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ABSTRACT 

 

This paper addresses the design of container liner shipping service networks by explicitly 

taking into account empty container repositioning. Two key and interrelated issues, those of 

deploying ships and containers are usually treated separately by most existing studies on 

shipping network design. In this paper, both issues are considered simultaneously. The 

problem is formulated as a two-stage problem. A genetic algorithm-based heuristic is 

developed for the problem. Through a number of numerical experiments that were 

conducted it was shown that the problem with the consideration of empty container 

repositioning provides a more insightful solution than the one without. 

 

Keywords: Container transportation; Routing; Empty Container; Heuristic; 

Genetic algorithm 
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1. Introduction 

This paper addresses the issue of designing service networks for container liner 

shipping while explicitly taking into account empty container repositioning. The container 

shipping industry has been witnessing an overwhelming growth and prosperity in recent 

years mainly due to China’s economic boom. To cope with the ever increasing container 

traffic demand, liner companies are increasing their capacity by investing in new 

containerships. 

Freight transport, by any mode, usually generates a significant number of empty 

vehicle movements caused by the unbalanced directional flows between two specific points. 

This issue, which is an intrinsic element of vehicle fleet management and overall logistics 

scheduling process, has received much attention lately due to its significant consequences. If 

the inventory control fails in locating empty (or available) vehicles in demand points at the 

requested time, then the following decision has to be made: load rejection or vehicle leasing. 

Most of the fleet management studies for the land surface modes consider both alternatives 

as viable. 

Likewise, the sea container industry is also confronted with the problem of 

allocating empty containers. However, in the case of shortage of available containers, load 

rejection is very unlikely in practice due to the intensive competition in the market. 

Consequently, an important decision at the operational level is how to transfer empty 

containers in a timely and efficient manner and/or lease containers. The above context of 

container shipping allows us to distinguish the entire shipping network design problem 

which includes decisions on the voyage itinerary, ship size and calling frequency, into two 

sub-problems: one for the design of networks to serve loaded container traffic and the other 

for networks to assign empty container traffic to meet cargo demand. In fact, to the authors’ 

knowledge, all existing studies related to empty container traffic focus only on empty 

container repositioning. 

Essentially, this study proposes an integrated and comprehensive approach which 

optimizes the whole problem by designing the network with consideration of both full and 

empty container traffic and this approach is superior to dealing with two separate 

sub-problems which may lead to sub-optimization. However, it seems that full and empty 

traffic is dealt with separately for a number of reasons, mainly having to do with the 

complexity of problem to be solved, non-abandoned container cargo traffic, etc. 

Separation of empty container movements from full container movements is 

appropriate if all cargo demand is satisfied. Contrary to this, if we are able to forgo 

unprofitable cargo demand whose generated revenue is offset by the associated costs of 
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empty container relocation, the examination of both full and empty traffic is required in 

designing underlying service networks because of the interaction between full and empty 

traffic. The integrated approach of container liner networks should find an optimal structure 

of service network by selecting a set of ports to be called with profitable traffic and an 

associated optimal relocation of the empty container fleet to meet the needs of the selected 

cargo traffic. The objective of the network design is to maximize the company’s profit 

resulting from the appropriate composition of revenue voyage and the least costly empty 

container traffic. 

In this paper, we propose a design method for containership routing networks that 

incorporates empty container repositioning among calling ports, which is modeled on a 

Knapsack problem basis and is reduced to a location routing problem. The proposed 

problem is solved by a heuristic based on genetic algorithms (GA), in order to find a set of 

calling ports, an associated port calling sequence, the number of ships by ship size category 

and the resulting cruising speed to be deployed in the service networks, with the objective of 

profit maximization for a liner shipping company. An application of the problem to 

container transportation in Southeast Asia is presented. In the numerical experiments, results 

are examined by various factors, which may affect routing and the proportion of loaded and 

empty containers carried on board the ships. 

The paper is organized as follows: Section 2 reviews the relevant literature. Section 

3 presents the problem formulation. Section 4 demonstrates a solution procedure. Section 5 

illustrates computational experiments. Finally section 6 concludes this study and discusses 

future research directions. 

 

2. Literature review 

As there are a number of existing ship routing and related scheduling studies, most 

of them are covered by the following three major review papers: Ronen (1983, 1993) and 

Christiansen et al. (2004). 

Limited literature exists though for containership routing problems. Lane et al. 

(1987) try to find the most economical ship size and mix of fleet for a defined trade route 

with a known trade demand over a finite planning horizon. Claessens (1987) addresses a 

shipping model of minimizing the costs including opportunity costs such as penalty costs for 

cargo not shipped due to ship capacity constraints. Rana and Vickson (1988, 1991) discuss 

the optimal routing for a fleet of containerships operating on a trade route, to maximize the 

liner shipping company’s profit. Besides the route, the optimal set of calling port sequence 

is also provided. They assume that non-profitable ports should not be selected as calling 
 3



ports on the route. They formulate the problem as a mixed integer non-linear programming 

model and solve it by using Lagrangean relaxation techniques. Perakis and Jaramillo (1991) 

and Jaramillo and Perakis (1991) use Linear Programming to assign an existing fleet of 

containerships to a given set of routes based on detailed realistic models of operating costs. 

Non-linearities stemming from cruising speed and frequency of service on routes are solved 

before applying the Linear Programming model. Cho and Perakis (1996) present a study to 

find the optimal fleet size and design of liner routes. The problem is solved by generating a 

priori a number of candidate routes for the different ships. Then the problem is formulated 

and solved as a Linear Programming model. Fagerholt (1999) examined the problem of 

determining the optimal fleet and the corresponding weekly liner routes and he solved it by 

employing a set partitioning approach as a multi-trip vehicle routing problem. Bendall and 

Stent (2001) propose a model of determining the optimal fleet configuration and associated 

fleet deployment plan in a containership hub and spoke application. 

