Annali della Scuola Normale Superiore di Pisa Classe di Scienze

J. M. CORON

The continuity of the rearrangement in $W^{1,p}(\mathbb{R})$

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^e série, tome 11, nº 1 (1984), p. 57-85

http://www.numdam.org/item?id=ASNSP_1984_4_11_1_57_0

© Scuola Normale Superiore, Pisa, 1984, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

The Continuity of the Rearrangement in $W^{1,p}(\mathbb{R})$.

J. M. CORON

1. - Introduction.

Let, in the following, p be a real number such that 1 . Let <math>u be a nonnegative function of $W^{1,p}(\mathbb{R})$. Let u^* be the rearrangement of u, that is the unique function u^* which is even, nonincreasing on $[0, +\infty]$ and such that:

for all $y \in \mathbb{R}$ meas $\{x|u^*(x) \geqslant y\} = \max\{x|u(x) \geqslant y\}$ (meas A stands for the Lebesgue measure of A).

We know (see, for example [1] appendix 1, [2], [3], [4] p. 154, [5], [6], [7] and [8]) that u^* is in $W^{1,p}(\mathbb{R})$ and:

(1)
$$\int_{\mathbb{R}} \left| \frac{du^*}{dx} \right|^p dx < \int_{\mathbb{R}} \left| \frac{du}{dx} \right|^p dx.$$

Let $W^{1,p}_+(\mathbb{R})$ be the set of nonnegative functions of $W^{1,p}(\mathbb{R})$; the weak and the strong topologies of $W^{1,p}(\mathbb{R})$ induce two topologies on $W^{1,p}_+(\mathbb{R})$; we shall also call them weak and strong topologies respectively.

Let c be a positive real number and let:

$$\Phi_c(u) = \int\limits_{\mathbb{R}} \left| \frac{du}{dx} \right|^p dx - c \int\limits_{\mathbb{R}} \left| \frac{du^*}{dx} \right|^p dx, \quad u \in W^{1,p}_+(\mathbb{R}).$$

The purpose of this article is to prove the following theorem:

Theorem. Φ_c is weakly l.s.c. if and only if $c \leqslant 1/2^p$.

COROLLARY. The rearrangement is a continuous mapping from $W^{1,p}_+(\mathbb{R})$ into $W^{1,p}_+(\mathbb{R})$ for the strong topologies.

Pervenuto alla Redazione il 27 Dicembre 1982 ed in forma definitiva il 27 Aprile 1983.

PROOF OF COROLLARY. Let $u_n \in W_+^{1,p}(\mathbb{R}), u_n \to u$ in $W^{1,p}(\mathbb{R})$.

Since the rearrangement is a continuous mapping from the set of non-negative functions of $L^p(\mathbb{R})$ into $L^p(\mathbb{R})$ (see appendix 0) we have:

$$u_n^* \to u^*$$
 in $L^p(\mathbb{R})$.

Therefore, using (1), we have $u_n^* \rightharpoonup u^*$ in $W^{1,p}(\mathbb{R})$ weakly. Let $c \in (0, 1/2^p]$.

$$\Phi_c(u) \leqslant \underline{\lim} \Phi_c(u_n)$$
.

But

$$\int\limits_{\mathbf{R}} \left| \frac{du_n}{dx} \right|^p dx \to \int\limits_{\mathbf{R}} \left| \frac{du}{dx} \right|^p dx$$

hence

$$\overline{\lim}_{\mathbf{R}} \int \left| \frac{du_n^*}{dx} \right|^p dx \leqslant \int_{\mathbf{R}} \left| \frac{du^*}{dx} \right|^p dx$$

and therefore (since $1 and <math>u_n^* \rightharpoonup u^*$ in $W^{1,p}(\mathbb{R})$)

$$u_n^* \to u^*$$
 in $W^{1,p}(\mathbb{R})$.

The proof of the theorem will be divided in two parts.

In part A we assume that $c \leq 1/2^p$ and we prove that Φ_c is weakly l.s.c.. In part B we assume that $c > 1/2^p$ and we construct a sequence u_n such that $u_n \rightharpoonup u$ in $W^{1,p}_{\perp}(\mathbb{R})$ and $\Phi_c(u) > \lim \Phi_c(u_n)$.

I thank H. Brezis, T. Gallouet, E. Lieb and L. Nirenberg who initiate this work.

2. - Proof of the theorem.

Part A. Here we assume that $c \le 1/2^p$ and we prove that Φ_c is weakly l.s.c. Let $f \in W^{1,p}(\mathbb{R})$, we shall use the following notation

$$|f| = \left(\int\limits_{\mathbb{R}} \left| \frac{df}{dx} \right|^p dx \right)^{1/p}.$$

Let u_n be a sequence of functions in $W_+^{1,p}(\mathbb{R})$ such that

$$u_n \rightharpoonup u$$
 in $W^{1,p}(\mathbb{R})$ when $n \to +\infty$.

If u = 0, we have:

$$\Phi_c(u) \leqslant \lim \Phi_c(u_n)$$
 since $\Phi_c \geqslant 0$.

Therefore we may assume that $u \neq 0$.

Let v be in $W^{1,p}(\mathbb{R})$ and let:

 $V(v) = \{y \in \mathbb{R} | \text{ there exists } x \text{ in } u^{-1}(y) \text{ such that either } v \text{ is not differentiable in } x \text{ or } v \text{ is derivable in } x \text{ and } v'(x) = 0\}.$

One can prove (see appendix 1) that V(v) is negligible for the Lebesgue measure (this is a little modification of Sard's theorem). Let $\eta > 0$; since V(u) is negligible, there exist m and M, real numbers, such that

$$(2) m \notin V(u), M \notin V(u), 0 < m < M$$

$$(3) M < \max_{x \in \mathbf{P}} u(x)$$

and if

$$g(x) = \min (u(x), m)$$

$$f(x) = \operatorname{Max}(u(x), M) - M$$

we have:

$$(4) |g|^p \leqslant \eta , |f|^p \leqslant \eta .$$

Let:

$$g_n(x) = \operatorname{Min} (u_n(x), m)$$
 $f_n(x) = \operatorname{Max} (u_n(x), M) - M$
 $\overline{u}(x) = \operatorname{Max} (\operatorname{Min} (u(x), M), m) - m$
 $\overline{u}_n(x) = \operatorname{Max} (\operatorname{Min} (u_n(x), M), m) - m$.

 \overline{u} and \overline{u}_n are in $W^{1,p}_+(\mathbb{R})$ and:

$$\overline{u}_n \rightharpoonup \overline{u}$$
 in $W^{1,p}(\mathbb{R})$ when $n \to +\infty$.

For the moment being let us assume that:

(5)
$$\Phi_c(\overline{u}) \leqslant \lim_{n \to +\infty} \Phi_c(\overline{u}_n);$$

we have:

$$\Phi_c(u) = \Phi_c(\overline{u}) + \Phi_c(g) + \Phi_c(f)$$

$$\Phi_c(u_n) = \Phi_c(\overline{u}_n) + \Phi_c(g_n) + \Phi_c(f_n)$$
.

Using (4), (1) and (5), this yields

$$\Phi_{c}(u) < \lim_{n \to +\infty} \Phi_{c}(u_{n}) + 2\eta$$

and the theorem is proved.

It remains to prove (5); without any restriction we may assume that

$$\max_{x \in \mathbf{R}} u_n(x) > M$$
. Let $\overline{M} = M - m$.

