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Abstract

Economists are already familiar with the Discrete Wavelet Transform. However, a body

of work using the Continuous Wavelet Transform has also been growing. We provide a self-

contained summary on continuous wavelet tools, such as the Continuous Wavelet Transform, the

Cross-Wavelet, the Wavelet Coherency and the Phase-Di¤erence. Furthermore, we generalize

the concept of simple coherency to Partial Wavelet Coherency and Multiple Wavelet Coherency,

akin to partial and multiple correlations, allowing the researcher to move beyond bivariate analy-

sis. Finally, we describe the Generalized Morse Wavelets, a class of analytic wavelets recently

proposed. A user-friendly toolbox, with examples, is attached to this paper.

Keywords: Continuous Wavelet Transform, Cross-Wavelet Transform, Wavelet Coherency,
Partial Wavelet Coherency, Multiple Wavelet Coherency, Wavelet Phase-Di¤erence; Economic

�uctuations.

1 Introduction

Economic agents simultaneously operate at di¤erent horizons. For example, central banks have

di¤erent objectives in the short and long run, and operate simultaneously at di¤erent frequencies

(see Ramsey and Lampart 1998a). More than that, many economic processes are the result of the

actions of several agents, who have di¤erent term objectives. Therefore, economic time series are an

aggregation of components operating on di¤erent frequencies. Several questions about the data are

connected to the understanding of the time series behavior at di¤erent frequencies.

Fourier analysis allows us to study the cyclical nature of a time series in the frequency domain.

In spite of its utility, however, under the Fourier transform, the time information of a time series is

lost. Because of this loss of information, it is hard to distinguish transient relations or to identify
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when structural changes do occur. Moreover, these techniques are only appropriate for time series

with stable statistical properties, i.e. stationary time series.

As an alternative, wavelet analysis has been proposed. Wavelet analysis performs the estimation

of the spectral characteristics of a time series as a function of time, revealing how the di¤erent

periodic components of the time series change over time. As we will see, one major advantage

a¤orded by the wavelet transform is the ability to perform natural local analysis of a time series:

the wavelet stretches into a long function to measure the low frequency movements, and it compresses

into a short function to measure the high frequency movements.

The pioneering work of Ramsey and Lampart (1998a and 1998b) and Ramsey (1999 and 2002)

was followed by Gençay, Selçuk and B. Withcher (2001a, 2001b and 2005), Wong, Ip, Xie and Lui

(2003), Connor and Rossiter (2005), Fernandez (2005) and Gallegati and Gallegati (2007), among

others. All these works, however, have one common characteristic. They all rely on the discrete

wavelet transform (DWT).1

More recently, tools associated with the continuous wavelet transform (CWT) are becoming

more widely used. Raihan, Wen and Zeng (2005), Jagriµc and Ovin (2004), Crowley and Mayes

(2008), Aguiar-Conraria, Azevedo and Soares (2008), Baubeau and Cazelles (2009), Rua and Nunes

(2009), Rua (2010) and Aguiar-Conraria and Soares (2011a and b); provide some examples of useful

economic applications of these tools. In his review, Crowley (2007) also includes an introduction to

the continuous wavelet transform.2

As it will become clear, the continuous wavelet transform maps the original time series, which

is a function of just one variable � time � into a function of two variables � time and frequency,

providing highly redundant information. This suggests that it might be possible to compute the

wavelet transform for just a "careful" selection of values of the frequency and time parameters and

still not loose any information (by this we mean that it is possible to recover the original time series

from its transform). This is basically the idea of the DWT: we just compute the transform for a very

special discrete choice of the parameter values for time and frequency. This leads to a very simple

and e¢ cient iterative scheme to compute the transform. The simplicity, ease of implementation

and, most of all, its very low computational e¤ort justi�es the popularity of the DWT. Also, the

DWT is very useful when our main concern is to compress information, as it is very often the case

in signal or image processing. The most common transform among economists is probably the so-

called MODWT (maximum overlap discrete wavelet transform). The MODWT can be seen as a

kind of compromise between the DWT and the CWT; it is a redundant transform, because while

it is e¢ cient with the frequency parameters it is not selective with the time parameters, but not as

redundant as the CWT. The redundancy of the CWT has a price � essentially, the price is paid

in computational time � but it has also some advantages. One of the advantages lies on the fact

that it gives us a large freedom in selecting our wavelets, whilst this choice is more limited in the

discrete setting. But, most of all, in our opinion, the redundancy makes it much easier to interpret

the results obtained and to draw conclusions from the data. The pictures obtained with the CWT

are much easier to interpret than the results obtained with the DWT. Hence, if we are not concerned

1For an excellent review on discrete wavelet applications in economics, see Crowley (2007).
2Crowley (2010) provides an account not only on discrete and continuous wavelets but also on other time-frequency

tools, namely the Hilbert-Huang Transform and the empirical mode decomposition.
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with compression, but, instead, our main purpose is to analyze data to discover patterns or hidden

information, then redundancy may be helpful, and the CWT can be used with advantage. With the

advance of computer facilities and the availability of user-friendly toolboxes to compute the CWT,

this transform will certainly become more and more popular among the economists.

Unfortunately, we do not �nd a good single reference for someone wanting to use (continuous)

wavelet tools, such as: the continuous wavelet transform, the cross-wavelet transform, the wavelet

coherency and the wavelet phase-di¤erence. Not only the theoretic foundations are scattered among

several papers and books, but also most codes freely available imply rigid assumptions, which do

not give much freedom of choice to the researcher. For example, all the works cited in the previous

paragraph make use of the Morlet wavelet and most of the codes do not provide many alternatives

to the use of this particular wavelet.

All this helps to explain why continuous wavelets are not as popular in Economics as the discrete

wavelet transform. Another possible explanation is that the techniques associated with DWT (and

MODWT, for that matter) resemble more the traditional time series tools. E.g. Gallegati and

Gallegati (2007) use MODWT to decompose the Industrial Production of the G-7 countries since

1961 in several scales (frequencies). Then, to analyze the evolution of the volatility of real economic

activity, they estimate the wavelet variance at each scale, for each decade separately. This allows the

researcher to use wavelets and, at the same time, have a foot on the traditional time series methods.

As Yogo (2008) has shown, multiresolution wavelet analysis, which can very easily be performed

with DWT, allows the decomposition of a time series into trend, cycle, and noise. The cyclical

component of the wavelet-�ltered series closely resembles the series �ltered by the Baxter and King

(1999) bandpass �lter. More importantly, when a researcher uses the DWT he/she may have the

feeling that multivariate tools are being used. For example, Ramsey and Lampart (1998a and 1998b)

use DWT to individually analyze several time series (one each time), whose decompositions are then

studied using traditional time-domain methods, such as Granger causality tests. However, in reality,

wavelets were not used to do multivariate analysis.

Whitcher, Guttorp, Percival (2000), Gallegati (2008) � using the MODWT � and Crowley,

Mayes and Maraun (2006), Crowley and Mayes (2008) and Aguiar-Conraria et al. (2008 and 2011a

and b) � using CWT � have applied cross-wavelet analysis to uncover time�frequency interactions

between two economic time series. Still, most surely, wavelets will not become very popular in

economics until a concept analogous to the spectral partial-coherence is developed. This is one of

the contributions of this paper: to develop the concepts of wavelet multiple coherency and wavelet

partial coherency. We should note that Crowley, Mayes and Maraun (2006a and b) and Crowley

(2007) have also some work on this direction. In their case they use multivariate spectral analysis

using Hilbert wavelet pairs, originally proposed by Craigmile and Whitcher (2004).

This paper has �ve main purposes: (1) to give a self-contained summary on the most relevant

theoretical results on continuous wavelet analysis, (2) to introduce the concepts of wavelet multiple

coherency and wavelet partial coherency, (3) to introduce the economist to a new family of wavelets

that have some desirable characteristics and that some authors believe to have the potential to

become as popular as the Morlet wavelet, (4) to describe how the transforms can be implemented in

practice, and (5) to provide a user-friendly Matlab toolbox implementing the referred wavelet tools,

which the researcher can freely use and adapt to his/her own research.
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This paper proceeds as follows. In Section 2, we describe the continuous wavelet transform. We

also describe some of the characteristics of the Morlet wavelet, responsible for its popularity and a

new class of analytic wavelets, the generalized Morse wavelets (GMWs), that can potentially become

as useful as the Morlet wavelet.3 In Section 3, we introduce the cross-wavelet tools, which include

the cross-wavelet power, wavelet coherency and phase-di¤erence. Section 4 extends the concepts

of Section 3 to a multivariate setting. In each section, we construct an example to motivate and

illustrate how to apply and interpret the described wavelet tools. Section 5 summarizes some of the

results already obtained in terms of signi�cance testing. In section 6, we provide three applications

with real data. In one of them, we show evidence that corroborates the arguments of Blanchard and

Simon (2001) about the Great Moderation, who have argued that the Great Moderation started well

before 1983. In the second application, with the help of cross wavelet analysis, we study synchronism

in international stock market returns. Finally, we will illustrate the usefulness of higher order wavelet

tools, such as the partial wavelet coherencies and the partial phase-di¤erence, to study the linkages

between oil prices and the stock markets after controlling for some other macroeconomic variables.

Section 7 concludes. In appendix A, we describe how to adapt the theory in order to implement it

computationally and we include some proofs omitted in the main text. In appendix B, we give a

brief description of some software packages and we describe our toolbox, the ASToolbox, as well as

some of our computational choices.

2 Wavelet Analysis

2.1 Example 1: Motivation

We start with an example that applies the tools that will be explained later on. We realize that this

is an unorthodox way to start a paper, but we hope that this will help to motivate the reader to

invest some time in the rest of the paper.

The most common argument to justify the use of wavelet analysis over spectral analysis is the

possibility of tracing transitional changes across time. It is as if we are estimating the power spectrum

as a function of time. To illustrate this, consider the following highly stylized experiment with

simulated data. We generate 50 years of monthly data according to the following data generating

process:

yt = cos

�
2�

p1
t

�
+ cos

�
2�

p2
t

�
;+"t t =

1

12
;
2

12
; : : : ; 50; (1)

where p1 = 10 and p2 = 5, if 20 � t � 30, and p2 = 3, otherwise.
Formula (1) tells us that the time series yt is the sum of two periodic components.4 The �rst

periodic component represents a 10 year cycle, while the second periodic component shows some

transient dynamics. In the beginning, it represents a 3 year cycle that, temporarily, changes to a 5

year cycle between the second and the third decades.

