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Abstract 

This paper is concern with the existence and the uniqueness solution of the state vector of a couple of nonlinear 

elliptic partial differential equations for a given continuous classical control vector. Also the existence theorem of 

a continuous classical optimal control vector governing by the considered couple of nonlinear partial differential 

equation of elliptic type with equality and inequality constraints is developed and proved. The existence and the 

uniqueness solution of the couple of adjoint equations associated with the considered couple equations of the 

state is studded. The derivation of the Frcéhet derivative of the Hamiltonian is obtained. The necessary 

conditions theorem so as the sufficient conditions theorem of optimality of the constrained problem are 

developed and proved.      
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1. Introduction 

The optimal control problems play an important role in the many filed in life problems , for examples  in 

robotics [  Rubio et al 2011], in an electric power [Aderinto&  Bamigbola 2012], in civil engineering [Amini  

& & Afshar  2008],  in Aeronautics and Astronautics [Budigono& Wibowo2007], in medicine [El hiaet al 

2012], in economic [Boucekkine& Fabbri 2013], in heat conduction [Borzabadi et al 2004], in biology [Agusto 

&Bamigbola2007] and many others field..  

With Do to this importance and during the last decades many researchers interested to study the optimal 

control problems for systems governed either by nonlinear ordinary differential equations as in [Orpel2009] and 

many others,  or governed either by linear partial differential equations as in [ Lions1972] or by nonlinear 

partial differential equations either of a hyperbolic type  as in [Farag 2014] and [Agusto&Bamigbola 2007], or 

by a parabolic type as in [Chryssoverghi & Al-Hawasy2004; El- Borai et al 2013] , or by an elliptic type as in 

[Bors & Walczak2005; Chryssoverghi et al 2006] or optimal control problems governed by semilinear elliptic 

equations as in [Casas& Kunisch2014] and an optimal control problem for a linear second order elliptic system 

as in [Bahaa& El-Shatery2013]. While the optimal control problem which is considered in this work is governed 

by a couple of nonlinear partial differential equations of elliptic type. The control is represented by a control 

vector and the state is represented by a vector state.   

This paper is concern at first with the existence and the uniqueness of the state vector solution of a couple 

nonlinear elliptic partial differential equations for a given continuous classical control vector. Second the 

existence theorem of a continuous classical optimal control vector governing by the considered couple of 

nonlinear partial differential equation of elliptic type with equality and inequality constraints is developed and 

proved. The existence and uniqueness solution of the couple of adjoint vector equations associated with the 

considered couple equations of the state is studded. The derivation of the Fréchet derivative of the Hamiltonian is 

derived. Finally the theorem of necessary conditions so as the theorem of sufficient conditions of optimality of 

the constrained problem of are developed and proved.  

 

2. Description of the problem 

Let be a bounded domain with Lipschitz boundary . Consider the following nonlinear elliptic 

state equations with Dirichlet boundary value problem 

 , in Ω                     (1) 

 ,in Ω                                             (2) 

  , on Γ                                                                  (3) 
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  , on  Γ                                                                 (4) 

where  is the state vector, the functions  and  

are defined on   and  respectively and the functions and  are 

defined on and  respectively with  and .  

The control constraint (The control set) is    

where  is the set of controls with  is defined by 

   

The cost functional is 

                                       (5)  

The constraints on the state and the control are 

                                   (6) 

                                  (7)     

The set of admissible controls is              (8) 

The continuous optimal control problem is to minimize the cost functional (5) subject to the constraints (6) and 

(7), i.e. to find  such that      and  .  

Let . We denote by  and  the inner product and the norm in ), by 

 and  the inner product and the norm in , by  and  the inner product and the norm 

in ) by  and  the inner product and the norm 

in  and   is the dual of . 

  

3. The solution of the state equations  

In order to find the classical solution of problem (1-4), first we find the weak forms of problem (1-4). 