Let $\varepsilon = (\varepsilon_1, ..., \varepsilon_r)$ be a sequence of r strictly positive numbers (r depends on ε) such that:

$$\sum_{i=1}^{r} \varepsilon_{i} = \overline{M}$$

Let

$$A(arepsilon) = \left\{ \sum_{i=1}^k arepsilon_i | 1 \!\leqslant\! k \!\leqslant\! r-1
ight\}$$

$$\tilde{A}(\varepsilon) = A(\varepsilon) \cup \{0, \overline{M}\}.$$

We are going to define by induction a finite sequence of real numbers. Let

$$a_1 = \operatorname{Inf}\left\{x|\overline{u}(x) \neq 0\right\}$$

(it is easy to see that a_1 exists). Assume that a_{i-1} is defined. Either:

$$\left\{x|\overline{u}(x)\in\widetilde{A}(\varepsilon)-\left\{\overline{u}(a_{i-1})\right\}\right\}\cap [a_{i-1},\,+\,\infty)=\emptyset$$

then we stop here the sequence a_i ; we have $\overline{u}(a_{i-1}) = 0$ and:

$$\overline{u}(x) < \varepsilon_1 \quad \forall x \in [a_{i-1}, +\infty)$$

or:

$$\left\{x|\overline{u}(x)\in\widetilde{A}(\varepsilon)-\left\{\overline{u}(a_{i-1})\right\}\right\}\cap [a_{i-1},\ +\ \infty)\neq\emptyset\;,$$

then we let:

$$a_i = \operatorname{Min} \left\{ x | \overline{u}(x) \in \widetilde{A}(\varepsilon) - \left\{ \overline{u}(a_{i-1}) \right\} \text{ and } x \geqslant a_{i-1} \right\}.$$

We are going to prove that the sequence a_i has only a finite number of terms. Let

$$\mu = \min_{1 \leq j \leq r} \varepsilon_j; \quad \mu > 0.$$

We have

$$\mu \leqslant |\overline{u}(a_{i+1}) - \overline{u}(a_i)|$$

but

$$|\overline{u}(a_{i+1}) - \overline{u}(a_i)| \leqslant \int_{a_i}^{a_i+1} |\overline{u}'(\tau)| d\tau \leqslant |\overline{u}| (a_{i+1} - a_i)^{1/q}$$

with

$$\frac{1}{p} + \frac{1}{q} = 1$$

therefore:

(6)
$$\mu \leqslant (a_{i+1} - a_i)^{1/q} |\overline{u}|.$$

Let $b = \sup \{x | \overline{u}(x) \neq 0\}$; $b < + \infty$ and

$$\forall i \quad a_i \leqslant b$$

then using (6) and (7) we see that the sequence (a_i) has only a finite number of terms. Let l be the number of terms of the sequence a_i . With \overline{u} and the sequence a_i we are going to define a new function in $W^{1,p}_+(\mathbb{R})$ $P_{\varepsilon}\overline{u}$ as follows:

when
$$x \geqslant a_i$$
 let $(P_{\varepsilon}\overline{u})(x) = 0$

when
$$x \leq a_1$$
 let $(P_{\varepsilon}\overline{u})(x) = 0$

when $a_i < x \leqslant a_{i+1}$:

— either $\overline{u}(a_i) < \overline{u}(a_{i+1})$ then we let:

$$(P_{\varepsilon}\overline{u})(x) = \max_{y \in [a_{i}, x]} \overline{u}(y)$$

— or $\overline{u}(a_i) > \overline{u}(a_{i+1})$ then we let:

$$(P_{\varepsilon}\overline{u})(x) = \operatorname{Min}\left(\overline{u}(a_{i}), \operatorname{Max}_{y \in [x, a_{i+1}]} \overline{u}(y)\right).$$

It is easy to see that $P_{\varepsilon}\overline{u}$ is a continuous function; using appendix 2 we see that $P_{\varepsilon}\overline{u}|_{a_{i},a_{i+1}I} \in W^{1,p}((a_{i}, a_{i+1}))$ and

$$\int\limits_{a_i}^{a_{i+1}} |(P_{arepsilon}\overline{u})'|^p dx = \int\limits_{a_i}^{a_{i+1}} |(P_{arepsilon}\overline{u})'| |\overline{u}'|^{p-1} dx \; .$$

Thus $P_{\varepsilon}\bar{u} \in W^{1,p}_{+}(\mathbb{R})$ and

(8)
$$|P_{\varepsilon}\overline{u}|^{p} = \int_{\mathbb{R}} |(P_{\varepsilon}\overline{u})'| |\overline{u}'|^{p-1} dx.$$

We are now going to define a_i^n and $P_{\varepsilon}\overline{u}_n$; Let δ_0 be such that

$$u(a_1 - \delta_0) < m$$

$$u(a_l + \delta_0) < m$$

let

$$a_1^n = \text{Inf}\left\{x|\overline{u}_n(x) \neq 0 \text{ and } a_1 - \delta_0 \leqslant x \leqslant a_1 + \delta_0\right\}$$

 a_1^n exists for n large enough and, always for n large enough,

$$\overline{u}_n(a_1^n) = 0$$
.

Let us assume that a_{i-1}^n is defined.

Either:

$$\left\{x|\overline{u}_n(x)\in\widetilde{A}(\varepsilon)-\left\{\overline{u}(a_{i-1})\right\}\right\}\cap [a_{i-1}^n,\,a_i+\delta_0)\neq\emptyset$$

then we stop here the sequence a_i^n we have $a_{i+1}^n \leq a_i + \delta_0$ and for n large enough (i.e. if $u_n(a_1 + \delta_0) < m$):

$$\overline{u}_n(a_{i-1}^n)=0\,,$$

or:

$$\big\{x|\overline{u}_n(x)\in\widetilde{A}(\varepsilon)-\big\{u_n(a_{i-1}^n)\big\}\big\}\cap [a_{i-1}^n,\,a_i+\delta_0[\neq\emptyset]$$

and then we set

$$a_i^n = \operatorname{Min}\left\{x|\overline{u}_u(x) \in \widetilde{A}(\varepsilon) - \{\overline{u}_n(a_{i-1})\} \text{ and } x \in [a_n^{i-1}, \, a_i + \delta_0[\} \right\}.$$

In the same way as for the sequence a_i , one can prove that the sequence a_i^n has only a finite number of terms and we define $P_{\varepsilon}\overline{u}$ from $(a_i^n)_i$ and \overline{u}_n in the same way we have defined $P_{\varepsilon}\overline{u}$ from $(a_i)_i$ and \overline{u} . Let us remark that:

$$P_{\varepsilon}\overline{u}_n \in W^{1,p}(\mathbb{R})$$

and

Supp
$$P_{\varepsilon}\overline{u}_n \subset [a_1 - \delta_0, a_1 + \delta_0]$$
.

We are going to prove:

(9)
$$P_{\varepsilon}\overline{u} \to \overline{u} \quad \text{in } W^{1,p}(\mathbb{R}) \text{ when } |\varepsilon| \to 0$$

(10)
$$(P_{\varepsilon}\overline{u})^* \to (\overline{u})^*$$
 in $W^{1,p}(\mathbb{R})$ when $|\varepsilon| \to 0$

(12) If $A(\varepsilon) \cap V(\overline{u}) = \emptyset$ then:

$$\Phi_c(P_{\varepsilon}\overline{u}) \leqslant \lim_{n \to +\infty} \Phi_c(P_{\varepsilon}\overline{u}_n)$$
.

Before proving (9), (10), (11) and (12) we are going to explain how from (9), (10), (11) and (12) we can deduce (5). Let $\gamma > 0$; since V(u) is negligible, from (9) and (10) we deduce that there exists a sequence $\varepsilon = (\varepsilon_i)_{1 \leqslant i \leqslant \tau}$ of strictly positive numbers with $\sum_{i=1}^{\tau} \varepsilon_i = \overline{M}$ such that

$$A(\varepsilon) \cap V(\overline{u}) = \emptyset$$

and:

(13)
$$\Phi_c(P_{\varepsilon}\overline{u}) \geqslant \Phi_c(\overline{u}) - \gamma.$$

Using (11) and (12) we have:

(14)
$$\Phi_c(P_{\varepsilon}\overline{u}) \leqslant \lim_{n \to +\infty} \Phi_c(\overline{u}_n).$$

We use (13) and (14); we obtain

$$\Phi_c(\overline{u}) - \gamma \leqslant \lim_{n \to +\infty} \Phi_c(\overline{u}_n) \quad \forall \gamma > 0$$

which establishes (5).

It remains to prove (9), (10), (11), (12).