Considerable research has also been performed on the subject of empty container 

management. Gavish (1981) developed a decision support system for vehicle fleet 

management. Its adaptation to the container fleet problem is straightforward. In his study, 

prior to making a decision on empty container relocation, owned and leased containers are 

assigned to the demand points based on the marginal cost criterion. Crainic et al. (1993) 

treat leased container allocation, which is determined together with empty container 

relocation. In their study, long term leasing seems to be assumed because the leasing cost is 

independent from the duration of the lease. Our paper does not deal with long-term leased 

containers as they can be considered as owned containers. That is, once they are leased, the 

leasing cost is necessarily applied whether they are used or not. In contrast to Gavish (1981) 

and Crainic et al. (1993), our study determines simultaneously the allocation of owned and 

(short-term) leased containers. Cheung and Chen (1998) develop a stochastic model for a 

sea-borne empty container allocation problem where owned and leased containers are 

considered to meet the total transportation demand. Their model makes a distinction 

between long- and short-term leased containers, although it should be pointed out that in 

their model constant leasing cost is assumed without lease length consideration. Imai and 

Rivera (2001) deal with fleet size planning for refrigerated containers where they determine 

the necessary number of containers required to meet predicted future transportation demand. 

More recently, Choong et al. (2002) developed an integer programming formulation for 

empty container relocation with use of both long and short-term leased containers. However, 

the treatment of the short-term leased container in their study is not appropriate, since the 

cost of the short-term leased containers is independent of the lease length. The studies of 
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Imai and Rivera (2001) and Choong et al. (2002) deal with empty container distribution in a 

relatively broad geographical area. In contrast, two recent papers focus on empty container 

repositioning in the hinterland of a specific port, in spite of the many similarities that exist 

in theory and in practice with repositioning in a board area. Li et al. (2004) study the empty 

container allocation in a port with the aim to reduce redundant empty containers. They 

consider the problem as a non-standard inventory problem with simultaneous positive and 

negative demand under a general holding cost function. Jula et al. (in press) consider empty 

container repositioning, which they refer to as empty container reuse, from a different 

perspective from that of the above studies. Their aim is the reduction of the traffic 

congestion in the Los Angeles and Long Beach port area caused heavily by empty maritime 

container traffic. A network flow formulation is constructed, in order to optimize empty 

container movements from consignees to shippers directly and/or via inland depots. The 

problem is solved in two phases: the first phase deals with the model transformation to a 

bipartite transportation network (i.e. a classical Transportation Problem) and the second 

phase in solving the Transportation Problem by Linear Programming. 

Thus, it can be attested that no container ship routing studies and empty container 

management studies deal with an integrated and simultaneous approach to determine the 

optimal fleet composition with corresponding routing characteristics and empty container 

repositioning. 

 

3. Problem description 

 3.1. Model outline 

The containership routing problem addressed in this paper corresponds to the 

problem of maximizing profit while picking up and delivering liner container cargoes. Liner 

shipping companies design fixed schedules and routes as a weekly service, which are kept in 

place for a relatively long time, e.g., for a few months or for a year. Deciding the voyage 

routing schedule depends upon several factors such as seasonal cargo fluctuations, market 

requirements, company policy, etc. Therefore, the shipping companies estimate potential 

cargo demand at each calling port on a weekly basis and try to construct service routes or 

networks by explicitly taking into consideration incurred costs and corresponding revenues 

during a specified planning horizon. The decision-making process involves finding the 

optimal cruising speed (in practice however, the speed is sometimes set in advance and is 

therefore regarded as an important constraint in finding the optimal routes and calling 

schedules) and the number of ships for an optimized schedule. 

Most container shipping companies assign a number of ships on a particular trade 
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route, which is characterized by two end ports (i.e., head-end and tail-end ports) and many 

intermediate calling ports. In order to maximize profit, the companies must decide: ports to 

be called and the order of calling sequence for the chosen ports. 

As the problem must determine the above decision factor, it is the so-called 

location routing problem. In most existing voyage routes, all ports to be called on the way 

from the head-end port to the tail-end port (referred to as outbound direction) are not always 

called on the way back to the head-end port (referred to as inbound direction), as shown in 

Fig. 1, where ports 1 and 6 are the head- and tail-end ports. In the outbound direction, all 

intermediate ports except for port 2 are called, whilst only ports 4 and 5 are called in the 

inbound direction. Note that both outbound and inbound directions have the same calling 

sequence of ports 4 and 5 in this example. In fact, most existing liner routes do not have 

such a calling sequence; however, the formation of such a flexible calling sequence may be 

advantageous for efficient empty container repositioning. To the authors’ knowledge, there 

is no analysis in the literature that is able to construct such a flexible routing. 

 

---------------------------- 

Fig. 1 

---------------------------- 

 

 The model maximizes profit by forming a single route, which does not necessarily 

call at all the ports in the trade area. The model assumes a weekly cargo demand for all 

origin/destination pairs. The other assumptions are as follows: 

 

(a) The demand for empty containers at a port, at a specific point of time, is the difference 

between the total traffic originating from the port and the total loaded container traffic 

arriving at the port for that specified time period. This assumption is valid since this 

study addresses the problem of constructing the optimal shipping network for only one 

ship operator. However, it should be noted that usually more than one operator is 

involved in the market; therefore ships operated by different companies call at the 

specific port. Hence, there are concurrent activities in container traffic pertaining to the 

port. For example, if a shipping company forgoes specific shipments, then other 

companies may undertake the rejected shipments. This implies that such a cargo 

rejection affects the cargo demand of other carriers. However, such an interaction makes 

the problem very complex; therefore we only focus on the independent decision-making 

for one company with the supposition that loyalty contracts prevent shippers from 
 6



readily shifting to the other carriers. 

