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Summary. Two theorems are proved for a Markov operator. Theorem 1
states that, for a Markov operator P, which is strictly dominated by a con-
servative, ergodic Markov operator, P71 | O a.e.. Theorem 2 is concerned
with a Markov operator P which possesses a probability transition function.
It is shown that if P is conservative and ergodic and if P, is the continuous
part of P" then either P, = 0 for alln or P,1 T 1 a.e..

Let X be a non-empty set, B, a o-algebra of subsets of X and A, a o-finite
measure on B. Let L. (\) be the collection of all real valued, M-essentially bounded,
®-measurable functions. For two functions f, g in L.(\), f = ¢, f < ¢ are to
mean that the equality and the inequality, respectively, are satisfied except
on a A-null set. Sometimes we still indicate = a.e. (\) or < a.e. (\) for emphasis,
Let P be a linear operator on L,(\) to L.(\) satisfying the following conditions:

pl. if f = 0 a.e.(\) then Pf = 0 a.e.()),
p2. if f, | 0 a.e.(\) then Pf, | 0 a.e.()),
p3. P1 = 1a.e.()).

Such an operator is a N\-measurable Markov operator of E. Hopf or simply, a
Markov operator. For any set A in ®, let 1, represent the function which takes

the value 1 on 4 and 0 on the complement A’ of 4, and I, represent the Markov
operator defined by

Lif@) = 1a(@)f().

For an arbitrary Markov operator P we let

P, = Z(‘)P(IA,P)”.
P, operating on nonnegative elements of L,(\) has a well defined meaning.
In particular P41, is a nonnegative function which is =1 (¢f Section VI of [6]).
A set 4 in ® is said to be conservative if for every A-non-null subset B of 4,
Pply = 1 on B. P is said to be conservative if X is conservative. A set C in ®
is said to be P-closed if Pl = 1 on C. A P-closed set C is tndecomposable if
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if it does not contain two disjoint, A-non-null P-closed sets. A conservative
Markov operator P is ergodic if X is indecomposable. A conservative, ergodic
Markov operator P is characterized by the fact: for every A-non-null set 4 £ ®,
PA]-A =1 a.e.()\).

Theorem 1. If P is a conservative, ergodic, Markov operator and P, is another
Markov operator such that P, £ P and P — P, 5% 0 then P71 | 0 a.e.(N).

Proof. First we shall prove the theorem for the special case that Py is of
the form I 4. P where A is a A-non-null set and A’ is its complement.
The following equality can be easily proved by mathematical induction.

(1) P'=LP + (I.P)LP7" + (I P)LP"
+ o0+ TaP)Ls + (L4 P)'Ly-

It follows from (1) that

Pl =1,P1+ (I,P)I,P'L+ -« + (Io.P)"1y + (14 P)"1,. .
Hence

1= {144+ TaP)ls+ -+ + T P)"1a} + (14 P) "Ly

and
2 1-{a+ TP+ - + TP} = T P) 'Ly .

Since P is conservative and ergodic, P,1, = 1 a.e.()\), the left hand side of (2)
approaches 0 a.e.(\) as n — o so that (I, P)"1,4. | 0 a.e.(\). Hence (I,.P)"1 =
(I, P)"'I,.P1 = (I,,P)"'1,, and the conclusion of the theorem follows.

For the general case, there is a positive number e and a M-non-null set 4
such that P;1 < 1 — € on A. Define another Markov operator P as follows.

P=IAP1+IAlP.

Then P, < P < P. It is sufficient to prove P"1 | 0 a.e.()).

We shall now establish the following assertion: (I) For every positive integer
k, there exist a positive number c, and a sequence {g¢*’} of functions such
that 0 < ¢ £ ¢, lim,.e ¢ = 0 a.e.(\) and

® P12 (= o +gP.
Applying formula (1) to P and noting that I,.P = I,.P, we obtain:
Pl = {ILP" 4+ (I.P)LP™ + -+« + (1P 'ILP}1 4 (I..P)'1
S {In+ Py + o+ + ToP) T LYPL + (I, P)1.
Since P1 = P,1 < 1 — eon 4, it follows
P15 {144+ TPy + -+ + TP — o + (LaP)1
=1 —¢+ P L.
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Hence assertion (I) holds true for k = 1 with ¢; = 1, ¢V = (I4.P)"1l. Now

we assume that (I) holds true for & and proceed to show that (I) also holds
fork + 1:

P11 = {I,P1 + (I, PP + .- + (I,.P)"*I,P1} + (I,.P)*'P1

S LP{(1L - 9" + .2 + P LP{A — o + 0.5

+ o0+ TP TLPA — o + ¢} + (TP PL.