PROOF OF (9). (8) yields:

$$(15) |P_{\epsilon}\overline{u}| \leqslant |\overline{u}|.$$

But there exists α in \mathbb{R} such that

Supp
$$\overline{u} \subset [-\alpha, \alpha]$$
.

Then we have:

(16) Supp
$$P_{\varepsilon}\overline{u} \subset [-\alpha, \alpha]$$
.

From (15) and (16) it follows that $P_{\varepsilon}\overline{u}$ is bounded in $W^{1,p}(\mathbb{R})$. But it is easy to see that:

$$||P_{\varepsilon}\overline{u}-\overline{u}||_{\infty} \leqslant 2\varepsilon$$
.

Then using (15) we have (9).

Proof of (10). Since the rearrangement is a continuous mapping from the set of nonnegative functions of $L^p(\mathbb{R})$ into $L^p(\mathbb{R})$ it follows from (9) and (1) that (since $\exists e | \text{Supp } P_e \overline{u} \in [-e, e]$):

$$(17) (P_{\varepsilon}\overline{u})^* \rightharpoonup \overline{u}^* \text{in } W^{1,p}(\mathbb{R}) \text{ when } |\varepsilon| \to 0.$$

We are going to prove that:

(18)
$$\lim_{|\varepsilon|\to 0} |(P_{\varepsilon}\overline{u})^*| = |\overline{u}^*|.$$

Clearly (10) follows from (17) and (18).

Let ε^k with $|\varepsilon^k| \to 0$ when $k \to +\infty$.

Let

$$egin{aligned} \overline{u}^{k} &= P_{\epsilon^{k}} \overline{u} \ \\ v^{k}(y) &= - \max \left\{ x | \overline{u}^{k}(x) \geqslant y
ight\} \ \\ v(y) &= - \max \left\{ x | \overline{u}(x) \geqslant y
ight\} \,. \end{aligned}$$

We have (see appendix 3):

(19)
$$|(\overline{u}^k)^*|^p = 2^p \int_0^{\overline{M}} \frac{1}{[(v^k)'(y)]^{p-1}} dy$$

(20)
$$|\overline{u}^*|^p = 2^p \int_0^{\overline{M}} \frac{1}{(v'(y))^{p-1}} dy.$$

We are going to prove:

(21) there exists a function h of $L^1((0, \overline{M}))$ such that

$$\frac{1}{[(v^k)'(y)]^{p-1}} \leqslant h(y) \qquad \text{ a.e. } y \in (0, \overline{M})$$

(22)
$$(v^k)'(y) \xrightarrow[\overline{(k \to +\infty)}]{} v'(y) \quad \text{a.e. } y \in (0, \overline{M}) .$$

Clearly (18) follows from (19), (20), (21) and (22).

PROOF OF (21) AND (22). Let

$$C=]0,\, \overline{M}[-\left(igcup_{k\in \mathbf{N}} V(\overline{u}^k) \,\cup\, V(\overline{u}) igcup_{k\in \mathbf{N}} A(arepsilon^k)
ight).$$

[0, M] - C is negligible. Let $y \in C$. Using appendix 4 we see that v^k is differentiable in y and:

$$(v^k)'(y) = \sum_{x \in (\overline{u}^k)^{-1}(y)} \frac{1}{|(\overline{u}^k)'(x)|}$$

(remark: since $y \in C$, $(\overline{u}^k)^{-1}(y)$ is a finite set) Then, using the convexity of t^{1-p} we have

(23)
$$\frac{1}{[(v^k)'(y)]^{p-1}} \leq \sum_{x \in (\overline{u}^k)^{-1}(y)} |(\overline{u}^k)'(x)|^{p-1}.$$

Let

$$h^k(y) = \sum_{x \in \overline{u}^{k-1}(y)} |(\overline{u}^k)'(x)|^{p-1}$$

On $[a_i, a_{i+1}]$ \overline{u}^k is monotone; let θ_i^k be the unique function from $\overline{u}^k([a_i, a_{i+1}]) \cap C$ into $[a_i, a_{i+1}]$ such that:

$$\overline{u}^k \circ \theta_i^k = Id_{C \cap \overline{u}^k(fa_i, a_{i+1})}$$

We have:

$$\int\limits_a^{a_{i+1}} (\overline{u}^k)'(x)|^p dx = \int\limits_{\overline{u}^k([a_i,a_{i+1}])\cap C} |(\overline{u}^k)'(\theta_i^k(y))|^{p-1} dy.$$

Then it is easy to see that h^k is a measurable function and that

$$\int\limits_{0}^{\overline{M}}\!\!h^{k}(y)\,dy=|\overline{u}^{k}|^{p}$$

but $(\overline{u}^k)' \to \overline{u}'$ in $L^p(\mathbb{R})$ when $k \to +\infty$, and thus

$$\int\limits_0^M h^k(y)\,dy \to |\overline{u}|^p \quad \ (k\to \dot{+}\, \infty) \;.$$

Using Fatou's lemma we obtain

(24)
$$\int_{0}^{\overline{M}} \lim_{k} h^{k}(y) \, dy \leqslant |\overline{u}|^{p}.$$

66

J. M. CORON

Let

$$h(y) = \sum_{x \in \overline{u}^{-1}(y)} |\overline{u}'(x)|^{p-1}$$
.

We are going to prove that

(25) if
$$y \in C$$
, $(\overline{u}^k)^{-1}(y) \subset \overline{u}^{-1}(y)$

and if $x \in (\overline{u}^k)^{-1}(y)$ then $\overline{u}'(x) = (\overline{u}^k)'(x)$

(26) if $y \in C$, for k sufficiently large we have

$$(\overline{u}^k)^{-1}(y) = \overline{u}^{-1}(y)$$
.

Before proving (25) and (26) we are going to deduce (21) and (22) from (25) and (26).

Using (25) we have:

$$h^k(y) \leqslant h(y)$$

Using (25) and (26) $h^k(y) \rightarrow h(y)$ $(k \rightarrow +\infty) \forall y \in C$.

Using (24)

$$\int\limits_{0}^{\overline{M}}h(y)\,dy\leqslant |\overline{u}|^{p}$$

which gives (20).

(22) follows from (25), (26) and appendix 4.

PROOF OF (25). Let x be in $(\overline{u}^k)^{-1}(y)$, $a_i < x < a_{i+1}$; let us assume that, for example, $\overline{u}(a_i) < \overline{u}(a_{i+1})$ (the proof in the case $\overline{u}(a_i) > \overline{u}(a_{i+1})$ would be nearly the same).

Let z be in $[a_i, a_{i+1}]$

$$\overline{u}^k(z) = \max_{y \in [a_1, z]} \overline{u}(y)$$
.

We have $\overline{u}^k(x) > \overline{u}(x)$; but if $\overline{u}^k(x) > \overline{u}(x)$ it is easy to see that $(\overline{u}^k)'(x) = 0$ in contradiction with $y \in C$ therefore $\overline{u}^k(x) = \overline{u}(x)$. We recall that \overline{u} and \overline{u}^k are differentiable in x (since $y \in C$). Let $\tau > 0$ with $x + \tau < a_{i+1}$

$$\frac{\overline{u}(x+\tau)-\overline{u}(x)}{\tau}\!<\!\frac{\overline{u}^k\!(x+\tau)-\overline{u}^k\!(x)}{\tau}\to(\overline{u}^k\!)'(x)$$

therefore

$$\overline{u}'(x) \leqslant (\overline{u}^k)'(x) .$$

Let

$$\begin{split} &\tau_n \to 0 \qquad \tau_n > 0 \qquad \text{with } x + \tau_n < a_{i+1} \\ &\overline{u}^k(x + \tau_n) = \overline{u}(x + \overline{\tau}_n) \quad \text{with } 0 \leqslant \overline{\tau}_n \leqslant \tau_n \\ &0 \leqslant \frac{\overline{u}^k(x_n + \tau) - \overline{u}^k(x)}{\tau_n} = \frac{\overline{u}(x + \overline{\tau}_n) - \overline{u}(x)}{\tau \overline{\tau}_n} \cdot \frac{\overline{\tau}_n}{\tau_n} \\ &\qquad \qquad \frac{\overline{u}^k(x + \tau_n) - \overline{u}^k(x)}{\tau_n} \to (\overline{u}^k)'(x) > 0 \ . \end{split}$$

Hence:

$$(28) (\overline{u}^k)'(x) \leqslant \overline{u}'(x) .$$

From (27) and (28) we deduce

$$(\overline{u}^k)'(x) = \overline{u}'(x)$$
.