(b) All the cargo traffic emanating from a port is satisfied if that port is selected on the 

route. 

(c) If a sufficient container quantity is not available at a port, the shortage is fulfilled by 

leasing containers with the assumption that there are enough containers to be leased. 

(d) The total loaded and empty containers transported by a ship must not exceed the ship’s 

capacity. 

 

 3.2. Formulation 

 The problem of deciding an optimal route (i.e., choosing an optimal set of   

calling ports and associated calling sequence of ports), can be formulated as a Knapsack 

problem. The Knapsack problem approach has been widely used not only in ship scheduling 

problems but also in other general scheduling problems. 

The problem consists of two parts. One part is the lower-problem, which identifies 

the optimal calling sequence of ports for a specific group of calling ports. The other is the 

upper-problem, which is reduced to the Knapsack problem and chooses the best set of 

calling ports that associate to the calling sequence found in the lower-problem. The 

upper-problem [UP] and the lower-problem [LP] may be formulated as follows: 

[UP] Maximize , (1) k
Vk

kZ ρ∑
∈

 subject to ∑   (2) 
∈

=
Vk

k ,1ρ

 { }1 0,k ∈ρ  Vk ∈∀ , (3) 
where 

V    set of groups of calling ports, each of which associates the optimal voyage route that 

is identified by the [LP] 

kρ   =1 if the route associated with a candidate group of calling ports  is selected, =0 

otherwise 

k

Given a set of calling ports, [LP] constructs the optimal calling sequence, which 

associates with it the resulting profit as the objective function value kZ . For simplicity in 

formulating [LP], the objective function is denoted as Z . Then, [LP] may be formulated as 

follows: 

[LP] Maximize ( ) ( )yy PCRZ −−= , (4) 

 subject to  ∑ ∑  
∈ ∈

=
Nj Nj

jiij yy Ni∈∀ , (5) 
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  ∑∑
∈ ∉

≥
Si Sj

ijy 1 NS ⊂∀ , (6) 

  { }N,...,jN,...,iyij 1 ;1 ∈∈=y ,                   (7) 

                    { 1,0  yij ∈ } Nj,i ∈∀ , (8) 

 

where, 

N   set of calling ports for  Vk ∈

S   non-empty subset of  N
( )⋅C   shipping cost function of selected arcs ( )ji,  

( )⋅P   empty container related (or penalty) cost function of selected arcs  ( )ji,

R   revenue associated with Vk ∈  

ijy   =1 if a ship sails on arc , =0 otherwise ( ji, )
The decision variables are s. The objective function (4) is the maximization of 

the total profit. Constraint set (5) ensures that a calling ship at a port must depart from that 

port. As shown in Fig. 1 where it is envisaged that  contains all ports 1-6 except for 2, 

the route must connect all the ports in . Constraints (6), therefore, guarantee that all the 

ports are connected each other through the formed route. The constraints, in other words, 

guarantee that there are one or more directed arcs in total between any nodes in any subset 

of ports, , and those not in , resulting in that there is no such a sub-tour that does not 

visit all the nodes in . Eq. (7) defines a vector  to be comprised of s for a formed 

voyage route. 

ijy

N
N

S S
N y ijy

 Given a freight rate for the origin-destination port pair, the revenue generated is 

defined by the set of calling ports with the assumption that the published rate is applied 

independent of the cargo traffic itinerary which is based on the resulting voyage route.  

is defined as follows: 

R

 ,  (9) ∑∑
∈ ∈

=
Ni Nj

ijij xFR

where  is the freight rate of cargo from ports  to ijF i j  and  is cargo traffic from 

ports  to 
ijx

i j . 

 Shipping costs depend on a variety of ship factors and transportation demand on the 

route. In this paper, therefore, the shipping cost is expressed as the sum of the costs 

regarding arcs on candidate routes. In the following subsections, we provide relevant cost 

functions. See Imai (1989) for details. 

 
 8



3.3. Shipping cost function 

 Shipping costs are made up of two components: operating and capital costs. In 

general, the capital cost includes the cost regarding the ship itself, while the operating cost 

includes the costs of fuel, lubricant and port entry. These costs are defined as below: 

CPCSC += , (10) 
FC CCCS += ,  (11) 
HE CCCP += , (12) 

where, 

CS   ship related costs 

CP   port related costs 
CC   ship’s other costs, which are not incurred in proportion to the cruse distance  

 ( ) PIRDMC CCCCCC ++++=
DC   ship’s depreciation cost 
EC   port entry cost 
FC   fuel and its related cost 
HC   cargo handling cost 
IC   insurance cost 
MC   crew cost 
RC   interest 
PC   repair and maintenance cost 

 

 The detailed cost functions are illustrated below. 

 

(1) Ship related costs 

 The market report (Drewry, 2001) investigates ship related costs (actually the 

time-charter cost) by various ship sizes. As a result of a regression analysis that was 

performed based on the above cost data, we obtained the following linear cost ($US per 

day) model using the TEU (twenty-foot equivalent unit) capacity as the independent 

variable: 

  (13) 1422.52.TEU*6.54 +=CDC
This regression model provides a good prediction, since its coefficient of determination 

( 2R ) is 0.9982. 

