bfe-i, e2i-i)e2/fc-i = 1/2 (δ«e2j _!
e2k =

/» =

R(eu-i, e^eΛ_y = l/4 (2δike2ί + βδjke2i

δ i ie l <_ 1 + 2βδije2k_1)
- 2aw/ t t)
fii-ι — 2^y/24_1)

J ,*., + 2βδijf2k_1)
« - 2δ«/«)
δjke2i_1 + 2βδijeu_ι)
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δίA;β2i + δjke2i - 2δi5e21c)
*-i = l/^(2δikf2j + βδjkf2i + 2βδijf2k)
e2k = /ίiδf

f2k = -l/4.(/Sδ α e 2 i _ 1 + 2δijfcβ2<_1 + 2βδije2k_1)

e2k = l/2'(δike2j -
δikfϊj-i — δjkf2i_λ)

2i, f2J-i)e2k-1 = ββ-(δikf2j + δ, J 2ί - 25<y

e2fc - l/A-(2δikf2j_1 + ^ y * / ^

2ί + 2βδidetk)

f2k = -lβ.(βδike2j + 2δjke2ί + 2βδ{je2k)

k-ι = β/4:'(δike2j + δ i fcβ2ί — 2 5 ^ )
δike23-.i + δj^i^ — 2δije2k_1)

where we have put β — 2 — sin2 α.

3.3 First we shall consider Λβ/V1 = Sp(n)/Sp(n - 1). In this case,
since ad §ff/2i< = 0 hold for i = 1, 2, 3 because of (3.2), ζl9 ζ2, ξz define vector
fields on Miff1 by dπ, which will be denoted ξl9 ί2, ξz again. (3.4), (3.5),
and Lemma 1.1 show that ζu ξ2, fs are contact structures on Miff1. Since
fi's are mutually orthogonal and [fσ(1), ίσ(2)]^2-

1 = 2fσ(3) holds by (3.2),
(in &, £3) defines a contact 3-structure on ilfί/V1. Let ® denote the dis-
tribution defined by {ξlf ξ2, ξz}. It is an involutive distribution by (3.2).
Now we have

THEOREM 3.2. Miff1 has a contact ^-structure (ξu ξ2, ί3). The maximal
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integral manifold of ® is a totally geodesic submanifold which is a sphere
S 3 of constant curvature 1. Miff1 has a structure of S*-bundle over Miff1 IS3

which is a quaternionic protective space and whose metric is that of
symmetric space of rank 1 with sectional curvature 1/2 ^ K{σ) ^ 2.
Furthermore curvatures of Miff1 satisfy the following:

(i) The sectional curvatures of the plane sections spanned by ξ{ (i =
1, 2, 3) and X j_ ξl9 ζ2, ί8

 a r e equal to a constant 1/4.
(ii) Miff1 is of constant φrholomorphic sectional curvature 5/4 for i =

1.2, 3. That is, every sectional curvature of plane section {X, φi(X)},
X _L fi, £2, f8 is a constant 5/4 where we have put φi = — Vf<.

PROOF. The integral manifold of ® may be identified with M*j2 —
SU(2) which is simply connected and of constant curvature 1. Next we
shall show that Miff1 has a structure of S3-bundle over quaternionic pro-
jective space. We put Gn = Sp(n), H= Sp(n-1), and K= Sp(n-1) x SΪ7(2).
Then we have the bundle structure (see Steenrod [7])

Miff1 = GJH—> GJK — the quaternionic protective space .

The fibre of this bundle is K/H — S* (= the maximal integral manifold of
3)) and the group of this bundle is SU(2).

The statements (i) and (ii) of the theorem may be proved by direct
but very complicated calculation with full use of Lemma 3.1. We omitt
the calculation. q.e.d.

3.4 Finally we shall consider i l ίΓ" 1 - {Sp(n) x SU(2)/Sp(n-l) x SU(2)}a.
In this general case ξl9 ξi9 £8 e SKα do not define global vector fields on ikf^"1

via dπ. Take a neighborhood U of 0 in Ma which is mapped diffeomor-
phically onto a neighborhood V of π(e) under 7roexp | Wla. Then π*g* exp^ ξt

defines a vector field ζ[9) over gV for g e G. By the same arguments as
3.3, {ζ[B), ξ'2

9\ ξί9)} defines a contact 3-structure over gV. Since on gV Π g'V,
Lg,°L~ι maps ξ\9) onto ξlβΊ, so {ξl9), gV} defines a contact structure in the
wider sense for i = 1, 2, 3 (See S. Sasaki [4]). Now since ad $a leaves the
subspace spanned by ζί9 ξ2, ί3 invariant, {ζl9 ξZ9 ξ3} defines a distribution ®α

on Mi?"1 by dπ. Then we have the following theorem which may be
proved by the same way as Theorem 3.2.

THEOREM 3.3. M^-1 has a contact ^-structure {ξ[9), ξ{

2

9\ ξ{

3

9), gV}geG in
the wider sense. The maximal integral manifold of S5α is a totally geodesic
submanifold which is a sphere S3 of constant curvature 1/sin2 a. M^"1 has
a structure of S3-bundle over Man~ιjSz which is a quaternionic protective
space and whose metric is that of a symmetric space of rank 1 with
sectional curvature 1/2 ^ K((j) ̂  2. Furthermore curvatures of M^"1

satisfy the following:
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(i) The sectional curvatures of the plane sections spanned by ξi9) and
X JL ξ[9\ ξ{2β\ ξl9) are equal to a constant sin2α/4.

(ii) M*71"1 is of constant φ\9)-holomorphic sectional curvature 2 — 3/4 sin2α
for i = 1, 2, 3 and g eG. That is, every sectional curvature of the plane
section {X, ΦΪ9)(X)}, X±ξ[a), ξί9), ξί9) is a constant 2 - 3/4 sin2α, where we
have put φ[9) = -Vζl9).

REMARK 1. The structure group of the bundle Mi*"1 —> Min~ι/S* is
SU(2) x SU(2) unless a = π/2.

REMARK 2. The contact structure ξ[9\ ξ{

2

9), ξ{

3

9) are not contact metric
structure in the sense of S. Sasaki ([4]). But they relate closely to the
homogeneous Riemannian metrics as the above theorem shows.
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