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Abstract

We introduce and study a network resource management problem that is a special case of non-

metric k-median, naturally arising in cross platform scheduling and cloud computing. In the

continuous d-dimensional container selection problem, we are given a set C ⊂ Rd of input points,

for some d ≥ 2, and a budget k. An input point p can be assigned to a “container point” c only

if c dominates p in every dimension. The assignment cost is then equal to the ℓ1-norm of the

container point. The goal is to find k container points in Rd, such that the total assignment cost

for all input points is minimized. The discrete variant of the problem has one key distinction,

namely, the container points must be chosen from a given set F of points.

For the continuous version, we obtain a polynomial time approximation scheme for any fixed

dimension d ≥ 2. On the negative side, we show that the problem is NP-hard for any d ≥ 3.

We further show that the discrete version is significantly harder, as it is NP-hard to approx-

imate without violating the budget k in any dimension d ≥ 3. Thus, we focus on obtaining

bi-approximation algorithms. For d = 2, the bi-approximation guarantee is (1 + ǫ, 3), i.e., for any

ǫ > 0, our scheme outputs a solution of size 3k and cost at most (1 + ǫ) times the optimum. For

fixed d > 2, we present a (1 + ǫ, O( 1
ǫ

log k)) bi-approximation algorithm.
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1 Introduction

This paper introduces and studies the container selection problem, a special case of the

non-metric k-median problem [12]. This network resource management problem naturally

occurs in virtualized distributed computer environments, the goal being to maximize resource

utilization. This environment may consist, e.g., of a private cloud [13], or a collection of

in-house, physical computer processors employing a cluster manager such as Mesos [9] or

YARN [16].

We describe and motivate the container selection problem as follows. The input points

correspond to tasks, each of which can be described in terms of multiple resource requirements.
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These dimensions typically include both CPU and memory, sometimes also network and

I/O bandwidth. The tasks are then placed and executed in virtual containers, and of course

each task must “fit” into its assigned container. For a variety of reasons, including ease of

selection, maintenance and testing, it is important to create only a modest number k of

container sizes. Amazon’s EC2 cloud offering [2], for example, allows its customers to choose

from k = 13 standard “instance types”. The goal is to select k container sizes so that the

aggregate resource usage (when each task is assigned its “smallest” dominating container) is

minimized. We use the (normalized) sum of resources as the aggregate resource usage of

a container. In these applications, the container sizes are usually determined in advance,

before the actual tasks arrive: so suitably massaged historical task data is used as input. We

refer the reader to [17] for more details.

Formally, an instance of the continuous container selection problem consists of a set

of input points C in a d-dimensional space Rd, and a budget k. We say that a point

c(c1, c2, . . . , cd) dominates (or, contains) a point p(x1, x2, . . . , xd) if xi ≤ ci, for all i ∈ [d].

The cost of assigning any input point p to a container point c(c1, c2, . . . , cd) is the ℓ1-norm

of the container point, i.e, c1 + c2 + . . . + cd, if c dominates p; else, the assignment cost is

∞. The goal is to choose a set S ⊆ Rd of k container points, such that each input point

is assigned to a container point in S, and the total assignment cost is minimized. In the

discrete version of the problem, we have a further restriction that S ⊆ F , where F ⊆ Rd is

an arbitrary, but finite, subset of points in the space. This problem variant is motivated by

the fact that each container must itself “fit” into at least one physical processing node, or by

the fact that certain resources (memory, for instance) are only allocated in fixed increments.

Related work. Clustering problems such as k-median, k-center, and k-means have received

considerable attention in recent decades [10, 11, 3] (and references therein). Below, we

only discuss the highlights directly relevant to our work. Our problem is a special case of

the non-metric k-median problem. It also bears some similarity to the Euclidean k-median

problem under the ℓ1-norm metric. However, this similarity cannot be leveraged due to the

“non-metric" characteristics of our problem. There is a (1 + ǫ, (1 + 1
ǫ
) ln n) bi-approximation

algorithm for non-metric k-median [12], which finds a solution whose cost is within a (1 + ǫ)

factor of optimal, for any constant ǫ > 0, while using at most k(1 + 1
ǫ
) ln n centers. The

paper [12] also shows, using a reduction from the set cover problem, that these guarantees are

the best one can hope for. On the other hand, the metric variant of the k-median problem is

known to have small constant-factor approximation algorithms, with no violation of k. The

best known ratio 2.611 + ǫ is due to [6]. For the Euclidean k-median problem, which is a

special case of metric k-median, there is a polynomial time approximation scheme (PTAS) [4].

Ackermann et al. [1] obtain PTAS for the non-metric k-median problem assuming that

the following property holds: the corresponding 1-median problem can be approximated

within a 1 + ǫ factor by choosing a constant size sample and computing the optimal 1-median

of such a sample. However, we note that the container selection problem does not satisfy

this property. Indeed, consider a simple 1-dimensional instance with n− 1 points close to

origin, and one point far away from origin. Clearly, with high probability, any constant size

sample will, not contain the point far away from origin. An optimal 1-median of such a

sample would in turn be infeasible for the original instance.

Our contribution. As noted above, the container selection problem is a special case of

non-metric k-median, which is inapproximable unless we violate k significantly [12]. However,

our problem still has sufficient geometric structure. This structure allows us to obtain near
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optimal algorithms that, in the case of continuous container selection, do not violate k, and

in the discrete case, violate k mildly. In particular, we show that:

the continuous container selection problem admits a PTAS, for any fixed d.

On the negative side, we show that the problem is NP-hard for d ≥ 3.

the discrete variant (for d ≥ 3) is NP-hard to approximate within any guarantee if the

budget k is not violated. On a positive note, we obtain constant factor bi-approximation

algorithms for this variant. For any constant ǫ > 0, the guarantees are (1 + ǫ, 3), for d = 2,

and (1 + ǫ, O(d
ǫ

log dk)), for any d ≥ 3. The latter result is an improvement over the

bi-approximation that follows from non-metric k-median [12] as long as k = o(logO(1) n),

d = o( log n
log log n

).

Techniques and outline. Our PTAS for the continuous problem (Section 2) relies on

showing the existence of a near-optimal solution, where every container point lies on one

among a constant number of rays through the origin. Ensuring this structure costs us a

1 + ǫ factor in the approximation ratio. The algorithm itself is then a dynamic program

which optimally solves such a “restricted” container selection problem. A seemingly simpler

approach is to use the near-optimal structure, where every container point lies on a grid with

O(log n) geometrically spaced values in each dimension; however, this is not directly useful,

as we do not know an exact algorithm for the resulting sub-problem.

The flexibility of using container points in the continuous space is essential − not just for

our algorithm, but for any approach: we show the discrete version is NP-hard to approximate

to any factor when d ≥ 3. The reduction (Section 4) is from a restricted version of planar

vertex cover [7], and in fact shows that even testing feasibility is NP-hard. We also reduce the

discrete container selection problem to the continuous version (not approximation preserving),

which proves its NP-hardness when d ≥ 3.

