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Abstract: Evaluation of trace elements in the water of Lancang River during the wet season (October)
and dry season (December) was carried out to analyze the content of trace elements in the water,
spatial and seasonal variations, enrichment, and health risks of dissolved trace metal. The results
showed that the content of trace elements in the main stream of the upper Lancang River met the
“Environmental Quality Standard for Surface Water” (GB3838-2002) Class I water-quality standard,
but the Fe content in sampling points during the wet season exceeded the limit value of water-quality
standard. Compared with other rivers in Tibet, the contents of As, Fe, and Pb in the study were
relatively high. While Pb, As, and Zn were the mainly enriched trace elements. The water temperature,
dissolved oxygen, conductivity, As, Cr, and Cu in the main stream of the upper Lancang River with
significant seasonal variations. The content of trace elements in the front of the dam was lower than
that in the tail and under the dam. The trace elements in the water of the reservoir area increased
with an increase in the depth, and the reservoir had a certain interception effect on the trace elements.
The As content in the main stream of the Lancang River was greatly affected by the branch of Angqu
with high content of As. The HQingestion and HI of As in the part of the river in the study exceeded 1,
and the water-quality health risks of the Guoduo reservoir tail and urban reaches were higher than
those of other reaches, which should be paid more attention.

Keywords: the upper Lancang River; trace elements; distribution characteristics; reservoir;
enrichment; health risks

1. Introduction

Trace elements in water have been highly enriched, difficult to degrade, and highly
toxic, especially the excessive accumulation of toxic trace elements which not only threaten
safety of invertebrates and fish ecosystems, but also cause serious health effects on human
beings [1–4]. Some trace elements are extremely toxic even at low concentrations, such
as arsenic (As) and lead (Pb) [5]. As has been classified as a Group I carcinogen by the
International Agency for Research on Cancer [6] and can cause lung, bladder, and skin
cancer even at low doses when inhaled by humans [5,7]. Exposure to Pb could seriously
damage the kidney, liver, central nervous system, and blood system [8], and Pb has been
one of the 67 important risk factors leading to global diseases [9]. Although iron (Fe) and
Mn (manganese) are critical in organisms at specific concentrations, they have toxic effects
on organisms when the concentration increases [10]. Under certain conditions, As adsorbs
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on manganese and iron oxides and hydroxide surface is released into the water [11], thus
affecting the migration and transformation behavior of As in the aquatic environment [12].

Lancang-Mekong River is an international river, the tenth-largest river in the world [13],
and one of the important cradles of human civilization in Southeast Asia [14]. It is called
Lancang River with a total length of 2354 km in China. With the high-speed development of
the economy in recent years, in the Lancang River basin, the urbanization process has accel-
erated, and trace elements have been influenced by city human activities. The compounds
enter the river through hydropower development, mining, and urbanization construction.
Trace element pollution is caused by geochemical background in local reach [15], and
severe pollution of As and Pb in parts of Lancang River [16]. Zhang et al. [17] analyzed
the sediment of the Lancang River and showed that the middle and lower of Lancang
River was greatly affected by human activities. Trace elements such as copper (Cu), Pb,
and As mildly or moderately polluted some parts of the Lancang River. In recent years,
the Guoduo reservoir hydropower station [18] in the upper Lancang River had been put
into operation, and the construction of the dam changed the original hydrological regime
and form of Zhaqu [17,19]. The trace elements in the water would experience different
physical and geochemical processes. In addition, the economy of Changdu city showed
a trend of rapid development [20]. The study area belongs to the plateau cold and arid
region, and there was a shortage of water resources in the area, which could not meet the
living needs of the local people. In addition, due to the complex terrain of the local area, it
is difficult to carry out relevant research work. At present, there are relatively few studies
on trace elements in the upper reaches of the Lancang River, and the influence of urban de-
velopment and hydropower station construction on trace elements in the upper of Lancang
River is unclear. Therefore, this study took the urban section of Changdu city of Lancang
River and the upper Zhaqu (80 km from the upper estuary of Zhaqu River) as the research
object, carried out water environment investigation, analyzed the spatial and temporal
distribution characteristics of major trace elements As, Pb, Fe, Mn, chromium (Cr), Cu, and
zinc (Zn) in the water body, understood their enrichment status, and evaluated their health
risks. To provide a scientific basis for water ecological environment protection in the upper
Lancang River. this study provided a reference for water environment evolution of rivers
and the utilization of water resources in the plateau area.

