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Abstract

An analogue of the linear continuous ranked probability score is introduced that

applies to probabilistic forecasts of circular quantities. This scoring rule is proper and

thereby discourages hedging. The circular continuous ranked probability score reduces

to angular distance when the forecast is deterministic, just as the linear continuous

ranked probability score generalizes the absolute error. Furthermore, the continuous

ranked probability score provides a direct way of comparing deterministic forecasts,

discrete forecast ensembles, and post-processed forecast ensembles that can take the

form of probability density functions.

The circular continuous ranked probability score is used in this study to assess

predictions of 10 m wind direction for 361 cases of mesoscale, short-range ensemble

forecasts over the North American Pacific Northwest. Reference probability forecasts

based on the ensemble mean and its forecast error history over the period outperform

probability forecasts constructed directly from the ensemble sample statistics. These

results suggest that short-term forecast uncertainty is not yet well predicted at mesoscale

resolutions near the surface, despite the inclusion of multi-scheme physics diversity and

surface boundary parameter perturbations in the mesoscale ensemble design.1
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1 Introduction

Scoring rules can be used to assess the quality of weather forecasts by assigning a numerical
score based on the forecast and the value or event that materializes. A proper scoring rule
maximizes the expected reward (or minimizes the expected penalty) for forecasting one’s
true beliefs, thereby discouraging hedging or cheating (Jolliffe and Stephenson 2003, pp. 8,
27; Wilks 2006, p. 298).

In evaluating probabilistic weather forecasts of linear, real-valued variables, such as
temperature and pressure, the continuous ranked probability score (CRPS; Matheson and
Winkler 1976; Unger 1985) has attracted renewed attention by the meteorological commu-
nity (Hersbach 2000; Candille and Talagrand 2005; Gneiting et al. 2005; Wilks 2006, p. 302).
If F is the cumulative distribution function of the forecast distribution and x verifies, the
CRPS is defined as

CRPS(F, x) =

∫

∞

−∞

(F (y) − 1{y ≥ x})2 dy, (1)

where 1{y ≥ x} denotes a step function along the real line that attains the value 1 if y ≥ x
and the value 0 otherwise. Gneiting and Raftery (2004) show that the continuous ranked
probability score can be written equivalently as

CRPS(F, x) = E{ |X − x| } − 1

2
E{ |X − X∗| }, (2)

where X and X∗ are independent copies of a linear random variable with distribution func-
tion F , and E{·} denotes the expectation operator. The CRPS is proper and is expressed
in the same unit as the observed variable. The CRPS generalizes the absolute error, and
therefore provides a direct way of comparing various deterministic and probabilistic fore-
casts using a single metric.

For several reasons, near-surface wind direction is an important meteorological variable
to consider when undertaking mesoscale forecast verification studies. Wind direction mit-
igates some of the problems caused by low observation density at mesoscale resolutions
because wind direction is inherently linked with the local pressure gradient. Hence, wind
direction observations yield information about the atmospheric state in a region around the
station location, both horizontally and through depth. In addition, routine surface wind ob-
serving sites are typically more numerous than those with pressure sensors. Effectively, the
use of wind direction increases the density of the pressure observing network while avoiding
potential problems with below-ground pressure reduction assumptions and calculation of
spatial derivatives.

If mesoscale perturbations to the large-scale flow are present, either as a result of strong
synoptic-scale flow impinging on topography (e.g., lee troughs) or because of differential
heating/cooling between adjacent regions under weak synoptic-scale forcing (e.g., land-sea
breeze circulations), routine surface wind direction observations provide a means of detect-
ing their presence (but not necessarily their strength). Validation of surface wind direction
predictions addresses a central purpose of mesoscale numerical weather prediction models:
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their ability to simulate important local circulations. A long-term mesoscale forecast veri-
fication study over the North American Pacific Northwest shows that 10 m wind direction
statistics using mean absolute errors have value in determining the impact of increased
horizontal resolution on deterministic forecast accuracy (Mass et al. 2002).

To extend this strategy to mesoscale forecast ensemble verification, a tool is needed that
assesses probabilistic wind direction forecasts. Wind direction is a circular variable, and
therefore standard scoring rules for verifying probabilistic forecasts of linear variables do
not apply. In particular, the representations (1) and (2) of the linear CRPS are based on
Euclidean distance measures that are inappropriate for directional variables. To address
these issues, a circular analogue of the linear CRPS is introduced, defined by

CRPScirc(P, θ) = E{α(Θ, θ)} − 1

2
E{α(Θ,Θ∗)},

where P is a forecast distribution on the circle, θ is the verifying direction, α is angular dis-
tance, and Θ and Θ∗ are independent copies of a circular random variable with distribution
P . This replaces the Euclidean distance in the representation (2) of the linear CRPS by the
natural distance metric for directional variables: the angular distance. The circular CRPS
is proper and reduces to angular distance when the forecast is deterministic, just as the
linear CRPS generalizes the absolute error. It is reported in units of angular distance and
allows for the direct comparison of deterministic forecasts, discrete forecast ensembles, and
post-processed forecast ensembles that can take the form of a probability density function.