We obtain two different algorithms for the discrete container selection problem, both of

which provide bi-approximation guarantees. The first algorithm (Section 3.1) is specialized

to dimension two and is a (1 + ǫ, 3)-approximation. The main idea here is a partitioning

of R2
+ into O(log n) “cells”, where all points in a cell have roughly the same ℓ1-norm, thus

allowing to decouple “local assignments” within a single cell, and “distant assignments” from

one cell to another. This partitioning uses the definition of rays from the algorithm for the

continuous problem. (Using a more standard partitioning yields O(log2 n) cells which is too

large for a polynomial-time algorithm.) The algorithm then uses enumeration to handle

distant assignments and a dynamic-program for the local assignments. This decoupling

necessitates the violation in the bound k.

The second algorithm for the discrete version (Section 3.2) works for any dimension d and

yields a (1 + ǫ, O( d
ǫ

log dk))-approximation. This is based on the natural linear programming

relaxation used even for the non-metric k-median problem [12]. However, we obtain a sharper

guarantee in the violation of k, using the geometry specific to our setting. In particular, we

show an LP-based reduction to hitting-set instances having VC-dimension O(d). Then our

algorithm uses the well-known result of [8, 5] for such hitting-set instances. We note that

a constant bi-approximation algorithm for d = 2 also follows from this approach, using a

known O( 1
ǫ
)-size ǫ-net construction for “pseudo-disks” [14]. However, the constant obtained

here is much larger than our direct approach.

◮ Remark. There is also a quasi-polynomial time approximation scheme (no violation of the

bound k) for the discrete container selection problem in dimension d = 2. This is based on

a different dynamic program (details deferred to the full version). However, this approach
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does not lead to any non-trivial approximation ratio in polynomial time. We leave open the

possibility of a polynomial-time O(1)-approximation algorithm for this problem (d = 2).

Notation. For integers a < b, we use [b] := {1, 2, · · · b} and [a, b] := {a, a + 1, . . . , b}. All

co-ordinates of input points are assumed to be non-negative. A point c(c1, c2, . . . , cd) ∈ Rd

dominates (or, contains) another p(x1, x2, . . . , xd) ∈ Rd if, for all i ∈ [d], xi ≤ ci. By p ≺ c,

we mean c dominates p. Two points p1 and p2 are called incomparable if p2 ⊀ p1 and p1 ⊀ p2.

The ℓ1-norm of a point c(c1, c2, . . . , cd) is denoted by ‖c‖, i.e., ‖c‖ = c1 + c2 . . . + cd. For

a subset of container points, S, we denote the total cost of assignment by cost(S). The

cartesian product of two sets A and B is denoted by A×B.

2 The Continuous Container Selection Problem

In this section, we describe a polynomial time approximation scheme for the continuous

container selection problem. We start with a formal definition.

◮ Definition 1 (continuous container selection). In an instance of the problem, we are given

a set of input points C in Rd
+ and a budget k. The goal is to find a subset S of k container

points in Rd
+, such that the following cost is minimized.

Min
S⊆R

d

|S|≤k

∑

p∈C
Min
c∈S
p≺c

‖c‖

We describe the algorithm for d = 2 in Section 2.1 and subsequently, in Section 2.2 we extend

this to dimension d > 2.

2.1 The two dimensional container selection problem

We denote the set of input points by C = {pi(xi, yi) : i ∈ [n]}. Let Sopt denote an optimal set

of k container points. Let X = {xi : i ∈ [n]} and Y = {yi : i ∈ [n]}. It is an easy observation

that Sopt ⊆ X × Y . We call X × Y the set of potential container points and denote it by

F = {cj(uj , vj) : j ∈ [m]}, where m ≤ n2.

Algorithm outline. Given an instance of the problem, we transform it into an easier instance

where all the chosen container points must lie on a certain family of rays. The number of rays

in this family will be bounded by a constant that depends on ǫ, where 1 + ǫ is the desired

approximation ratio. Subsequently, we show that the restricted problem can be solved in

polynomial time using a dynamic program.

Transformation of container points. Fix a constant θ ≈ ǫ
2 ∈ (0, π

4 ], such that η = π
2θ

is

an integer. Define the following lines lr ≡ y cos (r − 1)θ − x sin (r − 1)θ = 0, for r ∈ [η + 1].

We define the following transformation of any point cj(uj , vj) ∈ F to construct the set

of potential container points F T . If cj lies on the line lr, for some r ∈ [η], then cT
j = cj .

Otherwise, cj is contained in the region bounded by the lines lr and lr+1, for some r ≤ η.

Now define two points cu
j (uj + ∆u, vj) and cv

j (uj , vj + ∆v), such that cu
j is on lr and cv

j is on

lr+1. Now, the transformed point can be defined as follows:

cT
j =

{

cu
j , if ∆u ≤ ∆v

cv
j , otherwise

APPROX/RANDOM’15
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l1

l2

l3

lη−3
lη−2

lη−1

lη

(a) Transformation of the container points

(r − 1)θ

θ

(uj, vj)

≥ vj cot rθ

= vj cot(r − 1)θ

≥ uj tan(r − 1)θuj tan rθ

lr+1

lr

∆u

∆v

(b) Computing the error in transformation

Figure 1 Continuous container selection problem.

Figure 1a illustrates this transformation. We emphasize that this transformation is only

performed on the potential container points F . The input points C themselves are unchanged.

Under this transformation the optimal solution is preserved within an approximation factor

of (1 + ǫ).

◮ Lemma 2. For instance I = (C, k), let Sopt = {o1, o2, . . . , ok} be an optimal solution.

Further, let ST
opt = {oT

1 , oT
2 , . . . , oT

k } ⊆ F T be the set of transformed points corresponding to

Sopt. Then, ST
opt is a feasible solution to I and cost(ST

opt) ≤ (1 + ǫ)cost(Sopt).

Proof. Recall that η = π
2θ

and θ ≈ ǫ
2 . The feasibility of ST

opt follows from the observation

that if a point pi ∈ C is dominated by a container oi ∈ Sopt, it is also dominated by the

point oT
i . We now argue that cost(ST

opt) ≤ (1 + ǫ)cost(Sopt). It suffices to show that for

every point oj = (uj , vj), uT
j + vT

j ≤ (1 + ǫ)(uj + vj), where oT
j = (uT

j , vT
j ). The claim holds

trivially in the case where oj lies on a line lr, for r ∈ [1, 2, . . . , η + 1]. Hence, assume that oj

lies in the region bounded by the two lines lr and lr+1, where r ∈ [1, 2, . . . , η]. Further, let

ou
j = (uj + ∆u, vj) and ov

j = (uj , vj + ∆v), be the points on lines lr and lr+1 respectively.

By geometry (refer to Figure 1b), we have the following equations:

∆u ≤ vj

(

cos(r − 1)θ

sin(r − 1)θ
− cos rθ

sin rθ

)

= vj

sin θ

sin rθ sin(r − 1)θ
(1)

∆v ≤ uj

(

sin rθ

cos rθ
− sin(r − 1)θ

cos(r − 1)θ

)

= uj

sin θ

cos rθ cos(r − 1)θ
(2)

Let ∆ = min(∆u, ∆v). From Equations 1 and 2, we have,

(uj + vj) sin θ ≥ ∆(sin rθ sin(r − 1)θ + cos rθ cos(r − 1)θ) = ∆ cos θ.

