# THE CONTINUOUS ABSORPTION COEFFICIENT OF ATOMIC AND MOLECULAR NEGATIVE IONS 

T. L. $\mathfrak{F o h n}$<br>Department of Applied Mathematics and Astronomy, University College, P.O. Box 78, Cardiff

(Received 1975 March 14)

## SUMMARY

The continuous absorption coefficient of the free-free transitions of 17 atomic and molecular negative ions are reported for the temperature and wavelength ranges $100 \leqslant T(\mathrm{~K}) \leqslant 15000,0.5 \leqslant \lambda(\mu) \leqslant 10$. We give an analytical expression for some molecular negative ions of astrophysical interest.

In an earlier paper ( $\mathbf{x}$ ) we considered free-free absorption of 17 atomic and molecular negative ions near the infrared threshold, the present paper is an attempt to improve the accuracy absorption coefficients of these ions away from threshold. We use Dalgarno \& Lane's method (2) which determines the continuous absorption coefficient $k_{\lambda}(T)$ from momentum-loss cross-sections by the expression

$$
\begin{align*}
& k_{\lambda}(T)=4.876 \times 10^{-3} T^{-5 / 2} \lambda^{3}(\mathrm{I}-\exp (-\alpha / \lambda T)) \\
& \quad \times \int_{0}^{\infty} \exp \left(-\beta E_{0}\right) \sqrt{ } E_{0} E_{1}\left\{E_{1} Q_{\mathrm{d}}\left(E_{0}\right)+E_{0} Q_{\mathrm{d}}\left(E_{1}\right)\right\} d E_{0} \mathrm{~cm}^{4} \text { per dyne }  \tag{I}\\
& \quad\left(\alpha=14388, \beta=\mathrm{II} 605 / T, \lambda(\mu)=\mathrm{I} \cdot 240 /\left(E_{1}-E_{0}\right)\right) .
\end{align*}
$$

The absorption coefficient $k_{\lambda}(T)$, at temperature $T(\mathrm{~K})$ and wavelength $\lambda(\mu)$, is given in units per unit electron pressure per neutral atom or molecule and includes the stimulated emission; the momentum-loss cross-section $Q_{\mathrm{d}}(E)$ must be expressed in units $\mathrm{cm}^{2}$, the energy $E$ being in electron volts.

We adopted the momentum-loss cross-section data from Keiffer's recent report (3), this tabulates the most reliable data available from experimental and theoretical sources. Our results are given in Tables I and II, for wavelengths greater than ro $\mu$ the tables given in the previous paper ( $\mathbf{x}$ ) should be used, alternatively a good estimate can be obtained with

$$
\begin{equation*}
k_{\lambda}(T)=\operatorname{IO}^{-3} \lambda^{3} k_{10}(T) \quad(\lambda \geqslant 10) . \tag{2}
\end{equation*}
$$

An estimate of the errors that arise from approximation (i) can be obtained by considering results for the negative ions $\mathrm{N}^{-}$and $\mathrm{O}^{-}$. Geltman (4) has calculated the absorption coefficients of these negative ions using the more accurate procedure of evaluating matrix elements directly with wave functions; the same wave functions were used to determine the momentum-loss cross-sections in Kieffer's report. Our results agree within a few per cent with those of Geltman for $\lambda \geqslant 1.5 \mu$ but underestimate the cross-section by $10-15$ per cent at I $\mu$ and $30-40$ per cent at $0.5 \mu$.

|  | にNòso |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |


| - |  |  | AN NM |
| :---: | :---: | :---: | :---: |
|  | móo o o o o |  |  |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| - | mo Oo Oo. | $\dot{\circ} \dot{-} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}$ |  |