Given the number of voyages offered yearly, which is easily calculated as it is 

based on round trip duration, the total cost is the product of the cost per voyage and the cost 

of a deployed ship. This enables us to concentrate only on the evaluation of the voyage cost 
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per ship. The ship’s other costs, , are computed from the multiplication of the ship’s 

other daily costs, , and the time duration of the voyage, 

CC

CDC ⎟
⎠
⎞

⎜
⎝
⎛ + IDLE

v
DIST

*24
: 

 ⎟
⎠
⎞

⎜
⎝
⎛ += IDLE

v
DISTCC CDC

*24
, (14) 

 , (15) ( )( ) 24/ffxweeIDLE
Ni

'
ii

Nj
jijiij∑ ∑

∈ ∈ ⎭
⎬
⎫

⎩
⎨
⎧

++++=

where, 

DIST   round trip distance (nautical miles)  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑∑

∈ ∈Ni Nj
ijij yDistDIST

ijDist   cruising distance from ports  to i j  (nautical miles) 

IDLE   stay time at port (days), which is associated with a given group of calling ports 

ie   handling time (loading or unloading) per container at port  i
', ii ff   standby times for departure and arrival at port  i

jiw   the number of empty containers carried from ports j  to i  
v   cruising speed (knots) 

The fuel cost  of a voyage, which in this case includes also lubricant cost, is 

defined by the following equation: 

FC

  ( )
A

DISTvDSRCRCC
LubLubFuelFuel

F ⋅⋅⋅+
=

23
2

, (16) 

where, 
FuelC   fuel cost ($US/metric ton) 
FuelR   fuel consumption (g/hp/h) 
LubC   lubricant cost ($US/metric ton) 
LubR   lubricant consumption (g/hp/h) 

DS   displacement 

A   admiralty coefficient (a parameter used for the naval architecture. See Tupper, 

(1996)) 

The derivation of  can be found in the Appendix. FC

 The overall ship related cost  is: CS

 ( ) .
*24

23

2

A

DISTvDSRCRCIDLE
v

DISTCCS
LubLubFuelFuel

CD ⋅⋅⋅+
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=  (17) 

If we take a partial derivative of Eq. (17) by cruising speed  and set the resulting v
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equation as zero as follows, then the optimal cruising speed  is defined by Eq. (18). *v

( ) ,0*2

*24

3

2

2
=

⋅⋅⋅+
+

⋅
−=

∂

∂

A

DISTvDSRCRC

v

DISTC

v

CS LubLubFuelFuelCD

( ) 048 33
2

=⋅⋅++⋅− vDSRCRCAC LubLubFuelFuelCD * , 

 

( )

3
1

3
2

48 ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⋅+

⋅
=

DSRCRC

ACv
LubLubFuelFuel

CD

*
* . (18) 

 The cost at the optimal speed and those at different speeds around the optimal one 

are plotted in Fig. 2 

 

---------------------------- 

Fig. 2 

---------------------------- 

 

(2) Port related costs 

 The port entry cost is given by Eq. (19). 

  ,  (19) ij
Ni Nj

i
E yQC ∑∑

∈ ∈

=

where  is the entry cost per call at port . Note that a selected arc associates two calling 

ports  and 
iQ i

i j ; however only one of them should be counted in the entire voyage. 

 The handling cost HC  is associated with a given group of calling ports for [LP] 

since we assume that a ship undertakes all the cargo demand emanating from calling ports. 

Since  is the sum of handling costs for all calling ports which are incurred by loaded 

and empty containers handled at these ports, it is defined by: 

HC

  ( )∑ ∑
∈ ∈

+++=
Ni Nj

jiijjiiji
H wwxxHC ,   (20) 

where  is the handling cost per container (TEU) at port . iH i

 

3.4. Penalty cost function 

We consider an optimal route configuration taking into consideration empty 

container repositioning among calling ports. Liner shipping companies are generally faced 

with an enormous level of imbalanced cargo traffic between trade sections. This imbalance 
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creates some costs (referred to as penalty costs) as a number of unproductive tasks have to 

be performed such as the reposition of empty containers from excessive points to demand 

points, storage of empty containers in place for future demand and leasing containers to 

meet urgent cargo demand. For the task of container repositioning we assume that no costs 

are associated with it, because it is performed using the excess capacity on their own ships. 

 The penalty cost function, , is given by the following equation where a virtual 

calling sequence shown in Fig. 3 is assumed (the details of the virtual calling sequence are 

described later): 

P

  (21) ( ,∑
∈

+=
NVi

iiii LSbSTaP )

 { }0,max iii DPE −=  NVi∈∀ ,  (22) 

 { }0,max iii PDS −=  NVi∈∀ ,  (23) 

 ∑
∈≠

−=
NVij

jiii wSLS
)(

 NVi∈∀ ,  (24) 

 ∑
∈≠

−=
NVij

ijii wEST
)(

 NVi∈∀ , (25) 

 ( )
( )

CAPwx
i iMp Mpq

pqpq ≤+∑ ∑
∈ ∈<

 Ni∈∀ , (26) 

where,  

ia   storage cost at port  ($US/TEU) i

ib   short-term leasing cost at port  ($US /TEU) i

iLS   the number of lease containers at port  (TEU) i

iST   the number of containers stored at port  (TEU) i

NV   the set of nodes in the virtual calling sequence 

iD   cargo traffic departing from port  (TEU) i

iP   cargo traffic destined for port  (TEU) i

iE   the number of excess containers at port  (TEU) i

iS   the number of demanded containers at port  (TEU) i
iM   the set of ports in the virtual calling sequence with port  in the original sequence 

being port 1 

i

CAP  ship capacity (TEU) 