Thus (25) is proved.

PROOF of (26). Let $y \in C$ and $x \in \overline{u}^{-1}(y)$; we are going to prove that if k is sufficiently large then $x \in (\overline{u}^k)^{-1}(y)$. Since $\overline{u}^{-1}(y)$ is a finite set this will prove (26). u is derivable in x and $\overline{u}'(x) \neq 0$ (since $y \in C$). Let us assume that for example $\overline{u}'(x) > 0$ (the proof in the case $\overline{u}'(x) < 0$ would be nearly the same). Let $\eta > 0$ such that:

$$z \in [x - \eta, x) \Rightarrow \overline{u}(z) < \overline{u}(x)$$

 $z \in (x, x + \eta] \Rightarrow \overline{u}(z) > \overline{u}(x)$.

Let

$$\delta = \operatorname{Min}\left(\overline{u}(x+\eta) - \overline{u}(x), \overline{u}(x) - \overline{u}(x-\eta)\right).$$

Let us assume that

$$|\varepsilon^{k}| < \frac{\delta}{2}.$$

Let a_i^k be the sequence used for definition of \overline{u}^k (see above definition of a_i). It is easy to see, using (29), that if

$$a_i^k < x < a_{i+1}^k$$

then

$$x - \eta < a_i^k < a_{i+1}^k < x + \eta$$
.

68

Then

$$\overline{u}^k(a_i^k) < \overline{u}(x) < \overline{u}^k(a_{i+1}^k)$$

and

$$\overline{u}^k(x) = \max_{\mathbf{v} \in [a_i^k, x]} \overline{u}(x)$$
.

(26) is proved, and so (10) is proved.

PROOF OF (11). Now ε is fixed. Using (15) with \overline{u}_n instead of \overline{u} we have

$$|P_{\varepsilon}\overline{u}_n| \leqslant |\overline{u}_n|$$
.

Let

$$egin{aligned} v_n(y) &= - \, \max \left\{ x | \overline{u}_n(x) \geqslant y
ight\} \ & w_n(y) &= - \, \max \left\{ x | P_\epsilon \overline{u}_n(x) \geqslant y
ight\} \,. \end{aligned}$$

Let $D =]0, m[-(V(\overline{u}_n) \cup V(P_{\varepsilon}\overline{u}_n) \cup A(\varepsilon)); [0, m] \setminus D$ is negligible. Using Appendix 3, we know that, if $y \in D$, then v_n and w_n are differentiable in y and:

$$\begin{aligned} v_n'(y) &= \sum_{x \in \overline{u_n}^{-1}(y)} \frac{1}{|(\overline{u}_n)'(x)|} \\ w_n'(y) &= \sum_{x \in (P_{\varepsilon \overline{u}n})^{-1}(y)} \frac{1}{|(P_{\varepsilon}\overline{u}_n)'(x)|}. \end{aligned}$$

But (see the proof of (25))

$$(P_{\mathfrak{s}}\overline{u}_n)^{-1}(y)\subset \overline{u}_n^{-1}(y)$$

and if $x \in (P_{\varepsilon}\overline{u}_n)^{-1}(y)$, we have $(\overline{u}_n)'(x) = (P_{\varepsilon}\overline{u}_n)'(x)$ therefore

(30)
$$w'_n(y) \leqslant v'_n(y)$$
.

But (see appendix 3):

$$|\overline{u}_n^*| = \int_0^M \frac{2^p}{\left(v_n'(y)\right)^{p-1}} dy$$

and

$$|(P_{\varepsilon}\overline{u}_n)^*| = \int_{0}^{M} \frac{2^p}{\left(w'_n(y)\right)^{p-1}} dy.$$

Then (11) follows from (30).

PROOF OF (12). First we show that:

$$\lim_{n\to+\infty}a_1^n=a_1.$$

Proof of (31). We have $y_n(a_1^n) = m$ and

$$a_1 - \delta_0 \leqslant a_1^n \leqslant a_l + \delta_0$$
.

We extract from the sequence a_1^n a convergent subsequence, (we shall also note a_1^n) such that:

$$a_1^n \to b$$
 when $n \to +\infty$.

We have u(b) = m.

Since $m \notin V(u)$, $\forall \delta > 0$ there exists x such that

$$u(x) > m$$
 and $|b - x| < \delta$.

Hence

$$a_1 \leqslant b.$$

But $u(a_1) = m$ and $m \notin V(u)$ then, $\forall \delta > 0$, there exists x' such that:

$$u(x') > m$$
 and $|a_1 - x'| < \delta$.

We have:

$$\lim_{n\to +\infty} u_n(x') = u(x').$$

Thus for n sufficiently large

$$u_n(x') > m$$

and therefore (if $\delta < \delta_0$):

$$a_1^n \leqslant x' \leqslant a_1 + \delta$$
.

Then:

$$(33) b \leqslant a_1.$$

Clearly (31) follows from (32) and (33).

Let l_n be the number of terms of sequence a_i^n .

We assume that:

$$A(\varepsilon) \cap V(\overline{u}) = \emptyset$$
.

Using the arguments of the Proof of (32) it is easy to prove that there exists n_0

70 J. M. CORON

such that

$$n \geqslant n_0 \Rightarrow l_n = l$$

and

$$\lim_{n\to+\infty}a_i^n=a_i$$

and, then, there exists n_1 such that:

$$n \geqslant n_1 \Rightarrow l_n = 1$$
 and $\overline{u}_n(a_i^n) = \overline{u}(a_i) \ \forall i \in \varepsilon[1, l]$.

Let x be a real number with $a_i < x < a_{i+1}$; for n sufficiently large, $a_i^n < x < a_{i+1}^n$,

$$\overline{u}_n(a_i^n) = \overline{u}(a_i)$$
 and $\overline{u}_n(a_{i+1}^n) = \overline{u}(a_{i+1})$.

Now using the definitions of $P_{\varepsilon}\overline{u}_n$ and $P_{\varepsilon}\overline{u}$ it is easy to see that:

$$P_{\epsilon}\overline{u}_{n}(x) \rightarrow P_{\epsilon}\overline{u}(x)$$

and the same method yields: if $x > a_1$ or $x < a_1$ then:

$$P_{\mathfrak{o}}\overline{u}_{\mathfrak{o}}(x) = 0 = P_{\mathfrak{o}}\overline{u}(x)$$

for n sufficiently large but (see (15) with \overline{u}_n instead of \overline{u}) $P_{\varepsilon}\overline{u}'_n$ is bounded in $W^{1,p}(\mathbb{R})$. (Let us recall that $\|P_{\varepsilon}\overline{u}_n\|_{\infty} \leq \overline{M}$ and Supp $P_{\varepsilon}u_n \in [a_1 - \delta_0, a_1 + \delta_0]$). Then:

$$P_{\varepsilon}u \xrightarrow[n \to +\infty]{} P_{\varepsilon}\overline{u}$$
 in $W^{1,p}(\mathbb{R})$.

For $i \in [1, 1]$ and γ in $W^{1,p}(\mathbb{R})$, let $F_i(\gamma)$ be the function of $W^{1,p}(\mathbb{R})$ defined by:

$$F_i(\gamma)(x) = \operatorname{Max}\left(\operatorname{Min}\left(\gamma(x),\sum_{j=0}^i \varepsilon_j\right),\sum_{j=0}^{i-1} \varepsilon_i\right) - \sum_{j=0}^{i-1} \varepsilon_j$$

with the convention $\varepsilon_0 = 0$. We have:

$$\Phi_c(P_{\varepsilon}\overline{u}_n) = \sum_{i=1}^{l} \Phi_c(F_i(P_{\varepsilon}\overline{u}_n)).$$

and

$$F_i(P,\overline{u}_n) \rightharpoonup F_i(P,\overline{u})$$
 in $W^{1,p}(\mathbb{R})$.