So ∆ ≤ (uj + vj) tan θ ≤ (uj + vj)(2θ) = (uj + vj)ǫ. (3)

Now, the claim follows from Equation 3 and the fact that uT
j + vT

j = (uj + vj) + ∆. ◭

In Section 2.3, we show that the following restricted problem can be solved in polynomial

time (by dynamic programming), for any fixed dimension d ≥ 2.

◮ Definition 3 (restricted container selection). For a constant η ≥ 0, let Ld = {l1, l2, . . . , lη}
be a given family of η rays in Rd

+. The input is a set of points C ⊆ Rd
+, a set of potential

container points F that lie on the lines in Ld and a budget k. The goal is to find a subset

S ⊆ F with |S| ≤ k such that cost(S) is minimized.
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By Lemma 2, the 2D continuous container selection problem reduces to this restricted

problem, at a (1 + ǫ)-factor loss. So we obtain a PTAS for the 2D continuous container

selection problem.

2.2 Continuous container selection in dimension d > 2

We now consider the container selection problem in higher, but fixed, dimensions. Formally,

an instance, I = (C, k), of the d-dimensional container selection problem consists of a set of

input points, C = {pi(x
i
1, xi

2, . . . , xi
d) : i ∈ [n]} and a budget k.

Potential container points. For each dimension j ∈ [d], we define Xj = {xi
j : i ∈ [n]}, as

the set of jth coordinates of all input points. An easy observation is that any container point

chosen by any optimal solution must belong to F = X1×X2× . . .×Xd = {ci(u
i
1, ui

2, . . . , ui
d) :

i ∈ [m]} where, m ≤ nd.

Algorithm outline. As in the two dimensional case, the main idea is a reduction to the

following restricted problem. An instance is I = (C, k, Ld) where C is a set of input points

in Rd, k is an integer and Ld is a family of rays in Rd
+ with |Ld| = Od(1). The goal is to

choose k container points that lie on the rays in Ld, such that the total assignment cost of C
is minimized.

Transformation of container points. Fix a constant θ ≈ ǫ
2 ∈ (0, π

4 ], such that η = π
2θ

is an

integer. In order to construct Ld, we use the recursive procedure described in Algorithm 1.

Let ūi denote the ith unit vector (i ≤ d), i.e., ūi is a 0-1 vector with value 1 at the ith

coordinate and 0 elsewhere. Starting from the family L2 of rays in two dimensions (using the

transformation in Section 2), we add one dimension at a time and construct the corresponding

families for higher dimensions. In the recursive step, we start with the family Lr−1 and

observe that each of these rays will induce a 2-D plane in r-dimensions. Then, we use the two

dimensional construction to handle the extra dimension. Observe that |Ld| ≤ (π/θ)d = O(1)

for any fixed θ and d.

Algorithm 1 Construction of the family of lines in r-dimensions: Lr

1: let ū1, ū2, . . . , ūr be the unit vectors along the axis lines

2: if r = 2 then return equiangular rays in R2
+ from Section 2 (see also Figure 1)

3: construct the family Lr−1 in Rr−1
+ recursively.

4: initiate: Lr ← ∅
5: for all ℓ ∈ Lr−1 do

6: let ℓ̄ be the unit vector along the line ℓ

7: consider the (two dimensional) plane Πℓ formed by the vectors ūr and ℓ̄

8: let Qℓ be the family of rays obtained by applying the 2D transformation in Section 2

to the plane Πℓ

9: Lr ← Lr ∪Qℓ

10: end for

11: return Lr

Algorithm 2 describes a recursive procedure to transform a point c(u1, u2, . . . , ud) ∈ F to

a point cT that lies on some line in Ld. The idea is as follows: for any r ≥ 3, first recursively

transform the point cr−1(u1, u2, . . . , ur−1) ∈ Rr−1 into a point cT
r−1(u′

1, u′
2, . . . , u′

r−1) that

APPROX/RANDOM’15
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lies on some line ℓ ∈ Lr−1. Now, consider the point c′
r(u′

1, u′
2, . . . , u′

r−1, ur), where ur is the

rth coordinate of the original point c. The point c′
r lies on the 2D plane spanned by ℓ̄, the

unit vector along the line ℓ, and ūr. Using the 2D transformation we move c′
r to a point cT

r

that lies on some line in Lr.

Algorithm 2 The transformation of cr = (u1, u2, . . . ur) onto Lr, r ≤ d

1: if r = 2 then use the 2D transformation from the Section 2 (see also Figure 1)

2: cr−1 ← (u1, u2, . . . , ur−1)

3: recursively transform cr−1 into a point on some line ℓ in Lr−1 and compute the trans-

formed point cT
r−1 = (u′

1, u′
2, . . . , u′

r−1)

4: c′
r ← (u′

1, u′
2, . . . , u′

r−1, ur), which lies on the plane Πℓ spanned by ūr and ℓ̄

5: let Qℓ denote the lines on plane Πℓ from Algorithm 1 step 8.

6: use the 2D transformation (Section 2) on plane Πℓ to move c′
r onto a line in Qℓ and

obtain cT
r = (uT

1 , uT
2 , . . . , uT

r−1, uT
r )

7: return cT
r

◮ Lemma 4. For any θ = ǫ
2 ∈ (0, 1

2d−2 ] and point c(u1, u2, . . . , ud) ∈ F , applying Al-

gorithm 2, we obtain cT = (uT
1 , uT

2 , . . . , uT
d ) where c ≺ cT and:

‖cT ‖ ≤ (1 + 2(d− 1)ǫ)‖c‖.

Proof. It is straightforward to see c ≺ cT . Using induction we will show that

‖cT
r ‖ ≤ (1 + ǫ)r−1‖cr‖

The base case r = 2 follows from Lemma 2. Now consider r ≥ 3 and assume the statement

for r − 1. In Algorithm 2, cT
r is obtained by transforming the point c′

r in the 2D plane Πℓ.