2. Materials and Methods
2.1. Study Area

Lancang River originates from the northern foot of Tanggula Mountain on The Qinghai–
Tibet Plateau in China. It flows out of the border through Yunnan and Nanla Estuary, and
then into the South China Sea through Laos, Thailand, Cambodia, and Vietnam [17]. The
Lancang River passes through the parallel vertical valley of Hengduan Mountain. It is a
steep and narrow river running from north to south with an elevation drop of 4700 m. Soil
erosion, landslide, and debris flow frequently occur here [13]. The length of the source
of the Lancang River to Changdu is 565.5 km, which is the upper of the Lancang River,
namely, Zhaqu. Zhaqu is 448 km long in Qinghai Province and 117.5 km after exiting
Qinghai to Changdu. The riverbed elevation of this section is 3150–3700 m, with an average
gradient of 4.0‰–4.5‰, which is the river section with the largest river decline in the whole
basin [21]. Zhaqu and Angqu flows into the Lancang River after confluence in the Changdu.
The soil-forming part materials of Changdu mainly include Cretaceous, Jurassic, Triassic,
Tertiary, and other multi-period magmatic rocks, sedimentary rocks, and metamorphic rock
weathering residues, gravity deposits, slope deposits, etc. Zhaqu mainly contains Jurassic
purple red sand and mudstone mixed with limestone [22,23]. Changdu is an important
part of the Southwest Sanjiang Pb–Zn–Cu–Ag metallogenic belt [24]. In the region, a large
number of Pb–zinc deposits have been produced in carbonate rocks, and depositional
mercury, antimony, arsenic, and lead–zinc deposits occur [25].

Changdu is located in the semi-arid monsoon climate zone, with annual average
precipitation of 473 mm and annual average temperature of 7.5 ◦C [26]. Zhaqu water
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is mainly resupplied by melting water of snow and ice in spring, and by rainwater and
groundwater in summer, autumn, and winter. The water amount in spring accounts for
about 12% of the annual water volume. Summer accounts for about 50% of the annual water
volume [21]. From December to April of the following year, due to the influence of the
westerly climate, precipitation is rare and the air is dry. Precipitation mainly concentrates
from May to November [27], with sufficient sunshine, strong solar radiation, large diurnal
temperature difference, and small annual temperature difference [28].

2.2. Sampling

According to the geographical characteristics of the study area, 11 sampling sites were
set up in this study (Table 1). Two sites were set up in urban areas after Zhaqu merges into
the Lancang River. One of them was set up at the estuary of the tributary Angqu River, and
two sample sites were set up under the dam of the Guoduo reservoir. Six sample sites were
set up from the dam site of the Guoduo reservoir to the 20 km upstream section (Figure 1).
The survey was conducted in the wet season (October) and dry season (December) in 2018.
The temperature, pH, dissolved oxygen, conductivity, and turbidity of the water were
monitored on-site by a portable multi-parameter water-quality analyzer (EXO2, Yellow
Springs Instrument Incorporated, Yellow Springs, OH, USA) when collecting water samples.
The surface water was collected from 0.5 m below the water surface. In order to better
understand the water-quality changes in the Guoduo reservoir, a vertical line was drawn in
the 0.5 km section in front of the Guoduo reservoir dam, and water samples were collected
at 0.5, 5, 10, 20, 30, 40, and 60 m below the water surface. After the water sample was
collected, 500 mL of the sample was filtered through the 0.45 µm cellulose acetate filtration
membrane on the sampling day. To filtered samples were added suprapure nitric acid until
the pH of the samples was less than 2, and they were then refrigerator-stored until analysis.

Table 1. Basic information table of sampling points.

