
In proc. of International Computer music Conference, Gotheborg (Sweden), ICMA, September 2002.

The Continuator: Musical Interaction With Style

François Pachet
Sony Computer Science Laboratory

6, rue Amyot, Paris 75005
pachet@csl.sony.fr

http://www.csl.sony.fr/~pachet

citer zicarelli (M and Jam Factory, CMJ 1987) et
David Wessel et JC Risset (CMJ) et Lartillot et al.
01

Abstract

We propose a system, the Continuator, that bridges the
gap between two classes of traditionally incompatible
musical systems: 1) interactive musical systems, limited
in their ability to generate stylistically consistent material,
and 2) music imitation systems, which are fundamentally
not interactive. Our purpose is to allow musicians to
extend their technical ability with stylistically consistent,
automatically learnt material. This goal requires the
ability for the system to build operational representations
of musical styles in a real time context. Our approach is
based on a Markov model of musical styles augmented to
account for musical issues such as management of
rhythm, beat, harmony, and imprecision. The resulting
system is able to learn and generate music in any style,
either in standalone mode, as continuations of musician’s
input, or as interactive improvisation back up. Lastly, the
very design of the system makes possible new modes of
musical collaborative playing. We describe the
architecture, implementation issues and experimentations
conducted with the system in several real world contexts.

1. Introduction

Music improvisation is both a fascinating activity and a
very frustrating one. Playing music requires an intimate
relationship between musical thought and sensory-motor
processes: the musician must think, listen, develop ideas
and move his/her fingers very quickly. The speed and lack
of time is a crucial ingredient of improvisation; it is what
makes it exciting. It is also what makes it frustrating:
beginners as well as experienced musical performers are
by definition limited by their technical abilities, and by
the morphology of the instrument.

We propose to design musical instruments that address
explicitly this issue: providing real time, efficient and
enhanced means of generating interesting musical
material.

Musical performance has been the object of numerous
studies, approaches and prototypes, using virtually all the
computer techniques at hand. In our context, we can
divide these approaches in two categories: interactive

systems and music imitation systems. Schematically,
interactive music systems propose ways of transforming
quickly musical input into musical output. Musical
interactive systems have been popular both in the
experimental field (Baggi, 1992), (Biles, 1998) as well as
in commercial applications, from one-touch chords of
arranger systems to the recent and popular Korg Karma
synthesizer (Karma, 2001). While a lot of work has been
devoted to efficient controllers and interfaces for musical
systems (Borchers, 1999), (Nime, 2001), these systems all
share a common drawback: they are not able to learn,
there is no memory of the past. Consequently the music
generated is strongly correlated with musical input, but
not or poorly with a consistent and realistic musical style.

On the other hand, music imitation systems precisely aim
at representing stylistic information, to generate music in
various styles: from the pioneering Illiac suite by Hiller
and Isaacson (1959) to the automatic compositions of
(Cope, 1996). More recently, constraint techniques have
been used to produce stylistically consistent 4-part
Baroque music (see (Pachet & Roy, 2001) for a survey).
In the domain of popular music, prototypes such as (Biles,
1998) or (Ramalho, 1994) have demonstrated the
technical feasibility of simulating convincingly jazz styles
by computer. These systems propose fully-fledged
automata that may produce impressively realistic music,
but they do not support musical interaction and cannot be
used as actual instruments. Moreover, these approaches
require explicit, symbolic information to be fed to the
system, such as human input for supervised learning,
underlying harmonic structure, tempo, song structure,
which further limits their usability.

The system we present here is an attempt to combine both
worlds: real-time interactive musical instruments that are
able to produce stylistically consistent music.

More precisely, we propose a system in which musical
styles are learned automatically, in an agnostic manner,
and therefore do not require any symbolic information
(style, harmonic grid, tempo). The system is seamlessly
integrated in the playing mode of the musician, as
opposed to traditional question/answer or fully automatic
systems, and adapts quickly and without human

In proc. of International Computer music Conference, Gotheborg (Sweden), ICMA, September 2002.

intervention to unexpected changes in rhythm, harmony
or style. Finally, the very design of the system allows the
sharing of stylistic patterns in real time and constitutes in
this sense a novel form of collaborative musical
instrument.