Note that c′
r has coordinates

√

(u′
1)2 + (u′

2)2 + . . . + (u′
r−1)2 and ur in plane Πℓ. Hence, as

shown in Lemma 2, we can obtain the following:

uT
1 + uT

2 + . . . + uT
r−1 + uT

r ≤ (1 + ǫ)(
√

(u′
1)2 + (u′

2)2 + . . . + (u′
r−1)2 + ur)

≤ (1 + ǫ)(u′
1 + u′

2 + . . . + u′
r−1 + ur) (4)

By the inductive hypothesis, u′
1 + u′

2 + . . . + u′
r−1 = ‖cT

r−1‖ ≤ (1 + ǫ)r−2‖cr−1‖, i.e.

u′
1 + u′

2 + . . . + u′
r−1 ≤ (1 + ǫ)r−2(u1 + u2 + . . . + ur−1) (5)

Using Equations 4, 5, we have

uT
1 + uT

2 + . . . + uT
r−1 + uT

r ≤ (1 + ǫ)((u′
1 + u′

2 + . . . + u′
r−1) + ur)

≤ (1 + ǫ)((1 + ǫ)r−2(u1 + u2 + . . . + ur−1) + ur)

≤ (1 + ǫ)r−1(u1 + u2 + . . . + ur)

Now since (d− 1)ǫ ≤ 1, using r = d above, ‖cT ‖ ≤ (1 + ǫ)d−1‖c‖ ≤ (1 + (2d− 2)ǫ) · ‖c‖. ◭

For any ǫ′ > 0, setting ǫ = ǫ′

2(d−1) , we can restrict the loss to a (1 + ǫ′) factor. Thus, we

have reduced the original instance to a restricted instance, where the potential container

points lie on a family with a constant number of lines. Using the exact algorithm for this

problem (Section 2.3) we obtain:

◮ Theorem 5. There is a PTAS for continuous container selection in fixed dimension d.
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2.3 Algorithm for restricted container selection

Here we provide an exact algorithm for the restricted container selection problem (Definition 3).

We need the following notion of a profile of a given subset of container points.

Profile of a subset. For a given line li and S ⊆ F , let ci ∈ S be the container point on li
with maximum ℓ1-norm; if there is no such point then ci is set to the origin. We define the

profile of S, denoted by Π(S), as the ordered tuple (c1, c2, . . . , cη). The feasible region of a

profile Π(S) = (c1, c2, . . . , cη), denoted by feas(Π(S)), is the set of those input points that

are dominated by at least one of the points ci, i ∈ [η]. We slightly abuse this notation and

refer to the tuple itself as a profile, without any mention of S.

◮ Observation 6. The number of distinct profiles is at most
(

|F |
η

)η

.

Proof. Let ni be the number of potential container points on the line li. The total number

of distinct profiles is simply the number of ways of choosing the tuple (c1, c2, . . . , cη), which

is equal to n1n2 . . . nη ≤
(∑η

i=1 ni

η

)η

=

( |F |
η

)η

. ◭

For a given profile Π = (c1, c2, . . . , cη), let cm denote the profile point with maximum ℓ1-

norm, i.e., cm = arg max
ci

‖ci‖. Further, let c′
m ≺ cm be some potential container point such

that both the points are on the line lm; if c′
m does not exist we set it to the origin. We

define the child profile of Π corresponding to c′
m, denoted by chld(Π, c′

m), as the profile

(c1, c2, . . . , cm−1, c′
m, . . . , cη). A profile tuple could have multiple child profiles. The following

observation is immediate from the definition of a child profile.

◮ Observation 7. Any profile tuple Π has at most |F | child profile tuples.

The DP variable. For every possible profile tuple Π = (c1, c2, . . . , cη) and all budgets

k′ ≤ k, define the dynamic program variable, M (Π, k′) as the cost of an optimal solution

S ⊆ feas(Π)∩F , to assign all the input points in feas(Π), such that |S| ≤ k′, and ci ∈ S, for

i ∈ [η]. The following lemma allows us to set up the dynamic program recurrence.

◮ Lemma 8. Let Π = (c1, c2, . . . , cη) be a profile with cm as the point with maximum ℓ1-norm.

For a given child profile chld(Π, c′
m) of Π, let n(c′

m) = |feas(Π)\ feas(chld(Π, c′
m))|. Then,

for any k′ ≥ 1, the following holds.

M (Π, k′) = Min
c′

m

(M (chld(Π, c′
m), k′ − 1) + n(c′

m)‖cm‖)

Proof. We denote the optimal solution corresponding to the variable M (Π, k′) by S(Π, k′).
Firstly, note that, for any c′

m, the solution S(chld(Π, c′
m), k′−1)∪{cm} is a feasible candidate

for the computation of M (Π, k′). Hence, we have

M (Π, k′) ≤ Min
c′

m

(M (chld(Π, c′
m), k′ − 1) + n(c′

m)‖cm‖) (6)

Let lm be the ray containing the point cm. Further, let q0 = (0d), q1, . . . , qj−1, qj = pi be

the container points, on lm and in S(Π, k), in the increasing order of ℓ1-norm. Now, we set

q′ = qj−1 and prove that the child profile corresponding to q′ satisfies the following equation:

M (Π, k′) = M (chld(Π, q′), k′ − 1) + n(q′)‖cm‖
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To this end, we first observe that, without loss of generality, no point in feas (chld(Π, q′))
is assigned to cm. Indeed, this follows from the fact that cm is the container point with

maximum cost and therefore, any point in the above feasible region can be assigned to some

container point on the profile chld(Π, q′) without increasing the solution cost. Further, any

point in feas(Π) \ feas(chld(Π, q′)) must be assigned to cm, since it is the only potential

container point that dominates these points. Now,

M (Π, k′) = M (chld(Π, q′), k′ − 1) + n(q′)‖cm‖
≥ Min

c′

m

(M (chld(Π, c′
m), k′ − 1) + n(c′

m)‖cm‖) (7)

From Equations 6 and 7, we have our lemma. ◭

Algorithm 3 describes the dynamic program.

Algorithm 3 Dynamic program for the restricted container selection problem

Input: Family of lines Ld = {l1, l2 . . . , lη}, input points C, potential container points set F

on Ld and a budget k

1: for all profile tuples Π (w.r.t Ld) and integers k′ ≤ k do

2: if k′ = 0 then

3: if Π = ((0d), (0d), . . . , (0d)) then

4: M (Π, k′) = 0

5: else

6: M (Π, k′) =∞
7: end if

8: else

9: let cm be the container point with maximum ℓ1-norm in Π

10: for all c′
m ≺ cm such that both cm and c′

m lie on the same line lm do

11: n(c′
m)← |feas(Π) \ feas(chld(Π, c′

m))|
12: f(c′

m)← (M (chld(Π, c′
m), k′ − 1) + n(c′

m)‖cm‖)
13: end for

14: M (Π, k′)← Min
c′

m

f(c′
m)

15: end if

16: end for

17: return profile Π with least cost M (Π, k) such that C = feas(Π).

3 The Discrete Container Selection Problem

In this section, we consider the discrete version of the container selection problem. We start

with the problem definition.

◮ Definition 9 (discrete container selection). In an instance of the problem, I = (C, F , k),

we are given a set of input points C ⊂ Rd
+, a set of potential container points F ⊂ Rd

+ and a

budget k. The goal is to find a subset of container points S ⊆ F , such that |S| ≤ k and the

total assignment cost of all the input points, cost(S) is minimized.

This problem is considerably harder than the continuous version, as we show that there is

no true approximation algorithm for this problem, unless P = NP , for d ≥ 3. Hence, we look

for bi-approximation algorithms, defined as follows. An (α, β) bi-approximation algorithm

obtains a solution S, such that |S| ≤ β · k and cost(S) ≤ α · cost(Sopt).



V. Nagarajan et al. 425

◮ Theorem 10 (two-dimensions). For d = 2, and any constant ǫ > 0, there is a (1 + ǫ, 3)-bi-

approximation algorithm for the discrete container selection problem.

