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Although the concept of central pattern generators (CPGs) controlling locomotion in

vertebrates is widely accepted, the presence of specialized CPGs in human locomotion

is still a matter of debate. An interesting numerical model developed in the 90s’

demonstrated the important role CPGs could play in human locomotion, both in terms

of stability against perturbations, and in terms of speed control. Recently, a reflex-based

neuro-musculo-skeletal model has been proposed, showing a level of stability to

perturbations similar to the previous model, without any CPG components. Although

exhibiting striking similarities with human gaits, the lack of CPG makes the control

of speed/step length in the model difficult. In this paper, we hypothesize that a CPG

component will offer a meaningful way of controlling the locomotion speed. After

introducing the CPG component in the reflex model, and taking advantage of the resulting

properties, a simple model for gait modulation is presented. The results highlight the

advantages of a CPG as feedforward component in terms of gait modulation.
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1. INTRODUCTION

Central pattern generators (CPGs) are networks of neural cells

that can generate coordinated rhythmic patterns in the absence

of sensory feedbacks. The idea that CPG control locomo-

tion in lower vertebrates has been widely accepted for several

decades (Grillner and Wallen, 1985). Although many observa-

tions tend to favor the presence of such components in higher

vertebrates (see MacKay-Lyons, 2002 for a review), the pres-

ence of specialized CPGs in human locomotion is still a matter

of debate (Dimitrijevic et al., 1998). An interesting numeri-

cal model developed by Gentaro Taga in the 90s’ demonstrated

the role that CPGs could play in human locomotion. It was

shown that walking and running could emerge from a rhyth-

mic interaction (modeled by coupled oscillators, i.e., CPGs),

between the central nervous system, the musculo-skeletal-system

and the environment. The CPGs were modeled as a network of

oscillators, coupled with the environment through joint angles

and ground reaction forces (Taga, 1994). The intriguing robust-

ness of the generated gaits against mechanical perturbations and

changes in the environment was attributed to the use of CPGs

and feedbacks, respectively, highlighting the important role of

both components. However, more recently, a neuro-musculo-

skeletal model (denoted FBL, for Feedback Based Locomotion)

solely driven by reflex loops was proposed by Geyer and Herr

(2010). The model showed a stability to perturbations similar to

the previous model, without any CPG components, questioning

the conclusions drawn by Taga et al. regarding the importance

of CPGs to resist perturbations. Furthermore, the properties of

the gaits produced by the FBL model were—in terms of mus-

cles activity, joints angles and torques patterns—surprisingly

close to those observed in humans. Yet, an important feature

the reflex-driven neuro-musculo-skeletal system was unable to

reproduce was the control of speed. Indeed, while in Taga’s

model, speed was controlled by a simple unique variable (the fre-

quency of the oscillators), such a strategy is inapplicable in the

reflex model. Although a preliminary speed control strategy has

been proposed by Song and Geyer (2012), its complexity com-

pared to the very simple descending signals, originating from

the brain stem, able to control locomotion (found in lower ver-

tebrates, such as the lamprey and the salamander, and even in

cats) makes their relevance, from a biological point of view,

questionable.

Given the striking properties of the reflex model, we wanted to

study the possible benefits that a CPG would add to the model. We

hypothesized that the reflex model would benefit from the pres-

ence of CPGs in terms of gait speed/step length control. The CPG

component is derived from the feedback pathways, following an

idea from Kuo (2002), where CPGs are viewed as feedback predic-

tors. We use a variety of models combining CPG and feedbacks

in different ways to study the relative importance of the different

feedbacks/feedforward pathways. Finally, taking advantage of the

properties of the CPG, a simple model for speed modulation is

presented.

2. MATERIALS AND METHODS

In this section, we describe step-by-step how we generate the

CPG-based extension of Geyer’s FBL model, referred to as 3FBL

(for FeedForward and Feedback Based Locomotion). We first

present our implementation of the FBL model and detail its opti-

mization. This model demonstrates that simple delayed feedback

loops (i.e., delayed linear mapping between sensors state and

muscles activities) combined with a simplified musculoskeletal
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model (lower limb model of human based on anthropometric

data, actuated by seven Hill muscle models per limb) is sufficient

to generate walking at various frequencies and step lengths.

Furthermore, when the objective function used for the optimiza-

tion process includes a metabolic cost minimization criterion, the

generated angles, torques and muscles activation are comparable

to human walking data (replicating results found in Geyer and

Herr, 2010 and Wang et al., 2012). Despite the interesting proper-

ties of the model, an important limitation is that, once a walking

gait at a given speed and step length is obtained, the only way

to modulate it is by tuning of the multiple feedback gains. For

example, in Song and Geyer (2012), a speed controller has been

derived based on feedback gains tuning. The proposed controller

is able to switch between gaits of different speeds, but the strategy

remains complex. In short, speed changes are obtained by switch-

ing between different sets of feedback gains; increasing speed is

done by (1) switching to a set of gains that generate an accelera-

tion, and (2) once the desired speed is reached, switching to a set

of gains that generate a gait of the desired speed.

The gait modulation strategy we propose is based on evi-

dence from lower vertebrates and quadrupeds suggesting that

simple low dimensional descending signals are enough to mod-

ulate walking (speed changes and gait transitions) (Grillner and

Wallen, 1985). Our strategy to introduce CPGs as a feedforward

component is based on the assumption that CPGs can be viewed

as feedback predictors. In other words, CPGs should be able to

reproduce any feedback signals generated by a stable walking gait

of the FBL model. Since the feedback signals can be of any shape,

we do not want to make strong assumptions on the class of pat-

tern. Therefore, we will use a special class of oscillators called

“morphed non-linear phase oscillators,” that have the ability to

generate limit cycles of arbitrary shape (Ajallooeian et al., 2013).

Note that we do not model individual neurons but rather use an

abstract model of biological CPGs represented as a dynamical sys-

tem exhibiting limit cycle behavior. This strategy is commonly

used to test hypothesis on the role of biological CPGs (Ijspeert,

2008).

The CPGs will then be combined with feedback pathways

using the strategy presented in Kuo (2002), offering an elegant

and easy way to study the relative importance of the different

feedback pathways. The proposed strategy will also permit to

highlight the pathways that can be used as speed and step length

modulators.

2.1. FBL DESCRIPTION

The pure feedback-based neuromuscular model of human loco-

motion (or FBL model) refers to a bio-inspired neuromuscular

bipedal walking model developed by Geyer and Herr (2010)

that we reimplemented and use as a starting point for our

study. The following description is thus largely inspired by their

work. Any differences with the original model will be explicitly

stated.

In this study, all experiments are done using an implemen-

tation of the NMM library (a freely accessible C++ library

that we developed to simulate neuromuscular models1 ) on

1The NMM library can be found online at https://bitbucket.org/efx/libnmm

the Webots robotic environment platform (Michel, 2004). This

webots implementation2 is based on an anthropometric model of

human lower body (see Supplementary Figure 3, anthropometric

data from Winter, 2009).

The FBL model uses feedback rules connecting different

sources of sensory information (comprising muscle force and

length feedbacks, ground reaction forces and joint angles) to Hill-

type muscle models (details concerning the muscle model can be

found in Geyer et al., 2003), which in turn generate effective joints

torques. A state machine is used to switch between two sets of

feedback rules: one to generate the stance phase control (mainly

extensor muscles activity) and one to generate the swing phase

control (mainly flexor muscles activity). Ground sensors placed

under the feet are used to detect the state transition (takeoff and

touchdown). The generation of the gait cycle is done through

reflexes represented by a sequence of time delayed reactions (see

Figure 1).

2The Webots implementation of the NMM library can be found online at

https://bitbucket.org/efx/sml

FIGURE 1 | Closed loop information flow of the FBL model. (A) Sensors

signals stimulate (see Equation 1) a set of sensory interneurons (INsen). The

sensors signals are represented by the colored line; 1 represents the

muscle sensors, 2 represents the joint overextension/flexion prevention

sensors, 3 represents the stability sensor generating a signal to maintain

the trunk upright and 4 represents the ground sensors. There are four

different types of sensory interneurons: INstance
sen which are active only

during stance, IN
swing
sen only during swing, IN

dblsup
sen , only during the double

support phase and IN
cycle
sen during the whole cycle. (B) Each INsen is

connected to a unique motoneuron (MN). However a given MN receives

inputs from several INsen. Connections between INsen and MN follow

Equation 2. (C) In turn, each MN stimulates its corresponding muscle

tendon unit (MTU). (D) Each MTU contributes to a torque (τ ) on one or two

joints, depending on whether it models a uni- or bi-articular muscle. Finally,

the action of all the muscles on the body generates a movement, which

induces a change in the sensors state and thereby closes the loop. Note

that in the original model the link between sensors states and muscles

activities is direct (i.e., no intermediary stage), while here the sensors to

muscles mapping is separated in three more biologically relevant stages:

sensory interneurons (INsen), motoneurons (MN) and muscle tendon units

(MTU). Note that both the original and the FBL model are computationally

equivalent.
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While in the original model the link between sensors states

and muscles activities was direct (i.e., no intermediate stage),

in our work we separate the sensors to muscles mapping in

three more biologically relevant stages (see Figure 1 for details):

sensory interneurons (INsen), motoneurons (MN) and muscle

tendon units (MTU). The intermediate stages are added in order

to prepare the extension of the model and makes no functional

differences with the original model, as long as the overall delay

between sensors and muscle activities is identical in both mod-

els. Stages A to C are implemented using the connection model

defined in section 2.2.4. The sensors to torque mapping noted A

to D (schematically represented in Figure 1) are presented below

(see Supplementary Table 3 for a description of the different

vector/matrices used):

A) Sensors to Interneurons

The activity of all interneurons can be written, in matrix

form as:

Xinsen = min
{

1, max
{

0, WX̃sen

}}T
(1)

Where Xinsen is a vector of sensory interneurons activities,

X̃sen is a vector of delayed sensors activities. W is the connec-

tion weights matrix linking the sensors and the interneurons.

