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ABSTRACT. The purpose of this paper is to define the continuous Jacobi transform
as an extension of the discrete Jacobi transform. The basic properties including
the inversion theorem for the continuous Jacobi transform are studied. We also
derive an inversion formula for the transform which maps Ll(R+) into Li(-l,l),

where w(x)=(1-x)*(14x)?.
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1. INTRODUCTION.

This paper is directed to specialists in the theory and applications of
integral transforms. However, familiarity with reference [1,2] would be useful for
non-specialists interested in the paper.

Debnath [3-4] first studied the theory of the discrete Jacobi transform with
applications to physical problems described by differential equations including the
problem of heat conduction in a finite domain with variable thermal conductivity.

The purpose of this paper is to define the continuous Jacobi transform, study

its basic properties and develop an inversion theorem. The continuous Jacobi
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transform generalizes, on the one hand, the continuous Legendre transform studied
by Butzer, Stens and Wehrens [5] and on the other, the discrete Jacobi transform
studied by Debnath [3]. The study of such transforms is interesting in its own
right as well as in their applications to boundary value problems and in sampling
theory.

The paper is divided as follows. Section two includes some facts of the
hypergeometric function and basic relations that hold for the Jacobi transform of
the first kind. Section three is devoted to the definition of the continuous
Jacobi transform and the study of its basic properties. Moreover, in the same

section, we derive an inversion formula for the transform.

2, PRELIMINARIES

In this section we discuss the basic background material necessary for the
development of the continuous Jacobi transform.

Let a, b, ¢ be real numbers such that cz0, -1, -2, ... . Then the hyper-
geometric function

o (a)k(b)k K

F(a, b; c; 2)= z, lzl<1, (2.1)

=0 (k!
is absolutely and uniformly convergent on each compact subinterval of (-1,1).
Moreover, the series converges at z=-1 and z=1 provided that c-a-b+1>0 and c-a-b>0

respectively. In particular,

. or 2)=F(a.b: o 1)=iledT(c-a-b)
:ffLF(a’b’ ¢c; z)=F(a,b; c; 1) T(c-a)T(cb) * (2.2)

We remark that the gamma function, whenever used, is a well-defined function of its
argument,

The hypergeometric function (2.1) satisfies the following contiguous relations
(see [6], [7]) which will be used throughout the sequel and are stated for the sake

of completeness.

F(a,b; c; z)=(l—z)c_a_bF(c—a,c—b; c; 2); (HL)

F(a,b; c; z)=(1-z) °F(a,c-b; c; 1__—22); (H2)
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aF(a+l,b; c; z)=bF(a,b+l; c; z)-(b-a)F(a,b; c; z); (H3)
(c-b)zF(a,b; ctl; z)=cF(a-1,b; c; z)-c(1l-z)F(a,b; c; 2z); (H4)
(c-a-b)F(a,b; c; z)=(c-b)F(a,b-1; c; z)-a(l-z)F(atl,b; c; 2); (H5)
(c-a-b)F(a,b; c; z)=(c-a)F(a-1,b; c; z)-b(1-z)F(a,b+l; c; z); (H6)
& ORON

—— F(a,b; ¢; z2)= ———— F(a+n,b+n; cin; z). (H7)
dzn (C)n

The Jacobi function, Pia’B)(x), of the first kind is defined by

(a B) T(A+o+l

1-x
(= T DT OrD T Mo atly =5, xe(-1,1],

where a, B>-1, AeR and A+o+120, -1, -2, ... . We note that if -1<B<1, then
(a,B)
D\

(x) is well-defined at x=-1.

(0,8) . _ T(a=M1DT(A-a-B) ,{(a,B) :

Since PA (x)= TC1-%) T (A-B) PX—G—B—I(X)’ we may restrict ourselves,
throughout the paper to the case A>- E%ﬁil. The function P;a’s)(x) satisfies the
differential equation

(l—xz)y"+(8—a-(a+6+2)x)y'+A(A+a+8+1)y=0. (2.3)

We derive in the following lemmas basic relations that hold for the function
Pia’S)(x) and are essential in the study of the transform. We note that most of
these relations are generalizations of the case when AcP, where P is the set of
non-negative integers.