The remainder of the paper is organized as follows. Section 2 provides a review of the
linear CRPS and introduces its circular analogue. The proof of the propriety of the circular
CRPS is deferred to the Appendix. Sections 3 and 4 illustrate the use of the circular CRPS in
assessing predictions of 10 m wind direction for 361 cases of mesoscale, short-range ensemble
forecasts over the North American Pacific Northwest. Reference probability forecasts of
wind direction, constructed from the observed history of ensemble-mean forecast errors,
are found to produce lower average circular CRPS than probability forecasts based on the
direct short-range ensemble output. The paper closes with a discussion of the implications
of these verification results in Section 5.

2 The continuous ranked probability score (CRPS)

This section contains a review of the properties of the linear CRPS and an introduction to
its circular analogue.

2.1 The CRPS for linear variables

The linear CRPS is defined in terms of the forecast cumulative distribution function F and
the verifying observation x of a linear, real-valued variable as in (1). Traditionally, this
score is interpreted as the integral of the Brier score for binary probability forecasts at all
real-valued thresholds y (Hersbach 2000; Toth et al. 2003). The alternative, yet equivalent,
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representation given by (2) makes the interpretation of CRPS lucid. The first term on the
right-hand side of (2) is the expected value of the absolute error, and the second term is
a correction factor that measures the sharpness of the probabilistic forecast F and renders
the score proper. The linear CRPS generalizes the absolute error, to which it reduces
if F is a deterministic forecast. If F = Fens is a discrete predictive distribution from a
forecast ensemble of size M , the evaluation of the CRPS is straightforward. The predictive
cumulative distribution function Fens has jumps of size 1/M at the ensemble member values
x1, . . . , xM , and (2) reduces to

CRPS(Fens, x) =
1

M

M
∑

m=1

|xm − x| − 1

2M2

M
∑

m=1

M
∑

n=1

|xm − xn| . (3)

Thus, the linear CRPS provides a direct way of comparing deterministic and probabilistic
forecasts with a single metric that is proper and reported in the same unit as the obser-
vations, making it a tangible measure of predictive performance. Additionally, Hersbach
(2000) and Candille and Talagrand (2005) describe reliability-resolution (or calibration-
sharpness) decompositions of the linear CRPS.

The linear CRPS and the negative of the logarithmic score (information deficit or ig-

norance score) are seeing increased use in probabilistic weather forecast evaluations (Unger
1985; Hersbach 2000; Roulston and Smith 2002; Grimit 2004; Candille and Talagrand 2005;
Gneiting et al. 2005). Although the logarithmic score is proper and trivial to calculate, it in-
volves a harsh penalty for low probability events and therefore is highly sensitive to outliers
(Selten 1998). Furthermore, the logarithmic score cannot be used to assess deterministic
or discrete ensemble forecasts. The spherical score and the quadratic score (Matheson and
Winkler 1976) share this constraint. The linear CRPS provides a more resistant and more
flexible alternative.

The lack of analytic solutions to the defining integral in (1) has restrained widespread
use of the linear CRPS as a scoring rule. Recently, Gneiting et al. (2005) derived an analytic
expression for the linear CRPS when the forecast distribution function F is Gaussian with
mean µ and variance σ2. Using (2), they showed that

CRPS(N (µ, σ2), x) = σ

(

x − µ

σ

(

2Φ

(

x − µ

σ

)

− 1

)

+ 2φ

(

x − µ

σ

)

− 1√
π

)

, (4)

where φ and Φ represent the standard Gaussian probability density and cumulative dis-
tribution functions, respectively. Similarly, closed form solutions can be found for other
forecast distributions, including mixtures of Gaussian distributions, which are used in the
Bayesian model averaging approach to ensemble calibration (Raftery et al. 2005). Using
(2), the CRPS for a Gaussian mixture distribution is

CRPS

(

M
∑

m=1

wm N (µm, σ2
m), x

)

= (5)

M
∑

m=1

wm A
(

x − µm, σ2
m

)

− 1

2

M
∑

m=1

M
∑

n=1

wmwn A
(

µm − µn, σ2
m + σ2

n

)

.
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In this equation, wi is the weight for ensemble member i, with the weights being nonnegative
and summing to 1, and

A
(

µ, σ2
)

= 2σφ

(

µ

σ

)

+ µ

(

2Φ

(

µ

σ

)

− 1

)

(6)

denotes the expectation of the absolute value of a normal random variable with mean µ and
variance σ2. Gneiting et al. (2006) give an analytic expression for the linear CRPS when a
Gaussian forecast distribution is truncated at zero, thereby taking account of the potential
nonnegativity of a variable such as wind speed.