Eq. (22) defines excess containers. If ii DP −  is negative, i.e., no excess 

containers exsit,  is set to zero, otherwise  is set iE iE ii DP − . Eq. (23) defines shortage 

of empty containers. Eq. (24) defines the number of containers to be leased, while Eq. (25) 

specifies the number of containers to be stored at a port. Inequality (26) guarantees that 
 12



empty containers are transported in an excess space of a ship. Fig. 3(b) shows the virtual 

calling sequence, which was converted from the original calling sequence of Fig. 3(a). The 

virtual calling sequence includes virtual nodes that represent nodes to be visited more than 

once in the original calling route. The set of nodes in the virtual sequence is denoted by 

. In (26), NV iM  is defined as the set of ports in the virtual sequence where the voyage 

starts from node  in the original sequence. Fig. 3 shows i iM  in the example of five ports 

in the original sequence. 4M  has the nodes including virtual ones in sequence for node 4 

in Fig 3(a) corresponding to node 1 in Fig. 3(b). In the virtual sequence, traffic, regardless of 

loaded or empty, from an origin port to another port with a smaller port number than the 

origin port passes through port 1 in the virtual sequence. Note that in Fig. 3 when =4, 

there are two orientations for the round trip voyage: one is itinerary (4, 5, 6, 9, 5, 4, 1) and 

the other is (4, 1, 4, 5, 6, 9, 5), for both of which the virtual sequence is (1, 2, 3, 4, 5, 6, 7); 

therefore, in such a case we must examine constraint (26) for  in both orientations. 

i

i

 

---------------------------- 

Fig. 3 

---------------------------- 

 

Assumption (c) in Section 3.1 considers that there is always enough quantity of 

leased containers; however, this may not always be the case in reality. In such a case and for 

the purpose of applying the model in practice, if a specific port does not have enough 

quantity of containers for lease, we may set a huge value for . This prevents us from 

generating a solution with leasing a number of containers due to the extremely high penalty 

cost. 

ib

 

4. Solution procedure 

 This section describes a solution procedure for this problem, which is categorized 

as a combinatorial optimization problem. As defined the upper-problem of the ship routing 

problem, [UP] is the Knapsack problem, which is NP-complete (Papadimitriou and Steiglitz, 

1982); therefore the ship routing we are concerned is also NP-complete. This implies that 

there is no efficient exact algorithm for this problem. From this point of view, this paper 

proposes a heuristic to nearly optimize the solution by employing genetic algorithm (GA). 

 The GA algorithm we implement solves [UP] and [LP] simultaneously. The GA 

generates better solutions by crossover and mutation at each iteration (or generation) of an 

entire solution process. Generating offsprings of parents, which have been generated up to 
 13



the previous iteration, corresponds to solving [LP] and choosing better one among the 

candidate solutions is equivalent to solving [UP]. 

We need to design the “genetic representation” (or chromosome) of the candidate 

solution, namely, the coding of a combination of calling ports and associated calling 

sequence. In general, there are two kinds of genetic operations: crossover and mutation. 

Crossover generates offsprings by combining both parents to create better individuals. 

Mutation produces spontaneous random change in various chromosomes. In this paper, we 

modify the representation of chromosome and the operations of crossover and mutation, as 

they are provided by Inagaki et al. (1999), to conform them to our problem. 

 

4.1. Genetic representation 

 Fig. 4 illustrates the corresponding formation of Fig. 1. The length of the string of 

digit is the number of candidate calling ports, without consideration to them being selected 

or not, from one port to another including intermediate ports on the way to the latter and 

those on the way back to the former. Note that similar to calling formation described in 

section 3.3, a specific port is assigned a different number whenever is called in the entire 

voyage. In Fig. 4, the ports, which are not all called necessarily, on the way back from ports 

6 to 1 of Fig. 1 have the numbers 7 through 11 associated with them. Therefore, for example, 

port 5 in Fig. 1 has two different numbers 5 and 7 in Fig. 4. An arc from ports  to  as 

shown in Fig. 1 is presented as  is housed in th locus. Such linkages between two 

calling ports are chained to each other to form an entire voyage. Loci, which are equivalent 

to uncalled ports, house any port numbers arbitrarily. 

m n

n m

 

---------------------------- 

Fig. 4 

---------------------------- 

 

4.2. Fitness and selection 

 A selection criterion is used for choosing two parents to apply the crossover 

operator. A fitness value reflects the goodness of an individual, compared with the other 

individuals in the populations. In this study, a fitness value corresponds to a value of the 

objective function, namely, the company’s profit. We adopt two selection methods: an 

elitist-preserve strategy and a roulette-wheel selection. The former method is used when two 

higher rank individuals are unconditionally preserved to the next generation and the latter is 

employed to randomly pick up a superior individual from the remainder. 
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4.3. Crossover 

 The crossover scheme contributes powerfully to the success of the GA. The 

crossover scheme should be capable of reproducing a new feasible solution (or offspring) by 

combining good characteristics of both parents. A generated offspring should present a 

round trip on a complete route. In order to keep the feasibility, the crossover operation is 

performed in the following manner (Fig. 5 shows an example with a new offspring created 

by crossover and presents the resulting routes): First, define port 1 as the starting port of a 

voyage. Focusing on digits in the locus corresponding to the origin port in the two selected 

parents, select a digit arbitrarily from them and store the selected digit in that locus of 

offspring. Second, focusing on digits, from the parents, located in a locus, which is defined 

by the digit just housed in offspring; choose either digit randomly and store it in the same 

locus of that offspring. Repeat this procedure until a round trip is completely formed. 