LEMMA 2.1. For any xe€(-1,1] and any XZ— gigil, the following relations hold

2) 4 5@8) () AEB). @8 () ZOKDOIE) (0B

@ =gy By 2)+or+B ThnrotB D=1
(1D 20 @ P Lp(0P) ()= A (orsr1) (120 (140 P2 (4P ()5
15y 200 (1y- TOHID
(111) Py Trmy e’
d (a,B) ;.\ _ AQ+aB+T (A+a+]l)
1) B D Sree) TO+D

PROOF. (i) Applying (H2), we may write P§a’6)(x) as
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p(*8) (= Tl (15 g; av;

x;l)
= T+ T(+1) xt+1’°

Differentiating this expression, we obtain by (H7)

_d_P;\a,B)(xF%(xTﬂ)—lP(a,B)(x)+ FOdo4l)  AQHB)

dt A T(a+L)T(A+1) 2(o+l)
x+1, A-2 x~1
(T) F(1-), 1-A-B; a+2; x+1) .

By means of (H4) and (H6), the last term can be written as a combination of
. Cx-1 i Cox-1 . (a,B)
F(1-A, 1-A-B; o+l; ;;E) and F(~-A, -A-B; a+l; ;;i? which reduce to PA—l (x) and
Pia’e)(x) respectively.
Formula (ii) follows from differentiating the left-hand side and then using

(2.3). The evaluations of (iii) and (iv) are immediate.
a+B+1

2

LEMMA 2.2, For any xe€(-1,1] and Az- , we have

. , T (ol 2
(1) for -1<ps0, [p{*F) (x)Isﬁﬁ%ﬁ)+ M(X,0,8) log 1o

(1) for 820, (HP{HP (3 |< %}%ﬁ)m'(x,a,e)log =

where M(A,0,B) and M'(A,a,B) are constants depending upon o, B and A.
a++1
2

PROOF. (i) We first observe that for Ax- , we have

T (tot1) I(—A)k(l+a+ﬁ+l)

| B-1
DI | (@ kr 1= MALGBKT T, k=1,2,3,...

for some constant M(A,0,B)>0. Since -1<A<0, it follows that

-1 1-x.k

L) < +u(0,0,8) § KNS
k=1

(a,B)
[2y "7 1S FemDrown

or

(a,B) T (Mto+l)
I2y "7 M| Ty TOMD

2
+M(A,0,B8)log ="
(ii) From (H1) it follows that

x, B(a,B) . _T(Odotl) _aR- . 1=x
OBy T 0= Ty FOFeHl, -A-8; atl; 55,

Again, observe that for A2- a+§+l’ we have
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r(dotyy  MOHD (FA-B) l<a (h0,8) 6 (BFD
T'(a+l) T(A+1) (a+1)kk! - > ’
for some constant M'(A,0,B)>0. Since B20, it follows that
14x, B (@, B) [ (At+a+l) ' 2
( 2 ) IP)\ (x)} SI‘(O:"l)F()\“‘l) +M'(A,a,B) log T4x °
An immediate consequence of Lemma 2.2 is that for any 8>-1 we have
lim (1405 2% 4y, (2.4)
+ A
x>-1

A relation of type (2.4) is needed for the next lemma

LEMMA 2.3. For any Az- gi%il3 we have

B
lim (l+x) ji—P;a’s)(x)= 2“¥§;:§1é12§8+12 sinTA.
x*—l

PROOF. Introduce first the function

(a,B) ., _ T(a+DT(A1) _(a,B)
Ry To0ey B ().

From lemma 2.1 (i), we have

(1B R P e REP) () 22040 (0B (3

2(0+40) (AHB) r(®s B)

pyrrr e W O
An application of (H2) and (H6) together with multiplication by (l+x)~ yields
(l-x)(1+x)8+1di r(* B)( Y+A( +1)S+l (a B)( )=2 AF(Ma -A-B; at+l; 1—;’(—).