◮ Theorem 11 (higher-dimensions). For d > 2 and ǫ > 0, there is a (1 + ǫ, O( d
ǫ

log dk))-bi-

approximation algorithm for the discrete container selection problem.

3.1 Two dimensional discrete container selection problem

Algorithm outline. The first step is to partition the plane into a logarithmic number of

“cells”, such that the ℓ1-norms of points in a particular cell are approximately uniform. One

standard way of doing this, where we create a two-dimensional grid with logarithmic number

of lines in each dimension, fails because such a process would yield Ω(log2 n) cells. Our

approach uses the rays partitioning idea. Given such a partitioning, we “guess” the “good”

cells that have any container points belonging to a fixed optimal solution. For each one of

these good cells, we then pick two representative container points. These points are chosen

such that if, in the optimal solution, an input point i outside a cell e is assigned to a container

point inside e, at least one of the representative points in e dominates i. This enables us

to make “local decisions” for each cell independently. We then solve this localized instance,

using k more container points. Hence, in total we use 3k container points.

p
e

max

Cell e

p
e

min

Figure 2 Description of the cells.

The algorithm. Choose δ = ǫ
11 such that π

4δ
= η is

an integer. We first use a simple scaling argument to

bound the maximum to minimum ratio of ℓ1-norms by

O(n). We guess the maximum norm container point

pmax that is used in some fixed optimal solution (there

are only |F | guesses) and delete all larger points from

F . Let pmin be the point in C ∪F with minimum

positive norm. We increase the x-coordinates of all

the input points and the container points by δ
n
‖pmax‖

and then divide all the co-ordinates of all points by

‖pmin‖.
◮ Observation 12. Let Sopt and S′

opt be the optimal

solutions of a given instance before and after scaling

respectively. ‖pmin‖cost(S′
opt) ≤ cost(Sopt)(1 + δ)

Proof. Since all the points are increased and scaled

uniformly, the feasibility is maintained. Further, we note that cost(Sopt) ≥ ‖pmax‖ since our

guess pmax ∈ Sopt. If the cost of assignment of any input point is C in the original instance,

the new cost is equal to (C + δ
n
‖pmax‖)/‖pmin‖ and the lemma follows. ◭

From now on, we assume that all the points are scaled as above and therefore ‖pmin‖ = 1

and ‖pmax‖ ≤ n
δ

. Let t = log1+δ ‖pmax‖ and define the following families of rays.

L1 = {x sin(rδ)− y cos(rδ) = 0 : r ∈ [0, η)} L3 = {y = (1 + δ)i : i ∈ [0, t]}

L2 = {x sin(rδ)− y cos(rδ) = 0 : r ∈ [η, 2η]} L4 = {x = (1 + δ)i : i ∈ [0, t]}

Cells. We define the notion of cell as exemplified in the Figure 2. A cell is a quadrilateral

formed with the following bounding lines: either, two consecutive lines in L1 and two

consecutive lines in L4, or, two consecutive lines in L2 and two consecutive lines in L3. The

number of cells formed is at most (2η + 1)t = O(log n)
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◮ Lemma 13. For a given cell e, let pe
min and pe

max be the points of minimum and maximum

cost, respectively. Then,

‖pe
max‖ ≤ (1 + ǫ)(‖pe

min‖)

Proof. Without loss of generality, let e be formed by lines y = (1 + δ)i, y = (1 + δ)i+1,

x sin θ − y cos θ = 0 and x sin(θ + δ)− y cos(θ + δ) = 0, where θ ≥ π
4 . Clearly, as shown in

Figure 2, we have

pe
min = ((1 + δ)i cot(θ + δ), (1 + δ)i)

pe
max = ((1 + δ)i+1 cot θ, (1 + δ)i+1)

‖pe
max‖
‖pe

min‖
=

(1 + δ)i+1(1 + cot θ)

(1 + δ)i(1 + cot(θ + δ))
= (1 + δ)

(sin θ + cos θ) sin(θ + δ)

(sin(θ + δ) + cos(θ + δ)) sin θ

= (1 + δ)
sin θ sin(θ + δ) + cos θ sin(θ + δ)

sin(θ + δ) sin θ + cos(θ + δ) sin θ

= (1 + δ)

(

1 +
cos θ sin(θ + δ)− cos(θ + δ) sin θ

sin(θ + δ) sin θ + cos(θ + δ) sin θ

)

= (1 + δ)

(

1 +
sin δ

sin(θ + δ) sin θ + cos(θ + δ) sin θ

)

≤ (1 + δ)

(

1 +
sin δ

sin2 θ

)

≤ (1 + δ)(1 + 2δ) = (1 + 3δ + 2(δ)2) ≤ (1 + ǫ)

We note that the second last inequality follows from the fact that sin2 θ ≥ sin2 π
4 ≥ 1

2 . ◭

Representative points. For a given optimal solution, a cell is good if at least one container

point is chosen from it (we break the ties between two cells sharing an edge arbitrarily).

Since, there are O(log n) cells, there are a polynomial number of good-bad classifications.

Therefore, we can try out all possible configurations and assume that we know which cells

are good. For each good cell e, let pe
x be the container point with maximum x-coordinate

and pe
y the one with maximum y-coordinate. We define the set of representative points,

R = { pe
x, pe

y : ∀ e good cell }. Clearly |R| ≤ 2k. We will show (in Lemma 15) that any

input point that is not assigned to a “local container” (one in the same cell) in the optimal

solution, can be re-assigned to some point of R at approximately the same cost.

Localized container selection problem. In an instance of the localized container selection

problem, (C, F1, F2, k), we are given a set of input points C, a set of potential container

points F1, a set of pre-chosen container points F2 and a budget k. Moreover, for each cell e,

the points in F1 ∩ e are all incomparable to each other. For a cell e, let ∆e
max = Max

p∈F1∩e
‖p‖,

be the maximum ℓ1-norm of any container point in e. The cost of assignment of any input

point to any point, in F1 ∩ e, is uniform and equal to ∆e
max. The cost of assignment of an

input point to a container point c ∈ F2 is ‖c‖. Further, any input point p in the cell e, can

only be assigned to:

a container point c ∈ F2 such that p ≺ c, or

a container point c ∈ F1 such that c belongs to e and p ≺ c.

Given an instance of the discrete container selection problem, I = (C, F , k), we construct

the following instance of the localized container selection problem, I ′ = (C, F1, F2, k).

◮ Construction 14. The input point set C, remains the same and F2 is the set of representative

points, i.e., F2 = R. F1 is constructed as follows: starting with F1 = F \ R, while there

are two points p and p′ in F1 that belong to same cell e and p ≺ p′, delete p from F1.
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◮ Lemma 15. For a given instance of the discrete container selection problem, I = (C, F , k),

with the optimal solution cost OPT , the corresponding localized container selection instance

I ′ = (C, F1, F2, k) has an optimal cost of at most (1 + ǫ)OPT .