2.2 The CRPS for circular variables

Any analogue of the linear CRPS for circular variables needs to be proper. In addition,
the score should be independent of the verifying direction when the forecast distribution
is uniform on the circle. The direct analogue of (1) does not satisfy these requirements.
Hence, the circular CRPS should follow the representation (2) and be expressed as

CRPScirc(P, θ) = E{α(Θ, θ)} − 1

2
E{α(Θ,Θ∗)}, (7)

where α(θ, θ∗) ∈ [0, π] denotes the angular distance between any two directions θ and θ∗

on the circle [−π, π), and where Θ and Θ∗ are independent random variables with common
circular probability distribution P . In the Appendix, Fourier analytic tools are used to
prove the propriety of the circular CRPS. Note that, if P is uniform on the circle then (7)
reduces to π/4 and is independent of the verifying direction.

The circular CRPS reduces to angular distance when the forecast is deterministic, just as
the linear CRPS generalizes the absolute error. For a discrete predictive distribution from
a forecast ensemble θ1, . . . , θM , its evaluation is straightforward. The circular predictive
distribution Pens has probability mass 1/M at θ1, . . . , θM , and (7) becomes

CRPScirc(Pens, θ) =
1

M

M
∑

m=1

α(θm, θ) − 1

2M2

M
∑

m=1

M
∑

n=1

α(θm, θn). (8)

The circular CRPS is reported in units of angular distance and provides a direct way of
comparing deterministic forecasts, discrete forecast ensembles, and post-processed forecast
ensembles that can take the form of probability density functions from a circular parametric
family.

The von Mises distribution is the most common parametric model for unimodal samples
of circular data (Fisher 1993). In many respects, it forms the natural, circular analogue of
the Gaussian distribution on the real line. The probability density function of the von Mises
distribution with mean direction µ ∈ [−π, π) and concentration parameter κ ≥ 0 is

fVM(θ) = [2πI0(κ)]−1 exp[κ cos(θ − µ)], −π ≤ θ < π, (9)
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where I0 denotes the modified Bessel function of the first kind of order zero. As κ tends
to zero, the von Mises distribution converges to the uniform distribution on the circle. As
κ approaches infinity, the von Mises distribution becomes increasingly concentrated and
can be approximated by a Gaussian distribution with mean µ and variance 1/κ. A sample
estimate of κ can be obtained with the maximum-likelihood technique using the algorithm
of Best and Fisher (1981).

If a probabilistic forecast takes the form of a von Mises distribution, the first term on
the right-hand side of (7) can be written as an integral,

E{α(Θ, θ)} = [2πI0(κ)]−1
∫ π

−π
α(y, θ) exp[κ cos(y − µ)] dy, (10)

which is readily evaluated by standard numerical integration routines. As κ tends to infinity,
the aforementioned Gaussian approximation implies that (10) is asymptotically equivalent
to A(α(µ, θ), 1/κ), where the function A is defined in (6). We use this approximation if
κ ≥ 1500. The second term on the right-hand side of (7) is a function of the concentration
parameter κ only, say g(κ). If κ = 0 the von Mises distribution reduces to the uniform
distribution on the circle; hence g(0) = π/4. As κ tends to infinity, the above argument
shows that g(κ) is asymptotically equivalent to 1/(2πκ)1/2. We apply this approximation if
κ ≥ 200. If κ < 200, we use standard Monte Carlo integration to compute estimates of g(κ),
and we apply the lowess technique (Cleveland 1979) to smooth the resulting lookup-table.
This provides an algorithm that approximates g(κ), κ ∈ [0,∞), to at least three decimal
places. Code is available at cran.r-project.org in the form of the function crps.circ

within the R verification package (Pocernich 2006). Fortran code can also be made
available on request.

3 Mesoscale forecast ensemble data

The mesoscale ensemble prediction system, the post-processing techniques applied to the
output, and the verification data used in this study are now described.

3.1 The University of Washington short-range ensemble forecast (UW
SREF) systems

Over the last few years, a short-range ensemble prediction system for the North American
Pacific Northwest has been under development, with the goal of producing calibrated fore-
cast probabilities for near-surface weather parameters at mesoscale resolutions. The original
five-member mesoscale ensemble was designed as a single-model, multi-analysis ensemble
prediction system using MM5 with a nested, limited-area grid configuration focusing on
Washington and Oregon (Grimit and Mass 2002). The horizontal grid spacing of the inner
nest was 12 km and 33 sigma levels were used in the vertical. Large-scale analyses and
forecasts from several operational forecast centers provided the necessary initial conditions
(ICs) and lateral boundary conditions (LBCs). Beginning in the autumn of 2002, the size
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of the mesoscale ensemble was increased to eight members using additional global analyses
and forecasts and named the University of Washington Mesoscale Ensemble (UWME; Eckel
and Mass 2005).