Then using appendix 3 we see that (19) follows from the following lemma:

LEMMA. Let T and L be two positive real numbers; let k be a positive integer and $(\alpha_n^1, \alpha_n^2, ..., \alpha_n^k)$ be a sequence of elements in $(W^{1,p}((0, T)))^k$ such that for each i in [1, k]:

$$lpha_n^i$$
 is nondecreasing $lpha_n^i(0)=0 \qquad lpha_n^i(T)=L$ $lpha_n^i = \lambda_n^i = \lambda$

Let

$$\begin{split} \beta_n^i(y) &= - \text{ meas } \left\{ x \in [0, \, T] | \alpha_n^i(x) \! \geqslant \! y \right\} \,, \\ \beta^i(y) &= - \text{ meas } \left\{ x \in [0, \, T] | \alpha^i(x) \! \geqslant \! y \right\} \,. \end{split}$$

Then

$$\sum_{i=1}^{L} \int_{0}^{L} \frac{dy}{(\beta_{i}'(y))^{p-1}} - c \int_{0}^{L} \frac{2^{p}}{\left(\sum_{i=1}^{k} \beta_{i}'(y)\right)^{p-1}} dy$$

$$\leq \lim_{n \to +\infty} \left(\sum_{1=i}^{k} \int_{0}^{L} \frac{dy}{((\beta_{i}^{n})'(y))^{p-1}} - c \int_{0}^{L} \frac{2^{p} dy}{\left(\sum_{i=1}^{k} (\beta_{i}^{n})'(y)\right)^{p-1}}\right).$$

PROOF OF THE LEMMA. Let m_n^i be the unique positive Radon measure on [0, L] such that:

$$0 \le y < y' \le L \Rightarrow m_n^i([y, y']) = \beta_n^i(y') - \beta_n^i(y), \quad m_n^i([0, L]) = T.$$

Let m^i be the unique positive Radon measure on [0, L] such that:

$$0 \!<\! y \!<\! y' \!<\! L \,\Rightarrow\, m^i \big([y,y'[\big) = \beta^i(y') - \beta^i(y)\;, \quad m^i \big([0,L]\big) = T\;.$$

Let φ be a continuous function from [0, L] into R; we have:

$$\int_{[0,L]} \varphi(y) dm_n^i(y) = \int_0^T \varphi(\alpha_n^i(x)) dx$$

$$\int_{[0,L]} \varphi(y) dm^i(y) = \int_0^T \varphi(\alpha^i(x)) dx.$$

Since $\alpha_n^i \to \alpha$ in $W^{1,p}((0,T))$, $\alpha_n^i(x) \to \alpha^i(x)$, $\forall x \in [0,T]$.

72

Hence

$$\int_{[0,L]} \varphi(y) \, dm_n^i(y) \rightarrow \int_0^T \varphi(\alpha^i(x)) \, dx$$

and:

$$\lim_{n\to+\infty} \int_{[0,L]} \varphi(y) \, dm_n^i(y) = \int_{[0,L]} \varphi(y) \, dm^i(y).$$

But

$$m_n^i = (\beta_n^i)'(y) dy + \nu_n^i \quad m^i = (\beta^i)'(y) dy + \nu^i$$

where v_n^i and dy are mutually singular, and, v^i and dy are mutually singular. Therefore the lemma follows from appendix 6.

Part B. Here we assume that $c > 1/2^p$ and we construct a sequence u_n such that $u_n \rightharpoonup u$ in $W_+^{1,p}(\mathbb{R})$ and $\Phi_c(u) > \lim \Phi_c(u_n)$.

It follows from appendix 5 that there exist four real numbers t_1 , t_2 , s_1 , s_2 such that:

$$0 < t_1$$
, $0 < t_2$, $0 < s_1$, $0 < s_2$

and:

$$(34) \qquad \frac{1}{[(t_{1}+t_{2})/2]^{p-1}} + \frac{1}{[(s_{1}+s_{2})/2]^{p-1}} - \frac{2^{p}c}{[(s_{1}+t_{1}+s_{2}+t_{2})/2]^{p-1}}$$

$$> \frac{1}{2} \left(\frac{1}{t_{1}^{p-1}} + \frac{1}{s_{1}^{p-1}} - \frac{2^{p}c}{(t_{1}+s_{1})^{p-1}} + \frac{1}{t_{2}^{p-1}} + \frac{1}{s_{2}^{p-1}} - \frac{2^{p}c}{(t_{2}+s_{2})^{p-1}} \right)$$

Let d_n and e_n be the functions from]0,1] into R defined by:

for x in]0,1] with $k/2^n < x \le (k+1)/2^n$ where k is an integer we set:

— when k is odd: $d_n(y) = s_1$, $e_n(y) = -t_1$

— when k is even: $d_n(y) = s_2$, $e_n(y) = -t_2$.

Let

$$D_n(y) = \int_y^1 d_n(\tau) d\tau$$
 for $y \in [0, 1]$

$$E_n(y) = \int_{\eta}^{1} e_n(\tau) d\tau \quad \text{for } y \in [0, 1].$$

We have

$$D_n(0) = \frac{s_1 + s_2}{2}$$
 $E_n(0) = -\frac{t_1 + t_2}{2}$

and

(35)
$$\begin{cases} \lim_{n \to +\infty} D_n(y) = \frac{s_1 + s_2}{2} (1 - y) & \forall y \in [0, 1] \\ \lim_{n \to +\infty} E_n(y) = -\frac{t_1 + t_2}{2} (1 - y) & \forall y \in [0, 1]. \end{cases}$$

We are going to define u_n :

when
$$x \ge (s_1 + s_2)/2$$
 let $u_n(x) = 0$

when $0 \le x < (s_1 + s_2)/2$ let $u_n(x)$ be the only real number such that

$$D_n(u_n(x)) = x$$

when $-(t_1+t_2)/2 < x < 0$ let $u_n(x)$ be the only real number such that

$$E_n(u_n(x)) = x$$

when $x < -(t_1 + t_2)/2$ let $u_n(x) = 0$.

It is easy, using (35), to prove that:

$$\lim_{n \to +\infty} u_n(x) = u(x)$$

with

$$\begin{split} u(x) &= 1 - \frac{2}{s_1 + s_2} x \quad \text{ when } \ 0 \leqslant x \leqslant \frac{s_1 + s_2}{2} \\ \\ u(x) &= 1 + \frac{2}{t_1 + t_2} x \quad \text{ when } \ -\frac{t_1 + t_2}{2} \leqslant x \leqslant 0 \\ \\ u(x) &= 0 \quad \text{ when } \ x > \frac{s_1 + s_2}{2} \quad \text{or } \ x < -\frac{t_1 + t_2}{2} \,. \end{split}$$

We have

$$|u_n|^p = \frac{1}{2} \left\{ \left(\frac{1}{s_1^{p-1}} + \frac{1}{s_2^{p-1}} \right) + \left(\frac{1}{t_1^{p-1}} + \frac{1}{t_2^{p-1}} \right) \right\}.$$

Then u_n is bounded in $W^{1,p}(\mathbb{R})$ and using (36)

$$u_n \rightarrow u$$
 in $W^{1,p}(\mathbb{R})$ when $n \rightarrow +\infty$.

An easy computation gives:

(38)
$$|u_n^*|^p = \frac{1}{2} \left\{ \frac{2^p}{(s_1 + t_1)^{p-1}} + \frac{2^p}{(s_2 + t_2)^{p-1}} \right\}$$

(39)
$$|u|^p = \frac{1}{[(s_1 + s_2)/2]^{p-1}} + \frac{1}{[(t_1 + t_2)/2]^{p-1}}$$

(40)
$$|u^*|^p = \frac{1}{((s_1 + s_2)/2 + (t_1 + t_2)/2)^{p-1}}.$$

Using (34), (37), (38), (39) and (40) we have

$$\Phi_c(u) > \lim_{n \to +\infty} \Phi_c(u_n)$$
.

