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Abstract. We give some generalizations of the Banach Contraction Principle
to mappings on a metric space endowed with a graph. This extends and sub-
sumes many recent results of other authors which were obtained for mappings
on a partially ordered metric space. As an application, we present a theorem
on the convergence of successive approximations for some linear operators on
a Banach space. In particular, the last result easily yields the Kelisky-Rivlin
theorem on iterates of the Bernstein operators on the space C[0, 1].

1. Introduction

Let f be a selfmap of a metric space (X, d). Following Petruşel and Rus [PR06],
we say that f is a Picard operator (abbr., PO) if f has a unique fixed point x∗
and limn→∞ fnx = x∗ for all x ∈ X. Recently, many results appeared giving
sufficient conditions for f to be a PO if (X, d) is endowed with a partial ordering �.
Most of them are a hybrid of two fundamental fixed point theorems: the Banach
Contraction Principle and the Knaster-Tarski theorem (see, e.g., [GD03, p. 25] and,
for a discussion on its applications in metric fixed point theory, [Ja01]). Indeed,
they deal with a monotone (either order-preserving or order-reversing) mapping
satisfying, with some restriction, a classical contractive condition, and such that
for some x0 ∈ X, either x0 � fx0 or fx0 � x0. The first result in this direction
was given by Ran and Reurings [RR04] who also presented its applications to linear
and nonlinear matrix equations.

Theorem 1.1 ([RR04], Th. 2.1). Let (X, d) be a complete metric space endowed
with a partial ordering � such that

(1.1) every pair of elements of X has an upper and a lower bound.

Let f : X → X be continuous and monotone, and such that

(1.2) ∃α∈(0,1) ∀x,y∈X (x � y ⇒ d(fx, fy) ≤ α d(x, y)).

If there exists x0 ∈ X with x0 � fx0 or fx0 � x0, then f is a PO.
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1360 J. JACHYMSKI

Subsequently, Nieto and Rodŕıguez-López [NR-L05] extended Theorem 1.1 in
the following way.

Theorem 1.2 ([NR-L05], Ths. 2.1–2.5). Let (X, d) be a complete metric space en-
dowed with a partial ordering �. Let f : X → X be nondecreasing (order-preserving)
and such that (1.2) holds. Assume that one of the the following conditions holds:

(A) f is continuous and there exists x0 ∈ X with x0 � fx0 or fx0 � x0;
(B) (X, d,�) is such that

(1.3) for any nondecreasing (xn)n∈N, if xn → x, then xn � x for n ∈ N,

and there exists x0 ∈ X with x0 � fx0;
(C) (X, d,�) is such that

(1.4) for any nonincreasing (xn)n∈N, if xn → x, then x � xn for n ∈ N,

and there exists x0 ∈ X with fx0 � x0.
Then f has a fixed point. Moreover, if (X,�) is such that

(1.5) every pair of elements of X has an upper or a lower bound,

then f is a PO.

As an application, the authors obtained a theorem on the existence of a unique
solution for periodic boundary problems relative to ordinary differential equations.
Similar applications based on a version of Theorem 1.2 for a mixed monotone
mapping F : X × X → X were given by Gnana Bhaskar and Lakshmikantham
[G-BL06].

Further improvements of the above results were found independently by Petruşel
and Rus [PR06], and Nieto and Rodŕıguez-López [NR-L07]. Here we give a slightly
more general version of these extensions taken from the paper by Nieto, Pouso and
Rodŕıguez-López [NPR-L07]. Following [PR06] we denote:

X� := {(x, y) ∈ X × X : x � y or y � x}.

Theorem 1.3 ([PR06], Th. 4.3; [NR-L07], Th. 7; [NPR-L07], Th. 3.1). Let (X, d)
be a complete metric space endowed with a partial ordering � such that (1.5) holds.
Let f : X → X be such that f preserves comparable elements, i.e.,

(1.6) for any x, y ∈ X, (x, y) ∈ X� implies (fx, fy) ∈ X�,

and (1.2) holds. Assume that either f is orbitally continuous (cf. Definition 2.2)
or (X, d,�) is such that

(1.7) for any (xn)n∈N, if xn → x and (xn, xn+1) ∈ X� for n ∈ N, then
there is a subsequence (xkn

)n∈N such that (xkn
, x) ∈ X� for n ∈ N.

If there exists x0 ∈ X with (x0, fx0) ∈ X�, then f is a PO.

(Actually, in [PR06] (1.1) was used instead of (1.5), and (1.7) was not considered;
moreover, the authors required the compatibility between a metric and an order
structure (cf. [PR06, Def. 2.1, (iii) and (iv)]) which, however, was not necessary in
Theorem 1.3.)

Our purpose here is twofold: first, we want to establish results which generalize
and subsume the above theorems; second, we wish to present some applications to
the theory of linear operators. Regarding the first aim, it seems it is more conve-
nient here to use the language of graph theory instead of partial orderings. So we
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THE CONTRACTION PRINCIPLE 1361

are going to study the class of generalized Banach contractions on a metric space
endowed with a directed graph. One of the advantages is that, for example, condi-
tions (1.3), (1.4) and (1.7) can be described then in a unified way. Moreover, (1.5)
may be significantly weakened and replaced by a natural condition of connectivity
of some graph as shown in Section 3. In fact, this connectivity turns out to be a
necessary and sufficient condition for any generalized Banach contraction to be a
PO (cf. Corollaries 3.2 and 3.3). If a graph is disconnected, then such a contraction
may have many fixed points. In this case we give a characterization of cardinality of
the set of fixed points, and we provide more exact information on the convergence
of successive approximations (cf. Theorem 3.2). Furthermore, Theorem 3.4 shows
that for an orbitally continuous mapping f the assumption ‘there exists x0 ∈ X with
x0 � fx0 or fx0 � x0’ occurring in all the above theorems is superfluous (in partic-
ular, it can be dropped in Theorem 1.1) though, without a continuity condition, it
cannot be removed. Also, Theorem 3.4 yields the well-known fixed point theorem
of Edelstein [E61] for uniformly locally contractive mappings (cf. Corollary 3.4).