Multiplying both sides of equations (1) and (2) by  and  respectively, integrating both sides of 

each one of the obtained equation with respect to and then using the general Green's theorem for the 1
st
 term in 

each obtained weak form the following weak forms are obtained 

 ,                 (9) 

( ,                 (10) 

Adding (9) and (10), we get that 

    (11) 

where                  (12)  

Assumptions (A): a)  is coercive,  . 

b) , where . 

c) The functions and are of Caratheodory type on  and  

respectively and satisfy the following sub linear conditions 

, where ,  and

 ,where  , .  

d)  is monotone w.r.t.  for each and  ,  is monotone w.r.t.  for each  , and 

 and  satisfy  ,  ,  and   ,  , .  

e) The functions  and  are of Caratheodory type on  and  respectively, and 

satisfy the following conditions 

, ,  ,  and    

 , ,  , . 

Theorem 3.1:  In addition to the assumptions (A), if one of the functions  or  in assumption (d) is strictly 

monotone. Then for each fixed control vector  , the weak form (11) has a unique solution state vector 

. 

Proof: Let   then the weak form (11) can rewrite as  
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 ,                                                          (13) 

where                                       (14) 

i) From the assumptions A(a & d) , is coercive 

ii) From the assumptions A (b and c) and using proposition 2.1 in [Chyssoverghi & Bacopoulos 1993] the mapping  

 is continuous w.r.t. . 

iii) From the assumptions A(a & d) and (i)   is strictly monotone with respect to .  

By using Minty–Browder theorem in [Brezis 2011] we get that there exists is a unique weak solution  of the 

weak form (13).  

Assumption (B):  and  are of Caratheodory type on   and  respectively and are 

satisfy the following sub quadratic conditions with respect to ( ) and , i.e.  

,with , , and    

and     , with , , and    

 

Lemma 3.1: In Addition to the assumptions (A), if the functions   and   are Lipschitz with respect to  and 

the functions  and  are Lipschitz with respect to . Then the operator  , from   to  is 

Lipschitz continuous.  

Proof: Let be two controls of the weak forms (9) and (10) respectively,  and  be the 

corresponding state solutions of these controls. Setting   , ,   and 

 , substituting these term in (9) and (10) with setting   and  , then adding the 

obtained equations, we get 

            

           

            

                   

                            (15) 

Using assumption (A-d), (15) becomes 

    

                 

                  

                                                        (16) 

Using the Lipschitz assumptions on and    w.r.t. and on  and  w.r.t.   on the terms of the R.H.S. 

of (16) and then using the Cauchy-Schwartz inequality of the obtained inequality, the last one with  , 

 and  becomes 

                     (17) 

 

Lemma 3.2: With assumption (B), the functional   , (for  ) defined on  is continuous. 

Proof:  From assumptions (B) and using Proposition 2.1 in [Chyssoverghi & Bacopoulos 1993] each of the 

functionals  and  (for  and , for ) is continuous 

on . Hence the functional  , (for ) is continuous on . 

Lemma 3.3: Let  is of Caratheodory type on ) and satisfies  

, where  , and . 

Then  is continuous on , with ,  is compact [Chryssoverghi 2010]. 

 

4. Existence of an optimal control: 

In this section the existence of a classical optimal control of the considered problem under some conditions is 

studied. Also some other assumptions are added in or dear to study the adjoint equations of the sate equations (1-4) 
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and to derive the Fréchet derivatives of the cost function (5) and of the functionals in (6 -7) as follows:  

Theorem 4.1: In addition to assumptions (A) and (B), we assume that the set of controls  is of the 

form  with  convex and compact, , where  and are independent of and  

respectively, and and  are linear with respect to  and  respectively, i.e. 

        , with , where  ,and  

        ,with , where , and  

   with,  and  , with   

 and  is independent of and ,  and  are convex with respect to and for fixed 

and  respectively. If   is bounded. Then there exists a classical optimal control. 

Proof: First, We need to prove that   is weakly compact. 

i) Since   is convex and bounded (for each , then  is convex and bounded then   is 

also convex and bounded. 

ii) Since  is closed , then by using Egorov's theorem in [Warga 1972], is closed and then     

is closed.  