$\stackrel{0}{0}$
$\vdots$
0
0+
0
0
0O

The cortion caeflient of5.36
1.26
0.298
0.109
0.0514
0.0307
0.0153







M

$$
\begin{aligned}
& 1 \\
& \text { 苗 }
\end{aligned}
$$ Z

Z
Table II




| Table II |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| The continuous absorption coefficient of molecular negative ions in units $10^{-26} \mathrm{~cm}{ }^{4}$ per dyne |  |  |  |  |  |  |
|  |  | $T$ (K) |  |  |  |  |
| 100 | 500 | 1000 | 2500 | 5000 | 7500 | 10000 |
| 153.0 | $79 \cdot 7$ | 67.9 | $54 \cdot 6$ | $42 \cdot 7$ | $34 \cdot 8$ | $29 \cdot 3$ |
| $47 \cdot 4$ | $19 \cdot 3$ | 16.2 | 13.4 | $10 \cdot 6$ | 8-69 | 7-29 |
| $15 \cdot 6$ | 5.22 | 3.92 | 3.19 | $2 \cdot 59$ | $2 \cdot 14$ | I-80 |
| 7.02 | $2 \cdot 13$ | 1. 46 | $1 \cdot 09$ | - 0.894 | $0 \cdot 750$ | 0.638 |
| $3 \cdot 76$ | 1.07 | 0.695 | 0.470 | $0 \cdot 380$ | $0 \cdot 322$ | 0.277 |
| $2 \cdot 41$ | 0.668 | 0.419 | 0.265 | $0 \cdot 207$ | $0 \cdot 176$ | $0 \cdot 152$ |
| $1 \cdot 30$ | - $\cdot 347$ | 0.210 | $0 \cdot 123$ | -.0893 | 0.0748 | 0.0647 |
| $53 \cdot 8$ | $45 \cdot 1$ | $43 \cdot 5$ | 35'1 | $36 \cdot 7$ | 29*1 | $35 \cdot 3$ |
| $16 \cdot 1$ | $10 \cdot 6$ | 10.1 | 8. 57 | $9 \cdot 03$ | $7 \cdot 53$ | 8-77 |
| 5.07 | $2 \cdot 69$ | 2.33 | $2 \cdot 02$ | $2 \cdot 17$ | 2.01 | $2 \cdot 13$ |
| $2 \cdot 22$ | 1.05 | $0 \cdot 845$ | $0 \cdot 717$ | $0 \cdot 774$ | $0 \cdot 702$ | $0 \cdot 691$ |
| 1-18 | 0.529 | 0.408 | $0 \cdot 335$ | $0 \cdot 341$ | 0.291 | $0 \cdot 308$ |
| 0.758 | -. 337 | $0 \cdot 263$ | 0.207 | - 190 | $0 \cdot 153$ | - 167 |
| 0.420 | - 186 | - - 137 | -0.0890 | 0.0711 | 0.0582 | 0.0659 |
| $61 \cdot 5$ | 30•4 | $25 \cdot 6$ | $20 \cdot 7$ | 17.0 | $13 \cdot 8$ | 11.6 |
| $18 \cdot 8$ | 7-13 | 6.11 | 5•11 | $4 \cdot 24$ | 3.45 | $2 \cdot 90$ |
| $6 \cdot 19$ | I. 94 | 1. 53 | $1 \cdot 22$ | $1 \cdot 03$ | 0.850 | $0 \cdot 718$ |
| 2.8I | $0 \cdot 806$ | $0 \cdot 587$ | 0.418 | $0 \cdot 352$ | 0.297 | 0.255 |
| 1.51 | 0.405 | 0.279 | - 177 | - 147 | $0 \cdot 127$ | $0 \cdot 111$ |
| 0.967 | 0.250 | - . 167 | -. 0978 | -0.0789 | -0.0691 | 0.0612 |
| $0 \cdot 520$ | $0 \cdot 129$ | 0.0829 | $0 \cdot 0444$ | -.0339 | - 0298 | $0 \cdot 0267$ |
| $212 \cdot 0$ | 6I. 5 | 58.2 | $53 \cdot 7$ | $44 * 9$ | $42 \cdot 9$ | 24.4 |
| $69 \cdot 7$ | 15.1 | $13 \cdot 7$ | $13 \cdot 6$ | $12 \cdot 2$ | $10 \cdot 0$ | 6.24 |
| 23.7 | $4 \cdot 01$ | $3 \cdot 24$ | 3.20 | $2 \cdot 88$ | $2 \cdot 41$ | $1 \cdot 73$ |
| $10 \cdot 8$ | I. 62 | $1 \cdot 22$ | 1. 15 | 0.917 | $0 \cdot 907$ | - 590 |
| 5.86 | - 0.889 | 0.643 | $0 \cdot 478$ | - $\cdot 378$ | - $\cdot 367$ | 0.236 |
| $3 \cdot 78$ | $0 \cdot 524$ | $0 \cdot 345$ | 0.236 | - 192 | - 196 | $0 \cdot 129$ |
| $2 \cdot 03$ | $0 \cdot 255$ | $0 \cdot 161$ | - - 106 | -0.0830 | -0.0850 | 0.0557 |









우우웅



(
$\begin{array}{ll}1 \\ 0 & \text { ○ } \\ 0 & \text { 岕 }\end{array}$

We find that the coefficients of molecular negative ion absorption are roughly the same magnitude for most of the ions in Table II, but at low temperatures $\mathrm{H}_{2} \mathrm{O}^{-}$and $\mathrm{CO}_{2}^{-}$are much more efficient absorbers. The absorption coefficient of $\mathrm{H}_{2}{ }^{-}$was underestimated in earlier calculations by Sommerville (5).