Table 1 gives the list of the sensory interneurons present in a

given limb.

B) Interneurons to Motoneurons

Given limbs state s = (Sleft, Sright) (with Sleft, Sright ∈ S =
{ST, STend, SW}, where ST, SW and STend stand for stance,

swing and double support finishing stance respectively) the

activity of all the motoneurons can be written, in matrix

form as:

Xmn = GsXinsen + X0
mn (2)

Where: Xmn is the vector of motoneurons activities acting

on limb L, Xinsen is a vector of sensory interneurons activi-

ties, in this case we assume no delay between interneurons

and motoneurons (i.e., X̃in = Xin). X0
mn is a vector of basal

motoneurons activities. Gs is a boolean matrix represent-

ing the connection state from interneurons to motoneurons

given a limb state s. It ensures that the interneurons act on

the motoneurons only when needed (i.e., stance feedback

loops are active only during stance, swing feedback loops only

during swing). For example if the interneuron i = 18 is con-

nected to a motoneuron j = 3 and active only during left

swing then Gs(3, 18) = 1 if s = (SW, ·). Given a limb state s,

the state of the considered limb Slimb, where limb can be either

left or right is defined as a function of the level of the vertical

ground reaction forces GRF
y
limb and the state of the contralat-

eral limb Scontra. When GRF
y
limb < 0.1, the limb is considered

in swing (Slimb = SW). If GRF
y
limb � 0.1 and Scontra switches

from SW to ST then the current limb is in finishing stance

(S = STend) otherwise the limb is in stance (Slimb = ST).

C) Motoneurons to muscle activities

A motoneuron acts on only one MTU, consequently the equa-

tion linking motoneurons to the MTUs stimulation is simply

Table 1 | List of the FBL sensory interneurons.

Sensory interneurons

Abbreviation Type From To ACTIVE_DURING

GAS←GAS MFF, ST 1b GAS GAS Stance

GLU←GLU MFF, SW 1b GLU GLU Swing

HAM←HAM MFF, SW 1b HAM HAM Swing

SOL←SOL MFF, ST 1b SOL SOL Stance

TA←SOL MFF, ST 1b SOL TA Stance (−)

VAS←VAS MFF, ST 1b VAS VAS Stance

TA←TA MLF CY 1a TA TA Cycle

HF←HAM MLF SW 1a HAM HF Swing (−)

HF←HF MLF SW 1a HF HF Swing (−)

HF←GSIF ST 3,4 iFoot,Trunk HF Stance

HAM←GSIF ST 3,4 iFoot,Trunk HAM Stance

GLU←GSIF ST 3,4 iFoot,Trunk GLU Stance

VAS←GCF STend 4 cFoot VAS Stance end (−)

HF←TLF SW 3 Trunk HF Swing

VAS←KNEE OPF 2 KNEE VAS Angle off (−)

The first column gives the abreviation of the interneuron. The abreviation indi-

cates from which sensor the interneuron receives input from and to which

MN it sends its output and is constructed as follow: MN←INsen_TYPE,

ACTIVE_DURING. MN represents the motoneuron onto which the interneuron

acts. If not specified, the motoneuron onto which the interneuron acts is on

the same side as the sensors side (i.e., ipsilateral). INsen_TYPE represents the

interneuron type. There are six different sensory interneurons; MFF (MTU force

feedback), MLF (MTU length feedback), GSIF (ground and stability ipsilateral

feedback), GCF (ground contralateral feedback), OPF (overextension prevention

feedback), TLF (trunk lean feedback). ACTIVE_DURING indicates when the feed-

back is active; ST: feedback is active during stance, STend: feedback is active

during double support finishing stance, SW: feedback is active during swing, CY:

feedback is active during the whole cycle, AO: the feedback is active only when

the angle of the corresponding joint goes beyond a certain limit, this is used only

for the knee joint where the limit is fixed and set to 170◦. The second column

gives the type of the interneuron, as described in section 2.2.3. The third and

fourth columns indicate the start and target of each feedback pathway. The last

column specifies in which part of the cycle the feedback is active, the (−) sign

refers to a inhibitory effect.

given by:

Xmtu = X̃mn (3)

Where: Xmtu is a vector of MTUs stimulation and X̃mn is a

vector of delayed motoneurons activities. The MTU stimula-

tion is constrained to the
[

0.01, 1
]

interval. The lower bound

of 0.01 is there to model the muscle tone (i.e., a minimal level

of tension always produced by the motoneurons inervating

a muscle). Its purpose is to permit quicker recruitment of

muscles by maintaining a minimal non-zero level of tension.

The MTU activation level A constrained to the
[

0, 1
]

inter-

val is linked to the MTU stimulation level by a first order

differential equation modeling the excitation-contraction

coupling:
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dA

dt
= τA

(

Xmtu − A
)

, τA = 100[s−1] (4)

D) Muscle activities to joint torques

The overall torque τj acting on joint j is given by :

τj =
∑

m ǫ j

τm,j + τ
lig
j

Where τ
lig
j is the torque generated by the ligaments of joint

j, τm,j = Fm · rm(φj) is the torque generated by a MTU m

on joint j, Fm is its force and rm is the moment arm

between MTU m and joint j (constant r0 for hip joints and

r0cos(φ − φmax) for knee and ankle joints, the r0 and φmax

values associated to each muscle-joint couples are given in

Table 2).

2.2. FBL COMPONENTS

2.2.1. Ligament model

In animals, a ligament forms the joint that maintains two bones

together. It also ensures that the angle formed by the bones stays

within a given range. Its action is against the movement and

engages only when the angle is beyond a certain limit, which

depends on the joints (see Supplementary Table 5). Ligaments

are modeled as non-linear spring damper acting as soft limit on

the joints (Geyer and Herr, 2010). When the angle goes beyond

the limit of the joint and the angular speed is not big enough to

bring back the joint in its normal range a force is generated. The

resulting torque τ
lig
j acting on joint j is modeled as :

Table 2 | List of the seven different muscles used in the FBL and

derived models: GLU for gluteus, HF for hip flexor, VAS for vasilus,

GAS for gastrocnemius, TA for tibialis, HAM for hamstring and SOL

for soleus.

MTUs list and joints related parameters

Action r0[m] φmax[deg] φref[deg]

GLU hip ext. 0.1 – 150

HF hip flex. 0.1 – 180

VAS knee ext. 0.06 165 125

SOL ankle ext. 0.05 110 80

TA ankle flex. 0.04 80 110

HAM hip ext. knee flex. 0.08 −, 180 155, 180

GAS ankle ext. knee flex. 0.05 110, 140 80, 165

The last two rows (HAM and GAS muscles) corresponds to bi-articular muscles

(i.e., they span two joints), other rows are for uni-articular muscles. The second

column shows the resulting action on the joint(s) onto which the muscle acts.

The third column corresponds to the lever arm used for torque calculation. The

fourth column gives the angle at which the action of the muscle on the joint is

maximum (absent for the hip joint). The last column gives the reference angle of

the muscle (i.e., the angle that corresponds to the muscle rest length).

τ lig =
{

k · �φ ·
(

1 − ω/ωref

)

if �φ > 0, ω/ωref > −1

0 else
(5)

Where k = 17.19[Nm/rad] is the spring damper stiffness, ωref =
1.74 · 10−2[rad/s] is the reference angular speed, used to normal-

ize the joint angular speed, �φ is the angle by which the joint limit

is exceeded (i.e., difference between the actual angle and the limit

angle, the axes are chosen so that �φ > 0 when the joint limit is

passed) and ω[rad−1] is the angular speed (the axes of rotation

are chosen so that ω > 0 when the angle is going toward the joint

limit angle).

Note that this model of non-linear spring damper is also used

in the model of H. Geyer to model the ground reaction forces to

foot contacts. Here the contact of the robot with the ground are

managed by the physical simulator of Webots.

2.2.2. Muscle model

The muscle model is based on the Hill model (Hill, 1938) and was

developed by Geyer et al. (2003). A muscle is modeled together

with its respective tendon (called muscle tendon unit, or MTU).

An active, contractile element (CE) with two passive parallel ele-

ments (buffer elasticity BE and parallel elasticity PE) form the

muscle, see Supplementary Figure 4. The active element repre-

sents the muscle active contractile element, while the two passive

elements model the physical properties of the muscle fibers. The

BE element prevents the muscle from collapsing, while the PE pre-

vents the muscle length from going beyond a certain length. The

tendon is modeled as a passive element in series with the muscle,

called series elasticity (SE). The full mathematical formulation

can be found in Geyer et al. (2003). The signal sent to the muscle

by the motoneuron is related to the activity of the muscle with a

first order differential equation accounting for neural delays, see

section 2.2.4.