Finally, as an application of our results, we give a sufficient condition for a linear
operator T on a Banach space X to be a weakly Picard operator (abbr., WPO), i.e.,
for any x ∈ X, limn→∞ Tnx exists (it may depend on x) and is a fixed point of T .
As a simple consequence, we get the Kelisky-Rivlin [KR67] theorem on iterates of
the classical Bernstein operators on the Banach space C[0, 1].

2. Basic concepts and notations

Let (X, d) be a metric space. Let ∆ denote the diagonal of the Cartesian prod-
uct X × X. Consider a directed graph G such that the set V (G) of its vertices
coincides with X, and the set E(G) of its edges contains all loops, i.e., E(G) ⊇ ∆.
(Example 2.1 illuminates a need of making the latter assumption.) We assume G
has no parallel edges, so we can identify G with the pair (V (G), E(G)). Moreover,
we may treat G as a weighted graph (see [Jo97, p. 309]) by assigning to each edge
the distance between its vertices.

By G−1 we denote the conversion of a graph G, i.e., the graph obtained from G
by reversing the direction of edges. Thus we have

E(G−1) = {(x, y) ∈ X × X : (y, x) ∈ E(G)}.
The letter G̃ denotes the undirected graph obtained from G by ignoring the direction
of edges. Actually, it will be more convenient for us to treat G̃ as a directed graph
for which the set of its edges is symmetric. Under this convention,

(2.1) E(G̃) = E(G) ∪ E(G−1).

We call (V ′, E′) a subgraph of G if V ′ ⊆ V (G), E′ ⊆ E(G) and for any edge
(x, y) ∈ E′, x, y ∈ V ′.

Definition 2.1. We say that a mapping f : X → X is a Banach G-contraction or
simply G-contraction if f preserves edges of G, i.e.,

(2.2) ∀x,y∈X ((x, y) ∈ E(G) ⇒ (fx, fy) ∈ E(G)),

and f decreases weights of edges of G in the following way:

(2.3) ∃α∈(0,1) ∀x,y∈X ((x, y) ∈ E(G) ⇒ d(fx, fy) <≤ α d(x, y)).

Remark 2.1. It is easy to observe that (2.2) means (f(V (G)), (f × f)(E(G))) is a
subgraph of G, where (f × f)(x, y) := (fx, fy) for x, y ∈ X.
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Example 2.1. Any constant function f : X → X is a Banach G-contraction since
E(G) contains all loops. (In fact, E(G) must contain all loops if we wish any
constant function to be a G-contraction.)

Example 2.2. Any Banach contraction is a G0-contraction, where the graph G0

is defined by E(G0) := X × X.

Example 2.3. Let � be a partial order in X. Define the graph G1 by

E(G1) := {(x, y) ∈ X × X : x � y}.
For this graph, (2.2) means f is nondecreasing with respect to this order. Recently,
the class of G1-contractions was studied by Nieto and Rodŕıguez-López [NR-L05].

The next example will be preceded by the following

Proposition 2.1. If a mapping f : X → X is such that (2.2) (resp., (2.3)) holds,
then (2.2) (resp., (2.3)) is also satisfied for graphs G−1 and G̃. Hence, if f is a
G-contraction, then f is both a G−1-contraction and a G̃-contraction.

Proof. This is an obvious consequence of symmetry of d and (2.1). �

Example 2.4. Let � be a partial order in X. Set

E(G2) := {(x, y) ∈ X × X : x � y ∨ y � x}.
In particular, for this graph (2.2) holds if f is monotone with respect to the order.
Moreover, if f satisfies (2.3) with G := G1 from Example 2.3, then by Proposi-
tion 2.1, (2.3) holds with G := G2 since G2 = G̃1. Hence mappings studied by
Ran and Reurings [RR04] are G2-contractions. In general, (2.2) with G := G2

means f maps comparable elements onto comparable elements, so the class of G2-
contractions coincides with the class considered by Petruşel and Rus [PR06], and
Nieto and Rodŕıguez-López [NR-L07].

Now we discuss some types of continuity of mappings. The first of them is well
known and often used in metric fixed point theory (see, e.g., [PR06]).

Definition 2.2. A mapping f : X → X is called orbitally continuous if for all
x, y ∈ X and any sequence (kn)n∈N of positive integers,

fknx → y implies f(fknx) → fy as n → ∞.

Definition 2.3. A mapping f : X → X is called G-continuous if given x ∈ X and
a sequence (xn)n∈N,

xn → x and (xn, xn+1) ∈ E(G) for n ∈ N imply fxn → fx.

In particular, G1-continuity (cf. Example 2.3) means f maps convergent and
nondecreasing sequences onto convergent sequences. If X := R is endowed with the
Euclidean metric, then f is G1-continuous iff f is left continuous. Another example
concerning G-continuity will be given in Section 4.

The next definition is inspired by the concept of orbital monotone-continuity
introduced in [NPR-L07, Th. 4.1].

Definition 2.4. A mapping f : X → X is called orbitally G-continuous if for all
x, y ∈ X and any sequence (kn)n∈N of positive integers,

fknx → y and (fknx, fkn+1x) ∈ E(G) for n ∈ N imply f(fknx) → fy.
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Clearly, we have the following relations:
continuity ⇒ orbital continuity ⇒ orbital G-continuity;
continuity ⇒ G-continuity ⇒ orbital G-continuity.