Number Sampling Sites Longitude Latitude Main Stream or
Tributary

L01 The tail of reservoir 97◦05′20.30′′ 31◦38′54.17′′ Main stream
L02 11 km in front of the dam 97◦06′49.13′′ 31◦35′25.11′′ Main stream
L03 9 km in front of the dam 97◦07′4.33′′ 31◦35′19.17′′ Main stream
L04 5 km in front of the dam 97◦09′07.68′′ 31◦33′14.07′′ Main stream
L05 3 km in front of the dam 97◦09′41.55′′ 31◦33′01.76′′ Main stream
L06 0.3 km in front of the dam 97◦11′18.84′′ 31◦32′03.85′′ Main stream
L07 1 km under the dam 97◦07′40.69′′ 31◦34′56.02′′ Main stream
L08 50 km under the dam 97◦10′58.00′′ 31◦10′3.00′′ Main stream
Z01 The estuary of Angqu 97◦09′09.38′′ 31◦09′00.33′′ Tributary

L09 1 km downstream of
Lancang river 97◦10′37.7′′ 31◦07′58.4′′ Main stream

L10 40 km downstream of
Lancang river 97◦21′34.8′′ 31◦55′50.0′′ Main stream
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2.3. Data Collection and Data-Quality Assessment

The temperature, pH, dissolved oxygen, and conductivity of all samples were cali-
brated before testing, with the pH electrode calibrated with buffers of pH 4.01, 7.00, and
10.01. As, Fe, Mn, Pb, Cr, Cu, and Zn were analyzed by ICP-MS (NexION 300X, PerkinElmer,
Waltham, MA, USA) [29,30]. Standard reagent produced by the National Research Center
for Standard Materials was used to formulate the standard curve before sample analysis.
Blank samples were added to each batch of samples. The detection limits of As, Fe, Mn,
Pb, Cr, Cu, and Zn (µg/L) were 0.12, 0.82, 0.12, 0.09, 0.11, 0.08 and 0.67, respectively. The
recoveries (%) were 91.8, 97.2, 95.5, 92.4, 93.2, 94.6 and 96.1, respectively. All the data below
the detection limit were analyzed and calculated using half of the detection limit [31].

2.4. Analytical Method

(1) Enrichment of trace elements

In order to understand the enrichment status of metal elements in the study area,
enrichment factor (EF) was used for analysis. The enrichment factor was the ratio of the
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metal element content in the water body of the study area to the average river content
in the world [32]. According to the enrichment factor, the enrichment conditions could
be divided into 6 categories: when EF > 100, it was abnormal enrichment; 10 < EF < 100,
indicating super enrichment; 5 < EF < 10, indicating significant enrichment; 1.5 < EF < 5,
indicating slight enrichment; 0.5 < EF < 1.5, indicating that it is not enriched. If EF < 0.5,
this indicates a loss [33].

(2) Health-risk assessment model

Health-risk assessment is a method to quantitatively describe the risk of health hazards
caused by human exposure to polluted environments, which could be caused by two main
ways: drinking water and skin contact. The United States Department of Environmental
Protection (US EPA) had recommended a health-risk assessment model [34,35].

Risk entropy (HQ) reflects the potential risk status of non-carcinogenic risk: HQ < 0.1,
indicating that the pollutant would not cause adverse health effects; 0.1 < HQ < 1, indi-
cating that further investigation is required before action is taken; HQ > 1, indicating that
pollutants are likely to cause adverse health effects [35].

HQ = ADD/R f D (1)

The risk index (HI) can be used to assess the total potential non-carcinogenic risk from
multiple pathways, and HI > 1 indicates that the pollutant might have adverse effects on
human health or require further study.

HI = ∑
(

HQirg + HQderm
)

(2)

(i) Calculation of average daily dose:

ADDingestion =
Cw × IR× ABSg × EF× ED

BW × AT
(3)

(ii) Calculation of skin exposure dose to water:

ADDdermal =

(
Cw × SA × Kp × ET × EF× ED× 10−3)

(BW × AT)
(4)

Reference values of exposure parameters are shown in Table 2.

Table 2. Statistics of disclosure parameters.

Subject Cw IR ABSGI EF ED SA Kp ET BW AT

Adults – 2 a See Table 3 350 b 70 b 18,000 b See Table 3 0.58 a 65 a 25,550 b

Children – 0.64 a See Table 3 350 b 6 b 6600 b See Table 3 1 a 20 a 219 b

a Gao et al. [36]; b US EPA [37].