Finally in loci equivalent to unvisited ports, digits from either of the parents in the 

corresponding loci are stored. Furthermore, if an infeasible chromosome as shown in Fig. 6 

is generated, perform crossover procedure from the beginning over again. 

  

---------------------------- 

Figs. 5 & 6 

---------------------------- 

 

4.4. Mutation 

 Mutation introduces random changes to the chromosome, and keeps the diversity of 

individuals. Fig. 7 presents an example of processing of the mutation operator and 

associated routes. Mutation randomly chooses a locus and houses a digit in that locus, that is 

chosen randomly from any of the ports in the service area. If an infeasible chromosome is 

generated, operate mutation again. 

 

---------------------------- 

Fig. 7 

---------------------------- 

 

5. Computational experiments 

 This section presents an application of the problem to container transportation in 

Southeast Asia. We considered a number of impact factors to the formation of a shipping 
 15



route. 

The algorithm is coded in Fortran77 and is run on a DELL Dimension 8250 with 

2.40 GHz Pentium IV processor. In order to assess the solution quality of the GA, we 

compared approximate solutions by the GA with the optimal solutions of the same problems 

being solved by the Brute force method. Due to the computational limitation of these 

methods, we tested small illustrative cases of the problem with 5-8 ports in the trade area. 

The result was that the GA found the optimal solution for every problem. 

Based on preliminary experiments with the above small problem cases, parameters 

of the GA were set as follows: population size=300, maximum number of generations=200, 

crossover rate=0.9 and mutation rate=0.08. 

  

5.1. Parameter settings for the experiments 

 Settings of parameters for the experiments are as follows: 

(1) Potential calling ports (20 ports): Tokyo, Yokohama, Shimizu, Nagoya, Osaka, Kobe, 

Moji, Hakata, Busan, Shanghai, Keelung, Kaohsiung, Hong Kong, Ho Chi Minh, 

Manila, Leam Chabang, Bangkok, Port Klang, Jakarta and Singapore. 

(2) The time horizon: 52 weeks. 

(3) The calling frequency per year: 52. 

(4) The turnaround time of a ship: less than or equal to 21 days. 

(5) Ship sizes: 500, 1000, 1500, and 2000 TEUs. 

(6) Handling time at each port ( ie ): 0.042 h/TEU. 

(7) Standby time for departure or arrival at each port ( if , '
if ): 2 h each. 

(8) The handling cost at each port: $US200/TEU. 

(9) The storage cost at each port ( ia ): $US300/TEU. 

(10) The short-term leasing cost at each port ( ib ): $US300/TEU. 

(11) Fuel and lubricant costs ( FuelC , LubC ): $US170/metric ton and $US1000 /metric ton, 

respectively. 

(12) Fuel and lubricant consumptions ( FuelR , LubR ): 140g/hp/h and 4g/hp/h, respectively. 

(13) The cost per entry at each port ( iQ ): 05200951 .CAP*. +=  ($US per entry). 

(14) Displacement ( DS ):  3634539626 .*. += CAP (tons). 

(15) Admiralty coefficients ( A ) for each ship size (500, 1000, 1500 and 2000TEU): 250, 

300, 350 and 400, respectively. 

For parameters (6)-(13) data was obtained from surveys that were conducted with 

shipping and stevedoring companies as well as with port authorities in Japan. It is 

understood of course that the port related costs such as handling, storage, and port entry 
 16



costs, vary from port to port. However, due to the lack of detailed data we assume that they 

are the same for all the ports under consideration. If the actual costs were reflected in the 

following case studies, the solutions would have been more insightful. 

 

5.2. Case studies 

Throughout the experiments the sensitivity of some factors was examined to 

determine their influence on the solution. The first factor is the impact of the penalty cost 

coefficients ( , ) (i.e., storage and leasing cost). Companies pay considerable attention to 

the costs related to empty containers nowadays. It is likely that each company assigns a 

different value to the repositioning cost. Thus, we consider three levels for the empty 

container-related costs such as: basic cost, twice as much as the basic cost and four times as 

much. 

ia ib

The second factor is the impact of taking empty containers into consideration. In 

other words, we look into the difference in the gained profit by the two proposed solutions: 

the one identified by the problem we propose (case 1) and the other by the problem without 

consideration of empty container movement (case 2). Calculations for case 2 were also 

performed by GA, but the problem employed for them did not take into account empty 

container distribution (i.e., variables s are not included in the formulations) and the 

associated empty container-related costs (or penalty costs) in the objective function. Note 

that the problem without empty distribution is hereafter referred to as the based problem. 

After the based problem was solved, the necessary empty container traffic was distributed in 

the shipping network, whilst relevant constraints were satisfied and relevant penalty costs 

were added to the profit of the resulting objective function value. The profit resulting from 

the above process is the one for case 2. 

ijw

It seems that in order to keep the sailing schedule, ships must increase cruising 

speed if the handling time increases, since more empty containers are handled due to the 

resulting inefficient empty traffic. At the same time, increasing movement of empty 

containers may also raise the operating costs for the same reason. 