Now we recall a few basic notions concerning connectivity of graphs. All of them
can be found, e.g., in [Jo97, Ch. 6]. If x and y are vertices in a graph G, then a
path in G from x to y of length N (N ∈ N ∪ {0}) is a sequence (xi)N

i=0 of N + 1
vertices such that

x0 = x, xN = y and (xi−1, xi) ∈ E(G) for i = 1, ..., N.

A graph G is connected if there is a path between any two vertices. G is weakly
connected if G̃ is connected.

If G is such that E(G) is symmetric and x is a vertex in G, then the subgraph
Gx consisting of all edges and vertices which are contained in some path beginning
at x is called the component of G containing x. In this case V (Gx) = [x]G, where
[x]G is the equivalence class of the following relation R defined on V (G) by the rule:

yRz if there is a path in G from y to z.

Clearly, Gx is connected.

3. Iterations and fixed points of Banach G-contractions

Throughout this section we assume that (X, d) is a metric space, and G is a
directed graph such that V (G) = X and E(G) ⊇ ∆. The set of all fixed points of
a mapping f is denoted by Fix f .

Our first result shows that the convergence of successive aproximations for Ba-
nach G-contractions is closely related to the connectivity of a graph. We say that
sequences (xn)n∈N and (yn)n∈N, elements of X, are Cauchy equivalent if each of
them is a Cauchy sequence and d(xn, yn) → 0.

Theorem 3.1. The following statements are equivalent:
(i) G is weakly connected;
(ii) for any G-contraction f : X → X, given x, y ∈ X, the sequences (fnx)n∈N

and (fny)n∈N are Cauchy equivalent;
(iii) for any G-contraction f : X → X, card(Fix f) ≤ 1.

We precede the proof of Theorem 3.1 with the following

Lemma 3.1. Let f : X → X be a G-contraction with a constant α. Then, given
x ∈ X and y ∈ [x]G̃, there is r(x, y) ≥ 0 such that

d(fnx, fny) ≤ αnr(x, y) for all n ∈ N.

Proof. Let x ∈ X and y ∈ [x]G̃. Then there is a path (xi)N
i=0 in G̃ from x to y, i.e.,

x0 = x, xN = y and (xi−1, xi) ∈ E(G̃) for i = 1, ..., N . By Proposition 2.1, f is a
G̃-contraction. An easy induction shows

(fnxi−1, f
nxi) ∈ E(G̃) and d(fnxi−1, f

nxi) ≤ αnd(xi−1, xi)

for all n ∈ N and i = 1, ..., N . Hence and by the triangle inequality, we get

d(fnx, fny) ≤
N∑

i=1

d(fnxi−1, f
nxi) ≤ αn

N∑
i=1

d(xi−1, xi),

so it suffices to set r(x, y) :=
∑N

i=1 d(xi−1, xi). �
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Proof of Theorem 3.1. (i)⇒(ii): Let f be a G-contraction and x, y ∈ X. By hy-
pothesis, [x]G̃ = X, so fx ∈ [x]G̃. By Lemma 3.1, we get

d(fnx, fn+1x) ≤ αnr(x, fx) for all n ∈ N.

Hence
∑∞

n=0 d(fnx, fn+1x) < ∞ and a standard argument shows (fnx)n∈N is a
Cauchy sequence. Since also y ∈ [x]G̃, Lemma 3.1 yields d(fnx, fny) ≤ αnr(x, y).
Hence (fnx)n∈N and (fny)n∈N are equivalent. Clearly, since (fnx)n∈N is a Cauchy
sequence, so is (fny)n∈N.

(ii)⇒(iii): Let f be a G-contraction and x, y ∈ Fix f . By (ii), (fnx)n∈N and
(fny)n∈N are equivalent which yields x = y.

(iii)⇒(i): Suppose, on the contrary, G is not weakly connected, i.e., G̃ is dis-
connected. Let x0 ∈ X. Then both sets [x0]G̃ and X \ [x0]G̃ are nonempty. Let
y0 ∈ X \ [x0]G̃ and define

fx := x0 if x ∈ [x0]G̃; fx := y0 if x ∈ X \ [x0]G̃.

Clearly, Fix f = {x0, y0}. We show f is a G-contraction. Let (x, y) ∈ E(G). Then
[x]G̃ = [y]G̃, so either x, y ∈ [x0]G̃, or x, y ∈ X \[x0]G̃. Hence in both cases fx = fy,
so (fx, fy) ∈ E(G) since E(G) ⊇ ∆, and d(fx, fy) = 0 ≤ 1/2 d(x, y). Thus f is a
G-contraction having two fixed points which violates (iii). �

As an immediate consequence of Theorem 3.1, we obtain the following

Corollary 3.1. Let (X, d) be complete. The following statements are equivalent:
(i) G is weakly connected;
(ii) for any G-contraction f : X → X, there is x∗ ∈ X such that limn→∞ fnx =

x∗ for all x ∈ X.

The following example illuminates condition (i) of Corollary 3.1.

Example 3.1. Consider graphs G1 and G2 defined in Examples 2.3 and 2.4, re-
spectively. Then G̃1 = G2 = G̃2. The weak connectivity of G1 or G2 means given
x, y ∈ X there is a sequence (xi)N

i=0 such that x0 = x, xN = y and for all i = 1, ..., N ,
xi−1 and xi are comparable, i.e., xi−1 � xi or xi � xi−1. In particular, this is the
case if we assume that (1.1) holds as done in fixed point theorems of Ran and Reur-
ings [RR04], and Petruşel and Rus [PR06] or, more generally, (1.5) holds as done in
corresponding theorems of Nieto and Rodŕıguez-López ([NR-L05], [NR-L07]; also
[NPR-L07]). Indeed, both these conditions imply that for any x, y ∈ X, there is
a path in G̃1 (hence G̃2) from x to y of length ≤ 2. Clearly, even for G1, (i) of
Corollary 3.1 is more general than (1.1) or (1.5).