Table 3. RfDingestion, RfDdermal, ABSg, and Kp values of trace elements.

Element As Cu Zn Pb Cr Mn

RfDingestion 0.3 a 40 c 300 a 1.4 c 3 c 24 c

RfDdermal 0.285 a 8 c 60 a 0.42 c 0.075 c 0.96 c

ABSGI 95% b 57% b 20% d 11.7% d 3.8% b 6% b

Kp 0.001 b 0.001 b 0.0006 b 0.0001 b 0.003 b 0.001 b

RfDingestion: oral reference dose (µg/kg/day), RfDdermal: the reference dose of the dermal absorption (µg/kg/day).
a Gao et al. [36]; b US EPA [37]; c Wang et al. [38]; d Xiao et al. [39].

Values of RfDingestion, RfDdermal, ABSg, and Kp of each (class) metallic element are shown
in Table 3.
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3. Result and Discussion
3.1. Trace Elements in Water

The contents of trace elements in the main stream of Lancang River were as follows:
Fe > Mn > Zn > As > Cu > Pb > Cr. The contents of trace elements in all the sample points
meet the Class I water-quality standard of Surface Water Environmental Quality Standard
(GB3838-2002), but the Fe content in some sample points exceeded the limit value of water-
quality standard (300 µg/L). The average content of As was 7.28 µg/L, which was lower
than that of Sengzangbo River and Shiquan River, and much higher than that of Niyang
River, Lhasa River (see Table 4), and the world river average. The average Pb content was
2.65 µg/L, which was lower than the lower Lancang River, but higher than other rivers in
Tibet and the world river average. The average content of Fe was 153.1 µg/L, which was
lower than that of Niyang River and far higher than that of other Tibetan rivers and the
world river average. The average content of Mn was 10.84 µg/L, which was lower than that
of Niyang River and the world river average, but higher than that of other Tibetan rivers.
The average content of Cr was 2.27 µg/L, which was higher than that in the Niyang River
and lower Lancang River. The average content of Cd was 0.06 µg/L, which was lower than
that of other rivers in Tibet. The average Cu content was 6.25 µg/L, which was only lower
than that of Niyang River, but much higher than the lower Lancang River. The content
of Zn was only lower than that of Niyang River, but much higher than that of the lower
Lancang River. Except for As, the mean contents of all other metal elements in this research
were lower than the rivers of Bangladesh, but the contents of As, Fe, Pb, Cu, and Zn in
the water of the Lancang River were higher than the corresponding elements’ contents in
water of the world river average and other rivers of Tibet, which may be attributed to the
weathering products of mineral resources and rocks outcropping in the drainage basin [40].

According to the analysis in Figure 2, different trace elements were enriched in different
regions. As, Pb, and Zn were heavily enriched, Fe and Cr were moderately enriched, and
Mn and Cu were slightly enriched or below in the reservoir tail water. In the reservoir
water, Pb and Zn were heavily enriched, As was moderately enriched, and Fe, Mn, and
Cu were slightly enriched or below. Pb and Zn were heavily enriched, As was moderately
enriched, and Fe, Mn, Cu, and Cr were slightly enriched or below. Pb and As were heavily
enriched, As was moderately enriched, and Fe, Mn, Cu, and Cr were slightly enriched or
below. In conclusion, As, Pb, and Zn were the mainly enriched trace elements in the water
in the study area.

3.2. Temporal and Spatial Distribution Characteristics of Trace Elements

The water temperature of the Lancang River mainstream in the study area fluctuated
little in both the wet season (4.45–6.83 ◦C) and dry season (0.1–1.0 ◦C), but the average
water temperature in the wet season (5.71 ◦C) was significantly higher than that in the dry
season (0.37 ◦C) (Table 5). The pH value of river water in the wet season (8.16–8.36) and
dry season (8.13–8.31) fluctuated little. The pH value of river water in the wet season (8.21)
and dry season (8.22) had no significant difference, but the river water was slightly alkaline
on the whole, which was similar to other rivers in Tibet [15,26]. The content of dissolved
oxygen in river water in the wet season (8.86–10.24 mg/L) was higher than that in the dry
season (6.52–7.25 mg/L), which was mainly due to the larger water quantity, faster flow
rate, and faster exchange between water and air in the wet season. The conductivity of
the river water in the wet season (226–385.3 µS/cm) was lower than that in the dry season
(448–743 µS/cm).
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Table 4. Trace elements in rivers.