= {I.P + (I, P)I.P + -+ + (IP)LP}1 — ¢

+ (IPg®, + (I P)LLPg?s + -+ + (P °LPg”} + (1P 'PL.

Let
fa = IApgf.'i’n + (IA'P)IAI.’gi'i)z cee (IA'P)”_ZIAPQY‘)’
and
0¥ = fo + (I Py Pl

then P"1 £ (1 — %Y + ¢%*V, Since lim,... ¢ = a.e.(\) and ¢¥ = o

forn=1,2,---, wehave Pg® < ¢, forn=1,2,--- and lim,... Pg® =0 a.e.(A).
Sincel = 1, + (I4-P)1, + (I4.P)*1,+ -+- ,wehavef, < ¢, forn =1,2, ---
and lim,_.. f,=0 a.e.(\). We have already proved that lim,.. (I4.P)"1=0a.e.(}).
Hence lim,... ¢**? = 0 a.e.(\) and g**V =< ¢4y where ¢4y = ¢ + 1. Thus
(I) is shown to hold true for k + 1. Clearly lim,.. P"1 £ (1 — ¢)"* a.e.(\) may
be obtained by letting » — o in (3). Since k is an arbitrary positive integer,
lim,... P"1 = 0 a.e.(\) and the proof of Theorem 1 is complete.

A real valued function P(z, A) of two variables, x ¢ X, A ¢ ®, is called a
probability transition function if the following conditions are satisfied.

T1. For every fixed z ¢ X, P(z, ) is a measure.

T2. For every fixed A ¢ ®, P(-, A) is an ®G-measurable function.
T3. For all z, P(z, X) = 1.

Define P™(x, A),n = 1,2, --- , inductively by
P(l)(x) A) = P(x, A);

P("“)(il?, A) — fP(")(x, dy)P(y, A)

Then P™(x, A), n = 1, 2, --- , are also probability transition functions. A
Markov operator is said to have a probability transition function P(z, A)
if, for all f & L.(0),

Pf) = [ Pla, diit)

for (\) almost all z. If P has a probability transition function P(z, 4), then
P* has probability transition function P™(x, A). A \-continuous Markov
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operator P is a Markov operator for which there is an ® X ® measurable func-
tion p(z, y) such that Pf(z) = [ p(z, y){(¥)\(dy), (6], [7].

Let P be a Markov operator with a probability transition function P(xz, A).
Define a measure 7 on B X ® as follows. If E is an & X ®-measurable subset
of X X X,

* w® = [ M) [ P, itz )

where 1z(z, y) = 1if (z, y) e E, = 0if (z, y) ¢ E. 7 may be decomposed into
two measures 3, and 7, ,

7 =1+ 7,

where 7, is absolutely continuous to A X M\ while 7, is singular to N X . Let
p1(z, ) be a derivative of 5, with respect to A X \ and let us define Markov
operator P, by

(%) Pf@) = [ pla, iGN

Then P, is the largest A-continuous Markov operator such that P, < P, and
is called the M-continuous part of P ([8], Section IIT). Decomposition of probability
transition functions with respect to a fixed measure has been used in the past

by W. Doeblin [1] and J. L. Doob [3]. Here it is put in a slightly different setting.

Lemma 1. Let P be a Markov operator with a probability transition function
P(z, A). If for (\) almost all x, P(z, -) is absolutely continuous to \, then P is
A-continuous. The converse is also true tf ® is generated by a countable collection.

Proof. Let E, be a set in 8 X ® such that
AXNE) =0 and 7.(E) = 9n(ENE,)
forall Ee® X ®. Let
B = {y: () e E.}.