From (2.2) and (2.4) we obtain

B .
B+l d (a,B), ,_ 2 T(o+DT(B+YT(A+1l)sinmd
i,l_ml SN N OO T (A+o+B+1)

Therefore,

lim+(l+'x)8+l d p(a,8)

(x)= 2 F£A+a+1)F(B+1lsinnA
) dx A

T (A+o++1)

Throughout the paper, we denote by Lg(—l,l), p21, the space of all functions

f for which Hf||p given by
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1

l -

||f” a+6+1)[ (1) %(14) P | £(x) | Pax) P
-1

is finite. When the weight function w(x)E(l—x)u(lﬁ-x)B is identically equal to 1,
we denote the space by Lp(-l,l).

LEMMA 2.4. Pia’s) (x)z-:LS(—l,l) for all p>1 and for all o and B such that
ap+1>0 and —§<B<%.

PROOF. We first note that log 2 ELq( -1,1) for any 21 and hence

1+x
f(x)= m_%%%%+b{(k,a,8)log 1i belongs to 14 (-1,1) for any q21. Thus from
Lemma 2.2 (i) we have by Holder's inequality (l;+f:_1L=l’ q=;§i—) .
1
J (1-0 %0 P 2{*®) (o | dx<(f (1-x) % (145) PPax) P x
-1 ~1

Pl
x(( IP(a B)( ),P /P 1d) P

2
Since BB_—l—>l for all p>1, it follows that the right-hand side is finite if ap+1>0

and Bp+1>0. Thus Pia’s) (x)eLE(—l,l) , with ap+1>0 and —%<BSO.

From Lemma 2.2 (ii) with B20, we have

(a,B) T (Ato+l) l+x -B 14x, B, _2_
[P 1 Ty TowD M (A,0,8) (57 “los T -

Using a similar argument as above we obtain
P§‘a’6) (x) eLE(—l,l) with ap+1>0 and OSB<%'.

Therefore, Pia’e) (x)eLS(-l,l) with p21, ap+1>0, —%<B<§.

Another useful lemma is:

LEMMA 2.5. Let A, vz-ﬁg—ﬂ, A2V Az-(VHo+B+l) and —h<a<k, -4<B<y. Then

1
z_a-i_él-f-_lj-l(l-x) (1428858 () 2B+ () ax

_ (o) T (v8+D) ( sinmA _ sinmv }
m(A-v) (Av+oB+41l) T (vH) T (A+o+B+l) T (A+1) T (v+ot+1)

PROOF. We first note that the integral is absolutely convergent since

P;\O"B) (x) and P;\B’a) (-x)E:L‘ZV(—l,l) for -%<o<), -%<B<¥%., Lemma 2.1 (ii), Lemma 2.4
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and an integration by parts yield

1 .
“A(HHBHD) J (1-x) %(14x) Pp (°‘ B % )P\‘)B’“)(-x)dx
-1

1

+
-1

=10 (140 P L p (%8 (B ()

dx

B+l d (OL B)( ) p(Bs®)

1
o+l
-I_l(l—x) (14+x) = ax v (-x)dx

2a+8+lfgﬁa+l)F(W6+1)sinﬂA_ a+l BH1p(2,8) 1y 4 p(Bs M (_x) !
A

T V1) T (o8 +D) (1-x) """ (1+x) ax v Lt

+f (%8 L (10 @ L 2D () ax
—l

_ 2% Guary i) stnmd | 2% (o) P(vigD) stnmy

7T (V1) T (A+a+8+1) 7l (A+1) T (vto+R+1)

1
_v(\)+a+B+1)J (1-%)*(14+x) BPf\“’B) (%) p\()B’“) (~x)dx.

-1

Therefore

B (a 8) (8,o)

(x)B, (—x)dx

1 I 1
—a1 (1-x) (1+x)
20;+B+1 -1

P(MO+L)T(WH+D) _ ( sinmk _ sinmv }
TA-V) (AVF0AB+L) T(WD) T (MotBHl) T (A1) T(vatB+l)

Before we proceed to obtain some estimates on Pia’s)(x) for large A, we
collect some elementary properties of the Jacobi polynomials which are necessary in

the development of the paper. For A=neP, the series in (2.1) reduces to the

classical Jacobi polynomials P(u’s)(x) of degree n. There holds the orthogonality
relation
1 0 n#m

—l 0% P P (9 p (P (o ax-

atf+1 .