Proof. Suppose S is an optimal solution for the instance I. We iteratively construct a

solution, S′, for the instance I ′. Initiating S′ = φ, we add exactly one container point for

every container point c ∈ S in the following way: let c belong to a cell e. If c ∈ F1, then

we add c to S′; otherwise, we add some c′ ∈ F1 ∩ e, such that c ≺ c′, which must exist by

Construction 14. Clearly |S′| ≤ |S| ≤ k. We show that S′ is a feasible solution, with a cost

at most (1 + ǫ)OPT , for the instance I ′.
Consider an input point p that is assigned to some container point c ∈ S, in the optimal

solution for I. Suppose, firstly, that c and p are contained in the same cell e. By the

construction of S′, there must be some c′ ∈ S′ ∩ e (possibly c = c′) such that c ≺ c′ and we

can assign p to c′. Further, note that since p and c′ belong to the same cell this is a valid

“local” assignment and by Lemma 13, the cost of assignment equals ∆e
max ≤ ‖c‖(1 + ǫ).

Subsequently, assume that p belongs to a cell e1 and c belongs to a cell e2, such that

e1 6= e2. We show that p can be assigned to one of the two representative points of e2, namely

pe2

x or pe2

y . Recall that pe2

x (resp. pe2

y ) is a container point in e2 with maximum x-coordinate

(resp. y-coordinate). We first claim that there must exist a separating line y = mx + C

with slope m ≥ 0, such that e1 and e2 lie on the opposite sides of this line (they could share

a boundary along this line). We overload notation and allow m = ∞ in which the line is

x + C = 0. So when m = 0 the line (y = C) is parallel to the x-axis and when m =∞ the

line (x = −C) is parallel to the y-axis.

Observe that by our construction, all the boundary lines have non-negative slopes.

Therefore, if e1 and e2 share a boundary line segment, this will be our separating line.

Suppose, on the other hand, that they do not share a boundary line segment and therefore

are disjoint. If e1 and e2 are on the opposite sides of the line y = x, this will be our

separating line. So, we assume that both the cells are on the same side of y = x, without

loss of generality say above y = x. Then both these cells must be bounded by lines

from the families L2 and L3. Let the lines bounding e1 and e2, respectively be, B1 =

{y = (1 + δ)i, y = (1 + δ)i+1, x sin θ − y cos θ = 0, x sin(θ + δ) − y cos(θ + δ) = 0} and

B2 = {y = (1 + δ)j , y = (1 + δ)j+1, x sin θ′ − y cos θ′ = 0, x sin(θ′ + δ)− y cos(θ′ + δ) = 0}.
Now, if i = j, then for the cells not to intersect, we must have θ ≥ θ′ +δ or θ′ ≥ θ+δ. Without

loss of generality, let θ ≥ θ′ + δ. In this case, clearly the separating line is x sin θ− y cos θ = 0.

In the case, where i > j (resp. i < j), y = (1 + δ)j (resp. y = (1 + δ)i) is a separating line.

We consider two different cases based on the value of m and prove that p can be assigned

to some representative point in e2.

Case 1: m ∈ {0,∞} . The separating line between e1 and e2 is axis parallel, say x = a,

without loss of generality. Since p ≺ c, we have that the x-co-ordinates of all points in e1 are

less than a and x-coordinates of all points in e2 are more than a. Hence, clearly the point

with maximum y-coordinate in e2, namely pe2

y must dominate p.

Case 2: m > 0 and finite. Let the separating line be y = mx + C. There are two further

cases here. First assume that p lies below the y = mx + C and c lies above it. Letting

p = (x1, y1), c = (x2, y2) and pe2

x = (x3, y3), we have y1 ≤ mx1 + C and y2 ≥ mx2 + C and

y3 ≥ mx3 +C. By definition, x1 ≤ x2 ≤ x3 and we focus on showing that y1 ≤ y3. Indeed we

have y1 ≤ mx1 + C ≤ mx2 + C ≤ mx3 + C ≤ y3. Thus, p ≺ pe2

x . Next, we assume that p lies

above y = mx + C and c lies below it. Letting p = (x1, y1), c = (x2, y2) and pe2

y = (x3, y3),
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we have y1 ≥ mx1 + C, y2 ≤ mx2 + C and y3 ≤ mx3 + C. By definition, y1 ≤ y2 ≤ y3.

Further, x1 ≤ y1/m−C/m ≤ y2/m−C/m ≤ y3/m−C/m ≤ x3. Hence, p ≺ pe2

y . Therefore,

we have shown that if p is assigned to c, we can assign it to a representative point, cr,

that lies in the same cell as c. From Lemma 13, this implies that our cost of assignment is

‖cr‖ ≤ (1 + ǫ)‖c‖. ◭

We now describe a dynamic program based poly-time algorithm to solve the localized

container selection problem. This completes the proof of Theorem 10.

Algorithm for localized container selection. We define the dynamic program variable,

M(e, ke), for a given cell e, as the optimal cost of assigning all input points in e, to ke ≤ k

newly chosen container points in e, along with the set R of representative container points.

We note that this variable can be computed in polynomial time using ideas in [15]. For

completeness, we describe a simple algorithm to compute this variable for every e and ke ≤ k.

We recall that by the problem definition, all the container points in e are incomparable

and have the same cost, C. Let c1(x1, y1), c2(x2, y2), . . . , cl(xl, yl) be the ordering of the

container points in e, in the descending order of the yi. That is y1 ≥ y2 ≥ . . . ≥ yl and

x1 ≤ x2 ≤ . . . ≤ xl. For a given index i ∈ [l] and integer ki ≤ ke, we define the variable

N (i, ki, j) as the optimal cost of assigning every input point, (x, y), in e, such that y > yi+1,

by choosing ki container points with index ≤ i, with j ≤ i being the highest index container

point chosen (that is cj is chosen and none of cj+1, . . . , ci are chosen). The following

recurrence computes the variable N (i, ki, j). Let ni be the number of input points contained

by ci, whose y-co-ordinates are > yi+1. If ci is chosen,

N (i, ki, i) = Min
j<i
N (i− 1, ki − 1, j) + niC

Now, if ci is not chosen and cj is the highest index container point chosen, with j ≤ i, we

assign the input points contained in ci with x-coordinate > xj and y-coordinate > yi+1 to

the nearest representative container point (if no such point exists, then the cost of assignment

is ∞). Further, we assign those, so far, unassigned input points with y-co-ordinate > yi+1

and x-co-ordinate ≤ xj to cj . Let Ci denote the total cost of assignment of all these input

points. We have

N (i, ki, j) = N (i− 1, ki, j) + Ci

We can compute M, using the following equation: M(e, ke) = Min
j≤l
N (l, ke, j) Let there be

µ cells in total. We order them arbitrarily as e1, e2 . . . eµ. We define the variable D(i, ki)

as the total cost of assigning all the input points in the cells ej , for j ∈ [i], while choosing

ki new container points from these cells and using the representative set R. The following

simple recurrence defines the dynamic program.

D(i, ki) = Min
ℓ≤ki

D(i− 1, ki − ℓ) +M(ei, ℓ)

The optimal solution has a cost D(µ, k).

