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The contribution of agricultural 
insecticide use to increasing insecticide 
resistance in African malaria vectors
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Abstract 

The fight against malaria is increasingly threatened by failures in vector control due to growing insecticide resist-

ance. This review examines the recent primary research that addresses the putative relationship between agricultural 

insecticide use and trends in insecticide resistance. To do so, descriptive evidence offered by the new research was 

categorized, and additional factors that impact the relationship between agricultural insecticide use and observed 

insecticide resistance in malaria vectors were identified. In 23 of the 25 relevant recent publications from across Africa, 

higher resistance in mosquito populations was associated with agricultural insecticide use. This association appears to 

be affected by crop type, farm pest management strategy and urban development.

© 2016 Reid and McKenzie. This article is distributed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Malaria is among the most devastating infections in 

human history. �e World Health Organization (WHO) 

reported 584,000 deaths due to malaria in 2014, 90 % of 

which were from sub-Saharan Africa [1]. �e single most 

effective tool to combat malaria is vector control, which 

addresses the source of transmission at a low overall 

cost. Vector control for malaria is mainly composed of 

insecticide-treated net (ITN) and indoor residual spray-

ing (IRS) programmes, which rely on a limited number 

of insecticides [2]. �e World Health Organization Pes-

ticide Evaluation Scheme (WHOPES) has mandated that 

ITNs only be treated with pyrethroid pesticides and IRS 

programmes use pyrethroids, a handful of organophos-

phates, carbamates, or DDT [3]. Resistance to this small 

arsenal of insecticides in vector populations poses a real 

threat to malaria control. Reports of African vector pop-

ulations exhibiting resistance to insecticides began in the 

1950s, and the problem continues to grow today [4]. In 

May 2012, WHO and partners issued the Global Plan for 

Insecticide Resistance Management in malaria vectors 

(GPIRM), to address this sustained growth in resistance 

[5]. �is plan calls for redoubled efforts to manage pub-

lic health pesticide use, and urges increased monitoring 

of insecticide resistance in endemic nations and further 

research into the causes of insecticide resistance.

Insecticide resistance occurs through physiological and 

behavioural changes on a population level that are set in 

motion by repeated environmental exposures to insec-

ticides or other toxins, over time. Vectors can become 

exposed to insecticides used in agriculture from contami-

nation of nearby breeding sites, and while it is difficult 

to delineate the effect of this early exposure in terms of 

adult resistance in vivo, vector larvae collected from sites 

with possible insecticide exposures and then reared in 

laboratory conditions can express resistance to insecti-

cides as adults [6–17]. Target site resistance, caused by 

alteration of the molecular target of the insecticide [18], 

and metabolic resistance, whereby mosquitoes more 

quickly detoxify or eliminate insecticides [19], are the 

best-studied and most readily quantifiable mechanisms 

of insecticide resistance. Resistance may also develop by 

alterations in insecticide absorption at the point of cutic-

ular contact, or by changes in mosquito behaviour.

A major source of insecticide exposure for malaria vec-

tors is public health insecticide use, which is the main 

focus of the recent GPIRM. However, some of the earliest 
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reports of insecticide resistance in Africa observed that 

agricultural insecticide use might have contributed to the 

selective pressure on anopheline mosquitoes [20–23]. 

Indeed, substantial agricultural developments following 

World War II often coincided with major malaria vector 

control campaigns [24]. Many of the pesticides used in 

agriculture overlap with those relied on by public health 

agencies, further complicating insecticide resistance 

management.

After the early suggestions of a connection between 

agricultural insecticide use and insecticide resistance in 

malaria vectors, researchers sought an analytic frame-

work for understanding how and when a specific asso-

ciation might be inferred. In 1988, Lines described five 

types of evidence that could indicate a relationship [25]. 

�e first two types of evidence he described are tempo-

ral, where regional resistance in a mosquito population 

either pre-dates public health insecticide use or varies 

with agricultural spraying seasons in that area. Spatial 

relationships make up another category, where observed 

resistance is higher in areas with agricultural insecticide 

use than in comparable non-agricultural areas. Another 

type of evidence arises if vector mosquitoes express 

resistance to the same insecticides used in agriculture: 

a chemical correlation. Finally, decreases in mosquito 

population size during agricultural spray seasons may 

also indicate selective pressure from agriculture. Follow-

ing this initial phase of research, and some international 

acknowledgement of agriculture’s potential role in insec-

ticide resistance, relatively few studies explored the rela-

tionship between agriculture and insecticide resistance 

further, though reports of newly resistant vector popula-

tions in Africa neither slowed nor diminished in urgency.