2 -1 [ n=m

n

where,

s = —L(otor) T (o+B+1)
n n!(Znto+B+1) T{nto++1) *
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’f‘(aaB) (n)

The discrete Jacobi transform of a function f(x), x€(-1,1) denoted by
(see Debnath [3]) is

1

(W) =I(EE)) iy Mﬂ | (oo PP
-1

£(@,8) (x) f(x)dx,

and f(x) will then be given by

£o= ] 618 E) myp( %P (.
n=0

~(a,B)

Moreover, if f(x)eLp( 1,1) p21, then f (n) defines a bounded linear mapping

from LS(—l,l) into the space of all null sequences. Thus one obtains the uniqueness

theorem
’E(Q,S)(n)=0@ f(x)=0 a.e. . 2.5

We also note that for any f, geLg(—l,l), we have for the appropriate choice of o

and B,
1 [t ~13(0,8) () 5(@B)
a+6+1J (1-0 (142 * £x) 8 x) ac= X § TP @) (), (2.6)
2 n=0 °
From (2.6) and Lemma 2.5 together with the identity P( B)( -x)=(-1) P(B 0L)( )
we obtain
[ (-1)°T(\+0+1) T (n+B+1) sinm »ot
| TO-n) (o B+ n T (Ado#B+) » 0
5(a,8), (.
By =g 2.7
| T(ototl) I'(n+B+1) A=n
L (2n+o+HB+1)n! T (nto+B+1) ° :
Since P§a’8)(x)€L§(—l,l), (a>-%, -%<B<%), it follows that
Z 6_1 I'(A+0+1) T (n+B+1) sinTA )
n=o ™ ﬂ(k—n)(X+n+a+B+l)n'F(A+a+B+l)
125 ® o 13- (2.8)

After this detour, we prove

a3+l
2

LEMMA 2.6. For A, vz- , 0>=% and ~%<B<%, we have
(i) for each compact subinterval [a,b]c(-1,1), there holds for x€[a,b] and

for A
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12{%®) () [-0x7%

and
o a -5
1258 ol = 125 o )} 0™
(ii) for each [c,d]c[- Ei%il’m) there exists a constant M>0 such that for all
A, ve[e,d]

I Pi"’ﬁ) (x) -P\(,“’B) ) || Zsml A-v].

PROOF. (i) The estimate in (i) follows after some calculations from
(formula 8, page 237, [7]). Actually for large A, we obtain

+B 10, -B-%

(a S)( ) = ) %e—ie))aﬂ (eiektetin(aﬂ)-ie()da+6+l))(1+0(|A—ll))
T -e

where cosbf=x. From this we obtain the estimate.

(1i) We first consider the case when A, v=0, 1, 2,

” Pials) (X) _P\()a’B) (X)” gs" Pﬁa’ B) (x)" §-

1
Fé—qf_l(l—x)“(ux) % (%8 (2B (3 ]| 2$*P) ()| 2

(2.6), (2.7) and (2.8) imply that

T (Aatl)sinmd

(a,B) (a,8) -1 I‘(n+B+ll\
125 o 25 Goll 5= X 8 Cmt ) (O OtntotB+D) T (Ma#BrD)
I'(v+a+l) sinmv W2
~ (v-n) (vintoHB+1) T (vo+B+1) )
Set
¢(x)= M
T (x+a++1)
and
sinmx x) (x-n) (x+n+ot+B+1)ﬂcosﬂx—(2x+a+B+l)sime .

8, (0= (0 Ty CeinrararDy ¢ (x-m) 2 (x#mbortB41) 2

Clearly, ¢(x) is continuously differentiable for x>—a+g—+1. Thus for any interval
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a+8+l

{e,d]e(-

»®) 5 ¢n(X) is continuous and remains bounded for any x#n. Moreover,

by employing L' Hopital's rule we obtain that lim ¢n(x) exists and is equal to O.
x-n
Now,

1148 (o -2 {4 B (o) 25 L+ ] oo dimen,2 J (a0 =545,
v

n=0 n=N+1

say, where N is chosen such that Nzmax (|c|,‘d|).

