The Continuous Part of a Markov Operator

SHU-TEH C. MOY*

Communicated by GIAN-CARLO ROTA

Summary. Two theorems are proved for a Markov operator. Theorem 1 states that, for a Markov operator P_1 which is strictly dominated by a conservative, ergodic Markov operator, $P_1^n 1 \downarrow 0$ a.e.. Theorem 2 is concerned with a Markov operator P which possesses a probability transition function. It is shown that if P is conservative and ergodic and if P_n is the continuous part of P^n then either $P_n = 0$ for all n or $P_n 1 \uparrow 1$ a.e..

Let X be a non-empty set, \mathfrak{B} , a σ -algebra of subsets of X and λ , a σ -finite measure on \mathfrak{B} . Let $L_{\infty}(\lambda)$ be the collection of all real valued, λ -essentially bounded, \mathfrak{B} -measurable functions. For two functions f, g in $L_{\infty}(\lambda)$, f = g, f < g are to mean that the equality and the inequality, respectively, are satisfied except on a λ -null set. Sometimes we still indicate = a.e. (λ) or < a.e. (λ) for emphasis. Let P be a linear operator on $L_{\infty}(\lambda)$ to $L_{\infty}(\lambda)$ satisfying the following conditions:

- p1. if $f \ge 0$ a.e.(λ) then $Pf \ge 0$ a.e.(λ),
- p2. if $f_n \downarrow 0$ a.e.(λ) then $Pf_n \downarrow 0$ a.e.(λ),
- p3. $P1 \leq 1$ a.e.(λ).

Such an operator is a λ -measurable Markov operator of E. Hopf or simply, a Markov operator. For any set A in \mathfrak{B} , let 1_A represent the function which takes the value 1 on A and 0 on the complement A' of A, and I_A represent the Markov operator defined by

$$I_A f(x) = 1_A(x) f(x).$$

For an arbitrary Markov operator P we let

$$P_A = \sum_{n=0}^{\infty} P(I_A \cdot P)^n.$$

 P_A operating on nonnegative elements of $L_{\infty}(\lambda)$ has a well defined meaning. In particular $P_A 1_A$ is a nonnegative function which is ≤ 1 (cf Section VI of [6]). A set A in $\mathfrak B$ is said to be conservative if for every λ -non-null subset B of A, $P_B 1_B = 1$ on B. P is said to be conservative if X is conservative. A set C in $\mathfrak B$ is said to be P-closed if $P 1_C = 1$ on C. A P-closed set C is indecomposable if

^{*} This work was supported by National Science Foundation GP5270.

if it does not contain two disjoint, λ -non-null P-closed sets. A conservative Markov operator P is *ergodic* if X is indecomposable. A conservative, ergodic Markov operator P is characterized by the fact: for every λ -non-null set $A \in \mathcal{B}$, $P_A 1_A = 1$ a.e. (λ) .

Theorem 1. If P is a conservative, ergodic, Markov operator and P_1 is another Markov operator such that $P_1 \leq P$ and $P - P_1 \neq 0$ then $P_1^n 1 \downarrow 0$ a.e.(λ).

Proof. First we shall prove the theorem for the special case that P_1 is of the form $I_{A'}P$ where A is a λ -non-null set and A' is its complement.

The following equality can be easily proved by mathematical induction.

(1)
$$P^{n} = I_{A}P^{n} + (I_{A}P)I_{A}P^{n-1} + (I_{A}P)^{2}I_{A}P^{n-2} + \dots + (I_{A}P)^{n}I_{A} + (I_{A}P)^{n}I_{A}.$$

It follows from (1) that

$$P^{n}1 = I_{A}P^{n}1 + (I_{A}P)I_{A}P^{n-1}1 + \cdots + (I_{A}P)^{n}1_{A} + (I_{A}P)^{n}1_{A}.$$

Hence

$$1 = \{1_A + (I_A P)1_A + \cdots + (I_A P)^1_A\} + (I_A P)^1_{A}$$

and

$$(2) 1 - \{1_A + (I_A P)1_A + \cdots + (I_A P)^n 1_A\} = (I_A P)^n 1_{A'}.$$

Since P is conservative and ergodic, $P_A 1_A = 1$ a.e.(λ), the left hand side of (2) approaches 0 a.e.(λ) as $n \to \infty$ so that $(I_A, P)^n 1_{A'} \downarrow 0$ a.e.(λ). Hence $(I_A, P)^n 1 = (I_A, P)^{n-1} I_A$, and the conclusion of the theorem follows.