3We argue that while the Morlet wavelets represent the best compromise between frequency and time localization,
GMWs allow for more �exibility, which can be useful if the researcher is speci�cally interested in having a better
frequency or time localization.

4Although highly stylized, this formulation is not as restrictive as it may seem. An autoregressive process of order
2, or higher, with an oscillatory behavior, will have a solution that involves sines and cosines. We, therefore, could
have generated similar time series using the more common auto regressive process. We chose to explicitly have a cosine
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Figure 1: (a) yt = cos( 2�p1 t) + cos(
2�
p2
t) + "t. (b) Wavelet power spectrum of yt.The cone of in�uence, which

indicates the region a¤ected by edge e¤ects, is shown with a thick black line. The color code for power ranges
from blue (low power) to red (high power). The white lines show the maxima of the undulations of the wavelet
power spectrum. (c) Global wavelet power spectrum - average wavelet power for each frequency. (d) Fourier
power spectral density.

This change in the dynamics is nearly impossible to spot in Figure 1 (a). Furthermore, if we

use the traditional spectral analysis, the information on the transient dynamics is completely lost,

as we can see in Figure 1 (d). The power spectral density estimate is able to capture both the

3-year and the 10-year cycles5 but it completely fails to capture the 5-year cycle that occurred in the

20�s. Comparing with Figure 1 (c), we observe that spectral analysis gives us essentially the same

information as the global wavelet power spectrum, which is an average, across time, of the wavelet

power spectrum.6

On the other hand, Figure 1 (b) shows the wavelet power spectrum itself. On the horizontal

axis, we have the time dimension. The vertical axis gives us the periods. The power is given by the

color. The color code for power ranges from blue (low power) to red (high power). Regions with

because the period of the oscillation is observed directly.
5We converted frequencies into period cycles.
6 In all our examples and aplications, we use the Morlet Wavelet with !0 = 6: See subsection 2.9.
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warm colors represent areas of high power. The white lines show the maxima of the undulations

of the wavelet power spectrum, therefore giving us an estimate of the cycle period. We observe a

white line on period 10 across all times, meaning that there is a permanent cycle of this period.

Both the red color and the black contour tell us that this cycle is strong and statistically signi�cant.

We are able to spot the three year period cycle that occurs between time zero and 20 and, again,

between time 30 and 50. Finally, we are also able to spot a yellow region between time 20 and 30,

with the white stripes identifying the cycle of period �ve. This means that a cycle of roughly 5-year

periodicity, relatively important in explaining the total variance of the time series and taking place

between year 20 and 30, was hidden by the Fourier power spectrum estimate.

Figure 1 (b) clearly illustrates the big advantage of wavelet analysis over spectral analysis. While

the Fourier transform is silent about changes that happen across time, with wavelets we are able

to estimate the power spectrum as a function of time and, therefore, we do not loose the time

dimension. The wavelet power spectrum is able to capture not only the 3-year and 10-year cycles,

but also to capture the change that occurred between years 20 and 30.

2.2 Notations and Conventions

In what follows, L2 (R) denotes the set of square integrable functions, i.e. the set of functions

de�ned on the real line and satisfying
R1
�1 jx(t)j

2 dt < 1;with the usual inner product hx; yi :=R1
�1 x(t)y�(t)dt and associated norm kxk := hx; xi 12 : Here, and in what follows, the asterisk super-
script is used to denote complex conjugation and := means "by de�nition". Since the (squared)

norm of x(t), kx(t)k2 =
R1
�1 jx(t)j

2dt is usually referred to as the energy of x, the space L2 (R) is
also known as the space of �nite energy functions.

In these notes, we always use the convention g(t)$ G(!) to denote a Fourier pair, i.e. we denote

by the corresponding capital letter the Fourier transform of a given function. Hence, if x(t) 2 L2 (R),
X(!) will denote its Fourier transform, here de�ned as X(!) :=

R1
�1 x(t)e�i!tdt:7

The well-known Parseval relation, hx(t); y(t)i = 1
2� hX(!); Y (!)i; valid for all x(t); y(t) 2 L

2 (R) ;
is an important result from which the Plancherel identity immediately follows kx(t)k2 = 1

2� kX(!)k
2 :

2.3 Wavelets

The minimum requirement imposed on a function  (t) 2 L2 (R) to qualify for being a mother
(admissible or analyzing) wavelet is that it satis�es a technical condition, usually referred to as the

admissibility condition, which reads as follows:

0 < C :=

Z 1

�1

j	(!)j
j!j d! <1; (2)

see Daubechies (1992). The constant C above is called the admissibility constant.

We should point out that the square integrability of  (t) is a very mild decay condition and

that, in practice, much more stringent conditions are imposed. In fact, for the purpose of providing

a useful time-frequency localization, the wavelet must be a reasonable well localized function, both

7With the above convention of the Fourier Transform, ! is an angular (or radian) frequency. The relation to the
more common Fourier frequency f is given by f = !

2�
:
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Figure 2: A typical wavelet

in the time domain as well as in the frequency domain. For functions with su¢ cient decay, it turns

out that the admissibility condition (2) is equivalent to requiring that

	(0) =

Z 1

�1
 (t)dt = 0; (3)

again, see Daubechies (1992). This means that the function  has to wiggle up and down the

t�axis, i.e. it must behave like a wave; this, together with the assumed decaying property, justi�es
the choice of the term wavelet (originally, in French, ondelette) to designate  � Figure 2. It is this

property that allows for an e¤ective localization in both time and frequency, contrary to the Fourier

transform, which decomposes the signal in term of sines and cosines, i.e. in�nite duration waves.

2.4 The Continuous Wavelet Transform

Starting with a mother wavelet  , a family  �;s of �wavelet daughters" can be obtained by simply

scaling and translating  :

 �;s(t) :=
1p
jsj
 

�
t� �
s

�
, s; � 2 R; s 6= 0; (4)

where s is a scaling or dilation factor that controls the width of the wavelet and � is a translation

parameter controlling the location of the wavelet. Scaling a wavelet simply means stretching it (if

jsj > 1) or compressing it (if jsj < 1), while translating it simply means shifting its position in time.
Given a time series x(t) 2 L2 (R), its continuous wavelet transform (CWT) with respect to the

wavelet  is a function of two variables, Wx; (� ; s):

Wx; (� ; s) =

Z 1

�1
x(t)

1p
jsj
 �
�
t� �
s

�
dt: (5)

The position of the wavelet in the time domain is given by � ; while its position in the frequency
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domain is given by s (the relation between s and the frequency will soon be clearer). Therefore the

wavelet transform, by mapping the original series into a function of � and s, gives us information

simultaneously on time and frequency. The formulas of the wavelet and the Fourier transforms are

very similar. The main di¤erences are that in the Fourier transform we have no time localization

parameter and that we have cosine and sine functions instead of a wavelet function.

By the well-known properties of the Fourier transform, one immediately sees that the CWT (5)

may also be represented in the frequency, as

Wx(� ; s) =

p
jsj
2�

Z 1

�1
	�(s!)X(!)ei!�d!: 8 (6)

2.5 Inversion of CWT

The importance of the admissibility condition (2) comes from the fact that its ful�lment guarantees

that the energy of the original function x(t) is preserved by the wavelet transform, i.e., the following

Parseval-type relation holds:
R1
�1 jx(t)j

2dt = 1
C 

R1
�1

R1
�1 jWx(� ; s)j2 d�dss2

;which, in turn, ensures

the possibility of recovering x(t) from its wavelet transform. In fact, due to the high redundancy

of this transform (note that a function of one variable is mapped into a bivariate function), many

reconstruction formulas are available. For example, when the wavelet  is real-valued, it is possible

to reconstruct x(t) by using the formula

x(t) =
2

C 

Z 1

0

�Z 1

�1
Wx(� ; s) �;s(t)d�

�
ds

s2
; (7)

showing that no information is lost if we restrict the computation of the transform only to positive

values of the scaling parameter s, which is a usual requirement, in practice.

One can also limit the integration over a selected range of scales, performing a band-pass �ltering

of the original series. To our knowledge, except in Aguiar-Conraria et al. (2008) and Aguiar-Conraria

and Soares (2011b) nobody has used the inversion formula as a band-pass �lter. Our experience

tell us that not much is gained when compared to the more common band-pass �lters, such as the

Baxter and King (1999) and Christiano and Fitzgerald (2003) �lters.

2.6 Wavelet Power Spectrum and Wavelet Phase

In analogy with the terminology used in the Fourier case, the (local) wavelet power spectrum (some-

times called scalogram or wavelet periodogram) is de�ned as

(WPS)x(� ; s) = jWx(� ; s)j2 : (8)

The wavelet power spectrum may be averaged over time for comparison with classical spectral

methods. When the average is taken over all times, we obtain the global wavelet power spectrum:

(GWPS)x(s) =

Z 1

�1
jWx(� ; s)j2 d�: (9)

8When the wavelet  is implicit from the context, we abbreviate the notation and simply write Wx for Wx; .
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When the wavelet  is complex-valued, the corresponding wavelet transformWx(� ; s) is also complex-

valued. In this case, the transform can be separated into its real part, <fWx(� ; s)g, and imaginary
part, =fWx(� ; s)g, or in its amplitude, jWx(� ; s)j, and phase (or phase-angle), �x(� ; s) : Wx(� ; s) =

jWx(� ; s)j ei�x(�;s). The phase-angle �x(� ; s) of the complex number Wx(� ; s) can be obtained from

the formula:

�x(� ; s) = Arctan
�
=fWx(� ; s)g
<fWx(� ; s)g

�
: 9

For real-valued wavelet functions, the imaginary part is constantly zero and the phase is, there-

fore, unde�ned. Hence, in order to separate the phase and amplitude information of a time series, it

is important to make use of complex wavelets. In this case, it is convenient to choose a wavelet  (t)

whose Fourier transform is supported on the positive real-axis only, i.e. is such that 	(!) = 0 for

! < 0: A wavelet satisfying this property is called analytic or progressive. When  is analytic and

x(t) is real, reconstruction formulas involving only positive values of the scale parameter s are still

available; in particular, if the wavelet satis�es 0 < jK j < 1; where K :=
R1
0

	�(!)
! d!; then one

can use the following reconstruction formula, known as the Morlet formula, which is particularly

useful for numerical applications:

x(t) = 2<
�
1

K 

Z 1

0
Wx(t; s)

ds

s3=2

�
; (10)

see, e.g. Farge (1992) or Holschneider (1995).