Z 6_1 F(n+B+l))2 sup ,q) (X)IQ{NIA‘VI

|51ISIA—vl
xe[c,d]

for some MN>0. Also,

Is,lshev|? T o LB 2 0 L

i max (a-N) (n-N4GHB+L) T

(N+n) (N+a+8+1) 1T+(2N+a+8+1) }
(n—N) (n-N+a+B+1)

+¢

max

where, ¢max= max l¢(x)| and ¢;ax= max |¢'(x)[. Thus
XE[C,d] XE[C,d]

|S < *|A-v|2 for some *>0.
21=My My

*
Therefore, for A, ve[ec,d], A, v20, 1, 2, ... and M=max(MN, MN) we have,

(0,8)
e} (-2

If either A or v or both assume the values 0, 1, 2, ..., then a similar but
simpler argument as above may be applied. This completes the proof of the lemma.

3. THE CONTINUOUS JACOBI TRANSFORM AND ITS BASIC PROPERTIES

In this section we define the continuous Jacobl transform and study some of
its basic properties. The idea is to replace the Jacobi polynomial in the discrete
Jacobi transform by the Jacobi function. Thus, we define the continuous Jacobi

transform of feLi(—l,l), with a>-%, -%<B<k, by

1
f(a’B)(A)= ;&%E?ij 1(1 %) % (1+x) P(a B)(x)f(x)dx.

2~(a,B)

We note that if o=Rf=0, then f (A) reduces to the continuous Legendre transform

~(a,B)

of Butzer, Stens and Wehrens [5]. Further, if A=neP, then £ (A) reduces to the
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discrete Jacobi transform of Debnath [3].
LEMMA 3.,1. For any f(x)ELi(—l,l), we have
@ [P0y 007

a+3+1

(11) for p>2, 3®B (.- BBy 0 @hnPr".

PROOF. (i) Lemma 2.6 (i) together with the Cauchy-Schwartz inequality yields
~(a, o -
2B 112 Goll el =017,
A 2 2
(ii) Again, Lemma 2.6 (ii) together with the Cauchy-Schwartz inequality yields
~(a ~(a,
lf( B (- B)(v)lsM|A—v|”f”2

Hence lim (?(a’s)(k)—g(a’s)(v))=0. Therefore, g(a,B)(A) is continuous on

AV
(- gi%il-w) or %(a,B)( 0‘+B+l)t>:c GR ). Now, in order to prove that
%(G’B)(-- 0H-B-ﬂ) LPCR ), p>2, we need to show that

208 on SR [0 (o L 2
0

For any fixed T>0, we have, by (i) above and Lemma 2.6 (i),

”f(a B)()\ (].“'B'f‘l)“p(ufl[z I ”P((!a%_H-( )“de.}, “P(aa-‘i%_'_l(){)”gd)\)
T2

Sl 2<c1+c2f:| A- LB ~p/24) L/

(0,8 (- a+6+1)”p

where Cl and C2 are some positive constants. It follows that "f
1 p2. Thus £(%P) (o Bhyec ®HalP@®".

LEMMA 3.2. Let F(x) be a function defined on [0,©) such that Aa+6+%F(A)€Ll(Rf).
Then

G(x) J F(A)P(B giB+l(-x)H(k)XsinnAdk
2

belongs to C(—l,l)nLi(—l,l), where H()) is given by

(A+ a+B+l

o= B+1

=)
T+

H(M)= B—a+1

T(M+
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PROOF. Observe that H()A), for large A, behaves like Aa+6(1+0(k-l)) (see [71).