The remaining of the paper is structured as follows. First
we introduce the architecture of the proposed system, its
inputs and outputs. We then describe the heart of the
engine, based on a Markov based model of musical styles.
This model is augmented with 1) a hierarchical model of
learning functions to adapt to imprecision in musical
inputs and 2) a facility for biasing the Markovian
generation, to handle external information such as
changing harmony. Finally, we illustrate the use of the
system in various musical contexts: solos,
accompaniments, and collaborative music improvisation.

2. Architecture

In this paper we focus on a Midi system linked to an
arbitrary midi controller. Experiments described here
were conducted with Midi keyboard and guitars, and are
easily applicable to any style and Midi controller. An
audio version is currently in progress, and the ideas
proposed in this paper are in a large respect independent
of the nature of the information managed.

We consider music as temporal sequences of Midi events.
The information we represent are: pitch (integer between
0 and 127), velocity/amplitude (also between 0 and 127),
and temporal information on start and duration times,
expressed as long integers, with a precision of 1
millisecond, as provided by the MidiShare Midi operating
system (Orlarey & Lequay., 1989). In the standard
playing mode, the system receives input by one musician.
The output of the system is sent to a Midi synthesizer and
then to a sound reproduction system (see Figure 1).

Midi controller

The Continuator

Midi synthesizer

Midi output stream

Midi input stream

Midi controller

The Continuator

Midi synthesizer

Midi output stream

Midi input stream

Figure 1. Flow of information to and from the
Continuator.

The system acts basically as a sequence continuator: the
note stream of the musician is systematically segmented
into phrases using a variable temporal threshold (typically
about 250 milliseconds). Each phrase is sent
asynchronously to a phrase analyzer, which builds up a
model of recurring patterns. In reaction to the played
phrase, the system generates a new phrase, built as a

continuation of the input phrase, according to the database
of patterns already learnt.

In the next section we describe the heart of the system,
based on an extension of a Markov model.

3. Learning musical style, pratically

Markov chains and music is an old and rather repetitive
story. The most spectacular application to music is
probably the compositions of (Cope, 1996), whose system
is able to represent faithfully musical styles. However, his
ad hoc scheme is not easily reproducible and extensible.
One major interest of Markov-based models is that they
are naturally able to generate new musical material in the
style learned. Recently, variations of the basic Markov
models have been introduced to improve the efficiency of
the learning methods, as well as the accuracy of the music
generated (Assayag et al., 1999), (Lartillot et al, 2001),
(Trivino-Rodrigues & Morales-Bueno, 1999). In all cases,
the main idea is to capture the local patterns found in the
learnt corpus, using probabilistic schemes. New
sequences are then generated using these probabilities.
These sequences will contain, by construction, the
patterns identified in the learnt corpus.

These works show clearly two things: 1) Markov chain
models (and their extensions, notably for variable-length)
are able to represent efficiently musical patterns, but 2)
there generative power is limited due to the absence of
long-term information. In another words, these models
can fool the listener on a short scale, but not for complete
pieces. Using Markov models for interaction purposes
allows us to benefit from 1) and avoid the drawback of 2).
The responsibility for organizing the piece, deciding its
structure, etc. are left to the musician. The system only
"fills in the gaps", and therefore the power of Markov
chain can be exploited fully.

We address in the following sections the main issues
involved in building effective and realistic models of
musical styles:

- Efficiency and the ability to perform the learning in
real time,

- A realistic management of continuity,

- The handling of specifically musical issues such as
rhythm and polyphony.

3.1. Learning sequences efficiently
The learning module we propose systematically learns all
phrases played by the musician, and progressively builds
up a database of patterns detected in the input sequences.
After initial experiments with incomplete learning
schemes such as the Lempel-Ziv mechanism described in
(Assayag et al., 1999), we designed an indexing scheme
which represents all the subsequences found in the corpus,
in such a way that the computation of continuations is 1)

In proc. of International Computer music Conference, Gotheborg (Sweden), ICMA, September 2002.

complete and 2) as efficient as possible. We describe here
briefly the design of this learning scheme, which can be
seen as an efficient implementation of a complete
variable-order Markov model of input sequences, as
initially introduced by (Ron et al., 1996).