When the wavelet  is analytic, the corresponding wavelet transform is called an analytic wavelet

transform (AWT).

Remark 1 Throughout the rest of this paper, we assume that all the wavelets considered are analytic
and hence, that the wavelet transform is computed only for positive values of the scaling parameter s.

For this reason, in all the formulas that would normally involve the quantity jsj, this will be replaced
by s.

2.7 Localization Properties

The Heisenberg uncertainty principle was derived in quantum mechanics. It basically stated that

certain pairs of physical properties, such as position and momentum, cannot be simultaneously

known to arbitrarily high precision: The more precisely one property is measured, the less precisely

the other can be measured. Applied in our context, if we want precision in the frequency we have

give up some precision in time. The Fourier transform does that: it has an excellent frequency

localization but the time information is lost. With wavelets, information on both is kept. In this

subsection, we will exactly describe this trade o¤.

9We use Arctan to denote the following extension of the usual principal component of the arctan function (whose

range is (��=2; �=2)): Arctan
�
b
a

�
=

8>>>>>><>>>>>>:

Arctan ( b
a
) a > 0;

Arctan ( b
a
) + � a < 0; b � 0;

Arctan ( b
a
)� � a < 0; b < 0;

�=2 a = 0; b � 0;
��=2 a = 0; b < 0:
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In order to describe the time-frequency localization properties of the CWT, we have to assume

that both the wavelet  (t) and its Fourier transform	(!) are well localized functions. More precisely,

these functions must have su¢ cient decay to guarantee that the quantities de�ned below are all

�nite.10 We de�ne the center in time of the wavelet  , �t; , by

�t; =
1

k k2
Z 1

�1
t j (t)j2 dt;

and, as a measure of concentration of  around its center, we take the standard deviation in time

(also known as the radius in time), �t; = 1
k k

nR1
�1

�
t� �t; 

�2 j (t)j2 dto 1
2
: The center in frequency,

�!; , and the standard deviation (or radius) in frequency, �!; ; are de�ned in a similar way:

�!; =
1

k	k2
Z 1

�1
! j	(!)j2 d! (11)

and �!; = 1
k	k

nR1
�1

�
! � �!; 

�2 j	(!)j2 d!o 1
2
.11

The quantities �t and �t are the mean and standard deviation of the probability density function

(p.d.f.) de�ned by j (t)j2=k k2: The same is true for �!; �! and j	(!)j2=k	k2: Therefore, it should
not come as a surprise that the interval [�t � �t; �t + �t] is the set where  (t) attains its �most
signi�cant�values whilst the interval [�! � �!; �! + �!] plays the same role for 	(!). The rectangle

H := [�t � �t; �t + �t]� [�! � �!; �! + �!] (12)

in the (t; !)�plane is called the Heisenberg box or window for the function  . We then say that  
is localized around the point (�t; �!) of the time-frequency plane, with uncertainty given by �t�!:

In our context, the Heisenberg uncertainty principle establishes the following lower bound:

�t�! �
1

2
: (13)

Recalling that the wavelet daughter  �;s is obtained from its mother  by a simple translation by

� and a scaling by s, it is easy to show that the center and radius in time of  �;s are given by

�t; �;s = � + s�t and �t; �;s = s�t and that the center and radius in frequency of  �;s are given by

�!; �;s =
�!
s and �!; �;s =

�!
s . In particular, if the mother wavelet  is centered at t = 0, i.e. if

�t = 0,
12 then the window associated with  �;s becomes

H �;s = [� � s�t; � + s�t]�
h�!
s
� �!

s
;
�!
s
+
�!
s

i
: (14)

In this case, one has that Wx (� ; s) �
R �+s�t
��s�t x(t) 

�
�;s(t)dt and, by the Parseval relation, Wx (� ; s) �

2�
R �!

s
+�!

s
�!
s
��!

s

X(!)	s;� (!)d!:

We thus conclude that the continuous wavelet transform Wx(� ; s) gives us temporal information

on x(t) around the instant t (�) = � , with precision s�t, and frequency information about X(!)

10The precise requirements are that j (t)j < C(1 + jtj)�(1+�) and j	(!)j < C(1 + j!j)�(1+�), for C <1, � > 0.
11 If the wavelet  is known from the context, we will suppress the index  in the notation of the above quantities,

e.g. we will simply use �t for �t; , etc.
12Note that this can easily be achieved by an appropriate translation.
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Figure 3: Windows associated with a Continuous Wavelet Transform

around the frequency

!(s) =
�!
s
; (15)

with precision �!
s .

Although the area of the windows are constant (given by 4�t�!), their dimensions change accord-

ing to the scale; the windows stretch for large values of s (broad scales s �low frequencies !s = �!
s )

and compress for small values of s (�ne scale �high frequencies �!
s ). This is what some authors

mean when they say that one major advantage a¤orded by the wavelet transform � when compared

with the most famous alternative, the short time or windowed Fourier transform � is its ability

to adjust to the local analysis of a time series in the sense that the length of the wavelets varies

endogenously: it stretches into a long wavelet function to measure the low frequency movements;

and it compresses into a short wavelet function to measure the high frequency movements.

2.8 Scale/Frequency Relation and Fourier Factor

Strictly speaking, the wavelet transform provides us a time-scale representation of the function being

analyzed and not a time-frequency representation. Formula (15) is commonly used to convert scales

into frequencies. However, we should have in mind that this inverse relation between scale and

frequency corresponds to a particular interpretation and that there are other meaningful ways of

assigning frequencies to scales. As Meyers et al. (1993) say, "for a general wavelet, the relation

between scale and the more common Fourier wavelength is not necessarily straightforward; for

example, some wavelets are highly irregular without any dominant periodic components. In those

cases it is probably a meaningless exercise to �nd a relation between the two disparate measures of

distance." This aspect, as we explain later, makes the choice of the particular wavelet an important

option.

There are at least three di¤erent meaningful ways to convert scales into frequencies. In Lilly

and Olhede (2009), the authors consider, apart from the value of �!; given by (11), which they

call the energy-frequency, and which, for convenience, we will now denote by !E , two other speci�c

frequencies associated with the wavelet: the peak frequency, !P , de�ned as the frequency at which

the magnitude of the Fourier transform of  , j	(!)j, is maximized, i.e. j	(!P )j = sup!2R j	(!)j;

11



and the central instantaneous frequency, !I , de�ned as the value that the time-varying instantaneous

frequency of the wavelet takes at its center (here assumed to be 0), i.e. !I = �! (0);where �!(t), is the

time-varying instantaneous frequency of the wavelet, de�ned by �! (t) = d
dt=fln (t)g: To each of

the three speci�c frequencies, !E ; !
P
 and !

I
 they associate an interpretation of scale as frequency.

More precisely, they de�ne

!(s) =
! 
s
; (16)

with ! denoting any of the three speci�c frequencies. Note that !(s), as well as !E ; !
P
 and !

I
 , are

all angular frequencies. If we prefer a relation between the scale and the usual "Fourier" frequency

f (expressed in cycles per unit time), we have

f(s) =
! 
2�s

: (17)

Ff = 2�
! 
is called Fourier factor of the wavelet and is used, in the programs, to convert scales to

periods.

To see that the three correspondences !(s) = ! 
s , ! = !P ; !

E
 ; !

I
 are all meaningful (although

in di¤erent senses) we refer the reader to the mentioned paper by Lilly and Olhede (2009).

Naturally, it will be convenient to choose a wavelet whose associated frequencies !E ; !
P
 and !

I
 

have all the same (or, at least, very similar) value, since this will give us a uni�ed view of the relation

between frequency and scale.

2.9 Analytic Wavelets

The admissibility condition (2) is a very weak condition and, in theory, there are in�nitely many

wavelets. In practice, which wavelet to use is an important aspect to be taken into account, and will

be dictated by the kind of application one has in mind. To study the synchronism between di¤erent

time series, it is important to select a wavelet whose corresponding transform contains information

on both amplitude and phase, and hence, a complex-valued analytic wavelet is a natural choice.

As stated in Lilly and Olhede (2009), the analytic wavelet transform (AWT) is the basis for

the wavelet ridge method, which recovers time-varying estimates of instantaneous amplitude, phase,

and frequency of a modulated oscillatory signal from the time/scale plane (Delprat et al. 1992 and

Mallat 1998). On the other hand, the analytic wavelet transform can also be useful for application

to very time-localized structures Tu, Hwang and Ho (2005). The many useful features of analytic

wavelets are covered in more depth by Selesnick, Baraniuk and Kinsbury (2005); see also Olhede

and Walden (2002) and Lilly and Olhede (2009).

In this section, we summarize some properties that explain why the Morlet wavelet is the most

used wavelet in practice (to our knowledge, every application of the continuous wavelet transform

in Economics has used this choice). We also present a particularly important family of analytic

wavelets, the generalized Morse wavelets (GMWs), which are more �exible and can be used as

an alternative to the Morlet wavelet when one prefers better time localized or frequency localized

wavelets. The results of this section are derived from the papers by Olhede and Walden (2002) and

Lilly and Olhede (2009 and 2010).
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2.9.1 Morlet Wavelets

The Morlet wavelets are a one-parameter family of functions, �rst introduced in Goupillaud, Gross-

man and Morlet (1984), and given by

 !0 (t) = Kei!0te�
t2

2 : (18)

Strictly speaking, the above functions are not true wavelets, since they fail to satisfy the admissibility

condition.13 For  !0(t) to have unit energy, the normalizing constant K must be chosen as

K = ��1=4; (19)

which, from now on, we will always assume to be true. The Fourier transform of the normalized

wavelet is given by

	!0(!) =
p
2�1=4 e�

1
2
(!�!0)2 (20)

and, hence, 	!0(0) =
p
2�1=4 e�!0

2=2 6= 0. However, for su¢ ciently large !0, e.g. !0 > 5, the values
of 	!0(!) for ! � 0 are so small that, for numerical purposes, 	!0 can be considered as an analytic
wavelet; see Foufoula-Georgiou and Kumar (1994).