Although UWME produces skillful forecast probabilities without any post-processing,
the forecast dispersion is inadequate. Eckel and Mass (2005) attribute a primary cause of low
dispersion to the lack of model error representation within the UWME system design. To
test whether model physics diversity boosts ensemble dispersion in an appropriate manner,
a parallel eight-member system (UWME+) is run with the same configuration of ICs and
LBCs, but each member uses a different combination of MM5 physics options for planetary
boundary layer, cloud microphysics, cumulus convection, and radiation parametrizations.
Surface parameter uncertainty is also incorporated into UWME+ by perturbing the sea-
surface temperature lower-boundary condition and the fixed parameters describing soil-
moisture availability, albedo, and surface roughness length. Inclusion of model physics
diversity and surface parameter uncertainty increases forecast dispersion toward statistical
consistency and thus improved mesoscale forecast probability skill. A complete description
of UWME+ and its design is contained in Eckel and Mass (2005). These UW SREF systems
were run to 48 h lead time beginning at 0000 UTC each day.

3.2 Verification data and evaluation period

The evaluation period of this study begins on 31 October 2002 and extends through 31
March 2004. This period encompasses two cool seasons (October–March) during 2002–03
and 2003–04 and one warm season (April–September) during 2003. Out of the 518 total
days, 361 days are identified where all UWME and UWME+ member forecasts are complete
and verification data is available. Of the 361 total cases, 271 are cool season cases and 90
are warm season cases. Verification statistics are compiled separately for each forecast lead
time at three hour intervals through 48 h, since model performance varies substantially
throughout the diurnal cycle and generally degrades as the lead time increases. Circular
CRPS is computed between forecast-observation pairs only when the verifying wind speed
is at least 5 knots (2.57 m/s), since wind direction observations are unreliable at lower wind
speeds.

Verification data includes the use of both station-based observations and gridded surface
analyses. The operational 20-km Rapid Update Cycle (RUC20; Benjamin et al. 2004)
mesoscale analysis from NCEP is used to represent truth for grid-based verification of the
forecast ensembles. To make the comparison at a common horizontal resolution, the 12 km
UW SREF output is fit to the native RUC20 grid using bi-linear interpolation. The 10 m
wind components are subsequently rotated to account for the new center longitude. Only
RUC20 grid boxes lying within the UW SREF 12 km domain and its five grid-box wide
boundary region are considered. This yields 3490 common grid boxes for verification.

Station-based observations of near-surface wind direction are acquired in real-time from
over two dozen networks operated by local, state, federal, and foreign agencies as well as a
few independent organizations (Mass et al. 2003). All together, the mesoscale observation
network includes approximately 800 wind observing locations within the UW SREF 12 km
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domain. Model 10 m wind component forecasts at the four grid-box centers surrounding
each station are bi-linearly interpolated to the observation location and then rotated from
grid-relative to north-relative. No adjustment is made for any vertical displacement of the
model surface level from the real terrain.

3.3 UW SREF post-processing

Several post-processing methods are applied to the wind direction forecast ensemble data
and then compared using the circular CRPS. First, a bias correction is applied to each
ensemble-member forecast separately, using bias estimates obtained from a simple, 14 day
running-mean of the forecast errors at each grid box or station location. Eckel and Mass
(2005) show that such a bias correction substantially improves both reliability and reso-
lution of the forecast probabilities and also facilitates a fair comparison of methods, since
systematic bias is not a component of forecast uncertainty. Second, an ensemble-mean fore-
cast is generated by treating the individual ensemble-member forecasts as unit vectors in
polar coordinates, summing them, and then finding the direction of the resultant vector
sum (Fisher 1993, p. 31). Third, a continuous probability density forecast is generated
from the bias-corrected forecast ensemble by fitting a von Mises distribution with the mean
parameter given by the ensemble mean and the concentration parameter estimated with
the Best and Fisher (1981) algorithm. Fourth, a reference probability density forecast is
generated by dressing the bias-corrected ensemble mean using a von Mises distribution with
a concentration parameter that is estimated from the ensemble-mean angular forecast errors
realized over the entire sample period. Such a forecast has a static circular variance at each
unique location and is an approximation to the climatological forecast uncertainty for the
ensemble-mean wind direction. Since this forecast probability density is always centered on
the bias-corrected ensemble mean, the mean remains state-dependent.