For the general case, there is a positive number ϵ and a λ -non-null set A such that $P_1 1 < 1 - \epsilon$ on A. Define another Markov operator \bar{P} as follows.

$$\bar{P} = I_A P_1 + I_{A'} P_1$$

Then $P_1 \leq \bar{P} \leq P$. It is sufficient to prove $\bar{P}^n 1 \downarrow 0$ a.e.(λ).

We shall now establish the following assertion: (I) For every positive integer k, there exist a positive number c_k and a sequence $\{g_n^{(k)}\}$ of functions such that $0 \le g_n^{(k)} \le c_k$, $\lim_{n\to\infty} g_n^{(k)} = 0$ a.e.(λ) and

$$\bar{P}^n 1 \leq (1 - \epsilon)^k + g_n^{(k)}.$$

Applying formula (1) to \bar{P} and noting that $I_A \cdot \bar{P} = I_A \cdot P$, we obtain:

$$\bar{P}^{n}1 = \{I_{A}\bar{P}^{n} + (I_{A}\cdot P)I_{A}\bar{P}^{n-1} + \dots + (I_{A}\cdot P)^{n-1}I_{A}\bar{P}\}1 + (I_{A}\cdot P)^{n}1$$

$$\leq \{I_{A} + (I_{A}\cdot P)I_{A} + \dots + (I_{A}\cdot P)^{n-1}I_{A}\}\bar{P}1 + (I_{A}\cdot P)^{n}1.$$

Since $\bar{P}1 = P_1 1 < 1 - \epsilon$ on A, it follows

$$\bar{P}^{n}1 \leq \{1_{A} + (I_{A} P)1_{A} + \dots + (I_{A} P)^{n-1}1_{A}\}(1 - \epsilon) + (I_{A} P)^{n}1$$
$$\leq (1 - \epsilon) + (I_{A} P)^{n}1.$$

Hence assertion (I) holds true for k = 1 with $c_1 = 1$, $g_n^{(1)} = (I_A \cdot P)^n 1$. Now we assume that (I) holds true for k and proceed to show that (I) also holds for k + 1:

$$\begin{split} \bar{P}^{n}1 &= \{I_{A}\bar{P}^{n}1 + (I_{A}P)I_{A}\bar{P}^{n-1}1 + \cdots + (I_{A}P)^{n-2}I_{A}\bar{P}^{2}1\} + (I_{A}P)^{n-1}\bar{P}1 \\ & \leq I_{A}\bar{P}\{(1-\epsilon)^{k} + g_{n-1}^{(k)}\} + (I_{A}P)I_{A}\bar{P}\{(1-\epsilon)^{k} + g_{n-2}^{(k)}\} \\ & + \cdots + (I_{A}P)^{n-2}I_{A}\bar{P}\{(1-\epsilon)^{k} + g_{1}^{(k)}\} + (I_{A}P)^{n-1}\bar{P}1. \\ &= \{I_{A}\bar{P} + (I_{A}P)I_{A}\bar{P} + \cdots + (I_{A}P)^{n-2}I_{A}\bar{P}\}(1-\epsilon)^{k} \\ & + \{I_{A}\bar{P}g_{n-1}^{(k)} + (I_{A}P)I_{A}\bar{P}g_{n-2}^{(k)} + \cdots + (I_{A}P)^{n-2}I_{A}\bar{P}g_{1}^{(k)}\} + (I_{A}P)^{n-1}\bar{P}1. \end{split}$$

Let

$$f_n = I_A \bar{P} g_{n-1}^{(k)} + (I_A P) I_A \bar{P} g_{n-2}^{(k)} + \cdots + (I_A P)^{n-2} I_A \bar{P} g_1^{(k)},$$

and

$$g_n^{(k+1)} = f_n + (I_A \cdot P)^{n-1} \bar{P} 1,$$

then $\bar{P}^n 1 \leq (1-\epsilon)^{(k+1)} + g_n^{(k+1)}$. Since $\lim_{n\to\infty} g_n^{(k)} = \text{a.e.}(\lambda)$ and $g_n^{(k)} \leq c_k$ for $n=1,2,\cdots$, we have $\bar{P}g_n^{(k)} \leq c_k$ for $n=1,2,\cdots$ and $\lim_{n\to\infty} \bar{P}g_n^{(k)} = 0$ a.e.(λ). Since $1=1_A+(I_A\cdot P)1_A+(I_A\cdot P)^21_A+\cdots$, we have $f_n\leq c_k$ for $n=1,2,\cdots$ and $\lim_{n\to\infty} f_n=0$ a.e.(λ). We have already proved that $\lim_{n\to\infty} (I_A\cdot P)^n 1=0$ a.e.(λ). Hence $\lim_{n\to\infty} g_n^{(k+1)}=0$ a.e.(λ) and $g_n^{(k+1)}\leq c_{k+1}$ where $c_{k+1}=c_k+1$. Thus (I) is shown to hold true for k+1. Clearly $\lim_{n\to\infty} \bar{P}^n 1\leq (1-\epsilon)^k$ a.e.(λ) may be obtained by letting $n\to\infty$ in (3). Since k is an arbitrary positive integer, $\lim_{n\to\infty} \bar{P}^n 1=0$ a.e.(λ) and the proof of Theorem 1 is complete.