The force of a specific muscle j is linked to its activation

level Aj by:

FCE = Fmax · fl(lCE) · fv(vCE) · Aj (6)

Where : FCE is the muscle force, Fmax is the maximum force

generated by the muscle, fl and fv respectively models the length-

force and velocity-force relationship capturing main biological

features of muscles, fl and fv equation can be found in Geyer

et al. (2003). Given the muscle diagram depicted in Figure 4 and

applying Newton’s third law of motion, we have that the net force

generated by the muscle tendon unit (Fm) equals the force of the

tendon FSE :

Fm = FSE = FCE + FPE − FBE (7)

The only unknown variables are the length and speed of the con-

tractile element from which all muscle variables can be derived.

Details on how vCE is calculated can be found in Geyer et al.

(2003). lCE is then derived by integrating vCE.

2.2.3. Sensors model

There are four different types of sensors (see Figure 1).

• Muscle sensors (type 1): there are two muscle sensors types.

(1a) muscle length sensors, modeling the secondary muscle
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spindles and (1b) muscle force sensors, modeling the Golgi

tendons.

• Joint overextension/flexion prevention sensor (type 2): its

intensity is proportional to the difference between the maxi-

mum tolerated angles and actual joint angle, and its direction

is always against the movement. It is used to prevent knee joint

overextension.

• Ground sensor (type 3): as in the original model (Geyer and

Herr, 2010), there are two sensors under each foot that feel the

reaction forces of the ground, located at the toe and heel posi-

tion. In our case, the heel and toe sensors are provided by a

Webots module called a TouchSensor that returns the cumu-

lative force currently exerted on the sensor’s body. Then, as in

the original model, the value returned by the ground sensor is

defined as being equal to the sum of the toe and heel sensors

normalized by the total weight of the model.

• Stability sensor (type 4) measures the angle of the trunk

in world coordinate and is used by stability feedback to

bring the trunk toward a reference angle. These feedbacks

are proportional-derivative control adapted to act on muscles

and can be viewed as abstract models of descending pathways

responsible for balance control originating from the cerebel-

lum and the vestibular system.

2.2.4. Connection model

In the FBL, walking is generated by a sequence of time delayed

reactions (or feedback loops) that connect sensory interneurons

to muscles stimulation. The state of the output (yj) is modeled as

an affine transform of the sum of delayed weighted inputs (x̃i =
xi(t − Ti,j)):

yj = f
(

W ′X̃
)

= f

⎛

⎝

∑

i ε Input

(

wj,ix̃i,j

)

⎞

⎠

= min

⎧

⎨

⎩

1, max

⎧

⎨

⎩

0,
∑

i ε Input

(

wj,i · xi

(

t − Ti,j

))

+ x0
j

⎫

⎬

⎭

⎫

⎬

⎭

(8)

Where the i-th index refers to input i and j-th index refers to

the output j. Input-Output pairs are sensory neurons-sensory

interneurons (stage A), sensory interneurons-motoneurons

(stage B) and motoneurons to MTUs stimulation (stage C) shown

on Figure 1. x̃i,j represent delayed input neuron activities mean-

ing that a change in an input neuron will not affect the output

neuron instantaneously but does so after a delay Ti,j (modeling

the fact that traveling speed of spikes depend on the properties

of the nerve fiber). The delays are estimated assuming an average

nerve fiber conductance of 80 m/s and estimated length between

sensors and spinal cord. Note that the conductance of 80 m/s is

the lower bound of extrafusal muscle fibers, golgi tendon organ

and muscle spindle Ia conduction velocity (Siegel et al., 2006).

We use three differents delays. A 2.5 ms delay to model the delay

from hip muscles sensors and trunk stability sensors to their cor-

responding sensory interneuron and from the hip motoneurons

to hip muscles. A 5 ms delay to model the delay from knee mus-

cles sensors and knee joint angles sensors to their corresponding

sensory interneurons and from the knee motoneurons to knee

muscles and finally. A 10 ms delay for the ankle muscles sensors

and ground sensors to their corresponding sensory interneuron

and from the ankle motoneurons to ankle muscles. We assume

no delay between sensory interneurons and motoneurons. wj,i is

the connection weight from input xi to output yj and x0
j is the

basal activity of the output (in vector format W is the vector of

weights and X̃ is the vector of delayed input activity). The output

is always constrained to the [0, 1] interval. For a neuron it can be

viewed as its normalized firing frequency (1 meaning the neuron

is firing at its maximum rate and 0 the neuron is not firing at all),

for an MTU it can be viewed as a percentage of maximum muscle

stimulation.

2.3. FBL SIMULATION ENVIRONMENT AND OPTIMIZATION

The model is implemented as described in Geyer et al. (2003)

and Geyer and Herr (2010), i.e., 6◦ of freedom all constrained

to the sagittal plane and 7 Hill type based muscles per limb.

Simulations run with a time step of 1 ms. All differential equa-

tions are solved with a fourth order RungeKutta method, except

for the muscle velocity which is integrated using the Euler method

(as described in Geyer et al., 2003). In order to ensure convergence

of the integration process, the integration time step of the mus-

cle is reduced by a factor of 20 in comparison to the simulation

time step.

Concerning the optimization, the open parameters of the sys-

tem are the motoneurons basal activities (X0
mn in Equation 2),

the sensors parameters (trunk reference angle of the stability

feedback, muscle length feedback offsets) and the feedback gains

(non-zero values of matrix Win,sen in Equation 1). The full model

has 25 open parameters (the parameters and their associated

ranges are given in Supplementary Table 1). In Geyer and Herr

(2010), the parameters values were hand-tuned. When using

those parameter values in our implementation, the produced gait

shows a velocity of 1.1 [m/s]. The generated angles have a corre-

lation with human data of 0.6, 0.7, and 0.9 for the HIP, KNEE,

and ANKLE joint, respectively. The differences in produced gait

between the original Geyer model and our implementation (for

a given set of parameters) can be explained by the fact that we

use a different simulation environment, bringing differences in

the contact model and ground sensors. In almost all subsequent

articles on FBL enhancement, optimization algorithms are used

to set the parameters values. For example, in Song and Geyer

(2012), the parameters were optimized to generate gaits of dif-

ferent speeds. The parameters were then analyzed in order to

study the possibility to generate a speed controller through the

direct modulation of reflex gains. The objective function used

took into account the difference between target velocity and cur-

rent velocity, a penalty term accounting for knee overextension

and an energy expenditure term based on Bhargava et al. (2004).

In this article we also use optimization to instantiate param-

eters values of the FBL model. Since at least two criteria are

always used (i.e., the minimization of energy and the penalty

term accounting for knee overextension, and more as soon as one

wants to optimize for an extra parameter, such as speed or step

length), a good handling of multi-criteria evaluation is manda-

tory. We use a lexicographic ordering extension on top of the PSO
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(Particle Swarm Optimization Kennedy and Eberhart, 1995) algo-

rithm to handle multi-objectives fitness functions. Lexicographic

ordering can be used only if the objectives can be written as

constraints and ensures that the multi-objective optimization

remains on the Pareto Front (Czyzżak and Jaszkiewicz, 1998;

Li et al., 2008). Instead of using a unique multi-objective func-

tion (the usual average weighted sum or product of the multiple

objectives can become difficult, due to the interaction between

the different objectives), the different objectives are decoupled

in single objective functions, that are sequentially optimized in

corresponding stages. All except the last stage are constraint opti-

mization. Each solution is evaluated according to one single

objective function, following a sequential order. The solution is

evaluated using the objective function of a given stage until the

constraint of that stage is fulfilled. Therefore, each evaluated solu-

tion is defined by a tuple (s, v), where s is the stage reached and v

is the fitness value obtained using the objective function of this

stage. The solutions are then ranked according to their stages

s and, within a stage, according to the value of the associated

objective function v. In other words, assuming maximization, the

following conditions hold:

• The stage are ordered so that a solution in a higher stage is

always considered fitter.

• A solution can be in only one stage.

• Solutions in the same stage sj are ordered using the fitness

function fj associated to that stage

• A solution is in stage si with i > 0, if all the constraints

associated to stage j < i are fulfilled but not the one of

stage i.

Here we used 4 stages whose associated fitness functions and con-

tinuation criterion are given in Supplementary Table 4. The first

stage optimizes for a walking gait that can cover at least a distance

of dlim. Since the model can generate gaits of various speed, we

add a second stage to constrain the speed of the walking solution

so as to facilitate further comparison between different obtained

solutions. The third stage minimizes a penalty term accounting

for knee overextension to favor human-like gaits. The fourth stage

minimizes the metabolic energy expenditure. The model used for

calculating the energy expenditure is based on a model of the

energy consumption of a muscle as described in Bhargava et al.

(2004) and as used in Wang et al. (2012).

Since we want to add a feedforward component to modulate

the gait, the initial model should have the capacity to man-

age changes in acceleration, deceleration or step lengths, i.e.,

should be robust. However, optimizing for energy consumption

on a flat ground will not favor the emergence of such gaits.

In order to circumvent this issue and favor robust solutions,

we optimize the feedback parameters on an environment with

increasing and decreasing slope. The increasing/decreasing slope

are modeled as simple trapezoidal structure (with max slope 5%).