This technique consists in building a prefix tree by a
simple, linear analysis of each input sequence. Each time
a sequence is input to the system, it is parsed from right to
left and new prefixes encountered are systematically
added to the tree. Each node of the tree is labeled by a
reduction function of the corresponding element of the
input sequence. In the simplest case, the reduction
function can be the pitch of the corresponding note. We
describe in the next section more advanced reduction
functions, and stress on the their role in the learning
process. To each tree node is attached a list of
continuations encountered in the corpus. These
continuations are represented as integers, denoting the
index of the continuation item in the input sequence. This
indexing scheme makes it possible to avoid duplicating
data by manipulating only indexes. When a new
continuation is found for a given node, the corresponding
index is added to the node’s continuation list (shown in
the figure between accolades {}).

For instance, suppose the first input sequence is {A B C
D}. We will progressively build the tree structure
illustrated in Figure 2. These trees represent all possible
prefixes found in the learnt sequences, in reverse order, to
facilitate the generation process (see next section). In the
first iteration, the sequence is parsed from right to left,
and produces the left tree of Figure 2. First, the node C is
created, with continuation index {4}, representing the last
D of the input sequence. Then node B is added as a son of
node C, with the same continuation index {4}. Finally,
node A is created as a son of node B, with the same
continuation index.

Then the parsing starts again for the input sequence minus
its last element, i.e. {A B C}, to produce the middle tree
of Figure 2. In this tree, all nodes have {3} as a
continuation (meaning item C). Finally, the sequence {A
B} is parsed and produces the tree on the right of Figure
2. Nodes are created only once the first time they are
needed, with empty continuation lists. The tree grows as
new sequences are parsed, initially very quickly, then
more slowly as patterns encountered are repeating.

C

B

A

{4}

{4}

{4}

B

A

{3}

{3}

A{2}C

B

A

{4}

{4}

{4}

B

A

{3}

{3}

A{2}

Figure 2. The tree of the patterns found in {A B C D }

Now, let us see what happens when the second following
sequence is parsed: { A B B C}.

Using the same mechanism, we parse again the input
sequence from right to left, to produce the continuation
index 8 (i.e. C) for {A B C}. We get the following
updated tree structure, where the new nodes and
continuations are indicated in red:

C

B

A

{4}

{4}

{4}

B

A

{3, 8}

{3}

A{2}

B{8}

A
{8}

C

B

A

{4}

{4}

{4}

B

A

{3, 8}

{3}

A{2}

B{8}

A
{8}

Figure 3. The tree structure augmented with the
parsing of { A B B C }.

We keep on parsing with the truncated subsequences until
we get the following graph (Figure 4):

C

B

A

{4}

{4}

{4}

B

A

{3, 8, 7}

{3, 7}

A{2, 6}

B{8}

A
{8}

C

B

A

{4}

{4}

{4}

B

A

{3, 8, 7}

{3, 7}

A{2, 6}

B{8}

A
{8}

Figure 4. The complete graph corresponding to
sequences {A B C D} and {A B B C}.

As we will see below, this graph has the property that
retrieving continuations for any subsequence is extremely
fast, and requires a simple walkthrough the input
sequence.

3.2. Generation of continuations
The second module of our system is the real time
continuation mechanism, which generates the music in
reaction to an input sequence. The generation is
performed using a traversal of the trees built from input
sequences. The main property of this generation is that it
produces sequences which are locally maximally
consistent, and which have the same Markovian
distributions.

The generation is performed by producing items one by
one, and, at each iteration, considering the longest
possible subsequence. Once a continuation is generated,
the process is repeated with the input sequence augmented
by the continuation. This tiling mechanism makes the real
time generation possible, as we will see in the next
sections. This process, referred to as variable-order
Markov chains is the following. Suppose an input
sequence such as:

{A B }

We walk through the previously built tree to look for all
continuations of {A B}. We start by looking for a root
node corresponding to the last element of the input
sequence (B). We then walk down this tree to match the
input sequence until we either complete the input

In proc. of International Computer music Conference, Gotheborg (Sweden), ICMA, September 2002.

sequence, or do not find the corresponding node. When
the walkthrough is finished, we simply return the set of
continuations of the corresponding node. In our case we
find a continuation for the whole input sequence {A B}:

Continuation_List ({A B}) = {3, 7}.