A real valued function P(x, A) of two variables, $x \in X$, $A \in B$, is called a probability transition function if the following conditions are satisfied.

- T1. For every fixed $x \in X$, $P(x, \cdot)$ is a measure.
- T2. For every fixed $A \in \mathbb{G}$, $P(\cdot, A)$ is an \mathbb{G} -measurable function.
- T3. For all x, $P(x, X) \leq 1$.

Define $P^{(n)}(x, A)$, $n = 1, 2, \dots$, inductively by

$$P^{(1)}(x, A) = P(x, A),$$

$$P^{(n+1)}(x, A) = \int P^{(n)}(x, dy)P(y, A).$$

Then $P^{(n)}(x, A)$, $n = 1, 2, \cdots$, are also probability transition functions. A Markov operator is said to have a probability transition function P(x, A) if, for all $f \in L_{\infty}(\lambda)$,

$$Pf(x) = \int P(x, dy)f(y)$$

for (λ) almost all x. If P has a probability transition function P(x, A), then P^n has probability transition function $P^{(n)}(x, A)$. A λ -continuous Markov

operator P is a Markov operator for which there is an $\mathbb{G} \times \mathbb{G}$ measurable function p(x, y) such that $Pf(x) = \int p(x, y)f(y)\lambda(dy)$, [6], [7].

Let P be a Markov operator with a probability transition function P(x, A). Define a measure η on $\mathfrak{B} \times \mathfrak{B}$ as follows. If E is an $\mathfrak{B} \times \mathfrak{B}$ -measurable subset of $X \times X$,

(4)
$$\eta(E) = \int \lambda(dx) \int P(x, dy) 1_E(x, y)$$

where $1_E(x, y) = 1$ if $(x, y) \in E$, = 0 if $(x, y) \notin E$. η may be decomposed into two measures η_e and η_e ,

$$\eta = \eta_c + \eta_s$$

where η_c is absolutely continuous to $\lambda \times \lambda$ while η_s is singular to $\lambda \times \lambda$. Let $p_1(x, y)$ be a derivative of η_c with respect to $\lambda \times \lambda$ and let us define Markov operator P_1 by

(5)
$$P_1 f(x) = \int p_1(x, y) f(y) \lambda(dy).$$

Then P_1 is the largest λ -continuous Markov operator such that $P_1 \leq P$, and is called the λ -continuous part of P ([8], Section III). Decomposition of probability transition functions with respect to a fixed measure has been used in the past by W. Doeblin [1] and J. L. Doob [3]. Here it is put in a slightly different setting.

Lemma 1. Let P be a Markov operator with a probability transition function P(x, A). If for (λ) almost all x, $P(x, \cdot)$ is absolutely continuous to λ , then P is λ -continuous. The converse is also true if $\mathfrak B$ is generated by a countable collection.

Proof. Let E_{\bullet} be a set in $\mathfrak{B} \times \mathfrak{B}$ such that

$$\lambda \times \lambda(E_{\bullet}) = 0$$
 and $\eta_{\bullet}(E) = \eta(E \cap E_{\bullet})$

for all $E \in \mathcal{B} \times \mathcal{B}$. Let

$$[E_s]^x = \{y: (x, y) \in E_s\}.$$

Then for (λ) almost all x, $\lambda([E_{\bullet}]^x) = 0$. If for (λ) almost all x $P(x, \cdot)$ is absolutely continuous to λ . Then $P(x, [E_{\bullet}]^x) = 0$ for (λ) almost all x so that $\eta_{\bullet}(X \times X) = \eta(E_{\bullet}) = \int \lambda(dx) P(x, [E_{\bullet}]^x) = 0$. Hence $\eta_{\epsilon} = \eta$ and λ -continuity of P follows immediately.

The converse follows from Theorem 5 of [8].

Lemma 2. Let P and P_1 be Markov operators with probability transition functions. If P_1 is λ -continuous then PP_1 and P_1P are λ -continuous.