Furthermore, the length, slope and distance between trapezoidal

structure are randomized (details concerning the environment

can be found in Dzeladini, 2013). During the optimization pro-

cess, each solution is evaluated on 5 different randomly generated

environments, and only the worst fitness score is considered.

2.4. FBL EXTENSION: 3FBL

The extended model is a hybrid feedback and feedforward model,

referred to as 3FBL. The CPG component (INcpg) generation is

based on an idea from Kuo (2002), where feedforward signals pro-

duced by the CPGs are considered as feedback predictors. A direct

way of combining such CPGs with feedbacks is to use a propor-

tional term to control the relative importance of the CPG vs. the

feedback it predicts, i.e., given the vector of CPG activities Xincpg ,

Equation 2 representing the motoneurons states becomes:

Xmn = Gs
(

�αXinsen + (1 − �α)Xincpg

)

+ X0
mn (9)

Where: Gs, Xmn, X0
mn and Xinsen are the same as in Equation 2.

Xincpg is the vector of feedforward interneurons activities. Note

that here Xincpg and Xinsen have the same dimension but all the

components of Xincpg referring to non-modeled sensory interneu-

rons are set to 0. In the 3FBL models only the sensory interneu-

rons related to muscles sensors are modeled with CPGs. Thereby,

limiting the effective number of CPGs to 9 per limb. �α is a vector

controlling the relative importance of sensory vs. CPG interneu-

rons: a value of 0 in any of the αi components will make the

corresponding pathway exclusively feedforward-driven, whereas

a value of 1 would make it solely feedback-driven (see Figure 2).

Thus, when �α = 1, the 3FBL becomes the FBL model. Conversely,

when �α = 0, the activity of all the sensory interneurons is ignored

and the model becomes a purely feedforward-driven model.

Any INcpg is by definition a model of the underlying feed-

back pathway INsen. In this work we use two different abstract

models of biological CPGs: a dynamical model INosc
cpg, generating

periodic time varying signal and a constant model INcst
cpg, generat-

ing a constant signal (see section 2.5 for details). Both INosc
cpg and

INcst
cpg can be viewed as a linear model of the underlying INsen. The

FIGURE 2 | Schematic representation of the spinal network for a

specific feedback pathway. The value of α controls the proportion of

feedback vs. feedforward. With α = 1.0 the feedback pathway is solely

feedback-driven. With α = 0.0 the feedback pathway becomes a

feedforward pathway. All values in-between create a feedback/feedforward

pathway.
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former is a model capturing the shape, timing and average activ-

ity while the latter only captures the average activity. Therefore,

their combination with INsen can be viewed as a linearization

of the underlying feedback pathways. Indeed, Equation 9 can be

rewritten as:

Xmn = Gs
(

Xincpg + �α
(

Xinsen − Xincpg

)

)

+ X0
mn (10)

This representation highlights the fact that, in the 3FBL model,

the equation governing the activity of the motoneurons can be

viewed as a linear feedforward term, plus a corrective term (i.e.,

the difference between the INsen and INcpg state). As expected,

the effect of a INosc
cpg-INsen combination is different from the one

of a INcst
cpg-INsen combination. On the one hand, increasing the

proportion of INcst
cpg can be viewed as reducing the amplitude of

the underlying INsen, without affecting its mean activity. In other

words, the proportion of INcst
cpg vs. INsen controls the flatness of

the INsen. On the other hand, combination of INcpg and INsen

will neither significantly affect the shape, nor the average activity

of the INsen, but will affect the timing.

2.5. 3FBL COMPONENTS

2.5.1. CPG-Constant model

In order to test whether a very simple model of feedback could

already capture enough information to permit modulation, we

decided to implement a CPG-Constant model, denoted INcst
cpg.

INcst
cpg state, is a constant signal, whose value equals the aver-

age underlying INsen state. The average is calculated only on the

part of the cycle where the feedback is active (e.g., for feedback

active only during the stance, the average is calculated only dur-

ing stance). This type of feedforward signal captures the average

activity of the underlying feedback pathway. When combined

with feedbacks (see section 2.4), the net effect is a flattening of

the original feedback signal.

2.5.2. CPG-Oscillator model

In the oscillatory model, denoted INosc
cpg, each feedback predictor

is modeled as a dynamical system reproducing the average shape

and amplitude of the original feedback signal. In other words,

CPGs can be viewed as a dynamical approximation of the sensory

interneurons states Xinsen (see Equation 1). The dynamical system

used for this purpose is a morphed oscillator (MO) (Ajallooeian

et al., 2013). This oscillator is able to produce any shape, as long as

this shape can be represented by a function that is both 1-periodic

and derivable. The differential equation governing the oscillator is

the following:

θ̇ = ω (11)

ẋ = γ
(

g(θ) − x
)

+ dg

dθ
· θ̇ + K (12)

Where θ̇ is the frequency of the oscillator, γ (here set to 100) con-

trols the speed of convergence of the oscillator output x toward

the shaping function g(θ), and g(θ) is the nominal function that

shapes the output of the oscillator, this function is extracted from

INsen states, see next paragraph.

2.5.2.1. Pattern generation. In order for the stability condition of

the MO to be fulfilled, the pattern of the CPG must be represented

by a first order differentiable 1-periodic function. Based on our

hypothesis that CPGs can be viewed as feedback predictors, this

function should reproduce the typical shape of the corresponding

feedback pathway, for each cycle. The typical shape is derived as

follow: (1) the sensory signals are recorded from a stable walk-

ing solution, (2) each sensory signal is split into cycles using the

ipsilateral limb takeoff event (for feedback pathways active during

swing), or the ipsilateral limb touchdown event (for all other feed-

back pathways), (3) each resulting sub signal is normalized in the

temporal domain, in order to obtain a set of N repetitions of the

sensory signal shape p(θ, i), i = [1, . . . , N], (4) the shaping func-

tion g(θ) is then derived using a third order spline interpolation

of the mean signal.

g[θ ] = 1/N

N
∑

i = 1

p[θ, i] (13)

2.5.2.2. CPG coupling with the environment. All oscillators have

the same frequency ω initially set to an estimate of the FBL gait

frequency from which the feedback patterns were extracted. In

order to ensure that CPGs stay synchronized with the gait phases

on which they should act, a coupling has to be defined. This

coupling should ensure that:

1. INcpg will always start at the beginning of the gait phases dur-

ing which it acts, at the touchdown/takeoff events of left limb

for INcpg acting during left stance/left swing respectively, same

holds for right limb. This event is called the synchronization

event.

2. INcpg will never starts a new period before the gait phases on

which it acts ends.

Consequently there should be four different oscillators driving the

different INcpg, i.e., two for each limbs: one that uses touchdown

as synchronization event (used by INcpg acting during stance

or whole cycle) and an other one that uses takeoff as synchro-

nization event (used by INcpg acting during swing), Figure 2B

shows the organization of the spinal network. Each oscillator is

coupled to the environment using the following frequency adap-

tation mechanisms implementing the two requested coupling

properties:

1. If the oscillator is too slow compared to the walking frequency,

the phase of the central clock is simply restarted and set to 0.0

at the synchronization event (see Supplementary Figure 2A).

2. If the oscillator is going too fast compared to the walk-

ing frequency, a slowing down mechanism takes action

before the expected synchronization event (see Supplementary

Figure 2B). It ensures that signals generated by the MOs will

not start a new cycle before they should (e.g., for oscillators

active during stance, before the limb touches the ground).

With both mechanisms turned on, the phase of oscillator i is

defined as:
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θ̇i =
{

ω if ti < p · 1
w

c(ti) else
(14)

θi = 0 if ti >
1

ω
(15)

Where: θi is the phase of oscillator i, ti is the time since the last

synchronization event and p is the percentage of the phase at

which the slowing down mechanism is turned on. c(t) is a slowing

down function that ensures that θ � 1.0,∀ t ǫ R For the slowing

down mechanism to enter in action after 90% of the period of the

oscillator (i.e., p = 0.9), we can use the following function:

c(ti) = 10ω · exp( − 10ωti − ln(10) + 9)

Details on how c(t) is derived can be found in Dzeladini (2013).

2.5.3. Feedback sensitivity scale

For a feedback pathway i, the feedback sensitivity is noted

FDBsen
i = 1 − αi and corresponds to the point at which the gait

becomes unstable when (1) all other feedback pathways are kept

as feedbacks (i.e., αj = 1 for all j �= i) and (2) the feedback path-

way i is combined with an INosc
cpg. A feedback sensitivity of 0

means that the feedback can be fully replaced by its cognate INosc
cpg

predictor without destabilizing the stability of the generated gait.