River
As (µg/L) Pb (µg/L) Fe (µg/L) Mn (µg/L) Cr (µg/L) Cu (µg/L) Zn (µg/L) Literature

Mean Range Mean Range Mean Range Mean Range Mean Range Mean Range Mean Range

This study 7.28 1.00–14.1 2.65 ND-10.0 153.1 26.90–836.3 10.84 0.94–39.37 2.27 ND-5.99 6.25 ND-17.18 9.87 ND-39.81 /

Niyang River, Tibet 0.10 / 1.16 0.012–5.18 360.0 160.0–600.0 27.65 0.02–400 1.75 0.34–3.28 7.11 0.06–34.2 36.34 0.15–187 [41]
Lhasa River, Tibet 2.28 0.65–4.27 / / 11.83 ND-111.0 4.05 ND-21.7 / / 3.95 0.12–14.00 4.32 0.51–15.80 [42]

Sengzangbo River, Tibet 58.40 2.4–252.0 0.09 0.05–0.22 14.00 0.16–98.1 3.63 2.18–14.7 / / 2.58 0.36–4.98 1.25 0.75–4.01 [43]
Yarlung Tsangpo, Tibet 10.80 1.97–83.2 0.06 0.03–0.31 8.30 0.46–82.28 2.37 0.65–19.2 / / 1.69 0.77–3.30 0.97 0.41–2.10 [43]

Shiquan River, Tibet 68.00 3.10–150 / / / / / / / / / / / / [43]
Xiangquan River, Tibet 5.99 4.91–7.06 / / / / / / / / / / / / [43]

Naqu, Tibet 5.89 5.87–5.91 / / / / / / / / / / / / [43]
The downstream of Lancang

river, Tibet / / 11.82 8.43–15.2 100 70–130 13.3 12.5–14.1 0.39 0.28–0.50 1.53 0.86–2.2 1.88 0.83–2.93 [26]

Six major river basins,
Bangladesh 6.53 1.3–32 12.41 2.9–31 2476 215–21,800 233.8 15.3–1170 27.7 2.1–86 / / 53.24 10–190 [11]

Wainivesi River, Bangladesh, / / 190 153–204 1623 570–4260 45 5–96 104 55–122 46.8 10–107 183 21–753 [44]
Nakuvadra-Rakiraki River,

Ra Province / / 12.4 5.11–21.3 198 57.1–444 358 168–531 133 63–181 22.4 5.2–43.7 46.1 9.02–99.7 [45]

Average of the world’s rivers 0.62 0.079 66 34 0.70 1.44 5.34 [32]

Class I of surface water 50 10 300 100 / 10 50
Water-quality standards

for surface water in
China

Note: “/” means no detection, and “ND” means detection limit in the table.
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Table 5. Field parameters and trace element concentrations in surface waters from the upper
Lancang River.

Sampling Time Category T
(◦C) pH DO

(mg/L)
EC

(µS/cm)
As

(µg/L)
Fe

(µg/L)
Mn

(µg/L)
Pb

(µg/L)
Cr

(µg/L)
Cu

(µg/L)
Zn

(µg/L)

Wet season
(October 2018)

mean 5.71 8.21 9.32 357 5.49 207.7 10.29 3.11 0.58 0.86 8.80
min 4.45 8.16 8.86 226 1.00 26.90 0.94 ND ND ND ND
max 6.83 8.36 10.24 385 14.06 836.3 39.37 10.00 5.29 2.38 39.81

Dry season (December 2018)
mean 0.37 8.22 6.90 604 9.06 98.49 11.39 2.18 3.96 11.64 10.93
min 0.10 8.13 6.52 488 7.65 64.62 2.60 1.95 ND 9.98 8.20
max 1.00 8.31 7.25 743 12.70 179.3 19.09 2.60 5.99 17.18 13.03

Note: “ND” means detection limit in the table.