4 Results

To illustrate the calculation of circular CRPS for each post-processed forecast type, specific
examples are taken from 24 h UWME forecasts of wind direction at Medford, Oregon
(KMFR; 42.38◦N, 122.87◦W) and Victoria, British Columbia (CYYJ; 48.65◦N, 123.43◦W)
valid on 0000 UTC 31 October 2003 (Fig. 1). Each panel shows a forecast probability mass
function or probability density function on the unit circle corresponding to the ensemble
mean (MEAN), the discrete (raw) forecast ensemble (RAW), the von Mises fit to the discrete
forecast ensemble (FIT), and the von Mises fit to the MEAN error climatology (MEC) that
is observed over the sample period.

The MEC forecast at KMFR (Fig. 1(a)) has a much lower von Mises concentration
parameter than the FIT forecast, making MEC less sharp2. However, despite its lack of
sharpness, MEC has lower (better) circular CRPS than FIT for this case because FIT is

2We expect MEC forecasts to be less sharp than FIT forecasts on average, since this is a defining
characteristic of underdispersed ensemble prediction systems.
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Figure 1: Circular diagrams of probability mass and probability density functions for
24 h UWME forecasts of wind direction (solid) at (a) Medford, Oregon (KMFR; 42.38◦N,
122.87◦W) and (b) Victoria, British Columbia (CYYJ; 48.65◦N, 123.43◦W) valid on
0000 UTC 31 October 2003. The forecasts correspond to the ensemble mean (MEAN),
the discrete (raw) ensemble (RAW), the von Mises fit to the discrete ensemble (FIT), and
the von Mises fit to the MEAN error climatology (MEC) over the sample period (in order,
left to right). See text for details. Observed wind directions are dashed and the forecasts
are solid. The actual circular CRPS (in degrees) is reported in each panel.
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Figure 2: Spatio-temporal average circular CRPS by forecast lead time for 361 forecasts
of 10 m wind direction over the North American Pacific Northwest during the period from
October 2002 through March 2004 for the MEAN, RAW, FIT, and MEC forecasts produced
from (a) the UWME system and (b) the UWME+ system. The 12 km UW forecasts are
bi-linearly interpolated to the 20-km NCEP RUC (RUC20) mesoscale analyses that are
used as truth and presented here on the portion of the RUC20 analysis grid that overlaps
with the 12 km UW SREF grid.

more heavily penalized by the first term in (7), due to the large MEAN angular error. When
the MEAN angular error is small, as it is for the forecast at CYYJ (Fig. 1(b)), FIT scores
better than MEC as a direct result of the sharpness in the forecast ensemble.

Temporal averages of circular CRPS over the 361-case sample in the study period are
calculated separately at each unique location and each forecast lead time. These average
scores give an indication of the overall performance of the various 10 m wind direction
forecasts from the 12 km UW SREF systems. When using RUC20 analyses as truth,
independent statistics are saved at each NCEP analysis grid box that overlaps with the 12
km UW SREF grid. With station-based observations, CRPS statistics are unique to each
point location. A summary of the 10 m wind direction forecast performance and an overall
comparison of each ensemble system and its associated post-processing is conveyed by the
spatial averages of these circular CRPS statistics (Figs. 2-3). In general, the UWME+
system performs better than the UWME system with slightly lower circular CRPS for all
forecast types and lead times.

A large decrease in circular CRPS is observed between the MEAN forecasts and the
RAW and FIT forecasts (which are very close to each other in performance). Even though
all three forecast types are generated from the same raw ensemble values, circular CRPS
decreases as one considers forecasts that are increasingly continuous in nature. The MEAN
forecast is determinisitic, with all forecast probability mass placed at a single value. The
RAW forecast is multi-valued, with disrete probability masses at several directions. The FIT
forecast is a continuous probability density function. Evidently, the price paid in decreased
sharpness is more than offset by the benefit of increased calibration. And since the CRPS is
a proper scoring rule, the successive improvements cannot be considered a result of hedging.

10



3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

20

25

30

35

40

45

Forecast Lead Time (hrs)

C
irc

ul
ar

 C
R

P
S

 (
de

gr
ee

s)

(a)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

C
irc

ul
ar

 C
R

P
S

 (
ra

di
an

s)

MEAN
RAW
FIT
MEC

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

20

25

30

35

40

45

Forecast Lead Time (hrs)

C
irc

ul
ar

 C
R

P
S

 (
de

gr
ee

s)

(b)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

C
irc

ul
ar

 C
R

P
S

 (
ra

di
an

s)

MEAN
RAW
FIT
MEC

Figure 3: The same as in Fig. 2, except for 12 km ensemble forecasts bi-linearly interpolated
to the surface observation sites that are used as truth.

For both ensemble systems and both verification methods, the MEC forecasts tend to
perform the best. RAW and FIT forecasts from the UWME+ system do appear to be
competitive with MEC at the latest forecast lead times, with FIT and MEC essentially
having equal circular CRPS values at 45 h and 48 h. MEC forecasts have the advantage
of being tuned by observations over a long period, resulting in nearly perfect calibration.
However, such calibration comes at the expense of sharpness, and one would hope that the
additional sharpness of FIT forecasts would lead to the best performance. Yet, these results
show that MEC outperforms FIT on average. Even though the latter uncertainty forecasts
have the advantage of being state-dependent and determined by the model dynamics, static
uncertainty forecasts based on an approximation to the climatological errors of the ensemble
mean perform better.