2.6. 3FBL MODELS

In order to demonstrate the effect of feedback and CPG combina-

tions, we created different models combining CPG and feedback

components in different ways. Here we present only the 5 mod-

els exhibiting the most interesting properties in terms of speed

modulation. The 5 models differ in their CPG-feedback combina-

tion vectors �α (see Table 3 for details). Contrary to what might be

expected, a 3FBL model with a INosc
cpg-INsen combination vectors

of 0.5 for all muscle feedbacks pathways was not good in terms of

speed modulation when considering global control variable act-

ing on all CPGs. The first 4 models study the effect of a CPG

addition on different group of muscles, namely the 3FBLosc
ankle,

3FBLosc
hipA, 3FBLosc

hipB, and 3FBLosc
biArt. The fifth model, referred to

as 3FBLmin
fdb , is a minimum feedback gait, designed to study the

properties of gait with minimal feedback activity. That model

was obtained as follows: INcpg are added starting from pathways

acting on distal muscles. Pathways acting on distal muscles use

CPG-CST models (INcst
cpg) and pathways acting on proximal mus-

cles use CPG-OSC models (INcpg), using the lowest possible α (in

the [0, 1] range). This methodology was chosen, with the aim of

finding a gait with the minimal number of feedbacks. Note that

other CPG-FDB combinations might be found using different

methodologies. Using this methodology, the 3FBLmin
fdb gait gen-

erated stable walking, with a feedback activity corresponding to

35% of the INsen related to muscle feedbacks, and 45% of all the

feedbacks (the feedback activity is defined as
∑

i (αi)
N , where N is

the number of feedbacks).

2.7. 3FBL MODULATION : MODEL OF SUPRASPINAL INFLUENCES

We hypothesize that the use of a CPG component will

facilitate speed control. Indeed, it is known that simple

supraspinal signals are sufficient to modulate gait frequency

in lower vertebrates and in mammals, as demonstrated by

experiments on decerebrated cat walking on a treadmill,

where speed changes and gait transitions can be elicited by

Table 3 | Description of the CPG-FDB combination map for the 5 different 3FBL models.

3FBLosc
ankle 3FBLosc

biArt 3FBLosc
hipA 3FBLosc

hipB 3FBLmin
fdb

type 1 − α type 1 − α type 1 − α type 1 − α type 1 − α

A
N

K
L

E SOL←SOL MFF, ST Osc 0.5

TA←SOL MFF, ST Cst 0.9

TA←TA MLF CY Cst 0.9

K
N

E
E

GAS←GAS MFF, ST Osc O.5 Cst 0.9

VAS←VAS MFF, ST

HAM←HAM MFF, SW Osc 0.5 Osc 0.5 Osc 0.5 Osc 1.0

H
IP

HF←HF MLF SW Osc 0.5 Osc 0.5 Osc 1.0

GLU←GLU MFF, SW Osc 0.5 Osc 1.0

HF←HAM MLF SW Osc 0.5 Osc 0.0

Each row shows for a given feedback pathway, the type of CPG used (Osc stands for INosc
cpg and Cst for INcst

cpg ) and the level of CPG-FDB (i.e., α) for the 5 different

3FBL models. The four first columns shows the most interesting 3FBL models in terms of speed control: 3FBLosc
ankle, with CPGs acting on distal extensor muscles,

3FBLosc
hipA and 3FBLosc

hipB, with CPGs acting on HIP muscles and 3FBLosc
biart , with CPGs acting on the HAM bi-articular muscles. The last column shows the combination

vector for 3FBLmin
fdb (i.e., the minimum feedback model). Note that the 3FBLmin

fdb also replaces the “VAS←GCF STend” and “HF←TLF SW” pathways by a CPG-CST

predictor. Note that only the pathways related to muscle feedbacks are shown. Even though a full replacement of the “VAS←GCF STend” pathway by CPG-CST

is possible without affecting the produced gait, the effect of a modulation produces no significant effect on the resulting gait (data not shown). This pathway is

thus not used, except for the 3FBLmin
fdb . The KNEE overextension prevention pathway (“VAS←KNEE OPF”) and the pathways related to stability (i.e., “HF←GSIF

ST,” “HAM←GSIF ST”, “GLU←GSIF ST” and “HF←TLF SW”) are not used, as their role as feedback is evident. Moreover, even though a combination with CPG

generates stable walking, walking becomes unstable even with very small modulation of the CPG parameters (data not shown).
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varying the stimulation of the mesencephalic locomotor region.

We model two different kinds of descending pathways (see

Figure 3):

• Frequency : ω

Controls the frequency of the CPG-OSC (ω value in

Equation 14). This variable affects all oscillators as they share

the same frequency.

• Activity modulation : µ

Modulates the CPG activity of both CPG-OSC and CPG-CST.

Effectively, the CPG output Xincpg becomes µ · Xincpg , with µ >

0 controlling the activity of the CPG.

3. RESULTS

The results are separated in three parts. In the first part, we com-

pare the gait produced by the optimized FBL model with human

FIGURE 3 | Schematic representation of the spinal network and

supraspinal control of the CPG network in the 3FBL model. The network

is symmetric: left/right part of the figure corresponds to the part of the

network acting on right/left limb muscles respectively. (A) Suprasinal

influences: µ represents the activity modulation pathway and ω the

frequency of the CPG network. All 4 oscillators share the same ω, but each

CPG can have a different µ. If not stated otherwise, all INosc
cpg and INcst

cpg share

the same amplitude modulation µosc and µcst , respectively. (B) Spinal

network. Four oscillators, differing in their synchronization mechanism with

the environment, drive the different INcpg. θst
R ,θsw

R ,θsw
L and θst

L are used by

INcpg starting at right limb stance, right limb swing, left limb stance and left

limb swing respectively. INcpg and INsen action on MN follows Equation 10.

The green arrow between Sensory and CPG Interneurons pathway highlights

the fact that each CPG pathway is a model of one sensory pathway. (C)

Musculoskeletal system, there is one muscle corresponding to each

individual motoneurons.
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walking, in terms of metabolic cost, gait harmony and gait kine-

matics. In the second part, we present an analysis of the different

feedback pathways of one specific solution of the FBL model. We

analyse each feedback pathway separately and for each of them

study the effect of a combination with their feedforward predic-

tor. Finally, in the last part, we analyze the 3FBL models in terms

of speed control.

3.1. FBL: FEEDBACKS BASED LOCOMOTION MODEL

In order to determine the ability of our optimization process to

generate stable gait, we performed 10 runs of the same optimiza-

tion process (as described in section 2.3) with different random

initial condition. We observe that the optimization process always

converges to a stable and symmetric walking solution, but to dif-

ferent solutions (local optima), hence leading to visually different

gaits. Figure 5F gives a snapshot of the solution 1 during two

cycles. Note that the presented results are, in terms of joint angles,

joint torques and muscles activities, qualitatively similar to those

presented in the paper describing the original model (Geyer and

Herr, 2010).

3.1.1. Metabolic cost analysis

When comparing the cost of transport (CoT) between the 10

different solutions, we observed a value ranking from 2.2 to

3.5 [Jm−1kg−1] (CoT is defined as E/md, where E is the energy

consumed during the run, m is the mass of the model, d is

the traveled distance), see Figure 4. Five solutions show a CoT

less than 25% higher than the net metabolic transport cost

FIGURE 4 | Each gray bar corresponds to one solution of the same

optimization process (optimizing for a stable gait walking at 1.3 m/s).

(A) Normalized cost of transport. The red bar corresponds to the normalized

cost of transport of human subject of the similar weight and walking speed

as our obtained gait (data from Weyand et al., 2010), the blue bar shows the

estimated standard deviation. (B) Duration proportion of the different gait

phases. GR0 corresponds to the ratio between cycle duration and stance

duration, GR1 corresponds to the ratio between stance duration and swing

duration and GR2 corresponds to the ratio between swing duration and

double stance support. The red line corresponds to the golden ratio

φ = 1+
√

5
2 . GR0, GR1, and GR2 are known to be statistically similar to the

golden ratio in human walking at their preferred speed (Iosa et al., 2013).

of ∼2.1 [Jm−1kg−1] found in human subjects of similar heights,

weights and walking at the same speed (Weyand et al., 2010). This

increase is comparable to the one found in Bhargava et al. (2004)

and can be explained by the fact that, in our model, the upper

body is modeled as a single rigid body, while the experimental val-

ues used for comparaison are for walking with arm swing. Indeed,

it has been shown that, despite the fact that arm muscles consume

energy to produce movement, they can still reduce the walking

metabolic cost up to 12% (Collins et al., 2009). An other rea-

son explaining the higher CoT could be the lack of feedbacks for

stance preparation. Indeed, as most of the metabolic cost of walk-

ing comes from the stance phase, optimizing the properties of the

limb joints before touchdown will affect the efficiency of walking,

as shown in Donelan et al. (2002).

3.1.2. Golden ratio analysis of gait harmony

As demonstrated in Iosa et al. (2013), the ratios between

cycle/stance durations (noted GR0, commonly referred to as

the duty factor), stance/swing durations (noted GR1), and

swing/“double stance support” durations (noted GR2) is similar

in healthy humans of different size, corpulence and age walk-

ing at preferred (self-chosen) speed, and satisfy the golden ratio

(σ = 1+
√

5
2 ). Note that the variability of GR1 is higher than GR0,

and the variability of the GR2 is higher than GR1. We measured

those three ratios in our 10 solutions, and observed that GR0 con-

verges to σ in all cases, GR1 converges to values close to σ with

higher variability and a bias to slightly smaller values, and GR2

is more variable, with a bias to values higher than σ . The bias

observed in the cases of GR1 and GR2 indicates that there is a

tendency to generate gaits with longer swing and shorter double

stance support phases. This overestimation of the swing duration

can be explained by the fact that our model does not have toes; the

length of the foot being shorter, the legs tend to enter the swing

phase earlier.