The Morlet wavelet became the most popular of the complex valued wavelets mainly because of

four interesting properties. First, for numerical purposes, as we have just seen, it can be treated as

an analytic wavelet. Second, the peak frequency, the energy frequency and the central instantaneous

frequency of the Morlet wavelet are all equal and given by

!P !0
= !E !0

= !I !0
= !0; (21)

facilitating the conversion from scales to frequencies. Using formula (17), and for the most common

choice choice of !0 = 6, we have that f = 6
2�s �

1
s : Third, the Heisenberg box area reaches its lower

bound with this wavelet, i.e. the uncertainty attains the minimum possible value: �t; !0�!; !0 =
1
2 : In this sense, the Morlet wavelet has optimal joint time-frequency concentration. Finally, the

time radius and the frequency radius are equal, �t; !0 = �!; !0
= 1p

2
;and, therefore, this wavelet

represents the best compromise between time and frequency concentration. To our knowledge, at

least in economics, every paper uses some value of !0 2 [5; 6] :

2.9.2 Generalized Morse Wavelets

In spite of its usefulness, the Morlet wavelet is not very versatile, because it depends on just one

parameter. If one is interested in having a better localization in frequency (or in time) one cannot

adjust the Morlet wavelet. On the other hand, it is quite common to have referee reports asking

for the robustness of the results to the choice of the Morlet wavelet (even if you are very careful at

explaining the optimal characteristics of the Morlet wavelet).

Finally, although it is true that the Morlet wavelet has optimal joint time-frequency concentration

in the Heisenberg sense, it is also true that other criteria are available. �The whole set of generalized

13 In order to ful�ll the admissibility condition, a correction term has to be added, as:  !0 (t) =

K
�
ei!0t � e�!

2
0=2
�
e�t

2=2:

13



Morse wavelets are optimally localized in that they maximize the eigenvalues of a joint time-frequency

localization operator (: : :) and indeed this is the way the generalized Morse wavelets were initially

constructed." � in Lilly and Olhede (2009).

The generalized Morse wavelets (GMWs) are a two-parameter family of wavelets, de�ned, in the

frequency domain, by

	�;
(!) = K�;
 H(!)!
�e�!



(22)

where K�;
 is a normalizing constant and H(!) is the Heaviside unit step function.

To be a valid wavelet, one must have � > 0 and 
 > 0. By varying these two parameters, the

generalized Morse wavelets can be given a broad range of characteristics while remaining exactly

analytic. In fact, these wavelets form a very wide family that subsumes many other types of wavelets.

Lilly and Olhede showed that the generalized Morse wavelets encompass two other popular families

of analytic wavelets: the Cauchy or Klauder wavelet family (for 
 = 1), the Paul wavelets (which

correspond to the case 
 = 1 and � 2 N) and the analytic �Derivative of Gaussian" (DOG) wavelets
(for 
 = 2).

Unfortunately, contrary to the Morlet case, for the generalized Morse wavelets, we do not have

a single way to convert scales into frequencies. This is so because the peak frequency, !P�;
 =�
�



�1=

; is di¤erent from the energy frequency, !E�;
 =

1
21=


�( 2�+2



)

�( 2�+1



)
; which is di¤erent from the

central instantaneous frequency, !I�;
 =
�(�+2



)

�(�+1


)
= 21=
!E�=2;
 : For the economist, used to think about

frequencies, this is an obvious disadvantage of this family of wavelets.

2.9.3 Measures for the Morlet and the Generalized Morse Wavelets

A table with the localization measures (time-radius, frequency-radius and Heisenberg area) for GMW

 �;
 , for some values of � and 
 is given below. In the last row, we also indicate the measures for

the Morlet wavelet.14

As we have said before, in economics every single application of the CWT that we know of

uses the Morlet with !0 2 [5; 6]: And there are good reasons for this choice, as we can in Table 1.
However, if for a particular application the researcher needs to have a better frequency localization,

then the GMW provides a good alternative, because it is �exible while remaining exactly analytic.

For example, for � = 10 and 
 = 10 the Heisenberg uncertainty (0:529) is close to its lower bound

and the frequency accuracy is very good: �f = 0:075 (with �t = 7:1): If instead the researcher wants

a very well time localized wavelet, then, with � = 10 and 
 = 1=2; one would have good localization

in time, �t = 0:004; bad localization in frequency, �f = 140; and the Heisenberg uncertainty, 0.54,

is not far from its lower bound.

The best compromise is achieved by the Morlet wavelet, however if one wants to explore the

trade o¤ between time and frequency precision then, probably, the generalized Morse wavelets are

the best wavelet function available.

14 In our toolbox we provide a code that allows the researcher to compute these measures for any combination of �
and 
: The formulas for the radius in time and in frequency, needed to compute the Heisenberg uncertainty, are given
in Lilly and Olhede (2009). The same code may be used to calculate !P�;
 , !

E
�;
 , !

I
�;
 .
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Table 1: Measures for some members of the familly of generalized Morse wavelets

3 Cross-Wavelet Analysis

In many applications, one is interested in detecting and quantifying relationships between two

non-stationary time series. The concepts of cross-wavelet power, wavelet coherency and wavelet

phase-di¤erence are natural generalizations of the basic wavelet analysis tools that enable us to

appropriately deal with the time-frequency dependencies between two time series.

Remark 2 From now on, all the quantities we are going to introduce (e.g. cross-wavelet transform,

wavelet coherency, etc.) are functions of time and scale (or frequency). In order to simplify the

notation, we will describe these quantities for a speci�c value of the argument (� ; s) and this value

of the argument will, unless strictly necessary, be omitted in the formulas.

3.1 Cross-Wavelet Transform and Cross-Wavelet Power

The cross-wavelet transform (XWT) of two time series, x(t) and y(t), �rst introduced by Hudgins,

Friehe and Mayer (1993), is simply de�ned as

Wxy =WxW
�
y ; (23)
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where Wx and Wy are the wavelet transforms of x and y, respectively.15 The cross-wavelet power is

(XWP )xy = jWxyj : (24)

While we can interpret the wavelet power spectrum as depicting the local variance of a time series,

the cross-wavelet power of two time series depicts the local covariance between these time series at

each time and frequency. Therefore, the cross-wavelet power gives us a quanti�ed indication of the

similarity of power between two time series.

3.2 Complex Wavelet Coherency

In analogy with the concept of coherency used in Fourier analysis, given two time series x(t) and

y(t) one can de�ne their complex wavelet coherency %xy by:

%xy =
S (Wxy)

[S (jWxj2)S (jWyj2)]1=2
; (25)

where S denotes a smoothing operator in both time and scale; smoothing is necessary, because,

otherwise, coherency would be identically one at all scales and times.16 Time and scale smoothing

can be achieved by convolution with appropriate windows; see Cazelles, Chavez, de Magny, Guégan

and Hales (2007) or Grinsted, Moore and Jevrejeva (2004), for details.

3.3 Wavelet Coherency and Phase-Di¤erence

The complex wavelet coherency can be written in polar form, as %xy =
��%xy�� ei�xy : The absolute

value of the complex wavelet coherency is called the wavelet coherency and is denoted by Rxy, i.e.

Rxy =
jS (Wxy) j

[S (jWxj2)S (jWyj2)]1=2
; (26)

with 0 � Rxy(� ; s) � 1:17 The angle �xy of the complex coherency is called the phase-di¤erence

(phase lead of x over y), i.e.

�xy = Arctan
�
= (S (Wxy))

< (S (Wxy))

�
(27)

Some authors prefer a slightly di¤erent de�nition, Arctan
�
=(Wxy)
<(Wxy)

�
: In this case, one has �xy =

�x � �y;
18 hence the name phase-di¤erence. The advantage of this de�nition is that because the

phase-di¤erence is not a¤ected by the smoothing choice, it is fully consistent with the individual

phases.

A phase-di¤erence of zero indicates that the time series move together at the speci�ed time-

frequency; if �xy 2 (0; �2 ), then the series move in phase, but the time series x leads y; if �xy 2 (�
�
2 ; 0),

then it is y that is leading; a phase-di¤erence of � (or ��) indicates an anti-phase relation; if
15When y = x, we obtain the Wavelet Power Spectrum Wxx = jWxj2 = (WPS)x:
16The same happens with the Fourier coherency.
17At points (� ; s) for which S

�
jWx (� ; s) j2

�
S
�
jWy (� ; s) j2

�
= 0 we de�ne Rxy(� ; s) = 0:

18To be more precise, the above relation holds after we convert �x � �y into an angle in the interval [��; �].
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Figure 4: Phase-di¤erence circle

�xy 2 (�2 ; �), then y is leading; time series x is leading if �xy 2 (��;�
�
2 ). This is illustrated in

Figure 4.

One can easily convert the phase-di¤erence into the instantaneous time-lag between the two time

series x and y:

(�T )xy(� ; s) =
�xy(� ; s)

!(s)
; (28)

where !(s) is the angular frequency that corresponds to the scale s.

3.4 Example 2: The Cross-Wavelet and the Phase-Di¤erence

Consider now two time series that share two common cycles, with some delays:

xt = sin

�
2�

3
t

�
+ 3 sin

�
2�

6
t

�
+ "x;t; t = 0;

1

12
;
2

12
; : : : ; 50; (29)

yt =

8><>:
4 sin

�
2�
3 (t+

5
12)
�
� 3 sin

�
2�
6 (t�

10
12)
�
+ "y;t; t = 0; 112 ;

2
12 ; : : : ; 25;

4 sin
�
2�
3 (t�

5
12)
�
� 3 sin

�
2�
6 (t+

10
12)
�
+ "y;t; t = 25 + 1

12 ; 25 +
2
12 ; : : : ; 50;

(30)

see Figure 5 (a). Looking at the formulas, it is clear that xt and yt share 3-year and 6-year cycles.

However, how their cycles relate to each other evolves with time and is di¤erent across frequencies.

Consider the shorter period cycle, the 3-year cycle. The cycles are positively correlated. For the

�rst half of the sample, the yt cycle precedes the xt cycle by 5 months; in the second half of the

sample the yt cycle lags the xt cycle.

These features are captured in Figure 5 (b)-(d). On the left, we have the wavelet coherency. On

the right we have the phases and phase-di¤erence computed for two di¤erent frequency bands. On

the top, we compute the phases for the 2:5 � 3:5 year frequency band. In the bottom, we consider
the 5 � 7 year frequency band. The green line represents the yt phase and the blue represents the
xt phase. The red line represents the phase-di¤erence between yt and xt.