Appendix 0.

Let $L^p_+(\mathbb{R})$ be the set of nonnegative functions of $L^p(\mathbb{R})$. Then we have the following (for 1).

PROPOSITION. The rearrangement is a continuous mapping from $L^p_+(\mathbb{R})$ into $L^p_+(\mathbb{R})$ (for the strong topologies).

PROOF. First we recall that, if $u \in L^p_+(\mathbb{R})$, $u^* \in L^p_+(\mathbb{R})$ and:

$$\int (u^*)^p \, dx = \int u^p e \, dx$$

(see [5]).

Let $(u_n)_{i\in\mathbb{N}}$ be a sequence of functions of $L^p_+(\mathbb{R})$ such that

$$u_n \to u$$
 in $L^p(\mathbb{R})$

We are going to prove that

$$u_n^* \to u^*$$
 in $L^p(\mathbb{R})$.

Obviously we may assume that

$$u_n(x) \to u(x)$$
 a.e. $x \in \mathbb{R}$

and

$$\exists h \in L^p_+(\mathbb{R}) \text{ such that } u_n(x) \leq h(x) \text{ a.e. } x \in \mathbb{R} .$$

Let f_n, f and g be the following functions

$$f_n(x) = 1$$
 if $u_n(x) > t$
 $f_n(x) = 0$ if $u_n(x) \le t$
 $f(x) = 1$ if $u(x) > t$
 $f(x) = 0$ if $u(x) \le t$
 $g(x) = 1$ if $h(x) > t$
 $g(x) = 0$ if $h(x) \le t$.

Then $f_n \to f$ a.e., $g \in L^1(\mathbb{R}), f_n \leqslant g$ a.e.

Therefore

$$\int f_n \to \int f.$$

Thus

$$\operatorname{meas}\,\big\{x|u_n(x)>t\big\}\to\operatorname{meas}\,\big\{x|u(x)>t\big\}\,.$$

Then the proposition follows easily from the definition of u_n^* and u^* , from:

$$\int (u_n^*)^p dx = \int u_n^p dx \to \int u^p dx - \int (u^*)^p dx$$
$$u_n^* \leqslant h^*.$$

and

Appendix 1.

Let u be an absolutely continuous function from \mathbb{R} into \mathbb{R} . Let

 $V'(0) = \{y | \text{ there exists } x \text{ in } \mathbb{R} \text{ such that } u(x) = y \text{ and either } u \text{ is not derivable in } x \text{ or } u \text{ is derivable in } x \text{ and } u'(x) = 0\}.$

Then;

(41) V(u) is negligible (for the Lebesgue measure).

PROOF. Let A be a measurable set; we are going to prove that:

(42)
$$\lambda^*(u(A)) \leqslant \int_A |u'(t)| dt$$

where

 $\lambda^*(B) = \operatorname{Inf} \{ \lambda(\Omega) | \Omega \text{ is an open set of } \mathbb{R} \text{ such that } B \subset \Omega \}$

(λ is the Lebesgue measure).

76 J. M. CORON

Property (41) follows easily from (42) by taking

 $A = \{x | u \text{ is not derivable in } x\} \cup \{x | u \text{ is derivable in } x \text{ and } u'(x) = 0\}.$

Let $\varepsilon > 0$. There exists $\eta > 0$ such that:

(43) for any measurable set
$$E$$
 such that $\lambda(E) < \eta$ then $\int\limits_E |u'(\tau)| \, d\tau < \varepsilon$.

There exist two sequences of real numbers $(\alpha_i)_{i\in\mathbb{N}}$, $(\beta_i)_{i\in\mathbb{N}}$ such that

$$lpha_i < eta_i \quad orall i \in \mathbf{N}$$
 $|lpha_i, eta_i| \cap |lpha_i, eta_i| = \emptyset \quad ext{if } i
eq j$

and:

(44)
$$A \in \Omega \text{ and } \lambda(\Omega - A) < \eta \text{ where } \Omega = \bigcup_{i \in \mathbb{N}}]\alpha_i, \beta_i[$$
.

Clearly

$$egin{aligned} u(A) &\subset igcup_{i \in \mathbf{N}} uig(]lpha_i, \, eta_i[ig) \ \lambda^*ig(u(A)ig) &\leqslant \sum_{i \in \mathbf{N}} \lambda^*ig(u(]lpha_i, \, eta_i[)ig) \end{aligned}$$

but

$$\lambda^*(u(]\alpha_i, \beta_i[)) = \lambda(u(]\alpha_i, \beta_i[)) \leqslant \int_{\alpha_i}^{\beta_i} |u'(\tau)| d\tau$$

$$\lambda^*[u(A)] \leqslant \int_{\Omega} |u'(\tau)| d\tau = \int_{A} |u'(\tau)| d\tau + \int_{\Omega-A} |u'(\tau)| d\tau$$

we use (43) and (44):

$$\lambda^*(u(A)) \leqslant \int_A |u'(\tau)| d\tau + \varepsilon$$
.

Hence (42) follows.

Appendix 2.

Let u be in $W^{1,p}((0,T))$; let

$$v(x) = \max_{y \in [0,x]} u(y)$$

then:

(45)
$$v \text{ is in } W^{1,p}((0,T)) \text{ and } |v|^p = \int_0^T v'(t)|u'(t)|^{p-1} dt.$$

PROOF OF (45).

(45) is of course true when u is a polynomial function; let u_n be a sequence of polynomial functions such that:

$$u_n \rightarrow u$$
 in $W^{1,p}((0, T))$.

Let

$$v_n(x) = \max_{y \in [0,x]} u_n(y).$$

We have

(46)
$$\lim_{n \to +\infty} v_n(x) = v(x) \quad \forall x \in [0, T].$$

Using (45) for v_n we have

$$|v_n| \leqslant |u_n|$$
.

Then v_n is bounded in $W^{1,p}((0,T))$; using (46) we have:

$$v \in W^{1,p}((0,T))$$
 and $v_n \rightharpoonup v$ in $W^{1,p}((0,T))$ when $n \to +\infty$.

Let x be a point of (0, T) such that v and u are differentiable in x. We are going to prove that:

(47)
$$v'(x)^p = v'(x)|u'(x)|^{p-1}.$$

This will prove (45).

Note that since v is nondecreasing, $v'(x) \ge 0$; if v'(x) = 0 (47) is of course true. Now let us assume that v'(x) > 0. We shall prove that v(x) = u(x). Clearly $v(x) \ge u(x)$. Assume by contradiction that v(x) > u(x); then there exists $\varepsilon > 0$ such that

$$[x, x + \varepsilon] \subset [0, T]$$

and

$$z \in [x, x + \varepsilon] \Rightarrow u(z) < v(x)$$
.

Therefore

$$z \in [x, x + \varepsilon] \Rightarrow v(z) = v(x)$$

and so v'(x) = 0.

A contradiction with v'(x) > 0.

We have proved that v(x) = u(x). Since $v \ge u$ and v(x) = u(x), we have (47).

Appendix 3.

This appendix is due to T. Gallouët.

Let u be a nondecreasing function in $W^{1,p}(0,T)$ such that u(0)=0 and u(T)=L.