From (i) and (ii) we get   weakly compact. 

Since  then there exists a point  , such that , , and then there exists a 

minimum sequence , such that    

Then by using Alaoglu theorem [Adams 1975] there exists a subsequence of  say again  which 

converges weakly to some point in   

Now, by using equation (11), assumption (A-e ) and the Cauchy Schwarz inequality ,we get 

  

          

where  ,  , , then    ,   

Then by Alaoglu theorem there exists a subsequence of  say again  such that  weakly in  

which means  weakly in  and by using the compactness theorem in [Temam, 1977] we get 

that  strongly in . Now and since for each ,  satisfies the weak form (11) , 

then (with  , , ) 

 

                       (18) 

Let  and , We want to prove (18) converges to  

 

                                          (19) 

i) Since  for each ,       

         and                                 (20) 

ii) From the assumption on   ,  and using the result of lemma3.2, one gets that 

 and  are continuous w.r.t.  and   respectively, since  

and  strongly in , then the L.H.S. of (18)  the LH.S. of (19), i.e. 

 ,   

Also since  & weakly in , then the R.H.S. of (18)  the R.H.S. of (19), i.e. 

 

But  is dense in  then the above convergence hold for each  , which gives   
is a solution of the state equations. 

From lemma (3.2) we get  is continuous on , for each l=0,1,2, 

From the assumptions on   &  and  , strongly in , then 

, hence  
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Now, we prove , (for each l=0, 2) is W.L.S.C. with respect to  and . 

From the assumptions (B),  a.e. in Ω ,  is compact and then from lemma (3.3), we get 

 and   

Since  and  (for each l=0, 2) are convex with respect to  and  respectively, then 

is convex  (for each l=0, 2) with respect to , i.e. 

   

                       

                    = , (for   

By the same way we get   ,  (for   , i.e. 

 ,  (for each l=0, 2)   then    

on the other hand we have that 

   . i.e.  is an optimal control.  

 

Assumptions C: Assume  , , ,  , , , , , and  are of the 

Caratheodory type and satisfy:  , , , , , , , 

, and    for  and  . 

 

Theorem 4.2: With assumptions (A) , (B) and (C), the Hamiltonian is defined by: 

  

                                                  

the adjoint vector equations of the state  equations (1- 4) are given by 

 in Ω                                 (21) 

in Ω                                (22) 

        on Γ                                                                                 (23) 

          on Γ                                                                                (24) 

Then the Fréchet derivatives of  are given by 

   , where  

and the operator  is continuous. 

Proof: Rewriting the adjoint equations (21-23)-(22-24) by their weak forms, adding these two weak forms, we get 

 

           (25)   

It is clear that the weak form of the adjoint equation (25) has a unique solution  for a given control  . 

Now, by substituting  and  in (25) we obtain 

 

                      (26) 

Substituting the solution once in (9) and then again the solution , subtracting the obtained equations 

one from the other, finally  substituting , we have 
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                       (27) 

Also substituting the solutions once in (10) and then again the solution , subtracting the obtained 

equations one from the other, then substituting we have 

  

                                                                    (28)                                      

Adding (27) and (28), we obtain  

             

                

                                  (29) 

From the assumptions on  ,  , and  , up on using the proposition2.1 in [Chyssoverghi & Bacopoulos 

1993] and the Mean value theorem the Fréchet derivatives of ,  , and  are exist , then from  Lemma 3.1 

and the Minkowiski inequality,  we get that       

 

               (30) 

where  , and ,  as  . 

Now, from the assumptions on  and , the  definition of the Fréchet derivative and then using the result of 

Lemma (3.1), we have 

      (31) 

where  , and   as . 

By subtracting (26) from (30), substituting the obtained equation in (31) , the last becomes  

  

           (32) 

But from the definition of the Fréchet derivative we have that 

   

It is Clear that the operator  is continuous in . 

Remark 4.1: Of course the Fréchet derivatives of the functions   and   can be derived by the same 

this way. 