Theses indexes correspond to items {C, B}. A
continuation is then chosen by a random draw. Suppose
we draw B. We then start again with the new sequence {A
B B}, for which we repeat the retrieving process to find
the continuation list:

Continuation_List ({A B B }) = {8}.

We chose the only possible continuation (index 8
corresponds to item C) and get {A B B C}. We do not
find any continuation for the whole sequence {A B B C},
but we get continuations for the longest possible
subsequence, that is here:

Continuation_List ({ B C}) = {4}.

We therefore get the sequence {A B B C D} and continue
the generation process. At this point, there is no
continuation for {A B B C D} as well as for any
subsequence ending by D (indeed, D has always been a
terminal item in our learnt corpus).

In this case, when no continuation is found for the input
sequence, a node is chosen at random. We will see in the
next section a more satisfactory mechanism for handling
such cases of discontinuity.

It is important to note that, at each iteration, the
continuation is chosen by a random draw, weighted by the
probabilities of each possible continuation. The
probability of each continuation is directly given by
drawing an item with an equal probability distribution,
since repeating items are repeated in the continuation list.
More precisely, for a continuation x, its probability is:

Markov_Prob(x) = nb of occurrences of x in L, where L is
the continuation list.

Since the continuations are in fact indexes to the original
sequences, the generation can use any information from
the original sequence which is not necessarily present in
the reduction function (e.g. velocity, rhythm, midi
controllers, etc.): the reduction function is only used to
build the tree structure, and not for the generation per se.

4. Reduction functions

As we saw in the preceding section, the graph is not built
from raw data. A Midi sequence has many parameters, all
of which are not necessarily interesting to learn. For
instance, a note has attributes such as pitch, velocity,
duration, start time. A chord has attributes such as the
pitch list, possibly its root key, etc. The system we
propose allows the user to choose explicitly from a library
of predefined reduction functions. The simplest function
is the pitch. A more refined function is the combination of

pitch and duration. Trivino-Rodrigues & Morales-Bueno
(2001) introduced the idea of multi-attribute Markov
models for learning musical data, and made the case that
handling all attributes requires in principles a Cartesian
product of attribute domains, leading to an exponential
growth of the tree structures. The model they propose
allows to avoid building the Cartesian product, but does
not take into account any form of imprecision in input
data. Conklin & Witten (1995) propose different
reduction functions (called viewpoints) for representing
music. Our experiments with real music led us to develop
and implement such a library of reduction functions,
including the ones mentioned in these works, as well as
functions specially designed to take into account realistic
Jazz styles. One of them is the PitchRegion, which is a
simplification of pitch. Instead of considering explicitly
pitches, we reduce pitches in regions, practically by
considering only pitch / region_size.

4.1. Hierarchical graphs
One important issue in dealing with Markov models if the
management of imprecision. By definition, Markov
models deal with perfect strings, and there is no provision
for handling imprecision. In our example, the String {A B
C X} has no continuation, simply because symbol X has
no continuation. In the approaches proposed so far, such
case would trigger the drawing of a random node, thereby
breaking somehow the continuity of the generated
sequence.

The treatment of inexact string matching in a Markovian
context is addressed typically by Hidden Markov Models.
In this framework, the state of the Markov model are not
simply the items of input sequences, as other, hidden state
are inferred, precisely to represent state regions, and
eventually cope with inexact string inputs. However,
Hidden Markov Models are much more complex than
Markov models, and are cpu consuming, especially in the
generation phase. More importantly, the determination of
the hidden states is not controllable, and may be an issue
in the practical context we are dealing with here.

We propose here another approach, based on a simple
remark. Suppose a model trained to learn the arpeggio in
figure 5:

Figure 5. An arpeggio learnt by the Continuator.

Suppose that the reduction function is as precise as
possible, say pitch, velocity and duration. Suppose now
that the input sequence to continue is the one in Figure 6.

It is clear that any Markov model will consider that there
is no continuation for this sequence, simply because there
is no continuation for Eb. The models proposed so far

In proc. of International Computer music Conference, Gotheborg (Sweden), ICMA, September 2002.

would then draw a new note at random, and actually start
a new sequence.