For any fixed T>0, we have by Lemma 2.6 (ii) that

T
, , 8,
|c(x)|s|[OF(A)p;faié+l(-x)n(x)A51nnAdA|+]f:F(A)P;_aié+1(-x)u(x)xsinnxdx|
2 2

rm
<aphh, | A £y | a
12 T

where A1 and A2 are some positive constants. Thus by the hypothesis, G(x) is well-
defined.
We first show that G(x)eC(-1,1). For any x€(-1,1), there exists a sufficiently

small 61 such that xiﬁle(-l,l). By Lemma 2.6 (i) and for all |yl<6l, we have

———

,c(x+y)-c(x)|sfwxlr(x)|H(A)|P(B’“) (—x—y)—i(s'a) (=) | dx
0
2

A a++1 o8+l
2

sZM[wAa+B+5|F(A)|dX<m
0

by hypothesis and M is some positive constant. Thus for AO sufficiently large

ljw F(A)H(A)(P(B&ié+l(—x-y)-P(B&i%+l(—x))Asinﬂkdk| (3.1)
A r-BL A-HEHL

can be made sufficiently small. That is, given €>0, there exists a AO sufficiently

large such that the integral in (3.1) is less than €/2. Fix AO' By the continuity

of P(B&$%+l(—x) over (-1,1), we have for €>0 that there exists a 62>0 such that
LA
2
(B,2) ,_ B8, N
| P}\_a!ﬁ+1( x Y)'-P)\_a+ﬁ+1(—x) |<€ whenever |[y[<§,.
2 2

€ _~ AO o+
Choose 3 =€ o A IF(A)]dX and 6=min(51,62). Then |G(x+y)-G(x)|<E whenever |y[<6.

Thus G(x)eC(-1,1).

We next show that G(x)eLi(—l,l).

2__ 1 o, \B (8, 2

llelly= 2a+s+1f (1-x) "(1+x) Iwa(A)P a1 (COBO) Astamad) [ ax
-1 0 A

2

and by Hardy-Littlewood-Polya inequality (see[8], page 148) and Lemma 2.6 (1), we

obtain
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1

5 1 o B o (Bsa) , 2. %
||G||2_EA|F()\)|H(>\)d>\(—2a+ﬁ+l f_il-x) (14x) ]P)‘_(H_B_H( x) | “dx)

2

scr}\a"—s-'-;’lF()\) [dx <o
0

by hypothesis for some constant C>0. Thus G(x)EC(—l,l)nLi(—l,l) and this completes
the proof.

It can be easily deduced from Lemma 3.2 that

COROLLARY 3.1. If o+B=0 (-%<0<%, -%<B<%) and F(x) is such that A;’F(X)ELl(R*-),

then

c(x)=rF<A) &9 (m, (M rstnmiar
0

A-h

belongs to C(-1,1) nLi(—l,l) where

2 (M)
TOtoth) T OB+

HO()\)=
PROPOSITION 3.1. For xe(-1,1], o+B=0, -%<a, B<% and keP, we have

P(a’B)(x)=4r§(a’B)(A—-’;)P(B’a)(—x)H (M) AsinmAdA. (3.2)
K ok 0

A

PROOF. For A>-%, Azk +%, we have from (2.7) with a+8=0,

K
~(a,B) _500,8) .\ (1) T(A+o+3¥) T (kHB+1) sinT(A-%)
P (“’)'PH’ ()= S k=5 k) k1T (A+) , (3.3)

so that }\%ﬁéa’S) (}\—‘»,)ELI(R+). Denote the integral in (3.2) by Gk(x). Then by
Corollary 3.1, we have Gk(x)EC(—l,l)nL‘ZW(—l,l),. The idea now is to evaluate the
discrete Jacobi transform of Gk(x) and show thatit is equal to f’l((a’s) (j) whence by

(2.5) we obtain Gk(X)=Pl(<a’B) (x).

1
aé"'s) ()= %J_l( 1-x) *(14x) BP§°"’B) (x) Gk(x)dx

1 cO
- 2[ (1-x)°‘(1+x)3p§°"3)(x)f 8(%B) iy p(Bs® oy (A) AsinmAdAdx
-1 J o K A=y 0

which by an application of Fubini's theorem, (3.3) and Lemma 2.5 yields
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~(0,B) ()= (-1) 4F(k+8+1)F(J+a+1) r~ A51nﬂA51n HSJLA) .
N K jt 0 (A -(k+%) )(A —(§+%) )

At this stage we can employ the method used in [5] to evaluate the above integral.