5. Necessary and sufficient conditions for optimality: 

In this section the necessary conditions for optimality under prescribed assumptions is considered so as the 

sufficient condition for optimality as follows:  

Theorem 5.1: Necessary conditions for optimality:  

a) with assumptions (A),(B) , (C) and with  is convex, if the control  is optimal, then there exist 

multipliers  ,  with ,  ,  such that the following 

Kuhn-Tucker-Lagrange (K.T.L.) conditions are satisfied: 

          ,  ,                                                 (33a) 

where  and  ( ) in the definition of , and also  

                                                                                   (33b) 

b) (Minimum principle in weak form): If  then inequality (33a) is equivalent to the minimum principle 

in point wise:     , a.e.  on  

 

Proof: a)From Theorem(4.2)we get that the functional  has a continuous Fréchet derivative at each , 

since the control  is optimal, then using the K.T.L. theorem there exist multipliers  ,  
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with ,  ,  such that 

   ,   

and      

Substituting the Fréchet derivatives of  in the above inequality we get: 

  ,  ,   

where  and  

b) Let  be a dense sequence in   , and let  be a measurable set such that             

 

Hence (33a) becomes  

 , for each measurable set    , a.e.  on   

the above inequality holds in a set  where , with . But is independent on  

with   and since  is dense sequence in   then the above inequality becomes 

   , a.e.  on    , a.e.  on  

The converse is clear. 

 

Theorem 5.2: (Sufficient conditions for optimality)  

In addition to assumptions (A), (B) and (C), assume  is convex, ,  are affine w.r.t. ( , ,  

are affine w.r.t. ( , ,  are affine w.r.t.  and  respectively for each  ,and ,    0,2 

are convex w.r.t. (  and (  respectively for each . Then the necessary conditions in Theorem (5.1) 

with  are also sufficient. 

Proof: Assume  and   is satisfied the K.T.L. and the Transversality conditions, i.e. 

 ,     and   

Let , then   

      

                     

Since  ,  ,  

 , and    

Let  and  are given controls then , ,  and  

are their corresponding solutions , substituting the pair  in (1-4) and multiplying all the obtained equations 

by  once and then substituting the pair  in (1-4) and multiplying all the obtained equations by 

, finally  adding each pair from the corresponding equations together one gets: 

      

                       (34a) 

                                                                                (34b) 

and    

       

                     (35a) 

                                                                              (35b) 

Now, if we have the control vector  with  

   and  

Then from (34a&b) and (35a&b), we get that  with  
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   and   

are there corresponding solution, i.e. are satisfied (1-4)  respectively. So we get the operators and 

 are convex- linear w.r.t. (  and (  respectively, for each . 

Now, since  and  are affine w.r.t. (  and (  respectively, for each , 

and from the convex –linear property of the above two operators we get that   is convex-linear w.r.t. , 

. 

The convexity of  (for  0,2) w.r.t. ,  is obtained form the assumptions of   and 

 0,2 are convex w.r.t.  and  respectively, . 

Hence  is convex w.r.t. , in the convex set  and has a continuous Fréchet derivative 

satisfies      has a minimum at        ,        

                    (36) 

Now, let  be an admissible control and since  is also admissible and satisfies the Transversality condition 

then (36) becomes ,  i.e.  is an optimal control for the problem. 

6.Conclusions 

The Minty–Browder theorem can be used successfully to prove the existence and the uniqueness solution of the 

continuous state vector of a couple nonlinear elliptic partial differential equations for fixed continuous classical 

control vector. The existence theorem of a continuous classical optimal control vector governing by the 

considered couple of nonlinear partial differential equation of elliptic type with equality and inequality 

constraints is developed and proved. The existence and the uniqueness solution of the couple of adjoint equations 

associated with the considered couple equations of the state is studded. The Frcéhet derivation of the 

Hamiltonian is derived. The necessary conditions theorem so as the sufficient conditions theorem of optimality 

of the constrained problem are developed and proved.  
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