Figure 6. An input sequence which does not match
exactly with the learnt corpus.

However, it is also clear intuitively, that a better solution,
in such a case is to shift the viewpoint. The idea is to
consider a less refined reduction function. In this case, les
us consider for instance pitch regions of three notes
instead of pitches.

The learnt sequence is then reduced to: {PR1 PR1 PR2
PR3 PR5}

The input sequence is reduced to: {PR1 PR1 PR2}

In this new model, there is a continuation for {PR1 PR1
PR2}, which is PR3.

Because our model keeps track of the index of the data in
the input sequences (and not the actual reduction
functions), we can generate the note corresponding to
PR3, in our case, G. Once this continuation has been
found, the process is started again with the new sequence,
using the more refined reduction function.

More precisely, we introduce a hierarchy of reduction
functions, to be used in a certain order in cases of failure.
This hierarchy can be defined by the user. Typically, a
useful hierarchy can be the following:

1 – pitch * duration * velocity

2 – small pitch region * velocity

3 – small pitch regions

4 – large pitch regions,

where the numbering indicates the order in which the
graphs are considered in cases of failure. In this case, a
possible continuation found by our system would be as
follows, with an edequate handling of the Eb
“imprecision”:

The approach we propose allows to take into account
inexact inputs, at a minimum cost. The complexity for
retrieving the continuations for a given input sequence is
indeed very small as it involves only walking through
trees, without any actual search.

5. Polyphony and Rhythm

Before describing how we turn our model into a real time
interactive system, we have to explain how we handle

several important musical issues, which are crucial to
ensure that the generation is realistic musically.

5.1. Polyphony
Because our model is based on sequences of discrete data,
we have to ensure that the items in the model are in some
sort independent, to be recombined safely with each other.
With arbitrary polyphony in the input, this is not always
the case, as illustrated in Figure 7: some notes may not be
stylistically relevant without other notes sounding at the
same time.

Figure 7. Handling polyphony with segmentation.
Chords are clustered (on the left), and legato notes are

separated (on the right).

Assayag et al. (1999) propose a scheme for handling
polyphony consisting in slicing up the input sequence
according to every event boundary occurring in any voice.
This scheme is satisfactory in principle, in that it allows to
model intricate contrapuntal relationships between several
voices. In practice, we experimented with various
schemes and came up with a simpler model more fitted
with the properties of real interactive music. XXXTaking
into account the “negative time”

We first apply an aggregation scheme to the input
sequence, in which we aggregate clusters of notes
sounding approximately “together”. This situation is very
frequent in music for instance with the use of pedals.
Conversely, to manage legato playing styles, we treat
notes slightly overlapping as actually different (see the
end of the figure) by considering that an overlap of less
than a few milliseconds is only the sign of legato, not of
an actual musical cluster.

These cases are actually tricky to handle at the generation
phase, because some delay can be introduced, if one
simply regenerates the sequence of notes as contiguous.
To cope with this situation, the respective inter note
delays are memorized and introduced again at the
generation phase.

5.2. Rhythm
Rhythm refers to the temporal characteristics of musical
events (notes, or clusters). Rhythm is an essential
component of style and requires a particular treatment. In
our context, we consider in effect that musical sequences
are generated step by step, by reconstructing fragments of
already parsed sequences. This assumption is
unfortunately not always true, as some rhythms do not

In proc. of International Computer music Conference, Gotheborg (Sweden), ICMA, September 2002.

afford reconstruction by slicing arbitrarily bits and pieces.
As Figure 7 illustrates, the standard clustering process
does not take into account the rhythmic structure, and this
may lead to strange rhythmical sequences at the
generation phase.

This problem has no universal answer, but different
solutions according to different musical contexts. Based
on our experiments with jazz and popular music
musicians, we have come up with three different modes
that the user can choose from:

Natural rhythm: The rhythm of the generated sequence is
the rhythm as it was encountered during the learning
phase. In this case, the generation explicitly restitutes the
temporal structure as it was learned, and in particular
“undoes” the aggregation performed and described in the
previous section.

Linear rhythm: this mode consists in generating only
streams of eight-note, that is with a fixed duration and all
notes concatenated. This allows generating very fast and
impressive phrases, and is particularly useful in the be-
bop style.