The next example shows that one cannot improve Corollary 3.1 by adding in (ii)
that x∗ is a fixed point of f .

Example 3.2. Let X := [0, 1] be endowed with the Euclidean metric dE . Define
the relation � in X by

x � y if x, y ∈ (0, 1] and x ≤ y, or x = 0 and y ∈ {0, 1}.
It is easily seen � is a partial order. (In fact, (X,�) is isomorphic to (X ′,�′),
where X ′ := ((0, 1]×{0})∪{(1,−1)} and �′ is the partial ordering with respect to
the cone [0,∞)2.) Moreover, (1.1) holds since 1 is the greatest element in (X,�).
Hence and in view of Example 3.1, G1 is weakly connected. Set

fx := x/2 for x ∈ (0, 1], and f0 := 1/2.
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It is easy to verify f is �-nondecreasing and (1.2) holds with α := 1/2, i.e., f is a
G1-contraction. Clearly, fnx → 0 for all x ∈ X, but f has no fixed points.

The proofs of our fixed point theorems depend on the following

Proposition 3.1. Assume that f : X → X is a G-contraction such that for some
x0 ∈ X, fx0 ∈ [x0]G̃. Let G̃x0 be the component of G̃ containing x0. Then [x0]G̃
is f-invariant and f |[x0]G̃

is a G̃x0-contraction. Moreover, if x, y ∈ [x0]G̃, then
(fnx)n∈N and (fny)n∈N are Cauchy equivalent.

Proof. Let x ∈ [x0]G̃. Then there is a path (xi)N
i=0 in G̃ from x0 to x, i.e., xN = x

and (xi−1, xi) ∈ E(G̃) for i = 1, ..., N . By Proposition 2.1, f is a G̃-contraction
which yields (fxi−1, fxi) ∈ E(G̃) for i = 1, ..., N , i.e., (fxi)N

i=0 is a path in G̃
from fx0 to fx. Thus fx ∈ [fx0]G̃. Since, by hypothesis, fx0 ∈ [x0]G̃, i.e.,
[fx0]G̃ = [x0]G̃, we infer fx ∈ [x0]G̃. Thus [x0]G̃ is f -invariant.

Now let (x, y) ∈ E(G̃x0). This means there is a path (xi)N
i=0 in G̃ from x0 to y

such that xN−1 = x. Let (yi)M
i=0 be a path in G̃ from x0 to fx0. Repeating the

argument from the first part of the proof, we infer (y0, y1, ..., yM , fx1, ..., fxN ) is a
path in G̃ from x0 to fy; in particular, (fxN−1, fxN ) ∈ E(G̃x0), i.e., (fx, fy) ∈
E(G̃x0). Moreover, since E(G̃x0) ⊆ E(G̃) and f is a G̃-contraction, we infer (2.3)
holds for the graph G̃x0 . Thus f |[x0]G̃

is a G̃x0-contraction.
Finally, in view of Theorem 3.1, the second statement follows immediately from

the first one since G̃x0 is connected. �

Theorem 3.2. Let (X, d) be complete, and let the triple (X, d, G) have the following
property:

(3.1)
for any (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E(G) for n ∈ N,

then there is a subsequence (xkn
)n∈N with (xkn

, x) ∈ E(G) for n ∈ N.

Let f : X → X be a G-contraction, and Xf := {x ∈ X : (x, fx) ∈ E(G)}. Then the
following statements hold.

1o card Fix f = card{[x]G̃ : x ∈ Xf}.
2o Fix f �= ∅ iff Xf �= ∅.
3o f has a unique fixed point iff there exists x0 ∈ Xf such that Xf ⊆ [x0]G̃.
4o For any x ∈ Xf , f |[x]G̃

is a PO.
5o If Xf �= ∅ and G is weakly connected, then f is a PO.
6o If X ′ :=

⋃
{[x]G̃ : x ∈ Xf}, then f |X′ is a WPO.

7o If f ⊆ E(G), then f is a WPO.

Proof. We begin with points 4o and 5o. Let x ∈ Xf . Then fx ∈ [x]G̃, so by
Proposition 3.1, if y ∈ [x]G̃, then (fnx)n∈N and (fny)n∈N are Cauchy equivalent. By
completeness, (fnx)n∈N converges to some x∗ ∈ X. Clearly, also limn→∞ fny = x∗.
Since (x, fx) ∈ E(G), (2.2) yields

(3.2) (fnx, fn+1x) ∈ E(G) for n ∈ N.

By (3.1), there is a subsequence (fknx)n∈N such that (fknx, x∗) ∈ E(G) for n ∈ N.
Hence and by (3.2), we infer (x, fx, f2x, ..., fk1x, x∗) is a path in G (hence also in
G̃) from x to x∗, i.e., x∗ ∈ [x]G̃. Moreover, by (2.3),

d(fkn+1x, fx∗) ≤ α d(fknx, x∗) for n ∈ N.
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Hence, letting n tend to ∞ we conclude x∗ = fx∗. Thus f |[x]G̃
is a PO. Moreover,

if G is weakly connected, then [x]G̃ = X, so f is a PO.
Now 6o is an easy consequence of 4o. To show 7o observe that f ⊆ E(G) means

Xf = X. This yields X ′ = X, so f is a WPO in view of 6o.
To prove 1o, consider a mapping π defined by

π(x) := [x]G̃ for all x ∈ Fix f.