�is period of relative silence in the scientific com-

munity ended with the publication of a landmark study 

in 2002 by Diabaté et al. [9]. Since then, research on the 

issue has increased considerably, supported by methodo-

logical improvements and increased funding for vector 

surveillance, and is providing important information to 

facilitate progress in insecticide resistance control. �e 

evidence in this new work can help agencies now strug-

gling to curb increasing insecticide resistance with stew-

ardship policies that focus on public health insecticide 

use alone. Using a slight modification of the framework 

established by Lines [25], this review assembles and 

examines the recent research results, to evaluate the rela-

tionship between agricultural insecticide use and insecti-

cide resistance in malaria vectors in Africa. In addition to 

assessing this relationship, other factors that may modify 

this interaction are identified, to provide a larger picture 

of the current problem and recommend future directions 

for the stewardship of key insecticides.

Methods
To describe the body of evidence linking agricultural 

insecticide use with insecticide resistance in Africa, a 

revised set of criteria, shown in Table  1, was generated 

based on Lines’ five original evidence types. Lines’ evi-

dence type based on observed declines in mosquito pop-

ulations during agricultural sprayings was not included 

here due to infrequent reporting of appropriate data. 

An additional criterion was added based on reports that 

describe correlations between quantities of agricultural 

insecticides used and trends in insecticide resistance 

(‘correlation in quantity’). �e revised criteria indicating 

agricultural-use selection for insecticide resistance are 

given in Table 1.

Using Web of Science, WorldCat and PubMed search 

engines, literature related to agricultural insecticide 

use and insecticide resistance in malaria vectors was 

retrieved and reviewed. �e primary search term was 

impact of agriculture on insecticide resistance in malaria 

vectors Africa, and the following additional terms were 

included for more directed inquiries: Anopheles, mos-

quito, environment, crop, urban, peri-urban, rural, 

carbamates, DDT, pyrethroid, organophosphate, organo-

chlorine, or specific country names. Additional articles 

were located through paper references and cited-by lists, 

and by searching by author name. Peer-reviewed articles 

published in English or French since 2000 were consid-

ered. Twenty-five papers were found to directly assess the 

relationship between agriculture and insecticide resist-

ance in African countries. A map of study locations by 

country for the 25 papers is shown in Fig. 1. �e findings 

presented in these works were analysed with respect to 

the five criteria in Table 1, the simplified results of which 

are presented in Table 2.

A number of different techniques to assess resist-

ance, and terms to describe it were employed in this 

body of literature. Here, the terms resistance or resist-

ance level refer to any measures of resistance, includ-

ing per cent mortality, frequency of resistance alleles, 

or knockdown time. Resistance levels reported in dif-

ferent papers were not compared directly except in a 

crude analysis using the control sites of various papers 

as a random sample for comparison against certain test 

sites. Additional analyses were conducted to explore 

how associations between agricultural insecticide use 

and insecticide resistance in malaria vectors may be 

impacted by other variables. If in three or more papers 

the authors made mention of or measured a variable 

in addition to the agricultural status of their sampling 

locations, and that factor was associated with differ-

ences in observed resistance levels, it is discussed in 

this review.
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Results
Evidence for agriculture contributing to insecticide 

resistance

Of the 25 papers evaluating the relationship between 

agricultural insecticide use and insecticide resistance, 

all but two papers [14, 26] described resistance scenar-

ios that met one or more of the five criteria. Nineteen 

papers described evidence that met two or more crite-

ria. �e most frequently met criteria in these papers 

were correlation in space (19) and chemical correlation 

(13); the least frequent were descriptions of resistance 

pre-dating public health insecticide use or correla-

tion between resistance and agricultural season (5 and 

4, respectively). Both of the papers finding no conclu-

sive association between agricultural insecticide use 

and vector resistance considered sites with potentially 

high insecticide exposures from non-agricultural uses, 

which may have confounded the results relevant to 

this review [14, 26]. �e 25 papers are from study sites 

across malaria-endemic Africa (Fig.  1), confirming that 

the putative relationship between agricultural insecti-

cide use and insecticide resistance in malaria vectors is 

widespread.

Modi�ers

�ree additional social and behavioural factors emerged 

as potential modifiers of the relationship between agri-

cultural insecticide use and insecticide resistance in vec-

tors: crop type, pest management strategy and urban 

development. Each was discussed or quantified in three 

or more papers, and found to be associated with differ-

ences in population resistance levels.

Crop type

Crop type was among the first factors recognized as 

modifying the relationship between agricultural insec-

ticide use and insecticide resistance in malaria vectors. 

Diabaté et  al. observed increased resistance at cotton 

growing sites, a finding subsequently supported in eight 

other papers from five different African countries [7, 8, 

11, 17, 27–31]. �is reported correlation between cotton 

and higher insecticide resistance mirrors cotton pesticide 

use data in Africa, indicating cotton as the cash crop with 

the highest intensity insecticide use of any crop [32].

In eight studies, vegetable cultivation strongly related 

to insecticide-resistant field collections [15, 16, 18, 27, 

31, 33–36]. �ese results again correspond with pesticide 

use statistics for vegetable crops. Vegetable production 

requires significantly higher quantities and/or more fre-

quent application of pesticides than other food crops [32, 

37]. Vegetable cropping is also linked to increasing urban 

agriculture, and this intersection of factors may com-

plicate or exacerbate the effects of vegetable cultivation 

practices on insecticide resistance in vectors. �e impact 

of urban development is discussed below.