That both series have common and highly correlated 3-year and 6-year cycles is revealed by
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Figure 5: (a) xt (blue line) given by Eq.(29) and yt (red line) given by Eq.(30). (b) Wavelet coherency -
the cone of in�uence is shown with a thick black line. Coherency ranges form blue (low coherency) to red
(high coherency). (c) - (d) Phases and phase-di¤erence. The green line represents the yt phase, the blue line
the xt phase and the red line represents the phase-di¤erence between yt and xt; (c) is for the 2:5 � 3:5 year
frequency band and (d) for the 5 � 7 year frequency band.

the regions of strong coherency around those frequencies. That the 3-year cycles are in phase

(positively correlated) is revealed by the phase-di¤erence (red line in the upper right graph), which

is consistently situated between ��=2 and �=2: Finally, we can see that the 3-year yt cycle was
leading for the �rst half of the time and lagging in the second half, by noting that in the �rst half

of the sample the phase-di¤erence is between zero and �=2; while in the second half it is between

��=2 and zero.
Looking at the 6-year cycle, we observe that the series are out of phase (negatively correlated)

with xt leading in the �rst half and yt leading in the second half of the sample.

In this example, we observe that not only the wavelets are adequate to capture structural breaks

and transient relations, but that they can also distinguish between di¤erent relations that occur at

the same time but at distinct frequencies.
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4 Higher Order Coherencies: Partial and Multiple Coherencies

When more than two series are given and when the power in one of them is to be determined or

when the association between two of them is to be assessed, it is often important to account for the

interaction with the other series. In this context, and in analogy with the Fourier spectral case, it

makes sense to introduce the concepts of wavelet multiple coherency and wavelet partial coherency.

As stated by Priestley (1992, p.681): "(...) the whole �apparatus�of multivariate linear regression

theory can be taken over (almost unchanged) and applied to the study of multivariate spectral

relationships. In particular, the ideas of �multiple correlation�and �partial correlation� (...) have

immediate analogues in the frequency domain, where they become �multiple coherency�and �partial

coherency�."

The concepts of multiple wavelet coherency and partial wavelet coherency are simple general-

izations of the corresponding concepts of (Fourier) multiple coherency and partial coherency to the

time-frequency plane. The formulas used to compute these quantities are, therefore, strongly based

on the corresponding formulas of multiple correlation and partial correlation.

4.1 Notations

Let p (p > 2) time series x1;x2; : : : ;xp, with xi = fxin; n = 0; : : : ; T � 1g ; be given. Just as in
the case of ordinary wavelet coherency, to compute multiple and partial wavelet coherencies it is

necessary to perform a smoothing operation on the cross-spectra. We will denote by Sij the smoothed

version of Wij , i.e.

Sij = S (Wij) ; (31)

where S is a certain smoothing operator.

Let S denote the p� p matrix of all the smoothed cross-wavelet spectra Sij , i.e.

S =

266664
S11 S12 � � � S1p

S21 S22 � � � S2p
...

...
. . .

...

Sp1 Sp2 � � � Spp

377775 (32)

The above matrix depends on the speci�c value (� ; s) at which the spectra are being computed.

Also note that the matrix S is an Hermitian matrix, i.e. S = S H with the symbol H denoting

conjugate transpose; in fact, we have Sij = S�ji, for all i 6= j and Sii = S
�
jWij2

�
is a real (positive)

number for all i.

Finally, for a given matrix A, we denote by Adij the cofactor of the element in position (i; j) of

A, i.e.

Adij = (�1)(i+j) detA
j
i ;

where Aji denotes the sub-matrix obtained from A by deleting its ith row and jth column. For

completeness, we also use the notation Ad := detA.
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4.2 Multiple Wavelet Coherency

The squared multiple wavelet coherency between the series x1 and all the other series x2; : : : ;xp will

be denoted by R21(23:::p) and is given by the formula

R21(23:::p) = 1�
S d

S11S d
11

(33)

The multiple wavelet coherency R1(23:::p) is de�ned as the positive square root of the above

quantity. We will also use the shorter notation R21(q) for R
2
1(2:::p) i.e. we will simply write q to

designate all the series indexes except the index 1.

4.3 Partial Wavelet Coherency

The complex partial wavelet coherency of x1 and xj (2 � j � p) allowing for all the other series will

be denoted by %1 j:qj and is given by

%1 j:qj = �
S d
j1q

S d
11 S d

jj

; (34)

where qj is a short notation for all the indexes in q excluding the index j, i.e. qj = f2; : : : ; pg n fjg.
The partial wavelet coherency of x1 and xj allowing for all the other series, denoted by r1 j:qj , is

de�ned as the absolute value of the above quantity, i.e.

r1 j:qj =
jS d

j1jq
S d
11S

d
jj

; (35)

whilst the squared partial wavelet coherency of x1 and xj allowing for all the other series is given by

r21 j:qj =
jS d

j1j2

S d
11S

d
jj

: (36)

4.4 Formulas in Terms of Simple (Complex) Coherencies

The above formulas for the multiple and partial coherencies were given in terms of the smoothed

spectra Sij . We can also de�ne these coherencies in terms of simple complex coherencies (i.e. wavelet

complex coherencies between pairs of series).

Corresponding to the matrix S , we now consider the matrix C of all the complex wavelet

coherencies %ij , i.e.

C =

266664
1 %12 � � � %1p

%21 1 � � � %2p
...

...
. . .

...

%p1 %p2 � � � 1

377775 (37)

Note that %jj =
S(Wjj)

(S(jWj j2)S(jWj j2))1=2
=

S(jWj j2)
S(jWj j2) = 1: As S , the matrix C is also an Hermitian matrix,

i.e. %ij = %�ji.
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Then, we can de�ne the multiple and partial wavelet coherencies by the following alternative

formulas:

R21(q) = 1�
C d

C d
11

; (38)

%1 j:qj = �
C d
j1q

C d
11C

d
jj

; (39)

and

r1 j:qj =
jC d
j1jq

C d
11C

d
jj

: (40)

The proof of the above results is an application of the multilinear character of a determinant;

we illustrate the result for the case of the squared multiple coherency in Appendix A.

4.5 Expression of Multiple Coherency in Terms of Partial Coherencies

The squared multiple coherency can be expressed in terms of squared partial coherencies, by using

the following formula:

1�R21(2:::p) = (1� r
2
12)(1� r213:2) : : : (1� r21p:23:::(p�1)): (41)

The proof of the above result is given in Appendix A.

4.6 Partial Phase-Di¤erence

Having de�ned the complex partial wavelet coherency %1 j:qj between the series x1 and the series

xj , after removing the in�uence of all the remaining series, we now de�ne the partial phase-delay

(phase-di¤erence) of x1 over xj , given all the other series, as the angle of %1 j:qj . We will denote

this phase-di¤erence by �1 j:qj , i.e.

�1 j:qj = Arctan

 
=(%1 j:qj )
<(%1 j:qj )

!
(42)

4.7 Formulas For Three Variables

Let us illustrate the use of the above formulas for the case where we just have three series x1, x2
and x3. In the appendix we show that, in this case, we have

R21(2 3) =
R212 +R

2
13 � 2< (%12 %23 %�13)
1�R223

(43)

For the complex partial wavelet coherency %1 2:3, formula (39) gives

%1 2:3 =
%12 � %13%�23p

(1�R213)(1�R223)
(44)
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4.8 Example 3: Partial Coherency and Phase-Di¤erence

Consider three time series that share two common cycles, with some leads and delays.

xt = sin
�
2�
3 t
�
+ 3 sin

�
2�
6 t
�
+ "x;t

yt = 4 sin
�
2�
3 (t+

5
12)
�
+ 3 sin

�
2�
6 (t�

10
12)
�
+ "y;t

zt = 3 cos
�
2�
6 t
�

; t = 0;
1

12
;
2

12
; : : : ; 50:

Figure 6: (a) Wavelet coherency between xt and yt; (b) Wavelet partial coherency between xt and yt; after
controlling for zt; (a.2) - (a.3) Phase-di¤erence; (b.2) - (b.3) Partial phase-di¤erence.

Looking at the formulas, it is clear that xt and yt share 3-year and 6-year cycles. While yt leads

xt in the shorter period cycle, the opposite happens in the longer period cycle. In this example, we

added a third variable, zt; which shares the six year cycle with xt and zt: The cycles are positively

correlated.

In Figure 6, on the left, we compute the wavelet coherency between yt and xt. On the right,

we compute the partial wavelet coherency, after controlling for zt: The results are what one would
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expect. While the wavelet coherency and phase-di¤erence (on the left) captures the relation between

both cycles, on the right, after controlling for zt; which shares the 6 year cycle with xt an yt; only

the three year cycle relations are captured. And actually these relations are captured even better

than with the simple coherency. This is to be expected: when there are several cycles in�uencing

the series at the same time, after controlling for some of those, we should get a cleaner view of the

others.

The concept of wavelet partial coherency is an extension of the concept of wavelet coherency

just like partial correlation is an extension of the simple correlation. With this tool, one can move

beyond uni and bivariate wavelet analysis to higher order variate wavelet analysis.

5 Signi�cance Tests

As with other time series methods, it is important to assess the statistical signi�cance of the results

obtained by wavelet analysis. The seminal paper by Torrence and Compo (1998) is one of the

�rst works to discuss signi�cance testing for wavelet and cross-wavelet power. Based on a large

number of Monte Carlo simulations, Torrence and Compo concluded that the local wavelet power

spectrum of a white noise or an AR(1) process, normalized by the variance of the time series,

is well approximated by a chi-squared distribution. Torrence and Compo also derived empirical

distributions for cross-wavelet power. If speed is an issue, then having these distributions derived is

a plus. However, if computer time is not a constraint, given that these distributions were derived

by Monte Carlo simulations, then one might as well just do the Monte Carlo simulations directly.

Ge (2007 and 2008) reconsiders the discussion of the signi�cance testing for the wavelet, cross-

wavelet power and wavelet coherency. The author concentrates on the use of a speci�c wavelet (the

Morlet wavelet) and, assuming a Gaussian white noise process, analytically derive the corresponding

sampling distributions. However, these sampling distributions were shown to be highly dependent

on the local covariance structure of the wavelet, a fact that makes the signi�cance levels intimately

related to the speci�c wavelet family used, meaning that they cannot be generalized. Naturally, no

work has been done on signi�cance testing for the partial coherency, as, to the best of our knowledge,

this measure has not been introduced elsewhere. Maraun, Kurths and Holschneider (2007) argued

that pointwize signi�cance tests, like the ones described, generate too many false positives. They

proposed an areawise test which aims at correcting false positives of pointwise tests, based on the

area and shape of the signi�cant regions. Lachowicz (2009), however, shows that some more work

needs to be done in this area.

In our examples and in our toolbox, the tests of signi�cance are either based on very simple

Monte Carlo simulations or bootstrapping. We �t an ARMA(p; q) model and then construct new

samples by bootstrap or by drawing errors from a Gaussian distribution. In the �rst option, we use

the very basic bootstrap technique described in Section 2.1 of Berkowitz and Kilian (2000).