3.1.3. Gait analysis

We then compared the joint angles and torques trajectories of

the 10 solutions, with human data (Winter, 2009). A correlation

analysis revealed that all joints angles and torques are compara-

ble to human data (see Figures 5A,C, if not stated otherwise, the

solutions are ordered with increasing CoT). While the ANKLE

torques show high correlation with humans, the HIP and KNEE

torques correlations are substantially lower. This can be explained

by the fact that, in our model, the HIP is completely fixed to the

trunk. We thus do not model the characteristic pelvis movement

observed in human walking. Regarding the joint angle correla-

tions, we can see that the ANKLE angle correlation is not perfect.

The low correlation can be explained by the differences in shape

in late stance and early swing (see Figure 5B, right), which is due

to the fact that the toe is not modeled. Indeed, the lack of toes will

make the leg enters in swing earlier, thereby explaining both the

reduced minimum angle and the earlier slope inversion (i.e., the

swing/stance transition).

Another interesting difference between the model and human

data can be noted at the ANKLE angle level during early stance.

Indeed, while humans show an initial passive extension during

early stance of about 1/10th of stance duration (black dotted
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FIGURE 5 | Comparison of joints angle, joints torque and muscles

activity extracted from the FBL models (10 optimization runs), with

human data. Human joints angle and torque are taken from Winter (2009),

muscles activities are adapted from Perry et al. (1992), as presented in Geyer

and Herr (2010). (A) Joint angle correlation with human, (B) Average joint

angle compared to human, (C) Joint torque correlation with human, (D)

Average joint torque compared to human, (E) average muscles activity of

solution 1 compared to human and (F) Gait snapshot of the solution 1 over

two cycles. In (A,C), the bar plots show the correlation with human for the

different solutions and for the different joints. In (B,D) are shown typical

human trajectories (black dotted line:mean, gray: standard deviation) and two

(Continued)
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FIGURE 5 | Continued

mean trajectories from solution 1 and solution 10, blue and orange lines

respectively. Each bar corresponds to one solution of the same optimization

process (optimized for a stable gait walking at 1.3 m/s), the different solutions

are ordered with increasing energy consumption (same as in Figure 4). The

correlation were calculated on data extracted from 50 strides of steady state

walking (sampling frequency of 1 Khz), spline interpolation was used to

normalize the length of the vectors to 1000 points. The average of the

normalized vector was then correlated with average human data. In (E) the

subscripts show the compared muscles: (i) adductor longus, (ii) upper gluteus

maximum, (iii) vastus lateralis, and (iv) semimembranosis. Note that the data

was extracted from a model walking on a flat terrain without noise and

external perturbations. Therefore, the standard deviation of the angles and

torques trajectories and muscles activities is very small and thus not visible.

line in Figure 5B right), the model does not show this behavior.

When looking carefully at the ANKLE angle pattern for solution

1 an initial passive extension is visible. However, this initial pas-

sive extension is very short and almost not visible in the figure

(blue line in Figure 5B right, the ANKLE angle does not start at

the same place due to a very fast and quick passive extension).

The solution 10 (orange line in Figure 5B) does not show this

behavior at all: the foot touches the ground horizontally. Several

elements can explain this behavior, such as the lack of mecha-

nism (e.g., feedback, CPG) for stance preparation, a shorter swing

range (due to smaller HIP range or an under-extension of the

knee) or the way the swing-stance transitions are designed, i.e.,

state machine with discrete transition.

When comparing muscles activities of solution 1 (see

Figure 5E), we note that all the ANKLE muscles and HF muscle

are close to human data. However, the GLU, VAS and HAM mus-

cles do not show the typical activity observed during late swing

in humans. This is in agreement with the conclusion drawn in

the previous paragraph concerning the lack of a mechanism for

stance preparation.

3.2. FEEDBACK PATHWAYS STUDY

3.2.1. INsen signal analysis and prediction

Since the produced gaits are all symmetric and stable (i.e., close

to perfectly periodic), the feedback signals should be very similar

between cycles. Consequently, the quality of the feedback pre-

diction should be very high (i.e., INosc
cpg should be very close to

INsen). In order to study the quality of the prediction, we gen-

erated the INosc
cpg (as described in section 2.4) and ran them in a

passive mode (no action on muscles, i.e., no link between INosc
cpg

and MN). The Supplementary Figure 1 shows the actual INsen

signals (dotted lines) and the reproduced signal (thick lines) over

one step, for the worst gait (in terms of feedback prediction qual-

ity, i.e., similarity between INsen and INosc
cpg). We can see that the

prediction is very close to the feedback signals; the lowest corre-

lation between the original and the reproduced signals is of 0.98.

Differences are noted as shifts and amplitude differences, and are

due to small asymmetries in the gait. It is interesting to note that,

even if those asymmetries are visible at the level of the feedbacks,

their effects on the gait are very small. However, even small asym-

metries between the INsen and their predictors (INosc
cpg) can create

instabilities which makes their replacement difficult.

3.2.2. Feedbacks replacement

In order to study the possibility of replacing the feedbacks (INsen)

by their full predictors (INosc
cpg), we ran a systematic search in

which we increase β = 1 − α (i.e., the proportion of INosc
cpg) from

0 to 1.0 using the combination strategy presented in section 2.3.3.

The systematic search is done for each feedback pathway i, where

Table 4 | Feedback sensitivity (see section 2.5.3) for the best 7

solutions (in terms of INsen replacement capacity, i.e., percentage of

INsen that can not be replaced by a CPG-OSC model).

CoT(2) HF ← HAM MLF SW
.
.
.

CoT(3) HF ← HAM MLF SW
.
.
.

CoT(6) HF ← HAM MLF SW
.
.
.

CoT(8) HF ← HF MLF SW
.
.
.
.
.
.CoT(4) HF ← HAM MLF SW
.
.
.

VAS ← VAS MFF ST
.
.
.

CoT(1) HF ← HF MLF SW
.
.
.

HF ← HAM MLF SW
.
.
.

GAS ← GAS MFF ST
.
.
.
.
.
.CoT(10) VAS ← GCF STend
.
.
.

HAM ← GSIF ST
.
.
.

HF ← HF MLF SW
.
.
.

0 0.5 1.0

The first column shows the solution, ranked in term of cost of transport (CoT).

The second column gives the name of the feedback pathway. The third column

shows the feedback sensitivity (FDBsen).

βi is increased from 0 to 1 in steps of 0.1. All the others pathways

are kept as feedbacks (i.e., βj = 0, j �= i).

The Supplementary Table 2 shows, for each gait, the num-

ber of feedback pathways that could not be fully replaced (i.e.,

the feedback pathways that have a FDBsen
i �= 0. Table 4 shows the

feedback sensitivity of the 7 best gaits, in terms of the number

of feedback pathways that can be replaced, i.e., in terms of feed-

back replacement capacity (see section 2.5.3 for details on the

feedback sensitivity scale). It is interesting to note that feedback

pathways acting on ANKLE muscles have a zero feedback sen-

sitivity value which means that they can be fully replaced by a

INosc
cpg model without loss of stability. The muscle length feedback

pathway from HAM bi-articular muscle acting on the HF mus-

cle always shows a high sensitivity (for gaits showing meaningful

CoT), highlighting its importance for the stability of the gait.

Even though feedback related to trunk stability (feedback type

4) are crucial to ensure stable walking and to enhance gait resis-

tance to perturbations, they are not part of sensitive feedbacks.

However, a gait with only one trunk stability feedback replaced is

stable only in steady state walking; as soon as small perturbations

(pushes and/or change in slope) are exerted on the model, the gait

becomes unstable and falls.

Based on these results, we focus on gait 2, as it shows a

good correlation with human data, a meaningful CoT and a low

feedback sensitivity, for further analysis.
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3.2.3. Feedbacks combination

Figure 6A shows the effect on the generated gait (in terms of

CoT, stride length and speed) of an increase in the proportion

of feedforward vs. feedback signal for one specific pathway while

maintaining all the other pathways purely feedback driven (this

was implemented by decreasing the feedback proportion by steps

of 0.1 of one component of the �α vector at a time while keeping all

other components at 1). Figure 6A Left and Right parts show the

FIGURE 6 | (A) One by one feedback and feedforward combination effects

on cost of transport, stride length and speed, for gait number 1. The first

column gives the name of the feedback pathway considered. The second

and third columns show for an INsen-INcst
cpg and an INsen-INosc

cpg respectively, a

box plot of the variation of a measured variable when α varies from 1 to 0.

In the first part of the table the considered variable is the cost of transport

(CoT), in the second part, the speed and in the third part, the stride length.

We show the speed and stride length box plot only for the two most

interesting pathways in terms of feedback and feedforward combination

effect on CoT. The box plot read as follow: the middle line is the median,

the colored line represents 99% of the data assuming the data are normally

distributed and the gray horizontal bar shows the range of the measured

variable. A very thin box plot (no colored line visible) means that the

variation of α had no effect on the considered variable, feedback pathway

and INcpg model. As expected the INsen-INcpg combination for any α in the

[0, 1] interval has very little effect on the CoT. (B) Relationship between

INcst
cpg proportion and gait variables, for two selected feedbacks (red,

“SOL←TA MFF, ST” and green, “GAS←GAS MFF, ST”). Left: relationship

between stride length and 1 − α (i.e., the INcpg proportion), Middle:

relationship between step duration and 1 − α and Right: relationship

between speed and 1 − α.

combination analysis of feedbacks with INcst
cpg and INosc

cpg respec-

tively. As expected, the replacement of INsen by a constant model

(i.e., INcst
cpg) has more effect on the gait characteristics, compared

to the replacement of the INsen by an oscillatory model (i.e.,

INosc
cpg). This confirms that the latter captures more information

from the INsen (i.e., the shape, timing and amplitude).