 

5.3. Experimental results 

Port-to-port traffic of loaded containers per week is estimated by using several data 

sources such as the United Nations (1998) and the official web page of each port, etc. Table 

1 shows the weekly throughput of import and export containers at each port based on the 

estimated traffic. 
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---------------------------- 

Table 1 

---------------------------- 

 

We first look into the best ship size in TEUs. We computed a specific problem 

sample by GA 50 times by varying the initial arrangement of genes. Fig. 8 portrays the 

convergence of profit in average of 50 runs during genetic iterations by four different ship 

sizes. For each ship size, we assumed three different levels of penalty cost (indicated by x1, 

x2 and x4). While there are no significant differences in profit by the different penalty cost 

levels, as expected the highest profit is achieved with the deployment of the least cost ship. 

The most profitable ship size is 1000TEUs. 

 

---------------------------- 

Fig. 8 

---------------------------- 

 

Table 2 illustrates comparisons between cases 1 and 2 by the most profitable ship 

size, 1000TEUs, showing the 5 best solutions for each case. The best solutions in case 1 are 

centered on the number of deployed ships=3, whilst the figures may be fractional. As 

mentioned before, case 2 solutions are calculated by adding empty container distribution to 

the solutions of the based problem. Note that in case 2, the based problem does not take into 

account empty container distribution and therefore transports more loaded containers. As 

expected, case 1 results in being more profitable than case 2, as it consists of less revenue 

but also of much less shipping and penalty costs. Interestingly, case 2 has a complicated and 

inefficient empty container distribution. As the based problem has not considered empty 

traffic, a lot of loaded containers are transported due to the fact that no ship space is 

reserved for empty container transfer in the solution of the based problem and consequently 

a huge shortage of empty containers is observed. This shortage is covered through expensive 

leasing. Table 3 shows that, as loaded traffic increases, the turnaround times at ports become 

longer and consequently a higher cruising speed is needed to maintain the service with three 

ships. 

 

---------------------------- 

Tables 2 & 3 

---------------------------- 
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Lastly we provide some insight about the computation time. Referring to Fig. 8, the 

best solution within those generated by the GA is found up to the 50th generation though the 

profit is an average value over 50 calculations with a different initial solution (or gene). 

Table 4 illustrates the profit and CPU time at a different generation in solving a problem 

with a ship capacity of 1000TEUs, whose solution corresponds to solution #1 for case 1 in 

Table 2. From the viewpoint of computational efficiency, Fig. 8 and Table 4 suggest that the 

computation should terminate at most at the 100th generation. 

 

---------------------------- 

Table 4 

---------------------------- 

In general as the problem size increases the computation time increases as well. 

This is the case for this problem. In the chromosome manipulation process, the computation 

time does not significantly increase in spite of increase in the size of chromosome 

representation with more calling ports involved in the problem. However, as mentioned 

before the solution procedure repeats genetic operations such as crossover and mutation till 

those generate chromosomes, which correspond to feasible solutions to the problem. 

Normally such genetic operations more unlikely generate feasible chromosomes for big 

problems (i.e., problems with more calling ports) than for small ones. Consequently, the 

overall computation time increases with larger problem instances. 

 

6. Conclusions 

 This study addressed the problem of container liner shipping network construction 

by explicitly taking into account empty container distribution. Whilst there is huge literature 

on ship routing and scheduling problems, few studies treat the design of container shipping 

network and none of them incorporate the problem of repositioning and leasing of empty 

containers. In this paper, this problem was dealt with by forming a shipping network with 

the assumption that necessary empty container repositioning is performed using spare space 

on ships operated and containers are leased when empty containers do not arrive at the 

demand points in time. GA is employed for implementing a solution method for the 

problem. 

Based on the computational experiments that we conducted, the following 

conclusions can be reached: Due to the empty container flow that was treated in this 

problem, the handling time and associated costs at ports are smaller than those by using the 
 19



based problem. As a result, the problem with empty distribution results in being able to 

cruise at a slower speed due to the efficient empty container distribution and thus save 

considerably the fuel costs. 

 The proposed approach is very useful in assessing potential shipping networks from 

both strategic and tactical viewpoints, since the design of the container shipping network 

without consideration of the empty container traffic eventually becomes very costly due to 

less efficient empty container distribution associated with the resulting network. 

In practice, there is a fierce competition among shipping companies; therefore load 

rejection, which was considered in this study, may be unlikely even in the case of a fully 

utilized ship capacity. A mitigation of this restriction may be an interesting topic for future 

research. 

 

 

Appendix. The derivation of the fuel cost, CF 

  The fuel cost, , is defined as Eqs. (A.1) and (A.2): FC

   (A.1) ,HOURCHPRC FuelFuelF ⋅⋅⋅=

 where  is the time duration of a round trip voyage and HOUR HP  is the engine 

horsepower, which is defined as follows (Tupper, 1996): 

 ./33

2

AvDSHP ⋅=  (A.2) 

  The lubricant cost, , can be given by (A.3): LC

   (A.3) .HOURCHPRC LubLubL ⋅⋅⋅=

  As  is proportional to the voyage time like ,  can be included in ; 

then the fuel cost with the lubricant cost is now expressed as: 

LC FC LC FC

( ) .
33

2

A

HOURvDSRCRCC
LubLubFuelFuel

F ⋅⋅⋅+
=  (A.4) 

 Since HOUR  is defined as vDISTHOUR /= ,  can be rewritten as Eq. 

(A.5) or (16). 