To our knowledge, there are no good statistical tests for the phase-di¤erence. In fact, Ge (2008)

showed that, under the null of no linear relation between two variables, the phase angle will be

uniformly distributed. Hence it will be dispersed between -� and �. Because of that, Ge argues that

one should not use signi�cance tests for the wavelet phase-di¤erence. Instead, its analysis should be

complemented by inspection of the coherence signi�cance.
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Figure 7: (a) GNP (quarterly) growth rate for the United States; (b) Wavelet power spectrum - the black
contour designates the 5% signi�cance level based on an ARMA(1,1) null. The cone of in�uence, which
indicates the region a¤ected by edge e¤ects, is shown with a thick black line. The color code for power ranges
from blue (low power) to red (high power). The white lines show the maxima of the undulations of the wavelet
power spectrum.

6 Three Applications

6.1 The Great Moderation in the United Sates

In Figure 7 (a), we have the real GNP (quarterly) growth rate for the United States, from 1947q2

until 2010q3. In Figure 7 (b), one can observe the wavelet power spectrum. At business cycle

frequencies, the wavelet power was high and statistically signi�cant, until early 1960s. After that,

the volatility at all frequencies steadily decreased, with an exception between mid 1970s and 1984,

when the variance at the business cycle frequency (1.5 to 8 years) was quite high again, probably

as a result of the severe oil crisis that hit the world economy in 1973 and 1979 and lasted until the

early 1980s.

These results for the macroeconomic volatility in the United States are compatible with the

results of Gallegati and Gallegati (2007), who studied this issue for the G-7 economies using discrete

wavelet analysis. To be more precise, they use the MODWT to decompose the output time series

in scales (or frequencies). Then they are able to decompose the wavelet variance on a scale-by-scale

basis. Finally, they estimate each scale variance for four di¤erent decades. They also conclude that

volatility in 1970s increases, probably due to the oil shocks, at every relevant scale/frequency. After

that, volatility decreases. This example is appropriate to illustrate that continuous and discrete
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wavelet analysis are quite complementary, as one would expect.

These results from wavelet analysis help to qualify some of the results present in the literature.

The literature has identi�ed 1984 as the year that marks the beginning of the Great Moderation

(Kim and Nelson 1999; McConnell and Pérez-Quirós 2000). In reality, we can observe that this

Great Moderation may have started sometime earlier. It was in the early 1960s that the volatility

started to decrease. It then was revived, due to the oil shocks, at the business cycle frequency in

the 1970s, however this increase was temporary. These results are in line with Blanchard and Simon

(2001) who have argued that the large shocks in the 1970s and the deep contraction in early 1980s

hide from view the longer term volatility decline that began a few decades before.

As one would expect, given the turbulence of the last years, after 2007 there is again evidence

that volatility is increasing, suggesting that the �Great Moderation�is not so great anymore. We

see this because the wavelet power spectrum becomes statistically signi�cant in the late 2000s at

1.5 to 5 years frequencies. Although part of this region may be a¤ected by edge e¤ects (because it

is under the e¤ect of the cone of in�uence) it is also true that a part of it is not a¤ected by those

edge e¤ects. Finally, one should also keep in mind that, because of the zero padding, this in�uence

will tend to underestimate, not overestimate, the power spectrum.19

6.2 Stock Markets: Who is the Leader?

In this application, we illustrate how one can use wavelet coherency and phase-di¤erence analysis to

study synchronism between two time series. To illustrate this, we assess the coordination between

three di¤erent stock market indices. We collect monthly data on the Price Index for FTSE All-

Share (United Kingdom), the S&P 500 (United States) and the DAX (Germany). This issue of the

international stock markets comovement has drawn some attention in the literature. In particular,

after October 1987, when several markets fell together, despite heterogenous economic conditions

(King and Wadhwani 1990). In spite of this episode, King, Sentana and Wadhwani (1992) found

evidence against the hypothesis of internationally integrated capital markets. More recently, Forbes

and Rigobon (2002) found evidence of strong international interdependence linkages in the 1997

East Asian crises, the 1994 Mexican peso collapse, and the 1987 U.S. stock market crash and Brooks

and Del Negro (2004) shows that there is a rise in comovement across national stock markets after

the mid-1990s among the major developed countries. For more on this, the reader can see Rua and

Nunes (2009)

In Figure 8, we can see the wavelet coherency between S&P and FTSE and between S&P and

DAX.20 It is apparent that New York shows more regions of high coherency with the London stock

market than with Frankfurt. This is particularly evident when one focus on the decades of 1980

and 1990 at the higher frequency band (1�4 years). These results are in line with Rua and Nunes
(2008) who also concluded that the US and UK stock markets have a high degree of comovement

over the last forty years.

These pictures suggest that the UK and the US stock markets became more synchronized in

1985, synchronization that was extended to Germany only in the decade of 1990. An interesting

conclusion, not present in Rua and Nunes (2008), arises when one looks at the phase-di¤erences.

19 In Appendix A we explain the reason for these border distortions and explain how we deal with it.
20The coherency between FTSE and Dax, not shown, is very similar to the coherency between S&P and DAX.
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Figure 8: (a.1) - (b.1) Wavelet coherency between S&P and FTSE and between S&P and DAX; the black
contour designates the 5% signi�cance level based on an ARMA(1,1) null; (a.2) - (b.2) Phase-di¤erences at
1�4 years frequency band; (a.3) - (b.3) Phase-di¤erences at 4�8 years frequency band.

While, in the shorter run frequencies, phases are very much aligned and, therefore, the phase-

di¤erence is very close to zero (more often positive than negative, one might add), when one looks

at 4 to 8 year period frequencies, the phase-di¤erence is consistently above zero, meaning that the

US stock market leads the other stock markets.21 The same analysis, not shown, comparing the

UK and the German stock markets would lead to the conclusion that these two markets move very

much together, with no noticeable lead or delay in the regions of high coherency.

21 It is true that until early 1990s the phase-di¤erence between S&P and DAX is negative, however this is a period
of low coherency and, therefore, there is not much meaning attached to the phase-di¤erence.
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Figure 9: (a.1) Wavelet coherency between S&P and oil prices; (b.1) Wavelet partial coherency between S&P
and oil prices, after controlling for in�ation, real interest rates and industrial production. The black (grey)
contour designates the 5% (10%) signi�cance level based on an ARMA(1,1) null; (a.2) Phase-di¤erence at
3 � 8 years frequency band; (b.2) Partial phase-di¤erences at 3 � 8 years frequency band.

6.3 Stock Markets and Oil Prices.

The macroeconomic impact of oil price shocks is the subject of innumerous papers and modelling

its e¤ects is not as trivial as one may think (see Aguiar-Conraria and Wen 2007 and Kilian 2008).

Aguiar-Conraria and Soares (2011a) have already applied wavelet analysis to study the relation

between oil prices and the macroeconomy. There is also a smaller literature devoted to the impact

of oil shocks in the stock markets. Sadorsky (1999) and Ciner (2001), for example, found that

increases in oil prices had, in general, negative impacts on stock market returns. In a di¤erent

direction were the conclusions of Huang, Masulis and Stoll (1996). They concluded that linkages

between oil shocks and the �nancial markets were, at best, weak. Kilian and Park (2009) reach more

subtle conclusions. They basically conclude that if oil price increases are the results of oil supply

shocks (or expectation that there will be a supply shortage) then their impact on the stock market

is negative. However, an increase in global aggregate demand will result in both higher real oil

prices and higher stock prices. We now use higher order wavelet tools to brie�y study the linkages

between oil prices and stock market returns. It should become clear that moving from bivariate

wavelet analysis to higher order analysis will avoid reaching erroneous conclusions.

We gathered monthly data, running from July 1954 to December 2010, on several variables:

S&P-500 Stock Monthly Returns, (log) Oil Prices22, (log) Industrial Production, CPI in�ation and

22For the oil price, we considered a nonlinear transformation a la Hamilton (2003). For each period, we consider the
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the E¤ective Federal Funds Real Rate. In Figure 9, on the left, we have the wavelet coherency and

phase-di¤erence between the stock market returns and oil prices; on the right, we have the partial

wavelet coherency and phase-di¤erence after controlling for the other variables.

It is di¢ cult to make sense of the picture on the left. Regions of high coherency are very scarce

and the phase-di¤erence is not meaningful in these situations. If anything, one would conclude that

there are no relevant linkages between oil prices and the stock market. However, once the other

variables are controlled for, the picture becomes clearer. On the right we can see that there regions

of high coherency between the mid-1970s and mid-1980s along the 3 � 8 year period frequency band
and again, at lower frequencies after the early 1990s. The phase-di¤erence reveals some interesting

insights. In the 1970s and 1980s (at least until the market crash of 1987), the partial phase-di¤erence

is between �=2 and �; implying an anti-phase relation with the oil prices leading. This suggests that

the oil price increases precede stock market downturns. This is totally compatible with the results

of Kilian and Park (2009), given that in the decade of 1970 and early 1980 the oil crises were clearly

on the supply side. There is a structural change after that. In the 1990s and 2000s the regions

of high coherency are situated at lower frequencies and, at the same time, the phase-di¤erence is

consistently between 0 and �=2; suggesting that the series are now in phase, with the stock market

leading. This result reinforces the demand side hypothesis. An increase in economic activity will,

naturally, be re�ected in the stock market and pressure on oil demand will lead to oil price increases,

lending further support to the conclusions of Kilian (2009), Kilian and Park (2009) and Baumeister

and Peersman (2008).

7 Conclusion

In this paper, we argued that continuous wavelet analysis can be a very useful tool to analyze business

cycles. We had three main objectives: (1) to present a self-contained summary on the most relevant

theoretical results related to the continuous wavelet transform, (2) to describe how such transforms

can be implemented in practice, and (3) to generalize the concept of multiple and partial coherencies

to the time-frequency framework provided by wavelet analysis. We also presented some results on a

new family of wavelets, the generalized Morse wavelets, which are becoming more popular in other

scienti�c �elds and allow for more �exibility than the popular Morlet wavelet, while keeping some

of its nice properties.

To illustrate the potentialities of wavelet analysis and to provide some easy to do examples, we

worked out three constructed examples and three real data applications. The constructed examples

were put together to show (1) how wavelet analysis can easily capture transient cycles that are

not stable across time and frequencies and to uncover information that would be di¢ cult to extract

with the more traditional Fourier analysis; (2) how cross wavelets can capture transient relationships

between two time series at di¤erent frequencies; and (3) to illustrate the usefulness of a new concept:

higher order coherencies.