Input rhythm: in this mode, the rhythm of the output is the
rhythm of the input phrase, possibly warped if the output
is longer than the input. This allows to create
continuations that sound like imitations rhythmically.

Fixed metrical structure: For popular and heavily
rhythmic music, the metrical structure is very important
and the preceding modes are not satisfactory. Conklin
and Witten (1995) suggest to use the location of a note in
a bar as yet another viewpoint, but this scheme forces to
use quantization, which in run raises many issues which
are intractable in an interactive context.

Instead, we propose in this mode to segment the input
sequences according to a fixed metrical structure. The
metrical structure is typically given by an external
sequencer, together with a given tempo, through Midi
synchronization. For instance, it can be 4 beats, with a
tempo of 120. In this case (see Figure 8), the
segmentation ensures that notes are either truncated at the
ending of the temporal unit when they are too long, or at
the beginning of the unit if they begin too early.

Figure 8. Handling polyphony with fixed segmentation

6. Turning the Generator into an
Instrument

The learning and generation module described in the
preceding sections are able to generate music sequences
that sound like the sequences in the learnt corpus. As
such, this provides a powerful musical automaton able to
imitate faithfully styles, but not a musical instrument.
This section describes the main design concepts that allow
to turn this style generator into an interactive musical
instrument. This is achieved through two related
constructs: 1) a step-by step generation of the music
sequences achieved through a real time implementation of
the generator, and most importantly 2) a modification of
the basic Markovian generation process by the adjunction
of a fitness function which takes into account
characteristics of the input phrase.

6.1. Real time generation
The real time generation is an important aspect of the
system since it is precisely what allows to take into
account external information quickly, and ensure that the
music generated follows accurately the input, and remains
controllable by the user. The most important aspect of the
real time architecture is that the generation of musical
sequences is performed step-by step, in such a way that
any external information can be used to influence the
generation (see next section). The generation is performed
by a specific thread (generation thread), which generates
the sequence by chunks. The size of the chunks is
parameterized, but can be as small as 1 note event. Once
the chunk is generated, the thread sleeps and wakes up for
handling the next chunk in time.

time
External Information

Phrase Generation Thread

Generation

Wake up

time
External Information

Phrase Generation Thread

Generation

Wake up

Figure 9. The step-by-step generation process can take
into account external information continuously.

6.2. Biasing the Markov Generation
The main idea to turn our automaton into an interactive
system is to influence the Markovian generation by real
time characteristics of the input. As we saw above, the
very idea of Markov-based generation is to produce
sequences in such a way that the probabilities of each
item of the sequence are the probabilities of occurrences
of the items in the learnt corpus.

In proc. of International Computer music Conference, Gotheborg (Sweden), ICMA, September 2002.

In the context of musical interaction, this property is not
always the right one, because many things can happen
during the generation process. In particular, in the case of
tonal music, the harmony can change. Typically, in a Jazz
trio for instance, the pianist play chords which have no
reason to be always the same, throughout the generation
process. Because we target a real world performance
context, these chords are not predictable, and cannot be
learnt by the system prior to the performance. The system
should be able somehow to take this external information
into account during the generation, and twist the
generated sequence in the corresponding directions.

The idea is to introduce a constraint facility in the
generation phase. External information may be sent as
additional input to the system. This information can be
typically the last 8 notes (pitches) played by the pianist
for instance, if we want the system to follow harmony. It
can also be the velocity information of the whole band, if
we want the system to follow the amplitude, or any
information that can be used to influence the generation
process. This external input is used as follows: when a set
of possible continuation nodes is computed (see section
on generation), instead of choosing a node according to its
Markovian probability, we weight the nodes according to
how they match the external input. For instance, we can
decide to prefer nodes whose pitch is in the set of external
pitches, to favor branches of the tree having common
notes with the piano accompaniment.

In this case, the harmonic information is provided
implicitly, in real time, by one of the musician (possibly
the user himself), without having to explicitly enter the
harmonic grid or any symbolic information in the system.