FC

  ( )
A

DISTvDSRCRCC
LubLubFuelFuel

F ⋅⋅⋅+
=

23

2

. (A.5) 
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Fig. 1. Example of ship’s itinerary 
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Fig. 2. Ship related costs at various speeds 
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{ }9,6,5,4,1=N  

Ports in calling sequence 4 5 6 9 5 4 1 

New port numbers 1 2 3 4 5 6 7 

{ }7,6,5,4,3,2,14 =M  
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(a) Original calling route 
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(b) Corresponding virtual calling sequence 
 
 
Fig. 3. Calling sequence transformation for iM  
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 (5) (4) (3) (2)

Locus: 1 2 3 4 5 6 7 8 9 10

Chromosome: 3 5 4 5 6 8 11 7 11 9

 

 
 
 
 
 
Fig. 4. Chromosome representation 
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(5) (4) (3) (2)

Locus: 1 2 3 4 5 6 7 8 9 10

Parent1: 3 5 4 5 6 8 11 7 11 9 P1: 1 3 4 5 6 4 5 1

Parent2: 4 4 2 6 6 9 9 11 8 11 P2: 1 4 6 3 4 1

Offspring1: 4 4 2 6 6 8 11 7 8 11 O1: 1 4 6 4 5 1

 
 
 
 
 
 
 
Fig. 5. Example of crossover processing 
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 (5) (4) (3) (2)

Locus: 1 2 3 4 5 6 7 8 9 10

Parent1: 3 4 4 5 6 8 11 7 11 9 P1: 1 3 4 5 6 4 5 1

Parent2: 4 5 2 2 6 9 9 11 8 11 P2: 1 4 2 5 6 3 4 1

Offspring1: 4 4 4 2 6 9 9 7 8 11 O1: 1 4 2 4 2 . . .

 
 
 
 
 
 
 
 
 
 
Fig. 6. Infeasible chromosome having lethal genes 
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(5) (4) (3) (2)

Locus: 1 2 3 4 5 6 7 8 9 10

Offspring1: 4 4 2 6 6 8 11 7 8 11 O1: 1 4 6 4 5 1

Offspring1': 4 4 2 6 6 8 10 7 8 11 1 4 6 4 5 2 1O1':

 
 
 
 
 
 
 
Fig. 7. Example of mutation processing 
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Table 1. Weekly throughput at ports (TEUs) 
 

 

 Port Import Export 

 

 Tokyo 879 1076 

 Yokohama 906  1181 

 Shimizu 196 271 

 Nagoya 382  790 

 Osaka 282  506 

 Kobe 1008  1533 

 Moji 196  260 

 Hakata 288  382 

 Busan 1925  1467 

 Shanghai 779  914 

 Keelung 325  417 

 Kaohsiung 595  539 

 Hong Kong 1634  392 

 Ho Chi Minh 112  97 

 Manila 382  624 

 Leam Chabang 83  69 

 Bangkok 913  901 

 Port Klang 573  548 

 Jakarta 175  92 

 Singapore 1338  912 
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Fig. 8. Convergence of GA solution by different ship sizes 
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Table 2. Comparison between cases 1 and 2 by 1000TEU ship 
 
 
 
 Case Sol. Calling sequence Profit Revenue Shipping cost Penalty Cruising speed Fleet size Distance 

    (x$US104) (x$US104) (x$US104)  (x$US104)  (knots)   (nautical miles) 

 

 1 1 1-2-17-20-15-11-2-1 4120.3 10394.0 6271.8 1.9 20.7 3 6672 

  2 1-2-5-16-17-20-11-5-2-1 3913.8 10417.7 6463.3 40.6 20.7 3 6385 

  3 1-2-5-17-20-11-5-2-1 3904.5 10229.9 6287.3 38.1 20.3 3 6365 

  4 1-2-5-11-20-17-5-2-1  3854.7 10222.3 6325.4 42.3 20.3 3 6365 

  5 1-2-3-11-14-16-17  3596.7 9898.4 6264.6 37.1 20.4 3 6271 

   -20-11-3-2-1 

 2 2  1-2-5-17-20-11-6-2-1  3784.2 11483.8 7651.4 48.3 23.2 3 6365 

  1  1-2-5-17-16-20-11-6-2-1  3763.3 11665.7 7853.2 49.1 23.8 3 6385 

  4  1-6-17-16-20-11-6-2-1  3559.7 11212.1 7444.9 207.6 22.7 3 6385 

  5  1-4-6-16-17-20-6-2-1  3511.1 10912.3 7331.3 70.0 22.9 3 6635 

  3  1-2-13-20-17-6-2-1  3322.3 11488.2 7994.9 170.9 24.3 3 6640 

 

1: Tokyo, 2: Yokohama, 3: Shimizu, 4: Nagoya, 5: Osaka, 6: Kobe, 7: Moji, 8: Hakata, 9: Busan, 10: Shanghai 
11: Keelung, 12: Kaohsiung, 13: Hong Kong, 14: Ho Chi Minh, 15: Manila, 16: Leam Chabang, 17: Bangkok 
18: Port Klang, 19: Jakarta, 20: Singapore 
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Table 3. The mean handling time for Cases 1 and 2 (1000 TEUs) 
 
 
 

 

Case # Sol.#  Mean handling time (h)  

   Loaded container  Empty container 

 

   1 1 143.1   10.3 

  2 141.2   18.9 

  3 138.4   18.4 

  4 138.3   19.7 

  5 133.6   18.3 

2 2 156.8   39.8 

  1 159.4   40.3 

  4 155.3   35.6 

  5 141.9   40.7 

  3 155.7   47.1 
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Table 4. Profits and CPU times by generation 
 
 
 Generation 50 100 150 200 

 Profit (x$US104) 3183.6 4120.3 4120.3 4120.3 

 CPU time (sec) 20.9 41.9 63.2 85.1 
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