It suffices to show π is a bijection of Fix f onto C := {[x]G̃ : x ∈ Xf}. Since E(G) ⊇
∆, we infer Fix f ⊆ Xf which yields π(Fix f) ⊆ C. On the other hand, if x ∈ Xf ,
then by 4o, limn→∞ fnx ∈ [x]G̃ ∩Fix f which implies π(limn→∞ fnx) = [x]G̃. Thus
f is a surjection of Fix f onto C. Now, if x1, x2 ∈ Fix f are such that π(x1) = π(x2),
i.e., [x1]G̃ = [x2]G̃, then x2 ∈ [x1]G̃, so by 4o,

lim
n→∞

fnx2 ∈ [x1]G̃ ∩ Fix f = {x1},

i.e., x2 = x1 since fnx2 = x1. Consequently, f is injective. Thus 1o is proved.
Finally, observe that 2o and 3o are simple consequences of 1o. �

Remark 3.1. For a triple (X, d, G2), property (3.1) was introduced by Nieto and
Rodŕıguez-López [NR-L07]. If we assume that a graph G is such that E(G) is a
quasi-order (i.e., it is transitive), then (3.1) is equivalent to the following:

(3.3)
for any (xn)n∈N, if xn → x and (xn, xn+1) ∈ E(G) for n ∈ N,

then (xn, x) ∈ E(G) for n ∈ N.

Indeed, (3.3)⇒(3.1) is trivial. Now assume (3.1) holds and (xn)n∈N is as in (3.3). By
transitivity, (xn, xm) ∈ E(G) if n ≤ m. By (3.1), for some (kn)n∈N, (xkn

, x) ∈ E(G)
for n ∈ N. Since n ≤ kn, we have (xn, xkn

) ∈ E(G). By transitivity, we infer
(xn, x) ∈ E(G).

On the other hand, if a triple (X, d, G) has property (3.3), then E(G) is a quasi-
order. Indeed, if (x, y) ∈ E(G) and (y, z) ∈ E(G), then applying (3.3) to (xn)n∈N

defined by
x1 := x, x2 := y, xn := z for n ≥ 3,

we get (xn, z) ∈ E(G) for n ∈ N, and hence (x, z) ∈ E(G).
For a triple (X, d, G1), property (3.3) was introduced by Nieto and Rodŕıguez-

López [NR-L05].

Remark 3.2. Obviously, the graph G0 (cf. Example 2.2) is connected, so Theo-
rem 3.2 yields the Banach Principle. On the other hand, it is not clear whether
Theorems 1.1 and 1.2 generalize Banach’s theorem. With the help of Zermelo’s well-
ordering theorem, we may observe only that the Banach Principle can be derived
from Theorem 1.3.

Remark 3.3. Condition f ⊆ E(G1) (cf. Example 2.3) of point 7o of Theorem 3.2
means f is progressive, i.e., x � fx for all x ∈ X. By Zermelo’s fixed point theorem
(see, e.g., [DS58, p. 5]), each progressive selfmap of a partially ordered set has
a fixed point if every chain has a supremum. (For a discussion on applications
of Zermelo’s theorem in metric fixed point theory, see [Ja01].) However, in many
cases the last condition turns out to be too strong; in particular, it does not hold for
(R,≤). On the other hand, for the graph G1, (3.3) is satisfied if (X, d, G1) has the
following property: every countable relatively compact chain C has a supremum,
and sup C ∈ cl C. (To prove it, use a similar argument as in the proof of [NR-L05,
Lemma 1].) Clearly, the last property holds for the Euclidean space R.
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Corollary 3.2. Let (X, d) be complete, and let the triple (X, d, G) have property
(3.1). The following statements are equivalent:

(i) G is weakly connected;
(ii) every G-contraction f : X → X such that (x0, fx0) ∈ E(G) for some x0 ∈

X, is a PO;
(iii) for any G-contraction f : X → X, card Fix f ≤ 1.

Proof. (i)⇒(ii) follows directly from Theorem 3.2 (5o).
(ii)⇒(iii): Let f : X → X be a G-contraction. If Xf is empty, so is Fix f

since Fix f ⊆ Xf . If Xf �= ∅, then by (ii), Fix f is a singleton. In both cases
cardFix f ≤ 1.

(iii)⇒(i) follows from Theorem 3.1. �

Remark 3.4. Corollary 3.2 illuminates [NR-L05, Ex. 1] where G1-contractions on
subsets of R

2 were defined having more than one fixed point. By Corollary 3.2,
such examples exist for any triple (X, d, G1) such that G1 is not weakly connected.

Our next result gives another sufficient condition for the existence of fixed points
in the case where a triple (X, d, G) may fail to have property (3.1).

Theorem 3.3. Let (X, d) be complete, and let f : X → X be a G-contraction such
that f is orbitally G-continuous. Let Xf := {x ∈ X : (x, fx) ∈ E(G)}. Then the
following statements hold.

1o Fix f �= ∅ iff Xf �= ∅.
2o For any x ∈ Xf and y ∈ [x]G̃, (fny)n∈N converges to a fixed point of f and

limn→∞ fny does not depend on y.
3o If Xf �= ∅ and G is weakly connected, then f is a PO.
4o If f ⊆ E(G), then f is a WPO.

Proof. We begin with point 2o. Let x ∈ X be such that (x, fx) ∈ E(G), and
let y ∈ [x]G̃. By Proposition 3.1, (fnx)n∈N and (fny)n∈N converge to the same
point x∗. Moreover, (fnx, fn+1x) ∈ E(G) for n ∈ N. Since f is orbitally G-
continuous, we get f(fnx) → fx∗. This yields x∗ = fx∗ since, simultaneously,
f(fnx) = fn+1x → x∗. Thus we proved 2o and ‘⇐’ of 1o. ‘⇒’ of 1o follows from
the assumption E(G) ⊇ ∆. 4o is an immediate consequence of 2o since f ⊆ E(G)
means Xf = X. To prove 3o observe that if x0 ∈ Xf , then [x0]G̃ = X, so 2o yields
f is a PO. �

Now we give another version of Theorem 3.3 in which we slightly strengthen a
continuity condition on f .

Theorem 3.4. Let (X, d) be complete, and let f : X → X be a G-contraction such
that f is orbitally continuous. Then the following statements hold.