We also provide three applications with real data. In one of them, we applied the wavelet power

maximum price achieved in the last three years. As Hamilton argues, by doing this any oil price increase is captured
while only permanent oil price decreases are considered. This an e¢ cient way to capture the asymmetric e¤ects of oil
price changes.
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spectrum to study the post-war business cycle volatility in the United States, by looking at real

GNP growth rates. We concluded that while it is true that business cycles were very active during

the 70s and early 80s (after the oil price shocks in the 70s), it is also true that our results support the

view of Blanchard and Simon (2001), according to whom the large shocks in the 1970s disguised the

fact that the moderation had begun a few decades earlier. In our second application, with the help

of cross wavelet analysis, we studied synchronism in international stock market returns. We showed

that comovement between the US and the UK markets has become stronger after 1985, while the

comovement between these stock markets and the German stock market has only increased after

mid-1990s. We have also shown that at low frequencies (4 � 8 year period frequencies) the US stock
market leads the other mentioned stock markets.

Finally, on our third empirical application, we use partial wavelet coherencies and partial phase-

di¤erence to study the linkages between oil prices and the stock markets. It is clear that some of

the conclusions we reached would be very di¢ cult to spot had we just used bivariate cross wavelet

analysis.

Attached to this paper, there is a Matlab toolbox implementing the referred wavelet tools, which

the researcher can freely use and adapt to his/her own research.
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8 Appendix A

8.1 Discrete Computations

Suppose we sample the series x(t) with a �ne enough sample interval �t to avoid aliasing (i.e. assume

that X(!) � 0 for j!j > 2�
2�t =

�
�t) and use the shorthand notation xn = x(n�t);n = 0; : : : ; N � 1.

Also, let x = fxn;n = 0; : : : ; N � 1g: With N even, formula (6) can be discretized as

Wx(� ; s) �
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� �
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But, X
�
2�k
N�t

�
� �t x̂k; where x̂k =

PN�1
n=0 xne

�i2�nk=N is the kth element of the Discrete Fourier

Transform (DFT) of the N -vector (x0; : : : ; xN�1); see e.g. Brémaud (2002). Hence, we obtain a

discretized form of the CWT of the discrete time series x = fxn : 0; : : : ; N � 1g :

Wx(� ; s) =

p
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+
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where we used the periodicity x̂k = x̂k�N . When � = m�t; m = 0; : : : ; N � 1; we get

Wx(m�t; s) =
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where

wk =

(
2�k
N�t ; k = 0; 1; : : : ; N2 ;

2�(k�N)
N�t ; k = N

2 + 1; : : : ; N � 1:
(45)

In practice, naturally, the wavelet transform is computed only for a selected set of scale values

s 2 fs`; ` = 0; : : : ; F �1g (corresponding to a certain choice of frequencies !`). Hence, our computed
wavelet spectrum of the discrete-time series x will simply be a F �N matrixWx (wavelet spectral
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matrix) whose (`;m) element is given by

Wx(`;m) =

p
s`
N

N�1X
k=0

x̂k	
�(s`wk)e

i2�km
N ; (46)

with wk given by (45).23 The above formula is an e¢ cient formula for computing the CWT, since,

for each scale s`, its right-hand side is simply the inverse DFT of the sequence (z`0; : : : ; z
`
N�1) where

z`k :=
p
s` x̂k	

�(s`wk); k = 0; : : : ; N � 1;

and can, therefore, be calculated using an inverse FFT.

Naturally, all the formulas given previously for other wavelet measures, such as the cross-

wavelet transform, the wavelet coherency and the phase-di¤erence have discrete counterparts. For

example, corresponding to formula (23) for the cross-wavelet transform, we have a discretized

version Wxy(`;m) = Wx(`;m)W
�
y(`;m):Formula (27) for the phase-di¤erence is discretized as

�xy(`;m) =Arctan
�
=(Wxy(`;m))
<(Wxy(`;m))

�
:

8.1.1 Choice of scales

The scales are usually chosen as fractional powers of 2:

s` = s0 2
`
nV ; ` = 0; 1; : : : ; nV � nO; (47)

where nO denotes the number of octaves (i.e. powers of two) and nV the number of voices calculated

per octave (i.e., F = nV � nO + 1).

8.1.2 Cone of in�uence

As with other types of transforms, the CWT applied to a �nite length time-series inevitably su¤ers

from border distortions; this is due to the fact that the values of the transform at the beginning

and the end of the time-series are always incorrectly computed, in the sense that they involve

missing values of the series which are then arti�cially prescribed. When using the formula (46), a

periodization of the data is assumed. However, before implementing formula (46), one usually pads

the series with zeros, to avoid wrapping. Since the �e¤ective support" of the wavelet at scale s is

proportional to s, these edge-e¤ects also increase with s. The region in which the transform su¤ers

from these edge e¤ects is called the cone of in�uence (COI). In this area of the time-frequency plane

the results are subject to border distortions and have to be interpreted carefully.

8.2 Higher order cross-wavelets: some results

8.2.1 Proof that R21(q) = 1�
C d

C d11

Since Sii = S (WiW
�
i ) = S

�
jWij2

�
is a non-negative quantity, let si :=

p
Sii. Recalling the formula

which expresses the complex coherencies in terms of the wavelet spectra (25) and the notation of

23We choose to make the row indexes of the matrix correspond to scales and the columns to times, so that the plots
of this matrix will naturally lead to times in the x-axis and frequencies (or periods) in the y-axis.
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equation (31), we see that %ij =
Sij
sisj

: Hence,

C d = detC = det

2666664
1 S12

s1s2
� � � S1p

s1sp
S21
s2s1

1 � � � S2p
s2sp

...
...

. . .
...

Sp1
sps1

Sp2
sps2

� � � 1

3777775
By using a well-known property of determinants (if a column or a row of a matrix is multiplied by

a constant, the determinant is multiplied by that constant), we have that

C d =
1

s21s
2
2 : : : s

2
p

S d:

Also, since C d
11 is the determinant of the matrix obtained by deleting the �rst row and �rst column

of C , it is immediate to conclude that

C d
11 =

1

s22 : : : s
2
p

S d
11:

Hence, we have

1� C d

C d
11

= 1�
s22 : : : s

2
p

s21s
2
2 : : : s

2
p

S d

S d
11

= 1� S d

�21S
d
11

= 1� S d

S11S d
11

which is precisely formula (33). The proofs of equations (39) and (40) involve similar steps.

8.2.2 Proof that 1�R21(2:::p) = (1� r
2
12)(1� r213:2) : : : (1� r21p:23:::(p�1)):

Let Q = C 2
2 (i.e. the submatrix of C obtained by suppressing its 2nd row and 2nd column). Then,

from (33), we have

1�R21(3:::p) =
Qd

Qd11
:

Since,

1�R21(2:::p) =
C d

C d
11

;

we obtain
1�R21(2:::p)
1�R21(3:::p)

=
Qd11
C d
11

C

Qd :

But, from the the de�nition ofQ, we have thatQd = C d
22. Moreover, by using the Jacobi�s generalized

theorem on determinants, we also have that

Qd11C d =

�����C d
11 C d

12

C d
21 C d

22

����� ;
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since Qd11 is the complementary minor of the minor

����� 1 %12

%21 1

����� in C d. Hence, we get

1�R21(2:::p)
1�R21(3:::p)

=

�����C d
11 C d

12

C d
21 C d

22

�����
C d
11C

d
22

=
C d
11C

d
22 � C d

12C
d
21

C d
11C

d
22

= 1� C d
12C

d
21

C d
11C

d
22

or, by using (34),
1�R21(2:::p)
1�R21(3:::p)

= 1� %1 2:q2%2 1:q2

But, by using the fact that C is Hermitian, we easily conclude that %2 1:qj = %�1 2:q2 , hence %1 2:q2%2 1:q2 =

%1 2:q2%
�
1 2:q2

= j%1 2:q2 j
2 = r212:q2 = r21 2:(3:::p): So, we �nally obtain

1�R21(2:::p) = (1�R
2
1(3:::p))(1� r

2
1 2:(3:::p)):

If we follow the same process for 1�R21(3:::p) and replace the corresponding expression in the formula
above, we obtain

1�R21(2:::p) = (1�R
2
1(4:::p))(1� r

2
1 3:(4:::p))(1� r

2
1 2:(3:::p))

By repeating this process successively, we end up with

1�R21(2:::p) = (1�R
2
1p)(1� r21(p�1):p)(1� r

2
1(p�2):((p�1)p) : : : (1� r

2
12:(3:::p)):

In the left hand side of above formula, the order in which the secondary subscripts (i.e. all the

subscripts except 1) in R21(2:::p) are given is irrelevant; by permuting them appropriately, we can

write

1�R21(2:::p) = (1�R
2
12)(1� r21 3:2)(1� r21 4:2 3) : : : (1� r21p:2 3:::(p�1)):

which is precisely formula (41), using the obvious fact that R212 = r212

8.2.3 Formulas for three variables

Suppose that we just have three series x1, x2 and x3. In this case, the matrix C of coherencies is

simply

C =

0B@ 1 %12 %13

%21 1 %23

%31 %32 1

1CA
Recall that this is an Hermitian matrix, and so we have: %ji = %�ij and %ij %ji = %ij %

�
ij = j%ij j2 = R2ij :

Hence, we have:

C d
11 =

����� 1 %23

%32 1

����� = 1� %23 %32 = 1�R223:
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C d =

����� 1 %23

%32 1

������ %12
�����%21 %23

%31 1

�����+ %13
�����%21 1

%31 %32

�����
= 1�R223 � %12 (%21 � %23%31) + %13 (%21%32 � %31)

= 1�R223 � r212 � r213 + %12 %23 %31 + %21 %32 %13%32
= 1�R223 �R212 � r213 + 2< (%12 %23 %31)

= 1�R223 �R212 � r213 + 2< (%12 %23 %�13)

Therefore, by using formula (38) for the squared multiple coherency, we get

R21(2 3) = 1� 1�R
2
23 �R212 �R213 + 2< (%12 %23 %�13)

1�R223

=
R212 +R

2
13 � 2< (%12 %23 %�13)
1�R223

(48)

For the complex partial wavelet coherency %1 2:3, formula (39) gives

%1 2:3 = �
C d
21q

C d
11C

d
22

But:

C d
11 = 1�R223 and C d

22 = 1�R213

C d
21 = (�1)(1+2)

�����%12 %13

%32 1

�����
= � (%12 � %13%32)

= (%12 � %13%�23)

Hence

%1 2:3 =
%12 � %13%�23p

(1�R213)(1�R223)

9 Appendix B: Toolbox

Due to its increasing popularity and applicability into a wide range of �elds, the amount of wavelet-

related software has been growing at an enormous rate. Apart from commercial scienti�c computing

software such as Matlab, which now integrates wavelet analysis packages,24 there are also many

free-ware wavelet software toolkits available. Naturally, these free-ware packages usually re�ect the

main �eld of interest of their authors and are oriented to use in speci�c applications. Lists of wavelet

software, with a brief description of its main features, can be found in the following sites:

24Math Work�s Wavelet Toolbox for Matlab, which includes a large collection of M-�les and also GUI-based tools
for wavelets. The choice of wavelets to be used in the CWT is large and the GUI interface makes the use of the toolbox
specially simple. The ability to compute the wavelet coherence, cross spectrum and the cone-of-in�uence was only
very recently added to the toolbox (Wavelet Toolbox 4.6, released in September 2010) and this was one of the reasons
why the toolbox could not be used before in our work. However this toolbox still does not include signi�cance testing,
which is a major shortcoming.
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�http://www.amara.com/current/wavesoft.html, and

�http://www.wavelet.org/phpBB2/gallery.php?c=Software.