Then for (\) almost all z, N\((E,]) = 0. If for (\) almost all z P(x, -) is absolutely
continuous to A. Then P(z, [E,]") = 0 for (\) almost all z so that 7,(X X X) =
7(B,) = [ Ndz)P(z, [E,]") = 0. Hence 7, = 5 and A-continuity of P follows
immediately.

The converse follows from Theorem 5 of [8].

Lemma 2. Let P and P, be Markov operators with probability transition
functions. If P, 18 A-continuous then PP, and P, P are A-continuous.

Proof. Let P(x, A) be a probability transition function of P and P, be given
by (5). Let R = PP, . Then, for all f ¢ L.(0),

EfG@) = [ PG, &) [ pite, iNa)
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= f [ f P(z, d2)p,(z, y):lf(y)x(dy)

so that R is A-continuous. The operator P, P has probability transition function

e, 4) = [ pia, DPLAN).

If p.(x, -) is Mintegrable (which is true for (\) almost all ) then Q(x, -) is
absolutely continuous to A\. The A-continuity of P,P follows from Lemma 1.

Theorem 2. If P is a conservative, ergodic Markov operator with a probability
transition function and P, is the N-continuous part of P", then either P, = 0
for all n or P,1 71 a.e.()).

Proof. By Lemma 2, P,P is M-continuous. Since P,P < P"™', we have
P.P £ P,.,.It follows that P,1 = P,P1 £ P,,,1. Hence the sequence {P,1}
is nondecreasing. Let the limit of the sequence be I. We also have PP, £ P,
for PP, is M-continuous by Lemma 2. Hence

(6) PP,1 £ P,.,1.
Letting n — « in (6), we obtain
Pl =1

Since P is conservative and ergodie, ! is a constant function. If I = 0, then
P,1 = 0 for all n so that P, = 0 for all n. If [ 5 0, then there is a positive
integer r such that P, # 0. Consider the Markov operator P". It is conservative
and there is a positive integer § such that the whole space X is partitioned
into & indecomposably P’-closed sets (c¢f. Section II of [7]). Among these &
indecomposably P’-closed sets, there is one set C such that P,I; 0. Define
measure A¢ on ® by A¢(4) = MC M A). Since the values of the function P'f
on C are not affected by the values of f outside C, P" may be considered as a
Markov operator on L,(\¢) to L.(\¢) which is then conservative and ergodic.
For the same reason, P, and P" — P, may also be considered as Markov operators
on L.(\¢) to Lo(\¢). Applying Theorem 1 to P* — P, , we conclude that
(P" — P,)"1 — 0 a.e.(\) on C. Write

@ P =[P, + (P" — P)I".

If we expand the right side of (7), (P" — P,)" would be one term among (n 4 1)
terms in the expansion, and is the only term which does not contain P, as a
factor. Hence P — (P" — P,)" is A-continuous by Lemma 2 so that

(8) Pnranr—(Pr"“P,)n.

Since Pl — (P" — P)"1 —> 1 ae.(\) on C,1 = 1 a.e.(\) on C by (8). Since
1 is a constant function, we have I = 1.



142 SHU-TEH C. MOY

REFERENCES

[1] W. DogsLiN, Sur les propriétés asymtotiques de mouvement régis par certains types de
chaines simples, Bull. Math. Soc. Roum. Sci., 39 (1) (1937) 57-115; 39 (2) (1937) 3-61.
[2] J. L. Doos, Stochastic Processes, Wiley, New York, 1963.

{3] ———, Asymptotic properties of Markov transition probabilities, Trans. Amer. Math.
Soc., 63 (1948).

[4] Jacos FeLpMAN, Subinvariant measures for Markoff operators, Duke Math. J., 29 (1962)
71-98.

[5] Eperuarp Horr, The general temporally discrete Markoff process, J. Rational Mech.
Annal., 3 (1954) 13-45.

[6] SrU-TE= C. Moy, A-continuous Markov chains, Trans. Amer. Math. Soc., 117 (1965) 68-91

[7] ————, A-continuous Markov chains II, Trans. Amer. Math. Soc., 120 (1965) 83-107.

[8) —————, Period of an irreducible positive operator, Illinois J. Math., 11 (1967) 24-39.

Syracuse University and
University of California, Santa Barbara.
Date communicated: DECEMBER 18, 1967