More precisely, we consider a function Fitness (x,
Context) with value in [0, 1] which represents how well
item x fits with the current context. For instance, a Fitness
function can represent how harmonically close is the
continuation with respect to external information. If we
suppose that piano is the set of the last 8 notes played by
the pianist for instance, Fitness can be defined as:

Fitness(p, piano) = | p ∩ piano | / |piano |

This fitness scheme is of course independent of the
Markovian probability defined above. We therefore
introduce a new weighting scheme which allows to
parameterize the importance of the external input, via a
parameter S (between 0 and 1):

Prob(x) = S * Markov_Prob(x) + (1 – S) * Fitness(x, Context)

By setting S to extreme values we eventually get two
extreme behaviors:

• S = 1, we get a musical automaton insensitive to the
musical context,

• S = 0, we get a reactive system which generates the
closest musical elements to the external input it finds
in the database.

Of course, interesting values are intermediary: when the
system generates musical material which is both
stylistically consistent, and sensitive to the input.
Experiments in these various modes are described below.

7. Experiments

We have conducted a series of experimentations with
system, in various modes and configurations. There are
basically two aspects we can assess:

1 The musical quality of the music generated,

2 The new collaborative modes the system allows.

We review each of these aspects in the following sections.

7.1. Musical Quality
It is difficult to describe music by words, and rate its
quality, especially jazz improvisation. However, we can
easily rate how the system differs from the human input.
We have conducted tests to check whether listeners could
tell when the system is playing or not. In most of the
cases, if not all, the music produced is undistinguishable
from the user’s input. This is typically true for quick and
fast solos (keyboard or guitar) in which the system
generates long and often impressive jazzy phrases in the
style of Pat Martino, John Mc Laughlin, or Alan
Holdsworth, depending on the selected input database.

Concerning fixed metrical structure, experiments in the
various styles of the Karma music workstation were
recorded. In these experiments, we have connected the
Continuator to the Korg Karma workstation, both in input
and output. The Continuator is used as an additional layer
to the Karma effect engine. The Continuator is able to
generate infinite variations from simple recordings of
music, in virtually all the styles proposed by the Karma.
Audio samples can be heard at our web site.

7.2. New Collaborative Music Modes
An interesting consequence of the design of the system is
that it leads to several new playing modes with other
musicians. Traditionally, improvised music has consisted
in quite limited types of interaction, mostly based around
question/answer systems (Baggi, 1996), (Walker, 1997).
With the Continuator, new musical modes can be
envisaged:

- Single autarcy. One musician plays with the system
after having fed the system with a database of
improvisations by a famous musician, as Midi files. We
have experimented in particular with a database of midi
choruses from Pat Martino, provided by (Heuser, 1994),
and a database of Bernard Lubat’s piano style.

- Multiple autarcy: each musician has its own version
of the system, with its own database. This provides a
traditional setting in which each musician plays with

In proc. of International Computer music Conference, Gotheborg (Sweden), ICMA, September 2002.

his/her own style. Additionally, we experimented
improvisations in which one musician (Gyorgy Kurtag)
had several copies of the system linked to different midi
keyboards. The result for the listener is a dramatic
increase in musical density. For the musician, the
subjective impression ranges from a “cruise” button
with which he only has to start a sequence and let the
system continue, to the baffling impression of a musical
amplifying mirror.

- Master/Slave: one musician uses the system in its
basic form, another (e.g. pianist) provides the external
data to influence the generation. This is typically useful
for extending a player’s solo ability while following the
harmonic context provided by another musician.
Conversely, the system can be used as an automatic
accompaniment system which follows the user. In this
configuration, the Continuator is given a database of
chord sequences, and the input of the user is used as the
external data. Chords are played by the system so as to
satisfy simultaneously two criteria: 1) continuity, as
given by the learnt corpus (e.g. two fives, harmonic
cadenzas, etc.) and 2) closeness to the input. The
samples show clearly how the user tries to fool the
system by playing quick transposition and strange
harmonies. In all cases, the Continuator finds chords
that match the input as closely as possible. A
particularly striking example is a Bach prelude (in C)
previously learnt by the system, and used for generation
of an infinite stream of arpeggios. When the user plays
single chords on a keyboard, the arpeggios
instantaneously “follow” the chords played.