◮ Remark. This approach does not extend directly even to dimension d = 3. There are issues

in both main steps of the algorithm (1) we do not know a similar construction with O(log n)

cells, and (2) the localized container selection problem also appears hard. In Section 3.2 we

obtain an algorithm for the discrete container selection problem in d > 2 dimensions, using a

linear programming relaxation and prove Theorem 11.
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3.2 Discrete container selection in higher dimension

Min
∑

i∈F

‖i‖
∑

j∈C
yij

s.t. yij ≤ xi, ∀i ∈ F , j ∈ C,
yij = 0, ∀j 6≺ i,
∑

i∈F

yij ≥ 1, ∀j ∈ C,
∑

i∈F

xi ≤ k,

x, y ≥ 0.

We now consider the discrete container selec-

tion problem in any dimension d > 2. Recall

that C denotes the input points and F the

potential container points. We prove The-

orem 11. Our algorithm is based on the

linear programming relaxation in the adja-

cent figure.

When the x and y variables are restricted

to lie in {0, 1} note that we obtain an exact

formulation. This LP relaxation is similar to

the one for (non-metric) facility location [12].

Indeed, our problem is a special case of non-metric k-median, for which the result of [12]

implies a
(

1 + ǫ, O( 1
ǫ

log n)
)

-bicriteria approximation algorithm. Our result (Theorem 11) is

an improvement for fixed dimensions since k ≤ n.

The first step in our algorithm is to solve the LP. Let (x, y) denote an optimal LP solution.

The second step performs a filtering of the y variables, as in [12]. Let C∗
j =

∑

i∈F
‖i‖ · yij

denote the contribution of input point j ∈ C to the optimal LP objective. Define:

yij =

{

(1 + 1
ǫ
)yij if ‖i‖ ≤ (1 + ǫ)C∗

j

0 otherwise.

Also define xi = (1 + 1
ǫ
)xi for all i ∈ F , and Cj = (1 + ǫ)C∗

j for j ∈ C.
◮ Claim 16. For each j ∈ C, ∑

i∈F
yij ≥ 1. For each j ∈ C and i ∈ F , yij ≤ xi.

Proof. Fix any j ∈ C and let Fj = {i ∈ F : ‖i‖ > (1 + ǫ)C∗
j }. By Markov’s inequality we

have
∑

i∈Fj
yij < 1

1+ǫ
. So

∑

i∈F
yij = (1 + 1

ǫ
)
∑

i∈F\Fj
yij ≥ 1. ◭

The third step of our algorithm formulates a geometric hitting-set problem with VC-

dimension d. For each input point j ∈ C, define a polytope Pj ⊆ Rd given by

Pj = {v ∈ Rd : j ≺ v and ‖v‖ ≤ Cj} =

{

v ∈ Rd : vr ≥ jr ∀r ∈ [d],

d
∑

r=1

vr ≤ Cj

}

.

Note that each Pj is described by d + 1 parallel inequalities of the form:

{−et
rv ≤ −jr}d

r=1 ∪ {etv ≤ Cj}.

Above er denotes the rth coordinate unit vector and e = (1, 1, . . . , 1).

◮ Claim 17. For each j ∈ C, ∑

i∈F∩Pj
xi ≥ 1.

Proof. This follows directly from Claim 16 since yij = 0 for all j ∈ C and i 6∈ Pj . ◭

VC dimension bound. We use the following fact about the VC-dimension of a range space

(F ,P) where F is a finite set of points in Rd and P consists of all positive scaling and

translations of a fixed polytope Q ⊆ Rd with q ≥ d facets.

◮ Lemma 18. The VC-dimension of (F ,P) is at most q.
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Proof. This may be a known result; in any case we give a short proof here. Let polytope

Q = {x ∈ Rd : αt
rx ≤ βr, ∀r ∈ [q]} where each αr ∈ Rd and βr ∈ R.

The VC-dimension is the size of the largest subset A ⊆ F such that {A∩P : P ∈ P} = 2A.

Consider any such set A. Suppose (for contradiction) that |A| > q, then we will show a

subset A′ ⊆ A such that there is no P ∈ P with A ∩ P = A′. This would prove the claim.

For each constraint r ∈ [q] let ar ∈ A denote a point that maximizes {αt
rx : x ∈ A}. Set

A′ = {ar}q
r=1. Note that there is some a′ ∈ A \A′ since |A| > q and |A′| ≤ q; moreover, by

the choice of ars, we have αt
ra′ ≤ αt

rar for all r ∈ [q].

Suppose P ∈ P is any polytope that contains all points in A′. Note that P = {x ∈ Rd :

αt
rx ≤ γr, ∀r ∈ [q]} for some {γr ∈ R}q

r=1 since it is a scaled translation of the fixed polytope

Q. Since ar ∈ P for each r ∈ [q], we have γr ≥ αt
rar ≥ αt

ra′. This means that a′ ∈ P as well.

Hence there is no set P ∈ P with P ∩A = A′. ◭

Applying Lemma 18 we obtain (F , {Pj : j ∈ C}) has VC-dimension at most d + 1.

Moreover, by Claim 17 the hitting set instance (F , {Pj : j ∈ C}) has a fractional hitting set

{xi : i ∈ F} of size (1 + 1
ǫ
)k. Thus we can use the following well-known result:

◮ Theorem 19 ([8, 5]). Given any hitting set instance on a set-system with VC-dimension

d and a fractional hitting set of size k, there is a polynomial time algorithm to compute an

integral hitting set of size O(d log(dk)) · k.

This completes the proof of Theorem 11.

◮ Remark. We can also use this LP-based approach to obtain a constant-factor bicriteria

approximation for the discrete container selection problem in R2. This is based on the ǫ-net

result for “pseudo-disks” in R2 [14] and the observation that in dimension two the above

set-system (F , {Pj : j ∈ C}) is a collection of pseudo-disks. However, the constant factor

obtained via this approach is much worse than the direct approach in Section 3.1.

4 Hardness Results

In this section, we provide hardness results for the continuous and discrete container selection

problems in dimension d = 3. All hardness results discussed here are strongly NP-hard. The

reductions are based on the planar degree 3 vertex cover problem. The following restriction

of this problem is also known to be NP-hard [7].

◮ Definition 20 (Plane Degree 3 Vertex Cover (PVC)). The input is a bound k and a plane

drawing of a degree 3 planar graph G = (V, E) with girth at least 4, where the Euclidean

distance between any pair u, v ∈ V of vertices is exactly one if (u, v) ∈ E and at least
√

3

if (u, v) 6∈ E. The decision problem is to determine whether G has a vertex cover of size at

most k.

We first show that the following auxiliary problem is NP-hard.

◮ Definition 21 (∆-hitting problem). The input is a bound k, a set V of points in the plane

where each pairwise distance is at least one and a set {∆e}e∈E of (possibly intersecting)

equilateral triangles with side s := 2√
3

that are all translates of each other. The goal is to

find a subset T ⊆ V with |T | ≤ k such that T ∩∆e 6= ∅ for all e ∈ E.

◮ Theorem 22. The ∆-hitting problem is NP-hard.
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Proof. We reduce the NP-hard PVC problem to the ∆-hitting problem (refer to Figure 3).