Despite the higher sensitivity of the INcst
cpg-INsen combination

(i.e., percentage of INsen that could not be replaced by a constant

model (INcst
cpg), several interesting effects of the INcst

cpg-INsen com-

bination are noted, as shown in Figure 6. We observe that, for the

“SOL←TA MFF, ST” and the “HF←HF MLF, SW” feedbacks,

changes in α (i.e., proportion of INcst
cpg vs. INsen) produce large

variations in speed and stride length. In the case of “SOL←TA

MFF, ST”, there is a linear relationship between the INcst
cpg propor-

tion level and both the speed and the stride length. A decrease

in stride length and speed is observed with the increase in INcst
cpg

level, see Figure 6B.

3.3. 3FBL MODELS : FEEDFORWARD AND FEEDBACK BASED

LOCOMOTION MODEL

In the previous section, we showed that all feedbacks can be com-

bined with their CPG predictors, and that interesting properties,

such as speed and step length variation, can be achieved, by play-

ing with the CPG-FDB combination level when using CPG-CST

predictors. While, in the previous section, feedback and CPG

combinations were studied one pathway at the time, here we study

effect of more complex combinations on 5 different 3FBL mod-

els exhibiting the most interesting property in terms of gait speed

modulation (see section 2.6 for details).

3.3.1. 3FBLmin
fdb

: Minimal feedbacks gait

The 3FBLmin
fdb model is able to produce stable walking with a global

feedback activity reduced from 100 to 45%. Its average speed on

flat ground is 1.35[m/s] (3% increase compared to the underly-

ing FBL model). When comparing the joint angles, torques and

muscles activities between the two models, almost no differences

can be observed at the HIP joint (see Figure 7C). However, differ-

ences are noted at the level of the ANKLE joint (see Figure 7A).

Indeed, all muscles activities acting on the ANKLE joints show

different muscle activation patterns than the corresponding FBL

model. Interestingly, the differences observed in muscles activ-

ities do not produce important changes in the shape of the

torque and angle patterns of the ANKLE joint. Nevertheless, the

increase in extensor muscles activities produces a steeper increase

in joint torque during stance. This increase in torques explains the

observed increased ANKLE angle at takeoff. In turn, this increase

in ANKLE angle also increases the duration of the stance phase,

thereby explaining the observed shift of the KNEE pick angle in

early swing (see Figure 7B).

The SOL muscle shows a different muscle activation pattern,

while the “SOL←SOL MFF, ST” pathway, the only one act-

ing on it, has not been replaced by a CPG (i.e., kept as pure

feedback, α = 1). Since the 3FBLmin
fdb ’s feedback / CPG combi-

nation map does not permit a combination of CPG-OSC with

feedback for this specific pathway (even with α = 0.95, i.e.,

pathway kept almost purely feedback), this change in activ-

ity is necessary to ensure a stable walking gait. This highlights
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FIGURE 7 | Comparison of average joint angles, joint torques and

muscles activation pattern between the 3FBLmin
fdb

(black line) and the

FBL models (dashed line) for solution 1. (A) ANKLE angle, torque and

associated muscles activation level, (B) KNEE angle, torque and associated

muscles activation level, and (C) HIP angle, torque and associated muscles

activation level.

the important stabilizing role that muscle feedbacks play in

locomotion.

It is important to note that, while in a stable walking regime

reducing as much as possible the proportion of feedback signals

for specific pathways does not significantly affect the gener-

ated gait, the replacement of feedbacks considerably reduce the

gait robustness to perturbations. Indeed, recovery after 0.25[s]

pushes is reduced from 40[N] to 28[N] compared to the origi-

nal gait. This highlights the importance of feedback to adapt to

perturbations.

Even though the 3FBLmin
fdb is valuable, as it shows that a large

part of feedbacks can be removed from the FBL model, while

a stable walking gait is still produced, it is not surprising that

its modulation is almost impossible. Indeed, since a large part

of the feedbacks are removed, even small modulations of CPG

parameters render the gait unstable.

3.3.2. Systematic study of supraspinal signal modulation and their

effects on gait

Using the model of supraspinal influences presented in sec-

tion 2.7, we ran a systematic search on the effect of CPG ampli-

tude and frequency modulation on the different 3FBL models

presented in the previous section, using ω and µosc as parame-

ters (the parameters are split into 11 values across a given range

([0.2, 2.5] for ω and [0.1, 4.0] for µosc).

The systematic search on the 4 chosen models acting on differ-

ent group of muscles (see Figure 8A) indicates that all the models

are stable in a large range of amplitudes and frequencies, except

the 3FBLosc
hipA, that shows a more restricted region of stability. This

can be due to the fact that the 3FBLosc
hipA has more oscillators than

the three other models. Note that the restricted region of stability

does not imply a restricted range of speed. Indeed, small varia-

tions in ω (while µosc remains fixed) induces noticeable change

in speed in this model; an increase in speed is observed with an

increase in frequency. In other words, changing the frequency of

the 3FBLosc
hipA is sufficient to entrain the whole musculoskeletal

system. Interestingly, this model—which is the only model with

a high number of CPGs acting on proximal muscles—is the only

one that shows an increase in speed when increasing the CPG

network frequency. This suggest that CPGs acting on proximal

muscles are required to produce a frequency-driven entrainment

of the system.

Interestingly, the 3FBLosc
hipB—which has only two CPGs act-

ing on proximal muscles, compared to four in the case of the

3FBLosc
hipA—shows almost no change in speed when the frequency

ω is modulated (while µosc is fixed). Possibly, the frequency mod-

ulation of only two CPGs at the HIP level is not sufficient to

produce a frequency-driven entrainment of the system. However,

increasing µosc leads to a significant decrease in gait velocity. This

decrease in speed with increasing amplitude is likely an effect

of the “HF←HF MLF, SW,” as this effect is not observed in the

3FBLosc
biArt, which differs from the 3FBLosc

hipB model only by the

absence of a CPG component for this feedback pathway. Indeed,

the “HF←HF MLF, SW” is a negative feedback, and thus increas-

ing the amplitude of its associated CPG (i.e., µosc) will reduce

the activity of the HF muscle, reducing the HIP flexion velocity

and hence increasing the duration of the swing, which in turn

decreases the gait speed (as the stride length does not change

significantly).

Surprisingly, as little as one oscillator is sufficient to allow sig-

nificant changes in speed (shown by the 3FBLosc
biArt, see Figure 8B).

The changes in speed are mainly induced by a modulation of

the amplitude µosc, but with an opposite effect compared to the

3FBLosc
hipB (i.e., an increase in µosc leads to an increase in the gait

velocity). However, since this effect is accompanied with a short-

ening of the stride length, this model is unlikely to be relevant;

indeed, in humans an increase in speed is usually concomitant to

an increase in stride length (Murray et al., 1966).

Note that small changes in speed are still possible with a mod-

ulation of the frequency ω, both in the case of the 3FBLosc
biArt
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FIGURE 8 | Systematic search study of CPG parameters (supraspinal

influences) for the different 3FBL models. The systematic search is done for

two parameters: ω, the frequency of the CPG network and µosc, the CPG-OSC

amplitude modulation. Each column corresponds to a given 3FBL model (name

at the top, see Table 3). (A) Heat map of the systematic search. The color

indicates the speed of the gait for a given (µosc,ω) pair (gray color means that

the gaits was unstable or asymmetric). (B) Highest variation in speed possible

while maintaining one of the parameters constant (based on the heat map). A

red/blue line means that (µosc/ω) is kept constant, respectively. The value of

the constant parameter is indicated at the bottom. The first row shows the

speed, the second the stride length, and the third the step duration. Note that

the 3FBLmin
fdb is not shown as its modulation is almost not possible.

and 3FBLosc
hipB, but to a lesser extent than the 3FBLosc

hipA. This

is expected, as a lower number of CPG—acting on proxi-

mal muscles—will have a lower frequency-driven entrainment

capacity.

Concerning the pathways acting on distal muscles (i.e., the

3FBLosc
ankle model), large changes in speed and step length are

observed. However, contrary to what might be expected, an

increase in frequency produces a decrease in speed. This is an arti-

fact only possible because of the synchronization mechanism used

to ensure the lock-in of the CPG with the mechanical system (see

section 2.5.2.2). This effect is thus mainly related to a change in

the duration of the burst of the feedforward signal (induced by

the change in frequency), rather than to an entrainment between

the two systems (i.e., CPG and musculoskeletal system). In other

words, the observed gait modulations are due to a modulation of

the shape of the signal (change in amplitude and/or duration).

Importantly, increases in speed induced by supraspinal influ-

ences on the different 3FBL models do not have the same effect

on the gait characteristics (i.e., stride length and step duration).