The average content of As in the main stream of Lancang River in the wet season
(5.49 µg/L) was significantly lower than that in the dry season (9.06 µg/L), but the content
of Fe (average 207.7 µg/L) in the wet season was significantly higher than that in the dry
season (average 98.49 µg/L) (Table 5). There was no significant difference between Mn
content in the wet season (mean 10.29 µg/L) and dry season (mean 11.39 µg/L), and there
was no significant difference between Pb content in the wet season (mean 3.11 µg/L) and
the dry season (mean 2.18 µg/L). The contents of Cr, Cu, and Zn in the wet season were all
lower than those in the dry season (Figure 3), which was similar to electrical conductivity.
The main reason was that glacial meltwater and rainfall merge into rivers in the wet season,
which reduces the contents of trace element plasma in water bodies [15]. According to
analysis of Figure 2, the content of Fe and Pb in the wet season was higher than that in
the dry season, which may be related to the higher value of local geological background.
The fluctuation of As, Pb, Fe, Mn, and Cr in the main stream of the Lancang River was
relatively large in the wet season, but relatively small in the dry season. This was mainly
due to the high sediment content in the wet season and the continuous adsorption and
desorption of trace elements in the sediment [46,47], and it was also affected by the merging
of surrounding rainfall and melting water of snow and ice. In general, the contents of As,
Cr, and Cu in the water body of the main stream of the Lancang River in the dry season
were higher than those in the wet season, mainly because the water amount in the wet
season was larger and the trace elements in the water body diluted [15].
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From the changes of water quality along the main stream of the upper Lancang River,
it could be seen that the variation trend of Fe and Mn in the main stream of Lancang River
is similar, which was mainly because Mn was the associated element of Fe. The contents
of As, Pb, Fe, Mn, Cr, and Zn were the lowest at L06 (0.3 km in front of the dam), which
was the closest point to the dam site and has a slow flow rate. Most of the granular As,
Pb, Fe, and Mn in the water body had sunk to the bottom of the reservoir. The contents of
As, Pb, Fe, Mn, Cr, and Zn in surface water were low [48–50]. The As increased sharply at
L09, especially during the wet season, which was mainly due to the high arsenic content
(As: 18.84 µg/L) flowing into the upstream branch of L09. As, Pb, Fe, Mn, Cr, and Cu all
rose suddenly at L07, mainly because L07 was located about 1 km downstream of the dam
site of Guoduo reservoir, and might be due to the release of trace elements in the sediment
due to the relatively large influence of water disturbance under the dam from the power
station [51].

3.3. Vertical Distribution of Trace Elements

The water temperature slightly decreased with the deepening of the water depth,
mainly because the local sunshine was strong, and the effect of heat conduction makes the
external heat gradually decrease in the water body, so that the surface temperature is high
and the bottom temperature is low (Figure 4). The vertical range of As and Fe content was
1.00–4.90 µg/L and 26.90–902 µg/L, respectively. The vertical range of Mn content was
1.16–92.23 µg/L. The vertical range of Pb content was 0.05–3.99 µg/L. The vertical range of
Cr content was 0.06–2.87 µg/L. The vertical range of Cu content was 0.29–3.53 µg/L. The
vertical range of Zn content was 0.33–6.48 µg/L. The contents of As, Fe, Mn, Pb, Cr, Cu, and
Zn all increased gradually with the increase in water depth. The contents of trace elements
in the water at 40 m increased obviously, and the highest concentrations were found in the
bottom water. This was mainly due to the trace elements adsorbed on the particles settling
at the bottom of the reservoir with the particles, and the bottom water being close to the
bottom mud, significantly affected by sediment release [48]. Cu fluctuated greatly in the
vertical direction, but the change rule was not obvious and the content of Cu was higher at
30 m and 60 m, which requires further study.