Proof. Let P(x, A) be a probability transition function of P and P_1 be given by (5). Let $R = PP_1$. Then, for all $f \in L_{\infty}(\lambda)$,

$$Rf(x) = \int P(x, dz) \int p_1(z, y) f(y) \lambda(dy)$$

$$= \int \left[\int P(x, dz) p_1(z, y) \right] f(y) \lambda(dy)$$

so that R is λ -continuous. The operator P_1P has probability transition function

$$Q(x, A) = \int p_1(x, y) P1_A(y) \lambda(dy).$$

If $p_1(x, \cdot)$ is λ -integrable (which is true for (λ) almost all x) then $Q(x, \cdot)$ is absolutely continuous to λ . The λ -continuity of P_1P follows from Lemma 1.

Theorem 2. If P is a conservative, ergodic Markov operator with a probability transition function and P_n is the λ -continuous part of P^n , then either $P_n = 0$ for all n or $P_n 1 \uparrow 1$ a.e.(λ).

Proof. By Lemma 2, P_nP is λ -continuous. Since $P_nP \leq P^{n-1}$, we have $P_nP \leq P_{n+1}$. It follows that $P_n1 = P_nP1 \leq P_{n+1}1$. Hence the sequence $\{P_n1\}$ is nondecreasing. Let the limit of the sequence be l. We also have $PP_n \leq P_{n+1}$ for PP_n is λ -continuous by Lemma 2. Hence

$$(6) PP_n 1 \leq P_{n+1} 1.$$

Letting $n \to \infty$ in (6), we obtain

$$Pl \leq l$$
.

Since P is conservative and ergodic, l is a constant function. If l=0, then $P_n 1=0$ for all n so that $P_n=0$ for all n. If $l\neq 0$, then there is a positive integer r such that $P_r\neq 0$. Consider the Markov operator P^r . It is conservative and there is a positive integer δ such that the whole space X is partitioned into δ indecomposably P^r -closed sets (cf. Section II of [7]). Among these δ indecomposably P^r -closed sets, there is one set C such that $P_r I_C \neq 0$. Define measure λ_C on $\mathfrak B$ by $\lambda_C(A)=\lambda(C\cap A)$. Since the values of the function $P^r f$ on C are not affected by the values of f outside C, P^r may be considered as a Markov operator on $L_{\infty}(\lambda_C)$ to $L_{\infty}(\lambda_C)$ which is then conservative and ergodic. For the same reason, P_r and P^r-P_r may also be considered as Markov operators on $L_{\infty}(\lambda_C)$ to $L_{\infty}(\lambda_C)$. Applying Theorem 1 to P^r-P_r , we conclude that $(P^r-P_r)^n 1 \to 0$ a.e.(λ) on C. Write

(7)
$$P^{nr} = [P_r + (P^r - P_r)]^n.$$

If we expand the right side of (7), $(P^r - P_r)^n$ would be one term among (n + 1) terms in the expansion, and is the only term which does not contain P_r as a factor. Hence $P^{nr} - (P^r - P_r)^n$ is λ -continuous by Lemma 2 so that

$$(8) P_{nr} \ge P^{nr} - (P^r - P_r)^n.$$

Since $P^{r}1 - (P^r - P_r)^r1 \to 1$ a.e.(λ) on C, l = 1 a.e.(λ) on C by (8). Since l is a constant function, we have l = 1.

REFERENCES

- [1] W. Doeblin, Sur les propriétés asymtotiques de mouvement régis par certains types de chaines simples, Bull. Math. Soc. Roum. Sci., 39 (1) (1937) 57-115; 39 (2) (1937) 3-61.
- [2] J. L. Doob, Stochastic Processes, Wiley, New York, 1963.
- [3] -----, Asymptotic properties of Markov transition probabilities, Trans. Amer. Math. Soc., 63 (1948).
- [4] JACOB FELDMAN, Subinvariant measures for Markoff operators, Duke Math. J., 29 (1962)
- [5] EBERHARD HOPF, The general temporally discrete Markoff process, J. Rational Mech. Annal., 3 (1954) 13-45.
- [6] SHU-TEH C. Moy, λ-continuous Markov chains, Trans. Amer. Math. Soc., 117 (1965) 68-91
- [7] ———, λ-continuous Markov chains II, Trans. Amer. Math. Soc., 120 (1965) 83–107. [8] ———, Period of an irreducible positive operator, Illinois J. Math., 11 (1967) 24–39.

Syracuse University and University of California, Santa Barbara. Date communicated: December 18, 1967