Modulation of the 3FBLosc
hipA or 3FBLosc

hipB parameters induce very

little change in stride length (< 5%). This is explained by the fact

those CPGs are active only during swing and modulate the swing

speed, but do not impact the swing length (and hence the stride

length). Conversely, an increase in speed in the 3FBLosc
ankle induces
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a significant increase in stride length, as increasing the propulsive

force will increase the swing length and thereby the stride length.

As previously mentioned, the opposite effect is observed for the

3FBLosc
biArt (i.e., a decrease in stride length).

In real humans, it is known that, up to a certain point,

increases in speed are usually accomplished by a decrease in step

duration (i.e., increase in frequency), as well as by an increase

in stride length (Murray et al., 1966). As expected, the 4 mod-

els exhibit a decrease in step duration with the increase in speed.

Interestingly, only a modulation occurring on distal muscles also

shows an increase in stride length, suggesting the propulsive force

modulation as a means of velocity control.

Results suggest 2 ways of controlling speeds: (1) frequency

modulation of CPGs acting on proximal muscles, (2) modulation

of burst duration, amplitude and timing of CPGs acting on distal

muscles.

4. DISCUSSION

4.1. FBL

The analysis of gaits generated by the optimized FBL model (see

section 3.1 for details) highlighted several similarities to healthy

humans. Moreover, some solutions of different runs from the

same optimization process showed ANKLE kinematics similari-

ties to children suffering from cerebral palsy, highlighting the role

that the FBL model could play in terms of modeling locomotion

diseases. Children with cerebral palsy show a typical ANKLE flex-

ion (instead of extension) in the early stance, followed by a double

bump, visible at both the angle and torque level (Iosa et al., 2010).

This is conceivably linked to a reduced hip range of motion, a

weakness of tibialis anterior and/or a hypertone of gastrocne-

mious. Suprisingly some of the solutions described in section 3.1,

such as solution 10 (orange line in Figures 5B,D right), show both

features observed in children with cerebral palsy, i.e., ANKLE

flexion in early stance and the double bump visible in both the

torque and the angle. Furthermore, solution 10 shows a smaller

HIP range of motion compared to solution 1. Finally, the tibilias

anterior was found less active at the beginning of gait cycle com-

pared to human physiological gait, as reported for children with

cerebral palsy. Conversely, the double bump noted in the model

seemed not to be related to an increased muscular activity of gas-

trocnemious. These interesting similarities, as well as the potential

role of the model in disease/injury modeling should be further

investigated.

4.2. FBL EXTENSION

Our approach—to use a dynamical system model of CPGs play-

ing the role of feedback predictors—offers an easy and intuitive

way of studying the relative importance of the different feedback

pathways, and allowed us to highlight several aspects regarding

speed control.

4.2.1. CPG modulations on both proximal and distal muscles allow

speed control

Mixing a constant predictor (CPG-CST) and feedbacks for as

little as one pathway already enables speed and step length con-

trol. Increasing the level of CPG-CST for one specific pathway

results in a flattening of the original feedback signal. Flattening

the “SOL←SOL MFF, ST” feedback (i.e., the SOL positive mus-

cle force feedback, active during stance) induces a clear decrease

in both the gait speed and stride length, while flattening the

“HF←HF MLF, SW” feedback (i.e., the HF negative muscle

length feedback, active during swing) induces a clear decrease

in the gait speed, but has little effect on the stride length (see

Figure 6B). Those two observations confirm the intuition that

speed changes would arise differently, depending on whether the

control is applied during stance or swing. While speed control

arising from stance control would more likely use extensor distal

muscles, a speed control arising from swing control would more

likely use proximal muscles. On the one hand, to be effective,

a control acting during the stance should affect the propulsive

force, which is mainly controlled by extensor muscles acting on

the ankle joint (i.e., SOL and GAS muscles). It is thus not sur-

prising that a modulation of feedback pathways acting on ankle

extensor muscles during the stance affects the speed of locomo-

tion (see Figure 6A). The effect on stride length is understood as

the result of the modulation of the propulsive force: decreasing

the propulsive force will decrease the swing length and thereby

decrease the stride length. On the other hand, for the control act-

ing during the swing at the level of the HIP flexors, the decrease

in speed is not accompanied with any clear reduction in stride

length (see Figure 6B green), meaning that it is the speed of the

swing, but not its amplitude that induced the change in speed.

Similarly, the 3FBL models with CPG components acting on

different groups of muscles confirm that speed control can arise

from distal muscles extensors during the stance phase, and prox-

imal muscles during the swing phase. We show that changes in

speed, induced by a modulation of feedforward signals acting at

the level of the ankle muscles, is unlikely due to a modulation of

the frequency of the CPG network (see section 3.3.2), but rather

induced by changes in burst duration and timing. Conversely,

the results from a control acting during the swing at the level

of proximal muscles shows that they could, indeed, be due to a

modulation of the frequency of a CPG network.

When the CPG activity is modulated, the rest of the system

(i.e., the remaining feedbacks) should adapt to the new condi-

tions. Therefore, it is the combined effects of both CPGs and

feedbacks that changes the gait properties (such as speed, step

length, step duration). It has already been demonstrated that feed-

backs acting at the level of the ankle produce such speed-adaptive

behaviors (Markowitz et al., 2011). Here we show that this is true

regardless of whether the control is applied at the level of proximal

or distal muscles.

The proposed spinal architecture was able to generate speed

transition ranging from 0.75 to 1.35 [m/s]. While this can seem

relatively small compared to the controller proposed in Song and

Geyer (2012), in which speed transition ranging from 0.8 to 1.6

[m/s] were obtained, the strategy proposed in this article has

the advantage that changes in speed can be obtained without

changing the reflex parameters. Furthermore, as the proportion

of feedbacks vs. CPGs (i.e., α vector) of the 3FBL models were

hand tuned, larger range of speed could be obtained through

optimization. Finally, co-optimizing the feedback and feedfor-

ward components could also increase the range of speed. Indeed,

as already stated, the 3FBL can be viewed as a system made
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of two components: a feedforward component and a correc-

tive term, accounting for the differences between the feedback

and the feedforward pathways (see section 3.2.3). In this con-

text, the FBL model is a 3FBL model where the feedforward

component is zero: the feedback parameters of the FBL are thus

optimized for a model without any feedforward component. In

this regard, since the 3FBL models were designed on top of an

existing FBL model, the feedback parameters are not optimized

to work with a non-zero feedforward component. This could also

explain the low robustness of the 3FBLmin
fdb model. Furthermore, in

a biological point of view, it is obvious that the feedforward com-

ponents should evolve together with the feedback components.

Consequently, in the future, we will investigate the co-evolution

of the feedforward and feedback components.

4.2.2. Stable locomotion is produced even with a significant

decrease in feedback activity

The 3FBLmin
fdb model shows that stable locomotion can be pro-

duced despite a significant decrease in feedback activity. Indeed,

stable walking is produced even with a 65% percent reduction

in muscle feedback activity. As expected, this large decrease in

feedback activity reduces the robustness of the gait to external

perturbations (pushes and slope variation), and also considerably

reduces the possibilities to control the gait (change in speed/stride

length are not possible). This shows that some pathways are more

important than others regarding their role as gait stabilizer which

can be beneficial to both perturbation resistance and control of

the gait.

4.2.3. Exploiting the low dimensional organization of feedback

pathways

Interestingly, in all the optimized FBL gaits, all the feedback

pathways can be represented with as little as 4 signals found

by non-negative matrix factorization (98% correlations between

the original signals and the reconstructed one, data not shown).

Since motoneurons are a simple linear combination of feed-

back pathways, the same conclusions are valid when analyzing

the motoneurons signals. This low dimensional representation

is also found in humans EMG patterns (Clark et al., 2009;

Dominici et al., 2011), where only 4 signals, the so-called “motor-

primitives,” are necessary to faithfully represent the EMG patterns

of adult human walking. It would thus be interesting to exploit

this low dimensional structure when modeling the feedforward

components. In other words, we could model the CPGs as a set of

motor-primitives that can be combined together to generate the

different motoneurons states. Therefore, instead of viewing the

CPG as a feedback predictor, we would view it as a motoneuron

predictor. Based on the presented results, our new hypothesis is

that the modulation of the timing, amplitude and duration of the

motor-primitive will offer a better control of the gait, in terms of

speed, stride length, gait transition and adaptation to increasing/

decreasing slope.

5. CONCLUSION

In this work, we presented a method to introduce CPGs as

feedforward components in a feedback based model of human

walking. The proposed strategy is based on the idea that, in

a feedback driven system, the feedforward component can be

viewed as a feedback predictor. We implemented the feedback

predictors using morph oscillators as abstract models of biolog-

ical CPGs. Thanks to the intrinsic robustness inherited from the

feedback pathways, the modulation of CPGs network’s frequency

and amplitudes were possible, over a broad range, without affect-

ing the overall walking stability. Furthermore, the modulation of

the CPGs network’s parameters allowed smooth and stable speed

changes in a range of 0.6 [m/s]. Preliminary results shows that the

same strategy can be used to adapt to larges increase in slope (up

to 30%) and to broader speed range (up to 0.8 [m/s]) suggest-

ing that the idea of using feedback predictor as gait modulator

can be extended to a large range of applications, highlighting the

role biological CPGs could play on top of a reflex based rhythmic

movement.
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