Observation-based verification yields larger circular CRPS for all forecast types than
does grid-based verification. The differences in performance estimates are likely due to
the disparate influence of representativeness errors3 between the verification approaches.
Another possibility could be that systematic errors in the RUC20 analyses lead to state
estimates that are more similar to the MM5 model forecasts than to the real atmosphere.

Another discrepancy is the presence of a pronounced diurnal signal in the grid-based ver-
ification (Fig. 2) that is much weaker or even non-existent in the observation-based results
(Fig. 3). The grid-based circular CRPS is higher for forecast lead times that correspond
with overnight and early morning periods and lower during daytime hours. This character-
istic is consistent with poor understanding of nocturnal boundary layer turbulence (Mahrt
1999) and the inability to model such regimes with existing atmospheric boundary layer
parametrizations (e.g. Zhang and Zheng 2004). In particular, the MEC forecasts verified
with observations do not show such a pattern, indicating that the average ensemble-mean
error variance may oscillate little over the diurnal cycle. Thus, the results are inconclusive
as to whether a diurnal cycle of 10 m wind direction errors is present. Representativeness
errors may blur the diurnal cycle in observation-based verification and systematic errors in

3the forecast-observation scale mismatch
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the RUC20 analyses, themselves diurnally varying, could artificially reduce the estimates of
actual error.

Spatial maps of the circular CRPS illuminate what portions of the mesoscale domain
experience relatively good or bad wind direction forecasts and where MEC forecasts make
improvements over the others. Fig. 4 shows circular CRPS at 24 h for each of the four
post-processed 10 m wind direction forecasts from the UWME+ system. Circular CRPS
for MEAN forecasts, which is identical to the mean absolute error, ranges from below 20
degrees over the Pacific Ocean well offshore of Washington and Oregon on up to greater
than 60 degrees over localized areas in eastern Washington and southern British Columbia
(Fig. 4(a)). These areas of relatively larger 10 m wind direction forecast error seem to
be located in low-lying areas adjacent to higher terrain, where the 12 km model may not
sufficiently resolve narrow passes and valleys. Several additional pockets of circular CRPS
greater than 40 degrees are apparent over many of the eastern slopes throughout the domain.
This suggests that 10 m wind direction is also poorly forecast in the wake regions on the
downstream side of ridges and mountains.

The circular CRPS for RAW, FIT, and MEC forecasts show spatial patterns that are
very similar to the circular CRPS for the MEAN forecasts, but with reduced values nearly
everywhere. Circular CRPS values less than 20 degrees now reach farther east, along the
Oregon coast and into southwestern Washington. However, the percent improvement in
circular CRPS for RAW, FIT, and MEC forecasts is small in areas where the MEAN
circular CRPS is low. The largest improvements are realized over areas with the biggest
circular CRPS. The circular CRPS for MEC forecasts ranges from well below 20 degrees to
just over 40 degrees. As displayed in the examples from Fig. 1, MEC performs best where
the MEAN forecast error is largest.

Spatial maps of the circular CRPS evaluated using station observations are contained
in Fig. 5 and corroborate most of the results obtained through grid-based verification. The
RAW and FIT forecasts sometimes worsen the circular CRPS at specific stations compared
to the MEAN forecasts. However, MEC is nearly always the best and makes the most
improvement at stations where the average MEAN circular CRPS is the largest.

Finally, it is noteworthy that many of the regions where the circular CRPS is largest in
Fig. 4 have low observation density (Fig. 5). In fact, the areas in northeastern Washington
and southern British Columbia that experience MEAN circular CRPS errors that average
more than 60 degrees have no observations within them. Thus, it is likely that problems
with the RUC20 analyses may contribute as much error as deficiencies in the numerical
weather prediction model.

5 Discussion

In this paper, an analogue of the linear CRPS is introduced and extended to accommodate
circular variables. The circular CRPS is proper and provides a simple way of comparing both
deterministic and probabilistic circular forecasts with a single metric. Using this scoring
rule, circular forecasts are rewarded for their sharpness and level of calibration. Predictions
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Figure 4: Spatial map of UWME+ circular CRPS (in degrees) at 24 h over RUC20 analysis
grid boxes during the study period for (a) MEAN, (b) RAW, (c) FIT, and (d) MEC forecasts.
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Figure 5: Spatial map of UWME+ circular CRPS (in degrees) at 24 h over surface ob-
servation sites during the study period for (a) MEAN, (b) RAW, (c) FIT, and (d) MEC
forecasts. Color scale is the same as in Fig. 4.
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of 10 m wind direction from the University of Washington short-range ensemble forecast
systems are evaluated and compared over an 18-month period using this tool.