An instance of PVC consists of a plane drawing of graph G = (V, E) and bound k. We

construct an instance of the ∆-hitting problem as follows. The set of points is V and the

bound is k. Note that the the distance between each pair of points is at least one, by

Definition 20. For each edge e = (u, v) ∈ E we can find (in polynomial time) an equilateral

triangle ∆e with side s = 2√
3

such that V ∩∆e = {u, v}. To see this, first note that we can

easily find ∆e ∋ u, v as d(u, v) = 1. Since the diameter of ∆e is 2√
3

<
√

3 the vertices V ∩∆e

form a clique in G, and as G has girth 4 we must have |V ∩∆e| = 2. The set of triangles

in the ∆-hitting problem is {∆e}e∈E . Moreover, we can ensure that the triangles {∆e}e∈E

are all translates of some canonical triangle. It is now clear that the ∆-hitting problem is a

yes-instance if and only if the PVC instance has a vertex cover of size at most k. ◭

◮ Theorem 23. The 3-dimensional discrete container selection problem is NP-hard.

Proof. We reduce the ∆-hitting problem to this problem (refer to Figure 4). Consider an

instance as described in Definition 21. We construct an instance of the discrete problem in R3

as follows. Set A = 2|V | and let Π denote the plane x+y +z = A. We place the points V and

triangles {∆e}e∈E of the ∆-hitting instance on plane Π oriented so that every triangle ∆e is

parallel1 to the triangle {(A, 0, 0), (0, A, 0), (0, 0, A)}. We can ensure that all points in V are

in the positive orthant since A is large. The potential container points are V . Observe that

for each triangle ∆e there is a unique point pe ∈ R3 such that ∆e = Π ∩ {x ∈ R3 : pe ≺ x}.
The set of input points is {pe}e∈E . The bound k is same as for the ∆-hitting problem.

It is easy to see that the discrete container selection instance has a feasible solution with

k containers if and only if the ∆-hitting instance is a yes-instance. ◭

We immediately have the following corollary of the Theorem 23, which stems from the

fact that it is NP-hard to even test feasibility of the discrete container selection problem.

◮ Corollary 24. It is NP-hard to approximate the 3-dimensional discrete container selection

problem within any approximation guarantee.

◮ Theorem 25. The 3-dimensional continuous container selection problem is NP-hard.

Proof. We reduce a special variant of the discrete container selection problem whose instances

are defined as in Theorem 23. Let I1 = (C, F , k) denote an instance of the discrete container

selection problem g from Theorem 23 where C are the input points and F denotes the

potential container points. Note that all points of F lie on the plane x + y + z = A, and the

distance between every pair of points in F is at least one. Observe that the latter property

implies that the points in F are incomparable.

We construct an instance I2 = (C′, k′), of the continuous problem in the following way.

Fix parameter δ < 1
2 . For every point c ∈ F we define another point ĉ := c + δ( 1

3 , 1
3 , 1

3 ); note

that ‖ĉ‖ = ‖c‖+ δ and ĉ dominates c but no other point in F \ {c}. Let F̂ = {ĉ : c ∈ F}.
Observe that this is well-defined: since the distance between every pair of points in F is at

least one, any point dominating more than one point of F costs at least A + 1.

Now, the set C′ of input points is constructed as follows. Let M1 ≫ |C|A and M2 ≫
2(|C|A + |F |M1) be two sufficiently large integers. For each c ∈ F , we create M1 input

points at c and M2 input points at ĉ, which are added to C′. Finally we also add the points C
to C′. The bound k′ := k + |F |. We claim that I1 is feasible if and only if I2 has a solution

of cost at most T := |C|A + |F |(M1 + M2)(A + δ)− kM1δ.

1 Two triangles ∆1 and ∆2 are parallel if and only if their corresponding sides are mutually parallel

APPROX/RANDOM’15



432 The Container Selection Problem

(a) Plane degree 3 vertex cover instance (b) ∆-hitting set instance

Figure 3 Reduction of a PVC instance to a ∆-hitting set instance:For every edge in Figure 3a,

we construct an equilateral triangle, in Figure 3b, that contains the incident vertices of the edge

and no other vertex. All such triangles are translates of each other. A vertex cover in the former

instance is a ∆-hitting set in the latter and vice versa.

X-axis Y-axis

Z-axis

x+ y + z = A

Potenial container point

Input points in 3D

Figure 4 Reduction of the ∆-hitting set problem to the discrete container selection problem (in

3D). We consider special instances of the latter where all the potential container points are assumed

to be on the plane Π ≡ x + y + z = A and all input points lie below Π. Notice that the projections

of input points onto Π form equilateral triangles as shown. Any feasible solution for the container

selection problem is a ∆-hitting set in the resulting instance and vice versa.
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Forward direction. Let S = {c1, c2, . . . , ck} be the set of container points chosen by a

feasible solution of I1. Consider the set S′ = S ∪ F̂ . Observe that S′ is a feasible solution

for the instance I2. We now compute the assignment cost of this solution.

The assignment cost for each point in C is A (it is covered by S).

The input points at locations of S have assignment cost A (there are kM1 such points).

The remaining (|F | − k)M1 + |F |M2 input points have assignment cost A + δ each.

Therefore the total cost of this solution is exactly T .

Backward direction. Let S′ with |S′| = k + |F | be a feasible solution to I2 of cost at most

T . We first argue that F̂ ⊆ S′. Indeed, assume that it is not true. Observe that, in this case,

the input points at F̂ should be dominated by < |F | container points. So some container

point s ∈ S′ should dominate input points at two distinct locations ĉi and ĉj . Note that

|s| ≥ A + 1 since ci, cj ≺ s (using the distance one separation between points of F ). Hence

any such solution has assignment cost at least AM1|F |+ (A + δ)M2|F |+ (1− δ)M2 > T

using the definition of M2. We now assume F̂ ⊆ S′. Next we show that each of the remaining

k container points in S′ dominates at most one point of F . If s ∈ S′ dominates two distinct

locations ci and cj , its cost |s| ≥ A + 1 as noted above. However, any input point can be

assigned to one of the container points in F̂ at cost A + δ < A + 1, which makes point s

redundant.

Now we show that each of the k container points S′ \ F̂ dominates some point of F . If

not, consider a container point s′ ∈ S′ that does not dominate any F point. Let f ∈ F be

some point which is not dominated by any S′ \ F̂ ; note that this must exist since each S′ \ F̂
dominates at most one F -point and |S′ \ F̂ | = k ≤ |F |. Suppose we modify the solution by

removing s′ and adding f : the increase in cost is at most |C|(A+δ)+M1A−M1(A+δ) < 0 by

the definition of M1. Thus, F̂ ⊆ S′ and S′′ = S′ \ F̂ ⊆ F . We now claim that S′′ dominates

every point of C. For a contradiction, suppose there is some point of C that is not dominated

by S′′ : then this point has assignment cost A + δ. Every other points of C has assignment

cost at least A. The assignment cost of points at F̂ ∪F is |F |(M1 + M2)(A + δ)− kM1δ.

So the total assignment cost is at least T + δ, a contradiction. Hence S′′ is a feasible solution

for I1. ◭
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