- Cumulative: all musicians share the same pattern
database. This setting was experimented during a Jazz
festival (Uzeste, France), where two musicians played
with the same (Bernard Lubat) database,

- Sharing: each musician plays with the pattern
database of the other (e.g.; piano with guitar, etc.). This
creates exciting new possibilities as a musician can
experience playing with unusual patterns.

8. Conclusion

We have described a music generation system, which is
able to produce music satisfying two traditionally
incompatible criteria: 1) stylistic consistency and 2)
interactivity. This is made possible by introducing several
improvements to the basic Markovian generation, and by
implementing the generation as a real time, step-by-step
process. The resulting system is able to produce musical
continuations of any user – including beginners -
according to previously learnt, arbitrary styles.
Additionally, the design of the system makes it possible to
share musical styles, and thus to open new modes of
collaborative playing.

Current work is devoted to the elaboration of an extensive
style library by recording material from experienced, top-

level musicians of various styles (jazz, funk, baroque). An
audio version is under progress, in which the input to the
system is an audio stream. The stream is analyzed in real
time to extract meaningful segments, not necessarily
corresponding to actual musical notes. These segments
together with basic audio descriptors (pitch, zero crossing
rate, energy, etc.) are then fed to the system described
here. This will allow using the system for non-Midi
instruments, voice in particular.

Acknowledgments

We thank György Kurtag, Bernard Lubat and Alan Silva
for intense and fruitful interactions with the system.

References

Assayag, G. Dubnov, S. Delerue, O. Guessing the
Composer's Mind: Applying Universal Prediction to
Musical Style, Proc. ICMC 99, Beijing, China, 1999.

Baggi, D. L. NeurSwing: An Intelligent Workbench for
the Investigation of Swing in Jazz, in Readings in
Computer Generated Music, IEEE Computer Society
Press, 1992.

Biles, John A. Interactive GenJam: Integrating Real-Time
Performance with a Genetic Algorithm, Proc. ICMC 98,
Ann Arbor, Michigan, 1998.

Jan Borchers, Designing Interactive Musical Systems: a
Pattern Approach, HCI International '99. 8th
International Conference on Human-Computer
Interaction, Munich, Germany, from 22-27 August,
1999.

Conklin, D. and Witten, Ian H. Multiple Viewpoint
Systems for Music Prediction, JNMR, 24:1, 51-73,
1995.

Cope, David. Experiments in Musical Intelligence.
Madison, WI: A-R Editions, 1996.

Heuser, Jorg, Pat Martino – His contributions and
influence to the history of modern Jazz guitar. Ph.D
thesis, University of Mainz (Ge), 1994.

Hiller, L. and Isaacson, A., Experimental Music, New
York: McGraw-Hill, 1959.

Karma music workstation, Basic guide. Korg Inc.
http://www.korg.com/downloads/pdf/KARMA_BG.pdf,
2001.

Lartillot O., Dubnov S., Assayag G., Bejerano G.,
Automatic modeling of musical style Proc. ICMC 2001,
La Habana, Cuba.

New Interfaces for Musical Expression (NIME'01),
http://www.csl.sony.co.jp/person/poup/research/chi2000
wshp/, 2000.

In proc. of International Computer music Conference, Gotheborg (Sweden), ICMA, September 2002.

Orlarey, Y. Lequay, H. MidiShare: a Real Time multi-
tasks software module for Midi applications Proc. of
ICMC, pp. 234-237, 1989.

Pachet, F. Roy, P. "Automatic Harmonization: a Survey",
Constraints Journal, Kluwer, 6:1, 2001.

Ramalho G., Ganascia J.-G. Simulating Creativity in Jazz
Performance. Proc. of the AAAI-94, pp. 108-113,
Seattle, AAAI Press, 1994.

Ron, D. Singer, Y and Tishby, N. (1996) “The power of
amnesia: learning probabilistic automata with variable
memory length”, Machine Learning 25(2-3):117-149

Triviño-Rodriguez, J. L.; Morales-Bueno, R.; Using
Multiattribute Prediction Suffix Graphs to Predict and
Generate Music, CMJ 25 (3) pp. 62-79 , 2001.

William F. Walker A Computer Participant in Musical
Improvisation, Proc. of CHI 1997. Atlanta, ACM Press,
1997.