In general, the forecast ensemble system that incorporates multi-scheme physics diversity
and surface parameter uncertainty into its design (UWME+) performs better than the
ensemble system with initial condition diversity alone (UWME). The improvement in 10 m
wind direction forecast skill realized by the UWME+ system appears to be less than that
conveyed by Eckel and Mass (2005) for 2 m temperature and 10 m wind speed forecasts.
A simple running-mean bias correction is applied in both ensemble verification studies and
improves probability forecast skill.

Circular probability densities constructed directly from the forecast ensemble sample
statistics (FIT) outperform the determinstic ensemble-mean (MEAN) 10 m wind direction
predictions. However, a reference uncertainty forecast based on the sample climatological
variance of ensemble-mean prediction errors (MEC) produces the lowest average circular
CRPS. Such an improvement is realized because the MEC probability forecasts are cali-
brated, which more than offsets the degradation in circular CRPS that results from the
reduced sharpness. MEC forecasts verify better (with lower circular CRPS) using both
grid-based and observation-based verification data.

The superior performance of MEC forecasts suggests that short-term forecast uncer-
tainty is not yet well predicted by the dynamic model ensembles at mesoscale resolutions
near the surface. A static uncertainty forecast based on a local estimate of the climato-
logical ensemble-mean prediction error variance produces better probabilistic forecasts of
10 m wind direction. Similar results have been obtained for 2 m temperature and 10 m
wind speed forecasts from the UW SREF systems over the same period (Grimit 2004).
Hence, it appears that several major sources of short-term mesoscale forecast error remain
unaddressed by the ensemble prediction systems used in this study, despite the inclusion of
multi-scheme physics diversity and surface parameter perturbations in the UWME+ system
design. This suggests that more effort must be undertaken to incorporate additional sources
of model uncertainty into the mesoscale ensemble prediction systems.

It is also apparent that more advanced statistical post-processing techniques must be
applied to near-surface mesoscale ensemble predictions. Probability density forecasts ought
to be calibrated and have better sharpness than MEC forecasts in order to possess skill.
Several potential techniques have emerged toward meeting this challenge, including Bayesian
model averaging (Raftery et al. 2005), two-step analogues from ensemble re-forecasts (Hamill
et al. 2005), and dressing kernels with second moment constraints (Wang and Bishop 2005).

Proper scoring rules like CRPS provide composite measures of forecast performance
that address calibration and sharpness simultaneously. Hersbach (2000) and Candille and
Talagrand (2005) proposed calibration-sharpness (or reliability-resolution) decompositions
of the linear CRPS. The practical computation of the decomposition can be strongly sen-
sitive to implementation decisions (Candille and Talagrand 2005, p. 2144), and there is no
obvious analogue of the decomposition that applies to the circular CRPS. However, calibra-
tion and sharpness can be assessed individually, using circular versions of the verification
rank histogram and probability integral transform (PIT) histogram, respectively (Grimit

15



2001, pp. 70–71; Gneiting et al. 2005), and summary measures of the width of prediction
intervals.

Single metrics of forecast performance like CRPS also do not take into account spatial or
temporal displacements that may prove to be an important component of the true forecast
quality for a particular user or application. Scoring rules are typically applied only to
univariate forecasts at a fixed valid time, as in this study. Therefore, any inferences about
forecast quality using only statistics based on such metrics should be judiciously applied.

Mesoscale forecast verification is a good example of a situation where caution should be
used. Small displacements in space or time of otherwise well-predicted features can result in
a double penalty if the forecast is scored at point locations with scalar metrics (e.g. Mass et

al. 2002; Rife et al. 2004). The double-penalty effect can become more pronounced as grids
with higher resolution are used and increasingly smaller wavelength features are resolved in
the forecast. Hence, pointwise objective verification scores commonly do not show benefits
that are commensurate with increased horizontal resolution. Some research efforts on alter-
native verification strategies have advocated the use of feature-based methods (Ebert and
McBride 2000; Nachamkin 2004; Case et al. 2004; Done et al. 2004; Rife and Davis 2005).
However, the density of routinely-taken observations near the surface is typically too low
to verify small-wavelength features. The situation becomes especially problematic when
features are interrupted or distorted by topography. Sufficient observational data is usually
only available during field programs where a plethora of special observational platforms are
deployed, including in situ aircraft, frequent radiosondes, ground-based radars, and addi-
tional surface observations (e.g. Bougeault et al. 2001; Stoelinga et al. 2003). However,
such an effort is only sustainable for short periods and requires significant advance planning
and financial resources.