Let v the function from [0, L] into [-T, 0] defined by

$$v(y) = - \max \{x \in [0, T] | u(x) \geqslant y\};$$

v is a nondecreasing function and then derivable a.e. with $v' \ge 0$. Let 1/v' be the function from [0, L] into R defined by:

$$rac{1}{v'}\left(y
ight)=rac{1}{v'\left(y
ight)} \qquad ext{if v is differentiable in y with $v'\left(y
ight)
eq0}$$
 $rac{1}{v'}\left(y
ight)=lpha \qquad ext{elsewhere }\left(lpha\in\mathbb{R}^{+}\ lpha ext{ is fixed}
ight).$

Then we have:

(48)
$$\int_{0}^{L} \left(\frac{1}{v'}\right)^{p-1} dy = |u|^{p}.$$

PROOF OF (48). We have

$${x \in [0, T] | u(x) \geqslant y} = [\min u^{-1}(y), T] \quad \text{for } y \in [0, L].$$

Then

(49)
$$v(y) = - (T - \min u^{-1}(y))$$

and therefore:

$$u(v(y)+T)=y.$$

Since u is absolutely continuous and nondecreasing, we have:

(51)
$$\int_{0}^{L} \left(\frac{1}{v'}(y)\right)^{p-1} dy = \int_{0}^{T} \left(\frac{1}{v'}\right)^{p-1} (u(x)) \cdot u'(x) dx.$$

Let x be in]0, T[such that u is derivable in x with $u'(x) \neq 0$. We have:

$$x' < x \Rightarrow u(x') < u(x)$$

$$x' > x \Rightarrow u(x') > u(x)$$
.

Let y = u(x) and h be such that y + h and y - h are in (0, T). Using (50)

we have:

$$\frac{v(y+h)-v(y)}{y+h-y}=\frac{u(v(y+h))-u(v(y))}{v(h+h)-v(y)};$$

but using (49) and (52) it is easy to see that

$$\lim_{h\to 0}v(y+h)=v(y).$$

Then v is differentiable in y and $v'(y) = 1/u'(x) \neq 0$. Then using (51) we have (48).

Appendix 4.

Let $u \in W^{1,p}(\mathbb{R})$, $u \geqslant 0$; let:

$$v(y) = - \max \{x | u(x) \geqslant y\}.$$

If $y \notin V(u)$ and $y \in u(\mathbb{R})$ then v is derivable in y and:

(53)
$$v'(y) = \sum_{x \in u^{-1}(y)} \frac{1}{|u'(x)|}.$$

PROOF of (53). First we remark that, since $y \notin V(u)$, $u^{-1}(y)$ has only a finite number of elements. On the other hand the number of elements of $u^{-1}(y)$ is even since $u \to 0$ at infinity. For simplicity we shall assume that $u^{-1}(y)$ has only two elements x_1, x_2 with $x_1 < x_2$ and we shall prove only the right-differentiability. We have $u'(x_1) > 0$, $u'(x_2) < 0$.

Let k>0 be such that $u^{-1}(y+k)\neq\emptyset$ (if k is sufficiently small $u^{-1}(y+k)\neq\emptyset$). Let

$$x_1(k) = \min \{x | u(x) = y + k\}$$

$$x_2(k) = \operatorname{Max} \{x | u(x) = y + k\}.$$

We have

$$\lim_{k \to 0^+} x_i(k) = x_i \quad \forall i \in \{1, 2\}$$

and

$$u(z) \geqslant y + k \Rightarrow z \in [x_1(k), x_2(k)]$$
.

Therefore meas $\{x|u(x)\geqslant y+k\}\leqslant x_2(k)-x_1(k)$.

We have

$$u(x_i(k)) = y + k = u(x_i) + u'(x_i)(x_i(k) - x_i) + (x_i(k) - x_i)\varepsilon_i(k)$$

with

$$\lim_{k\to 0^+} \varepsilon_i(k) = 0 \quad \text{and } u(x_i) = y.$$

Thus:

$$\lim_{k \to 0^+} \frac{x_i(k) - x_i}{k} = \frac{1}{u'(x_i)}.$$

Therefore

(54)
$$\lim_{k \to 0^+} \frac{k}{v(y+k) - v(y)} \geqslant \frac{1}{u'(x_1)} - \frac{1}{u'(x_2)}.$$

Let

$$egin{aligned} & \overline{x}_1(k) = \operatorname{Max}\left\{x|u(x) = y + k & \text{et } x \leqslant rac{x_1 + x_2}{2}
ight\} \ & \overline{x}_2(k) = \operatorname{Min}\left\{x|u(x) = y + k & \text{et } x \geqslant rac{x_1 + x_2}{2}
ight\} \end{aligned}$$

 $(\bar{x}_i(k) \text{ is well defined if } k \text{ is sufficiently small}).$ We have

$$\lim_{k\to 0^+} \bar{x}_i(k) = x_i.$$

It is easy to see that if k is sufficiently small,

$$x \in [\overline{x}_1(k), \overline{x}_2(k)] \Rightarrow u(x) \geqslant y + k$$
.

We have

$$\lim_{k\to 0^+} \overline{x}_i(k) = x_i.$$

as before we prove that

$$\lim_{k \to 0^+} \frac{\overline{x}_i(k) - x_i}{k} = \frac{1}{u'(x_i)}$$

and we have:

meas
$$\{x|u(x)\geqslant y+k\}\geqslant \overline{x}_2(k)-\overline{x}_1(k)$$
.

Thus we have

(55)
$$\lim_{k \to 0^+} \frac{v(y+k) - v(y)}{k} \le \frac{1}{u'(x_1)} - \frac{1}{u'(x_2)}.$$

Using (54) and (55) we have

$$\lim_{k \to \mathbf{0}^+} \frac{v(y \, + \, k) - v(y)}{k} = \frac{1}{|u'(x_1)|} + \frac{1}{|u'(x_2)|} \, .$$

Appendix 5.

Let d be a real number and let

$$\varphi \colon \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$$

$$(x_1, x_2, ..., x_n) \to \begin{cases} \sum_{i=1}^n \frac{1}{x_i^{p-1}} - \frac{d}{\left(\sum_{i=1}^n x_i\right)^{p-1}} & \text{if } \forall i \ x_i > 0 \\ +\infty & elsewhere \end{cases}$$

Then if $d \le 1$ φ is convex and l.s.c. If d > 1 and n = 2 φ is not convex on $(\mathbb{R}^{+*})^n$.

Proof. 1) n=2.

 φ is C^{∞} on $(\mathbb{R}^{+*})^2$. Let $x_1 > 0$, $x_2 > 0$ we have:

$$\begin{split} &\frac{\partial^2 \varphi}{\partial x_1^2} = p(p-1) \left\{ \frac{1}{x_1^{p+1}} - \frac{d}{(x_1 + x_2)^{p+1}} \right\} \\ &\frac{\partial^2 \varphi}{\partial x_2^2} = p(p-1) \left\{ \frac{1}{x_2^{p+1}} - \frac{d}{(x_1 + x_2)^{p+1}} \right\} \\ &\frac{\partial^2 \varphi}{\partial x_1 \partial x_2} = -p(p-1) \frac{d}{(x_1 + x_2)^{p+1}} \\ &\frac{\partial^2 \varphi}{\partial x_1^2} + \frac{\partial^2 \varphi}{\partial x_2^2} = p(p-1) \left\{ \frac{1}{p_1^{p+1}} + \frac{1}{x_2^{p+1}} - \frac{2d}{(x_1 + x_2)^{p+1}} \right\} \geqslant 0 \quad \text{if } d \leqslant 1 \\ &\frac{\partial^2 \varphi}{\partial x_1^2} \cdot \frac{\partial^2 \varphi}{\partial x_2^2} - \left(\frac{\partial^2 \varphi}{\partial x_1 \partial x_2} \right)^2 = p^2 (p-1)^2 \left\{ \frac{(x_1 + x_2)^{p+1} - d(x_1^{p+1} + x_2^{p+1})}{x_1^{p+1} x_2^{p+1} (x_1 + x_2)^{p+1}} \right\} \geqslant 0 \quad \text{if } d \leqslant 1 \end{split}$$

Thus, if $d \le 1$, φ is convex (and continuous) on $(\mathbb{R}^{+*})^2$; if d > 1 there exists $(x_1, x_2) \in (\mathbb{R}^{+*})^2$ such that

$$\left(\frac{\partial^2 \varphi}{\partial x_1^2} \frac{\partial^2 \varphi}{\partial x_2^2} - \left(\frac{\partial^2 \varphi}{\partial x_1 \partial x_2}\right)^2\right) (x_1, x_2) < 0$$

and therefore φ is not convex on $(\mathbb{R}^{+*})^2$. We assume now $d \leq 1$. φ is convex on $(\mathbb{R}^{+*})^2$ and then φ is convex on \mathbb{R}^2 . It is easy to see that φ is l.s.c. in (x_1, x_2) if $(x_1, x_2) \neq (0, 0)$. It remains to prove that φ is l.s.c. in (0, 0).