3.4. Health-Risk Assessment

Water-quality health-risk assessment could quantitatively evaluate the probability of
health hazards to humans caused by water environmental pollutants [42]. According to
the analysis of potential risks of trace elements in the wet season (Table 6), the average HI
values of trace elements were as follows: As > Pb > Cr > Mn > Cd > Cu > Zn. Except for
As, the values of HQ and HI of all trace elements were less than 1, indicating that Mn, Pb,
Cr, Cu, and Zn in the study posed a lower health risk. The HQingestion of As in the reservoir
tail and urban water body was lower than 1, indicating that there were health risks after As
was ingested in the reservoir tail and urban water through the mouth. The HQingestion of As
the dam was between 0.1 and 1, indicating that the health risk of oral ingestion needs to be
further investigated. The HQingestion and HQdermal values of all children were lower than
those of young people, indicating that the health risk of children through oral ingestion and
skin contact was higher than that of young people. The HQdermal values of all trace elements
in children and young adults were much less than 0.1, indicating that trace elements in the
study area basically did not pose health risks through the skin.
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Table 6. Health-evaluation index of trace elements in the main stream of Lancang River during the wet season.

Elements

Reservoir Tail Reservoir Area Under the Dam Urban Area

HQingestion HQdermal HI HQingestion HQdermal HI HQingestion HQdermal HI HQingestion HQdermal HI

Adult Child Adult Child Adult Child Adult Child Adult Child Adult Child Adult Child Adult Child Adult Child Adult Child Adult Child Adult Child

As 1.0527 1.0948 0.0058 0.0119 1.0585 1.1067 0.2917 0.3034 0.0016 0.0033 0.2933 0.3067 0.2201 0.2290 0.0012 0.0025 0.2214 0.2314 1.2255 1.2745 0.0067 0.0138 1.2323 1.2884
Mn 0.0484 0.0503 0.0063 0.0130 0.0547 0.0633 0.0083 0.0086 0.0011 0.0022 0.0094 0.0109 0.0047 0.0049 0.0006 0.0013 0.0053 0.0062 0.0135 0.0141 0.0018 0.0036 0.0153 0.0177
Pb 0.0561 0.0584 0.0001 0.0002 0.0562 0.0586 0.0773 0.0804 0.0001 0.0003 0.0774 0.0807 0.0901 0.0937 0.0002 0.0003 0.0902 0.0940 0.0163 0.0170 0.0000 0.0001 0.0164 0.0171
Cr 0.0520 0.0541 0.0326 0.0669 0.0846 0.1210 0.0005 0.0006 0.0003 0.0007 0.0009 0.0013 0.0005 0.0006 0.0003 0.0007 0.0009 0.0013 0.0005 0.0006 0.0003 0.0007 0.0009 0.0013
Cd 0.0033 0.0034 0.0003 0.0007 0.0036 0.0041 0.0072 0.0075 0.0008 0.0015 0.0079 0.0090 0.0065 0.0067 0.0007 0.0014 0.0071 0.0081 0.0015 0.0015 0.0002 0.0003 0.0016 0.0019
Cu 0.0011 0.0011 0.0000 0.0001 0.0011 0.0012 0.0007 0.0007 0.0000 0.0000 0.0007 0.0008 0.0008 0.0008 0.0000 0.0000 0.0008 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Zn 0.0005 0.0005 0.0000 0.0000 0.0005 0.0006 0.0016 0.0016 0.0000 0.0001 0.0016 0.0017 0.0001 0.0001 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0001 0.0001

Table 7. Health-evaluation index of trace elements in the main stream of Lancang River during the dry season.

Elements

Reservoir Tail Reservoir Area Under the Dam Urban Area

HQingestion HQdermal HI HQingestion HQdermal HI HQingestion HQdermal HI HQingestion HQdermal HI

Adult Child Adult Child Adult Child Adult Child Adult Child Adult Child Adult Child Adult Child Adult Child Adult Child Adult Child Adult Child