In cool stars, the role of $\mathrm{H}_{2}^{-}$in opacity calculations is well known. According to Tsuji (6), other molecules with a high abundance are $\mathrm{N}_{2}$ and CO in carbon-rich stars and $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}$ and $\mathrm{N}_{2}$ in oxygen-rich dwarfs. Auman (7) has shown the importance of $\mathrm{H}_{2} \mathrm{O}$ absorption in model atmosphere calculations of late-type stars and Vardya (8) has discussed the possibility that the bound-free transitions of $\mathrm{H}_{2} \mathrm{O}^{-}$, if it exists as a stable negative ion, may contribute to the opacity of these stars. From results in Table II, we find that the free-free transitions of $\mathrm{H}_{2} \mathrm{O}^{-}$may also be a significant source of absorption regardless of the stability of $\mathrm{H}_{2} \mathrm{O}^{-}$. For molecules of astrophysical interest $\left(\mathrm{H}_{2}^{-}, \mathrm{N}_{2}^{-}, \mathrm{CO}^{-}\right.$and $\left.\mathrm{H}_{2} \mathrm{O}^{-}\right)$we fitted results to a Gingerich-type formula

$$
\begin{equation*}
k_{\lambda}(T)=10^{-26} \sum_{n=0}^{2}\left\{a_{n} \lambda^{2}+b_{n}+c_{n} \lambda^{-1}+d_{n} \lambda^{-2}\right\}\left(\frac{5040 \cdot 2}{T(\mathrm{~K})}\right)^{(n+q) / 2} \tag{3}
\end{equation*}
$$

suitable for model atmosphere computations. The relevant parameters are given
Table III
Parameters for molecular negative ion absorption coefficients using a Gingerich-type expression

| $k_{\lambda}(T$ | $0^{-26} \sum_{n=0}^{2}\left\{a_{n}{ }^{\text {d }}\right.$ | $\left.+c_{n} \lambda^{-1}+d_{n} \lambda^{-2}\right\}$ | $\left(\frac{5040 \cdot 2}{T(\mathrm{~K})}\right)^{(n+q) / 2}$ | $\mathrm{cm}^{4}$ per dyne |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{H}_{2}{ }^{-}$ | $\mathrm{N}_{2}{ }^{-}$ | $\mathrm{CO}^{-}$ | $\mathrm{H}_{2} \mathrm{O}^{-}$ |
| $q$ | 1 | $\bigcirc$ | -2 | 3 |
| $a_{0}$ | 0.4612 | - $\cdot 3064$ | -0.3272 | -0.5344 |
| $a_{1}$ | $0 \cdot 006916$ | 0.02011 | 0.4099 | -. 7476 |
| $a_{2}$ | -0.03981 | -.01569 | $0 \cdot 43$ I | 0.01036 |
| $b_{0}$ | 0.2403 | 1.5304 | -3.0951 | -15.702 |
| $b_{1}$ | - - 0119 | -2.4375 | 5.9763 | 25.875 |
| $b_{2}$ | - $\cdot 3508$ | 0.6750 | -3.0779 | -6.8465 |
| $c_{0}$ | 0.03423 | -2.0031 | 6.3007 | 35.961 |
| $c_{1}$ | -. 9102 | 3.3677 | - II 999 | -55.697 |
| $c_{2}$ | -0.3048 | -0.9343 | 5.9642 | 14.595 |
| $d_{0}$ | -0.06184 | 0.6201 | -2.2828 | -22.757 |
| $d_{1}$ | -0.2181 | - I. 0768 | 4.3311 | 34.072 |
| $d_{2}$ | $0 \cdot 07262$ | - 3049 | -2.1299 | -8.6890 |

in Table III. The fit is based on the 'best' estimate of the cross-section, that is results at $\mathrm{I} \mu$ and $0.5 \mu$ were scaled up by factors $\mathrm{I} / 0.85$ and $\mathrm{I} / 0 \cdot 65$, respectively. We wish to thank Mr M. G. Edmunds for helpful discussions.

## REFERENCES

(1) John, T. L., 1975. Mon. Not. R. astr. Soc., 170, 5.
(2) Dalgarno, A. \& Lane, N. F., 1966. Astrophys. F., 145, 623.
(3) Kieffer, L. J., 1973. F.I.L.A. Information Center Report 13, Boulder, Colorado, USA.
(4) Geltman, S., 1973. F. quantit. Spectrosc. radiat. Transfer, 13, 601.
(5) Sommerville, W. B., 1964. Astrophys. f., 139, 192.
(6) Tsuji, T., 1964. Proc. Fapan. Acad., 40, 99; Ann. Tokyo Astr. Obs., 2nd ser., 9, 1.
(7) Auman, J. R., 1969. Astrophys. F., 157, 799.
(8) Vardya, M. S., 1970. A. Rev. Astr. Astrophys., 8, 87.