1o Fix f �= ∅ iff there exists x0 ∈ X with fx0 ∈ [x0]G̃.
2o If x ∈ X is such that fx ∈ [x]G̃, then for any y ∈ [x]G̃, (fny)n∈N converges

to a fixed point of f , and limn→∞ fny does not depend on y.
3o If G is weakly connected, then f is a PO.
4o If fx ∈ [x]G̃ for any x ∈ X, then f is a WPO.

Proof. We begin with 2o. Let x ∈ X be such that fx ∈ [x]G̃, and let y ∈ [x]G̃. By
Proposition 3.1, (fnx)n∈N and (fny)n∈N converge to the same point x∗. Since f is
orbitally continuous, f(fnx) → fx∗ which yields x∗ = fx∗. So 2o and ‘⇐’ of 1o
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are proved. ‘⇒’ of 1o is obvious since x ∈ [x]G̃ for any x ∈ X. Now if G is weakly
connected, then for any x ∈ X, [x]G̃ = X; in particular, fx ∈ [x]G̃, and by 2o, we
infer f is a PO. Thus 3o holds. Finally, 4o is an immediate consequence of 2o. �

Remark 3.5. In view of Proposition 3.1, condition ‘fx ∈ [x]G̃ for any x ∈ X’
used in 4o of Theorem 3.4 means all components of G̃ are f -invariant whereas 1o

is equivalent to the statement: f has a fixed point iff some component of G̃ is
f -invariant.

Remark 3.6. We emphasize that the advantage of Theorem 3.4 (3o) over Theo-
rems 3.2 (5o) and 3.3 (3o) is that we need not verify here if there is x0 ∈ X with
(x0, fx0) ∈ E(G). In particular, Theorem 3.4 extends essentially results of Ran
and Reurings [RR04, Th. 2.1], Petruşel and Rus [PR06, Th. 4.3], and Nieto and
Rodŕıguez-López [NR-L05, Ths. 2.1 and 2.3].

Corollary 3.3. Let (X, d) be complete. The following statements are equivalent:
(i) G is weakly connected;
(ii) every orbitally continuous G-contraction is a PO;
(iii) for any orbitally continuous G-contraction f : X → X, cardFix f ≤ 1.

Hence if G̃ is disconnected, then there exists an orbitally continuous G-contraction
which has at least two fixed points.

Proof. Theorem 3.4 (3o) yields (i)⇒(ii). (ii)⇒(iii) is obvious. (iii)⇒(i) follows
from the proof of (iii)⇒(i) of Theorem 3.1; observe that f defined there is orbitally
continuous. �

Remark 3.7. The assumptions of Theorems 3.3 and 3.4 seem to be very close:
the only difference concerns the type of continuity of f . Thus the question arises
whether we could improve Theorem 3.3 (1o) by substituting condition ‘fx0 ∈ [x0]G̃’
for ‘(x0, fx0) ∈ E(G)’. However, the answer is negative. To see that, consider again
Example 3.2. Here f is not orbitally continuous since fn1 → 0, but f(fn1) �→ f0.
On the other hand, f is G1-continuous (hence orbitally G1-continuous). Indeed,
let (xn)n∈N be such that xn � xn+1 for n ∈ N, and xn → x. If xn ∈ (0, 1] for
n ∈ N, then xn ↗ x, so fxn → fx since f is dE-continuous from the left. If xk = 0
for some k ∈ N, then either (xn)n∈N = (0, 0, ...), or (xn)n∈N = (0, ..., 1, 1, ...). In
both cases fxn → fx. Moreover, observe that in each case xn � x. So the above
argument also shows (X, d,�) has property (1.3). Since f has no fixed points and
G1 is weakly connected, we infer that we can improve neither Theorem 3.3 (1o,
3o) nor Theorem 3.2 (2o, 5o) by modifying or removing condition ‘Xf �= ∅’, as
done in Theorem 3.4 (1o, 3o). In particular, the assumption ‘there is x0 ∈ X with
x0 � fx0 or fx0 � x0’ is unnecessary in Theorem 1.1, but it cannot be dropped in
Theorem 1.2 unless f is orbitally continuous.

The following example shows that under the assumptions of Theorem 3.4, given
x ∈ Xf , neither f |[x]G̃

nor f |cl[x]G̃
need be a PO. So we cannot improve Theorem 3.4

by formulating statement 2o in a similar way as 4o of Theorem 3.2.

Example 3.3. Let X := [0, 1] be endowed with the Euclidean metric. Define the
relation � in X by

x � y if x, y ∈ (0, 1) and x ≤ y, or x = 0 and y = 0, or x = 1 and y = 1.
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Then � is a partial order. Set

fx := x/2 for x ∈ [0, 1) and f1 := 1.

Let G1 be the graph defined in Example 2.3. It is easily seen that f is a G1-
contraction and f is orbitally continuous, so the assumptions of Theorem 3.3 are
satisfied. However, for x ∈ (0, 1), [x]G̃ = (0, 1), and hence f |[x]G̃

has no fixed points,
while f |cl[x]G̃

(= f) has two fixed points.

Nevertheless, some improvements of Theorem 3.4 in the above-mentioned direc-
tion are possible under some stronger assumptions on f as done in the following

Theorem 3.5. Let (X, d) be complete, and let f : X → X be a G-contraction such
that f is nonexpansive or the family {fn : n ∈ N} is equicontinuous on X. Then,
for any x ∈ X such that fx ∈ [x]G̃, f |cl[x]G̃

is a PO.

We precede the proof of Theorem 3.5 by the following result. (Incidentally, it
also implies the so-called double contraction principle of Lasota [L95].)

Lemma 3.2. Let E be a dense subset of X, and let f : X → X be such that for
some x∗ ∈ X,

fnx → x∗ for x ∈ E.