Due to the relative sparsity of observations at mesoscale model resolutions, the question
of how best to routinely verify these predictions remains an open one. The exclusive use
of 10 m wind direction verification statistics does not fully solve the mesoscale verification
problem. However, the issue of low observation density is at least partially addressed
because the near-surface wind direction is strongly forced by the local horizontal pressure
gradient, which is often well-resolved by the model grid spacing.

Appendix

In this appendix, the circular CRPS is shown to be a proper scoring rule that discourages
hedging. The circle is identified with the interval [−π, π). If θ and θ∗ denote any two points
on the circle, their angular distance is

α(θ, θ∗) =

{

|θ − θ∗| if |θ − θ∗| ≤ π,
2π − |θ − θ∗| if π ≤ |θ − θ∗| < 2π.

16



Let P be a probability distribution on the circle. Recall that, if the probabilistic forecast is
P and θ ∈ [−π, π) verifies, the circular CRPS is defined as

CRPScirc(P, θ) = E{α(Θ, θ)} − 1

2
E{α(Θ,Θ∗)},

where ΘP and Θ∗

P are independent copies of a circular random variable with distribution
P , and E denotes the expectation operator.

Theorem. The circular continuous ranked probability score is a proper scoring rule. In
other words,

ECRPScirc(P,ΘP ) ≤ ECRPScirc(Q,ΘP ) (11)

for all probability distributions P and Q on the circle.

Proof. Henceforth, ΘP ,Θ∗

P and ΘQ,Θ∗

Q denote independent circular random variables
with distributions P and Q, respectively. To prove the theorem, it suffices to show that

2Eα(ΘP ,ΘQ) − Eα(ΘP ,Θ∗

P ) − Eα(ΘQ,Θ∗

Q) ≥ 0 (12)

for all probability distributions P and Q on the circle.
Following Feller (1971, p. 633), the k-th Fourier coefficient of a circular distribution P

is defined as the generally complex-valued number

pk =
1

2π

∫ π

−π
e−ikθ P (dθ), k = 0,±1,±2, . . .

In analogy to an argument of Székely (2003, p. 6), we find that

pk q̄k + p̄k qk =
1

4π2

∫ π

−π

∫ π

−π

(

eik(θ−θ∗) + e−ik(θ−θ∗)
)

P (dθ)Q(dθ∗)

=
1

4π2
E
(

eik(ΘP−ΘQ) + e−ik(ΘP−ΘQ)
)

=
1

2π2
Ecos(k (ΘP − ΘQ)),

where pk and qk denote the Fourier coefficients of P and Q, respectively. Hence, we can
write

|pk − qk|2 = pk p̄k + qk q̄k − (pk q̄k + p̄k qk)

=
1

4π2

(

Ecos(k (ΘP − Θ∗

P )) + E cos
(

k
(

ΘQ − Θ∗

Q

))

− 2E cos(k (ΘP − ΘQ))
)

.

Since k is an integer, the preceding equality, the definition of angular distance, and the
cosine addition theorem imply that

4π2 |pk − qk|2 = (13)

E
(

cos (k α(ΘP ,Θ∗

P )) + cos
(

k α(ΘQ,Θ∗

Q)
)

− 2 cos (k α(ΘP ,ΘQ))
)

.
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Finally, we require equation (1.444.6) of Gradshteyn and Rhyzik (1994), which states that

∞
∑

k=1

cos ((2k − 1) α)

(2k − 1)2
=

π

4

(

π

2
− α

)

, α ∈ [0, π]. (14)

The above results can be combined to show that

0 ≤ 4π2
∞
∑

k=1

|p2k−1 − q2k−1|2
(2k − 1)2

=
∞
∑

k=1

E





cos ((2k − 1)α(ΘP ,Θ∗

P ))

(2k − 1)2
+

cos
(

(2k − 1)α(ΘQ,Θ∗

Q)
)

(2k − 1)2

− 2
cos ((2k − 1)α(ΘP ,ΘQ))

(2k − 1)2

)

= E
∞
∑

k=1

cos ((2k − 1)α(ΘP ,Θ∗

P ))

(2k − 1)2
+ E

∞
∑

k=1

cos
(

(2k − 1)α(ΘQ,Θ∗

Q)
)

(2k − 1)2

− 2E
∞
∑

k=1

cos ((2k − 1)α(ΘP ,ΘQ))

(2k − 1)2

=
π

4

(

E

(

π

2
− α(ΘP ,Θ∗

P )

)

+ E

(

π

2
− α(ΘQ,Θ∗

Q)

)

− 2E

(

π

2
− α(ΘP ,ΘQ)

))

=
π

4

(

2Eα(ΘP ,ΘQ) − Eα(ΘP ,Θ∗

P ) − Eα(ΘQ,Θ∗

Q)
)

,

which implies (12) and thereby (11). The first equality follows from (13), the second is
justified by the dominant convergence theorem, the third follows from (14), and the final
equality is immediate. The proof is complete.
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