In particular, we obtain that

k . R
a(G,B) ()= (-l; T (k+B3+1) T (j+at+l) lim J (gl(x)_gz(x))dx
k 4T k! ! (k+j+1)i Roe IR

where

imz, i3mz
(z)= e +e =
8 (z—-k=%) (z—j~%)
(ze¢, zzk +%, z#j +%)
-imz, -i3nz

(z)= =T
& (z—k-%) (z-3-%) °

The method of [5] yields

0 j=zk
ag{ax B) (J)=
T (k+0+1) T (k4B+1) =k
(k')2 (2k+1)
Hence G( ’8)(3) P(a B) . Therefore Gk(x)=P§a’B)(x) by (2.5).

We are now ready to prove an inversion formula for the continuous Jacobi
transform %(u,B)(X) of a function f(x)ELz(—l 1). We are still assuming that a+R=0.

%~ (a,B)

THEOREM 3.1. Let f€L (-1,1) be such that A°f (A—%)ELlCR+). Then for

almost every xe(-1,1),
f(x)=z.r%(°"5)(A-s,')P(B’“)(-x)H (A) AsinmAdA. (3.4)
0
0 A%
In addition, if f is continuous on (-1,1), then (3.4) holds everywhere on (-1,1).
PROOF. Denote the right-hand side of (3.4) by J(x). Then by Corollary 3.1,

J(x)eC(—l,l)nLi(—l,l). The discrete Jacobi transform of J(x) is

1
3€8) ()= ;,J (1-x)%(140) Pp (°‘ B) (%) 3(x)dx
-1
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(1-x)*(14x) P

1
=2f 8o (a 8)
-1

(x )J F(B) %)P(B O‘)( ~x)Hy () AsinmhdAdx.
0
The definition of %(G,B)(A_%) and an application of Fubini's theorem yield
1

n e
J(a’B)(k)=4J (5J (1-y)*(1+y) P( 8)(y)f(y)dy)x
0 ‘-1

1
x(5[ (1-x) (1+x)B (a B)(x) (B 0L)( x)dx)H (A) AsinTAdA
-1

0 1
=4[ AHO(A)sinﬁA(%J 19 %P (1) £ ay)x
0

(o, B)

X[P (A-%)dA

T,
where, in general,

Op (B

1
[Q(—-)Jﬁs’a)<x)E%J (1-0® (14008 (o) (-x) ax

-1
1 (8,0

=%[ (1-x) *(14x) P (-x) Q(x) dx.
-1

Now another application of Fubini's theorem together with Proposition 3.1 yields

5B )—a[ -9 %@ e (- [afm B (3 2y p{%B) ()8 (1) As tnmaar)ay

1
=5f 191 P2 -0 2B (ypay
-1

1
=sf 19 P2l (e ay=2*H .

-1
Now (2.5) implies that f(x)=J(x) a.e., xe(-1,1). If, in addition, f(x) is assumed
to be continuous, then both sides of (3.4) are continuous and the above result will
be valid everywhere in (-1,1).
We end this section with a few remarks. We first note that if the inverse

Jacobi transform given in (3.4) is denoted by f(a 8)

2(a,B) V(a B)

, then the inversion theorem

3.1 states that f=[f
£= [f(a B) “(a,B).

Under suitable conditions, it can be shown that
Furthermore, the restriction on a and 8, namely, -%<o, B<% and

o+B8=0 is necessary to effect the inversion formula., The special case a==0
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corresponds to the continuous legendre transform developed by Butzer et.al [5].

m . . .
The case of a=B=-§ where m is a non-negative integer requires a separate

analysis and should lead to the continuous version of the associated Legendre

transform [9].

We also note that the continuous Jacobi transform may be extended to

distributions along the lines of Zemanian [10]. This will require the construction

of a Fréchet space that contains the kernel (l-x)a(1+x)BP§a’B)(x) as an element.

The transform will then be defined on the dual space as the application of the

distribution to this kernel. This will be the subject of a later paper.
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