If the family {fn : n ∈ N} is equicontinuous on X, then fnx → x∗ for all x ∈ X.

Proof. Let x ∈ X and ε > 0. Since {fn : n ∈ N} is equicontinuous at x, there is
δ > 0 such that if y ∈ X and d(x, y) < δ, then d(fnx, fny) < ε/2 for n ∈ N. Since
clE = X, there is y ∈ E such that d(x, y) < δ. By hypothesis, fny → x∗ so there
is k ∈ N such that d(fny, x∗) < ε/2 for n ≥ k. Hence we get

d(fnx, x∗) ≤ d(fnx, fny) + d(fny, x∗) < ε for n ≥ k

which yields fnx → x∗. �
Proof of Theorem 3.5. Since {fn : n ∈ N} is equicontinuous if f is nonexpansive, it
suffices to consider the case where the former condition holds. Assume fx ∈ [x]G̃.
By Proposition 3.1, [x]G̃ is f -invariant. Hence and by continuity of f , cl[x]G̃ is
f -invariant. By Theorem 3.4, there is x∗ ∈ Fix f such that fny → x∗ for y ∈ [x]G̃.
Clearly, x∗ ∈ cl[x]G̃. Since {fn : n ∈ N} is equicontinuous, we infer in view of
Lemma 3.2 that fny → x∗ for y ∈ cl[x]G̃ which completes the proof. �

Now we wish to present that even for particular graphs, Theorems 3.2–3.5 extend
and subsume a number of recent results of other authors.

Remark 3.8. Let G := G1 as in Example 2.3. Then Theorems 3.2 (2o, 5o) and
3.3 (1o, 3o) generalize the results of Nieto and Rodŕıguez-López [NR-L05, Ths.
2.1–2.3].

Remark 3.9. Let G := G−1
1 . Observe that a mapping f is �-nondecreasing iff f

is �-nondecreasing; moreover, a sequence (xn)n∈N is �-nonincreasing iff it is �-
nondecreasing. Hence, for that graph, Theorems 3.2 (2o, 5o) and 3.3 (1o, 3o) yield
[NR-L05, Ths. 2.4–2.5].

Remark 3.10. For G := G2 as in Example 2.4, Theorem 3.3 (2o, 5o) extends the
results of Ran and Reurings [RR04, Th. 2.1], and Petruşel and Rus [PR06, Ths. 1.2
and 4.3] (here the so-called compatibility conditions between a metric and an order
structure can be dropped). Also, for the same graph, Theorems 3.2 (5o) and 3.3
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(3o) improve results of Nieto and Rodŕıguez-López [NR-L07, Ths. 4, 5 and 7] and
[NPR-L07, Th. 3.1]. Indeed, we weakened the authors’ hypothesis (1.5) by assuming
the weak connectivity of graph G (cf. Example 3.1), and we also relaxed their
continuity assumption on a mapping.

On the other hand, Theorem 3.4 yields directly the following well-known fixed
point theorem which is quite different from the above results.

Corollary 3.4 (Edelstein). Let (X, d) be complete and ε-chainable for some ε > 0,
i.e., given x, y ∈ X, there is N ∈ N and a sequence (xi)N

i=0 such that

x0 = x, xN = y and d(xi−1, xi) < ε for i = 1, ..., N.

Let f : X → X be such that

(3.4) ∃α∈(0,1) ∀x,y∈X (d(x, y) < ε ⇒ d(fx, fy) ≤ α d(x, y)).

Then f is a PO.

Proof. Clearly, (3.4) implies f is continuous. Consider the graph G with V (G) :=
X, and

E(G) := {(x, y) ∈ X × X : d(x, y) < ε}.
Then ε-chainability of (X, d) means G is connected. If (x, y) ∈ E(G), then (3.4)
yields

d(fx, fy) ≤ α d(x, y) < αε < ε.

Hence (2.2) and (2.3) hold, so f is a G-contraction. By Theorem 3.4 (3o), f is a
PO. �

Remark 3.11. Let G be defined as in the proof of Corollary 3.4. Then (X, d, G)
has property (3.1). Indeed, if xn → x, then d(xn, x) < ε for sufficiently large n, so
there is (xkn

)n∈N such that (xkn
, x) ∈ E(G). Thus, also Theorem 3.2 is applicable

here. In particular, if (X, d) is not ε-chainable, then by Theorem 3.2 (1o), we get a
characterization of card Fix f for an Edelstein contraction f . In this case we may
also apply Theorem 3.5 since (3.4) implies {fn : n ∈ N} is equicontinuous on X.

The following result will be useful in the next section.

Proposition 3.2. If E(G) is a quasi-order and given x ∈ X, the set {y ∈ X :
(x, y) ∈ E(G)} is closed, then (X, d, G) has property (3.3).

Proof. Let (xn)n∈N be such that (xn, xn+1) ∈ E(G) for n ∈ N and xn → x. By
transitivity, given n ∈ N,

xm ∈ {y ∈ X : (xn, y) ∈ E(G)} for m ≥ n.

Letting m tend to ∞, in view of the hypothesis we get (xn, x) ∈ E(G). �

4. Application: A generalization of the Kelisky-Rivlin theorem

Recall that the Bernstein operator Bn (n ∈ N) on the space C[0, 1] of all contin-
uous real functions on the closed unit interval is defined by

(Bnϕ)(t) :=
n∑

k=0

ϕ

(
k

n

) (
n

k

)
tk(1 − t)n−k for ϕ ∈ C[0, 1] and t ∈ [0, 1].
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Kelisky and Rivlin [KR67] proved that each Bernstein operator Bn is a WPO.
Moreover, given n ∈ N and ϕ ∈ C[0, 1],

(4.1) lim
j→∞

(Bj
nϕ)(t) = ϕ(0) + (ϕ(1) − ϕ(0))t for t ∈ [0, 1].