We have

$$\varphi(x_1, x_2) \geqslant \frac{1}{x_1^{p-1}}$$
 if $x_1 > 0$
 $\varphi(x_1, x_2) = +\infty$ if $x_1 \leqslant 0$.

Thus if $(x_1^n, x_2^n) \to (0, 0)$ as $n \to +\infty$ we have

$$\lim_{n\to+\infty}\varphi(x_1^n,x_2^n)=+\infty=\varphi(0,0).$$

2) $n \geqslant 3$; we assume $d \leqslant 1$.

Since the mapping from \mathbb{R}^n into $R \cup \{+\infty\}$ defined by:

$$(x_1 \dots x_n) \rightarrow \begin{cases} \left\{ \left(\sum_{i=1}^n x_i\right)^{p-1} \right\}^{-1} & \text{if } x_i \geqslant 0 \sum_{i=1}^n x_i \neq 0 \\ + \infty & \text{elsewhere} \end{cases}$$

is convex l.s.c. We may assume that d=1.

As for n=2 it is easy to prove that φ is l.s.c. We are going to prove that φ is convex on $(w^{+*})^n$ by induction on n. We shall write φ_n instead of φ ; we assume that φ_{n-1} is convex on $(\mathbb{R}^{+*})^{n-1}$.

Let

$$x = (x_1, x_2, ..., x_n) \in (\mathbb{R}^{+*})^n$$

$$y = (y_1, y_2, ..., y_n) \in (\mathbb{R}^{+*})^n$$

Let $t \in [0, 1]$, $\tilde{x} = (x_2, ..., x_n)$, $\tilde{y} = (y_2, ..., y_n)$

$$\varphi_n(tx + (1-t)y) = \varphi_2(t(x_1, \sum_{i=2}^n x_i) + (1-t)(y_1, \sum_{i=2}^n y_i)) + \varphi_{n-1}(t\tilde{x} + (1-t)\tilde{y})$$

 φ_2 and φ_{n-1} are convex on $(\mathbb{R}^{+*})^2$ and $(\mathbb{R}^{+*})^{n-1}$; therefore

$$\begin{split} \varphi_n(tx + (1-t)y) & \leq t\varphi_2(x_1, \sum_{i=2}^n x_i) + (1-t)\varphi_2(y_1, \sum_{i=2}^n y_i) + t\varphi_{n-1}(\tilde{x}) + (1-t)\varphi_{n-1}(\tilde{y}) \\ & \leq t\varphi_n(x) + (1-t)\varphi_n(y) \; . \end{split}$$

Appendix 6.

Let K be a compact set of \mathbb{R} and C(K) be the set of the continuous functions from K into \mathbb{R} ; for f in C(K). Let

$$||f|| = \max_{x \in K} |f(x)|.$$

 $\| \ \|$ is a norm on C(K); let M be the dual space of C(K).

For m in M we have the decomposition:

$$m = f dx + \mu$$
, $f \in L^1(K)$, $\mu \in M$

where f dx and μ are mutually singular. We shall write:

$$f = R(m)$$
.

Let F be the maping from M^n into $w \cup \{+\infty\}$ defined by:

$$F(m_1, m_2, \ldots, m_n) = \int\limits_{\mathbb{K}} \varphi(Pm_1, \ldots, Pm_n) \, dx$$

where φ is defined in the appendix 5. We assume (see the definition of φ) that $d \le 1$.

Let $(m_{i,p})_{1 \le i \le n, 0 \le p}$ be a sequence of elements in M^n such that:

(56)
$$\lim_{p \to +\infty} \int \theta \, dm_{i,p} = \int \theta \, dm_i \quad \forall \theta \in C(K) , \forall i \in [1, n]$$

$$\int \theta \, dm_{i,p} \geqslant 0 \quad \forall i \in [1, n] \ \forall p \ \forall \theta \in C(K) \text{ with } \theta \geqslant 0 .$$

We are going to prove that:

(57)
$$F(m_1, ..., m_n) < \lim_{\substack{p \to \infty}} F(m_{1,p}, ..., m_{n,p}).$$

Let

$$f_{i,n} = R(m_{i,n}), \quad f_i = R(m_i).$$

Let r > 0 and $f_{i,p}^r(x) = \operatorname{Min}(r, f_{i,p}(x))$.

$$||f_{i,n}^r||_{\infty} \leqslant r$$
.

Thus we can extract a subsequence which converges for the topology $\sigma(L^1, L^{\infty})$ we shall denote also $f_{i,p}$ such a subsequence:

$$f_{i,p}^r \xrightarrow[(p \to +\infty)]{} g_i^r \quad \sigma(L^1, L^\infty)$$
.

Using appendix 5 we have:

(58)
$$\int_{r} \varphi(g_1^r, \ldots, g_n^r) dx \leq \lim_{p \to +\infty} \int_{r} \varphi(f_{1,p}^r, \ldots, f_{n,p}^r) dx.$$

J. M. CORON

But it is easy to see that:

$$0 \leqslant \varphi(f_{1,p}^r, \ldots, f_{n,p}^r) - \varphi(f_{1,p}, \ldots, f_{n,p}) \leqslant \frac{n}{r^{p-1}}.$$

Thus

(59)
$$\int_{K} \varphi(f_{1,p}^{r}, ..., f_{n,p}^{r}) dx \leq F(m_{1,p}, ..., m_{n,p}) + \frac{nL}{r^{p-1}}$$

where L is the Lebesgue measure of K.

Let $\theta \in C(K)$ with $\theta \geqslant 0$ and $i \in [1, n]$.

$$\int_K \theta g_i^r dx = \lim_{p \to +\infty} \int_K f_{i,p}^r \theta dx \leqslant \lim_{p \to +\infty} \int_K \theta dm_{i,p} = \int_K \theta dm_i.$$

Therefore

$$g_i^r \leqslant f_i$$
.

But

$$x_i \leqslant x_i' \quad \forall i \in [1, n] \Rightarrow 0 \leqslant \varphi(x_1', \dots, x_p') \leqslant \varphi(x_1, \dots, x_p).$$

Hence

(60)
$$\int_{K} \varphi(f_1, \ldots, f_n) dx \leq \int_{K} \varphi(g_1^r, \ldots, g_n^r) dx.$$

Using (58), (59) and (60) we have, for every r in \mathbb{R}^{+*} .

$$F(m_1, ..., m_n) \leqslant \lim_{p} F(m_{1,p}, ..., m_{n,p}) + \frac{nL}{r^{p+1}}.$$

It gives (57).

REFERENCES

- [1] M. S. Berger L. E. Fraenkel, A global theory of steady vortex in an ideal fluid, Acta Math., 132 (1974), pp. 14-51.
- [2] G. F. D. Duff, A general integral inequality for the derivative of an equimeasurable rearrangement, Canad. J. Math., vol. XXVIII, 4 (1976), pp. 793-804.
- [3] K. Hilden, Symmetrization of functions in Sobolev spaces and the isoperimetric inequality, Manuscripta Math., 18 (1976), pp. 215-235.
- [4] E. H. LIEB, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1977), pp. 93-105.
- [5] G. Polya G. Szego, Isoperimetric inequalities in mathematical physics, Ann. of Math. studies, 27 (Princeton, 1951).

- [6] E. Sperner, Symmetrisierung von funktionen auf sphären, Math. Z., 134 (1973), pp. 317-327.
- [7] E. Sperner, Symmetrisierung für funktionen mehrer reellee variablen, Manuscripta Math., 11 (1974), pp. 159-170.
- [8] G. TALENTI, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), pp. 353-372.

Ecole Polytechnique Département de Mathématiques 91128 Palaiseau France