As 0.7962 0.8281 0.0044 0.0090 0.8006 0.8371 0.7773 0.8084 0.0043 0.0088 0.7815 0.8171 0.9280 0.9651 0.0051 0.0105 0.9331 0.9756 1.1883 1.2358 0.0065 0.0134 1.1948 1.2492
Mn 0.0104 0.0108 0.0014 0.0028 0.0118 0.0136 0.0116 0.0121 0.0015 0.0031 0.0131 0.0152 0.0145 0.0151 0.0019 0.0039 0.0164 0.0189 0.0213 0.0222 0.0028 0.0057 0.0241 0.0279
Pb 0.0443 0.0461 0.0001 0.0002 0.0444 0.0462 0.0436 0.0454 0.0001 0.0002 0.0437 0.0455 0.0490 0.0510 0.0001 0.0002 0.0491 0.0511 0.0497 0.0517 0.0001 0.0002 0.0498 0.0518
Cr 0.0464 0.0482 0.0290 0.0597 0.0754 0.1079 0.0498 0.0518 0.0312 0.0641 0.0810 0.1160 0.0463 0.0481 0.0290 0.0596 0.0753 0.1077 0.0005 0.0006 0.0003 0.0007 0.0009 0.0013
Cd 0.0015 0.0015 0.0002 0.0003 0.0016 0.0019 0.0015 0.0015 0.0002 0.0003 0.0016 0.0019 0.0015 0.0015 0.0002 0.0003 0.0016 0.0019 0.0015 0.0015 0.0002 0.0003 0.0016 0.0019
Cu 0.0082 0.0085 0.0002 0.0004 0.0084 0.0090 0.0082 0.0085 0.0002 0.0004 0.0084 0.0090 0.0083 0.0087 0.0002 0.0004 0.0086 0.0091 0.0100 0.0104 0.0003 0.0005 0.0103 0.0110
Zn 0.0012 0.0012 0.0000 0.0000 0.0012 0.0013 0.0011 0.0011 0.0000 0.0000 0.0011 0.0012 0.0013 0.0013 0.0000 0.0000 0.0013 0.0013 0.0008 0.0009 0.0000 0.0000 0.0009 0.0009
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According to the analysis of potential health risks of trace elements in the dry season
(Table 7), the average HI values of trace elements were As > Cr > Pb > Mn > Cd > Cu > Zn.
Only the values of HQingestion and HI of As in the urban area were greater than 1, while
the values of HQingestion and HI in other trace elements were all less than 1, but close to 1,
which should be paid great attention to by coastal residents.

The health risk of trace elements in the reservoir tail in the wet season was higher than
that in the dry season (Figure 5), and HI was greater than 1, as shown in Figure 5. The
health risk of trace elements in the reservoir area and under the dam in the wet season was
much less than that in the dry season, but the HI value of the urban area in the wet season
was almost the same as that in the dry season, and the HI was more than 1. The effects of
trace elements on health risks of children and young people in the wet season were not
significant, especially in the reservoir area and under the dam, while in the dry season, the
effects of trace elements on health risks of children were greater than for young people.
From upstream to downstream, the HI value in the wet season decreased first and then
increased, and the HI value at the tail of reservoir was the largest. In the dry season, the HI
value showed an increasing trend, and the highest in the urban areas.
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The EPA and other documents emphasize uncertainty in the risk assessment of metals.
Different ages and receptors, exposure conditions, pollutant concentrations, and daily
water intake lead to different water–skin contact coefficients [33]. The exposure parameters
used in the study were from the US EPA and the World Health Organization (WHO) and
were not necessarily applicable to China. The risks of (class A) metal elements in the main
stream of Lancang River need to be further studied.

4. Conclusions

The content of trace elements in the upper Lancang River meet the quality standard
of Surface Water Environment (GB3838-2002) Class I, but the content of Fe in local sam-
pling points during the wet season exceeds the limit of water-quality standards. Seasonal
variation in trace elements in the upper Lancang River was obvious. The contents of Fe
and Pb in the water in the wet season were higher than those in the dry season, while the
contents of As, Mn, Cr, Cu, and Zn in the wet season were lower than those in the dry
season. The As content in the upper Lancang River was greatly affected by the branch
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Angqu confluence. The reservoir has a certain interception effect on the distribution of
the trace elements in the water, the trace elements in the front of the dam were lower than
those in the tail and under the dam, and the trace elements in the water in the reservoir
increased with the depth. The mean value of HI of trace elements followed this order:
As > Cr > Pb > Mn > Cd > Cu > Zn. The health risk of Mn, Pb, Cr, Cu, and Zn in the study
area was relatively low, but the health risk of As in some reaches was a certain health risk,
which needs to be taken seriously. The research results provide basic data support for the
comprehensive utilization of local water resources and water ecological environmental
protection. In addition, several trace elements were investigated in this study, but further
study on various other potential pollutants in the upper Lancang River is need to be enable
more accurate assessment.
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