In their opinion the study of iterates of Bn is considerably simplified if one uses the
language of linear algebra. Nevertheless, their proof is not easy: in particular, it
involves the Stirling numbers of the second kind, and eigenvalues and eigenvectors
of some matrices. Recently, a simple proof of the Kelisky-Rivlin theorem was given
by Rus [R04] with the help of some trick with the Contraction Principle. Our
purpose here is to show that the Bernstein operator Bn is a Banach G-contraction
for some graph G such that Bn ⊆ E(G), and hence, in view of Theorem 3.3, Bn

is a WPO. In fact, this is a consequence of the following more general result which
extends the Kelisky-Rivlin theorem.

Theorem 4.1. Let X be a Banach space and X0 a closed subspace of X. Let
T : X → X be a linear operator (not necessarily continuous on X) such that
||T |X0 || < 1. If the corresponding field I − T is such that (I − T )(X) ⊆ X0,
then T is a WPO. Moreover, card Fix T = card X/X0, and

(x + X0) ∩ Fix T =
{

lim
n→∞

Tnx
}

for x ∈ X.

Proof. Define the following graph G: V (G) := X and for x, y ∈ X,

(x, y) ∈ E(G) if x − y ∈ X0.

Clearly, E(G) is an equivalence relation; in particular, E(G) ⊇ ∆ and by symmetry,
G̃ = G. We show both Theorems 3.2 and 3.3 are applicable here. First we prove T
is a G-contraction. Let x, y ∈ E(G), i.e., x − y ∈ X0. Then we have

Tx − Ty = (y − Ty) − (x − Tx) + (x − y) ∈ X0,

since, by hypothesis, y − Ty, x − Tx ∈ X0. Thus (Tx, Ty) ∈ E(G) and, moreover,

||Tx − Ty|| = ||T (x − y)|| ≤ ||T |X0 || ||x − y||.
Since ||T |X0 || < 1, we infer T is a G-contraction.

Observe that given x ∈ X,

{y ∈ X : (x, y) ∈ E(G)} = x + X0.

Since X0 is closed, so is x+X0. Thus Proposition 3.2 implies (X, d, G) has property
(3.3) since, in particular, E(G) is a quasi-order.

We show T is G-continuous. Let (xn, xn+1) ∈ E(G) for n ∈ N and xn → x.
By transitivity, (x1, xn) ∈ E(G), i.e., x1 − xn ∈ X0. Since X0 is closed, we infer
x1 − x ∈ X0. Hence and by continuity of T |X0 , we get T (x1 − xn) → T (x1 − x).
This yields Txn → Tx since T is linear. Consequently, T is G-continuous.

Now condition (I−T )(X) ⊆ X0 means (x, Tx) ∈ E(G) for x ∈ X, i.e., T ⊆ E(G).
So both Theorems 3.2 and 3.3 imply T is a WPO. Moreover, since E(G̃) (= E(G))
is transitive, we infer that given x ∈ X,

[x]G̃ = {y ∈ X : (x, y) ∈ E(G)} = x + X0.

Hence and by Theorem 3.2 (1o),

card Fix T = card{x + X0 : x ∈ XT } = card X/X0

since XT = X. Finally, Theorem 3.2 (4o) yields the last statement of the thesis. �
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Now we show the Kelisky-Rivlin theorem is a particular case of Theorem 4.1.
Set X := C[0, 1] and

X0 := {ϕ ∈ X : ϕ(0) = ϕ(1) = 0}.
We endow X with the sup norm. Observe that (B1ϕ)(t) = ϕ(0)(1 − t) + ϕ(1)t.
Hence B1|X0 = 0, and

(I − B1)(ϕ)(t) = ϕ(t) − ϕ(0)(1 − t) − ϕ(1)t

which yields (I − B1)(X) ⊆ X0.
Now let n ∈ N and n ≥ 2. Given ϕ ∈ X0 and t ∈ [0, 1], we have

|(Bnϕ)(t)| =

∣∣∣∣∣
n−1∑
k=1

ϕ

(
k

n

) (
n

k

)
tk(1 − t)n−k

∣∣∣∣∣ ≤
n−1∑
k=1

(
n

k

)
tk(1 − t)n−k||ϕ||

= (1 − tn − (1 − t)n)||ϕ|| ≤ (1 − 1/2n−1)||ϕ||

which yields ||Bn|X0 || < 1. We show (I − Bn)(X) ⊆ X0. Let ϕ ∈ X and t ∈ [0, 1].
Then we have

(I − Bn)(ϕ)(t) =
n∑

k=0

(
ϕ(t) − ϕ

(
k

n

)) (
n

k

)
tk(1 − t)n−k.

Hence it is clear that (I −Bn)(ϕ) ∈ X0. By Theorem 4.1, Bn is a WPO and given
ϕ ∈ X,

(4.2) (ϕ + X0) ∩ Fix Bn =
{

lim
j→∞

Bj
nϕ

}
.

Since e0, e1 ∈ Fix Bn, where ei(t) := ti for i = 0, 1 and t ∈ [0, 1], and Fix Bn is
a linear subspace of X, we infer the function t �→ ϕ(0)(1 − t) + ϕ(1)t belongs to
FixBn ∩ (ϕ + X0). Hence and by (4.2), we get (4.1).

Remark 4.1. The above arguments show that each Bernstein operator Bn is a Ba-
nach G-contraction satisfying the assumptions of Theorems 3.2, 3.3 and 3.4. Also,
Theorem 3.5 is applicable here because it is easily seen that Bn is nonexpansive.
On the other hand, since E(G) is not a partial order, none of results from [RR04],
[NR-L05], [PR06], [NR-L07] and [NPR-L07] can be applied here. The same remark
concerns Corollary 3.4: here E(G) defined in its proof is neither transitive nor
weakly antisymmetric.
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