There are some Matlab toolboxes that are closely related with our toolbox (i.e. which are

concerned with the computation of continuous wavelet tools).

� Torrence and Compo �A toolbox developed by C. Torrence and G. P. Compo and available
at http://atoc.colorado.edu/research/wavelets. This toolbox was developed in connection with

the seminal paper by Torrence and Compo (1998) and can be considered as the �mother" of

all the toolboxes developed later (all of which, including our own, incorporate or adapt some

of its functions). It computes only the CWT and corresponding levels of signi�cance. 25 The

wavelets which can be used are: the Morlet wavelet, the Paul wavelet (a particular case of the

GMWs) and the DOG (Derivative of Gauss) wavelet (this is a real wavelet).

� SOWAS �software for analysis and synthesis, developed by D. Maraun and J. Laehnemann
and available at: http://tocsy.agnld.uni-potsdam.de/wavelets. It computes the CWT, XWT,

wavelet coherence and phase-di¤erence. It makes use of the wavelet software toolbox of Tor-

rence and Compo and so, the available wavelets are the same as in Torrence and Compo�s

toolbox: Morlet, Paul and DOG. Smoothing in the computation of coherence is done with

a box window function (both in time and in frequency). Its important contribution is the

possibility of using not only pointwise signi�cance tests (as in our case), but also areawise sig-

ni�cance tests; see Maraun and Kurths (2004) and Maraun, Kurths and Holschneider (2007)

for details.

� Wavelet coherence package �toolbox developed by A. Grinsted, J. C. Moore and S. Jevre-
jeva and available at: http://www.pol.ac.uk./home/research/waveletcoherence. It computes

the CWT, XWT, wavelet coherence and phase-di¤erence. The available wavelets are: Morlet,

Paul and DOG. The smoothing used for the computation of coherence is designed for the

Morlet wavelet, as described in the appendix of Torrence and Webster (1999) (and inadequate

for other wavelets).

� Wavelets_BCMC �toolbox developed by B. Cazelles and M. Chavez.. Although the site

referred by the authors in the paper by Cazelles et. al. (2007) is not available, the package can

be obtained easily by request to one of the authors. It computes the CWT, XWT, coherence

and phase-di¤erence. The available wavelets are: Morlet, Paul and DOG. Smoothing for com-

putation of coherence can be done with various types of window functions. This package has

two main advantages. First, the statistical tests can be done by several di¤erent approaches,

including using Markov hidden processes, Fourier phase randomization, theoretical white and

red noise distributions, etc. Second, the output options are very rich. E.g. one can ask for

the instantaneous relative variance of di¤erent frequency bands, meaning that, in each point

in time, one can compute which frequencies contribute more to the overall variance.

� ASToolbox �this is our toolbox. We describe it next with some detail. We built on the
toolboxes of Torrence and Compo and Cazelles et al.. This toolbox was written with economics

25A function to compute the wavelet coherency is available in a IDL version of this toolbox; there is also a FORTRAN
version of this package.
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and other social science applications in mind. The signi�cance tests are performed using the

familiar ARMA processes as the null, and can be done by simple bootstrapping or simple Monte

Carlo simulations. Given that we only use analytical wavelets, simple reconstruction formulas

are available, which will easily allow the pro�cient user to adapt the toolbox to construct

wavelet based bandpass �lters (for us, this is still work in progress). Our toolbox allows for

the use of the generalized Morse wavelet, which encompass the most popular analytical wavelets

(such as the Paul wavelet), and the Morlet wavelet. Of course, the most important contribution

of our toolbox is the possibility of computing multiple and partial wavelet coherencies as well

as what we called partial phase-di¤erence.

The ASToolbox is available at http://sites.google.com/site/aguiarconraria/joanasoares-wavelets.

The folder ASToolbox contains a series of Matlab functions implementing the continuous wavelet

tools described in this paper. Our main objective was to collect into one single directory all the

functions necessary to use these tools and also to provide some scripts illustrating their use. This, we

hope, will encourage newcomers to the �eld to make tests with their own data and might contribute

to the dissemination of the use of wavelets, not only in economics and �nance, but possibly in other

areas.

The folder ASToolbox is divided into two sub-folders:

1. Functions �containing all the Matlab functions. This has two sub-folders:

� Auxiliary � containing some auxiliary functions to, e.g. generate surrogate series or
compute Fourier spectra; it also contains a function to compute measures associated with

generalized Morse wavelets.

� WaveletTransforms � containing functions to compute the (analytic) wavelet trans-
form, cross-wavelet transform, wavelet coherency, wavelet phase-di¤erence and time-lag,

multiple coherency, partial coherency and partial phase-di¤erence.

2. Examples �containing Matlab scripts to generate the pictures associated with each example
and application of this paper.

Some of our functions are based on (parts of) functions written by Christopher Torrence and

Gilbert P. Compo (http://paos.colorado.edu/research/wavelets/) and also on some modi�ed versions

of functions written by Bernard Cazelles and Mario Chavez; Cazelles et al. (2007).

9.1 Implementation details

When implementing the transforms, some choices have, naturally, to be made. We now give a brief

description of the options made in our programs. These can be modi�ed, with very little e¤ort, by

any user.

� Normalization

The wavelets are normalized to have unit energy, i.e. we useK�;
 = 2
�
e 

�

��=

for the normalizing

constant, in the case of a GMW � see Lilly and Olhede (2009) � and formula (19), in the case of

the Morlet wavelet.
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� Fourier factor

The conversion of scales to frequencies is based on the energy frequency !E , given by (11), i.e.

we use formula !(s) =
!E 
s to convert scales to angular frequencies. This, in turn, means that our

Fourier factor, used to convert scales to Fourier periods, is given by

Ff =
2�

!E 
: (49)

� Formula for CWT

The implementation of the CWT (and, hence, also the XWT and the WCO) is based on the use

of formula (46), together with and inverse FFT.

� Scales

The scales used in the CWT (XWT, WCO) are chosen as fractional powers of 2, i.e. they are of

the type given by (47).

� COI

When implementing our algorithms, we take as decaying time to de�ne the COI, the quantity

given by the radius of the wavelet (at each scale s`), i.e. we consider

t` = s`�t:

But

t` = s`�t () t` =
�`
Ff
�t () �` =

Ff
�t
t`;

where �` denotes the Fourier period corresponding to scale s` and Ff is the Fourier factor given by

(49).

� Smoothing

The smoothing process involved in the coherency computations is done by convolution with

window functions in time and in frequency. The type and size of the window can be selected by

the user. Possible windows are: rectangular (box), triangular, Hamming, Hanning, Blackman and

Bartlett.

� Signi�cance tests

The tests of signi�cance are always based on Monte Carlo simulations. The simulations use

two di¤erent types of methods to construct surrogate series: (1) �tting an ARMA(p; q) model and

building new samples by bootstrap or (2) �tting an ARMA(p; q) model and construct new samples

by drawing errors from a Gaussian distribution. In the �rst option, we use the very basic bootstrap

technique described in Section 2.1 of Berkowitz and Kilian (2000) and Chatterjee (1986). In the

second option, the surrogates are constructed using the function �garchsim� (univariate GARCH
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process simulation) of the Econometrics Toolbox included in Matlab 2009. To �t the ARMA(p; q)

to the data, we make use of the function �garch�t�of the same toolbox. The user that does not have

the Econometrics toolbox can perform signi�cance tests by choosing an ARMA(p; 0) model with

bootstrap. In this case, the AR(p) model is estimated by OLS and the code is self-contained and

autonomous from the Econometrics toolbox.

9.2 Software requirements

Our programs were written in Matlab 2009.b. However we were careful in writing it in such a way

that it is fully compatible with version 7. Some of our programs make use of functions from the

Matlab toolboxes Econometrics Toolbox and Signal Processing Toolbox. This is always explicitly

stated in the function and may, in some cases, be very simply replaced by functions written by the

user. If one performs signi�cance tests by bootstrapping pure AR processes, then there is no need

for the econometrics toolbox. The Signal Processing Toolbox is needed for smoothing. If smoothing

is done using a Bartlet window, then the toolbox is no longer necessary

9.3 List of functions

The following functions are available.

1. Folder Auxiliary

� AROLS - AR model of a time series based on Ordinary Least Squares.

� FourierSpectrum - Parametric estimate of the Fourier Power Spectrum of a time series, by
�tting an ARMA process.

� GMWMeasures - Some measures associated with a given generalized Morse wavelet.

� MatrixMax - Local maxima of a matrix.

� ProcessMatrix - Pre-processing of columns of given matrix.

� SurrogateARMABoot - Surrogate series based on ARMA model and bootstrap.

� SurrogateARMAEcon - Surrogate series using Econometrics toolbox.

� WaveletSpectra - Wavelet transforms of all the columns of a given matrix.

2. FolderWaveletTransforms

� AWT - Analytic wavelet transform of given series.

� AWTOutput - Di¤erent quantities computed from a wavelet transform.

� AWCO - wavelet coherency and cross-wavelet transform of two series.

� AWCOOutput - Di¤erent quantities computed from a wavelet coherency.

� MPAWCO - Multiple and partial wavelet coherencies.

� MPAWCOOutput - Di¤erent quantities computed from multiple and partial wavelet co-

herencies.
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