Irrigated crop production, especially rice, has increased 

in recent decades in Africa, and has raised concern over 

its potential impact on malaria vector control [38]. Seven 

of the studies reviewed here examined the insecticide 

susceptibility of vector populations at rice-growing sites 

[9, 10, 27, 28, 31, 36, 39], and found low-to-moderate 

resistance levels in these mosquito populations. In two of 

these studies, the moderate vector resistance at the rice 

site was attributed to cross-contamination from nearby 

cotton farms [9, 10]. While there is little generalizable 

Table 1 Criteria for associating insecticide resistance in malaria vectors with agricultural insecticide use

Criterion Example

Timeline: resistance in mosquitoes to a particular insecticide pre-dates 
public health or personal use of that insecticide at that site

Mosquito populations from Khartoum express 60–80 % mortality when 
exposed to the carbamate beniocarb, but carbamates are not approved 
for public health use in Khartoum, and are the most commonly used 
class of pesticides for agriculture [28]

Correlation in time: vector resistance levels rise and fall with the agricultural 
spraying schedule at a sampling site over time

Mosquitoes collected from cotton farms in Cameroon during the cotton 
spraying season showed a 1.6-fold increase in median knockdown time 
relative to mosquitoes collected from the same sites just prior to the 
spraying [18]

Correlation in space: vector populations from agricultural sites are more 
resistant to insecticides than their counterparts at non-agricultural sites 
in the same region

In Mali, the frequency of the kdr resistance gene was highest in mosqui-
toes sampled from a cotton-growing site, compared to sites with just 
personal or public health insecticide use history [30]

Correlation in quantity: vector resistance levels in a population increase 
with increasing quantity of agricultural insecticides in that region

Mosquito populations collected from two vegetable farms in Benin 
showed mortality to insecticides that varied inversely with concentra-
tions of insecticides in the soil and water from these sites [25]

Chemical correlation: the insecticides to which a mosquito population is 
resistant correspond to the insecticides used for agricultural purposes in 
that area

At a site in Cameroon where pyrethroids make up a higher proportion of 
pesticides used in agriculture, mosquitoes showed higher pyrethroid 
resistance compared to mosquitoes from another agricultural site with 
less reliance on pyrethroids [26]
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data regarding insecticide use on rice crops in Africa, a 

recent survey conducted in Benin reported that insec-

ticides were used in rice cultivation in three out of five 

districts, though quantity and frequency of application 

was not reported [40]. In addition, a study conducted in 

Cote d’Ivoire found very high levels of insecticide resist-

ance in Anopheles mosquitoes collected from rice fields, 

though this report did not compare these resistance lev-

els to a non-rice control [41]. �is case of high resistance 

suggests the possibility that, in some instances, insecti-

cide use on rice may play a larger role in the development 

of insecticide resistance than the seven papers reported 

here depict, but further research is necessary.

Additional crop types were included in this body of lit-

erature, but without sufficient overlap to posit any con-

sistent pattern between them and insecticide resistance 

relative to other crops. Studies that included subsist-

ence agriculture sites with no pesticide use found low 

Fig. 1 Map of study locations considered in this review. Parentheses enclose number of publications per county
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resistance in vectors sampled from these locations [10, 

31]. Overall, crop-based variation in resistance was found 

for cotton and vegetables, and insecticide use in rice 

cropping did not relate to resistance.

Pesticide use and pest management strategy

Farmers and agricultural operation owners determine 

insecticide type, quantity and application frequency 

depending on costs, government and industry recom-

mendations, producer instructions, community prec-

edents, and personal experience [42]. �ree of the studies 

reviewed here conducted surveys of agricultural work-

ers and farm owners along with field sampling at the 

same sites [17, 34, 35]. Abuelmaali et al. found increased 

insecticide resistance at locations where farm workers 

reported that they applied pesticides more frequently, 

were more likely to switch pesticide class if inefficacy 

was perceived, and were less likely to properly dispose 

of unused or expired pesticides, compared to other sites. 

Nwane et  al. found that mosquitoes collected from an 

agricultural area that reported a higher proportion of 

organophosphate and pyrethroid use had higher levels 

of resistance to those agents than mosquitoes from the 

comparison site. Yadouléton et  al. found vector popu-

lation resistance levels that correlated directly with 

reported insecticide use in three different pest manage-

ment strategies. �us, the three studies that collected 

simultaneous site-specific data both on agricultural 

insecticide use as practised and on resistance in vector 

populations indicated an association between pesticide 

usage behaviour for agricultural purposes and insecticide 

resistance in malaria vectors.

Urban development

Metabolic resistance in vectors may develop from expo-

sures beyond insecticides, including urban pollution or 

Table 2 Reviewed publications by �rst author and year of publication

+, tested and/or observed with positive results; 0, tested and/or observed with null or inconclusive results; Species 1, Anopheles gambiae s.l.; 2, Anopheles gambiae 

s.s.; 3, Anopheles arabiensis; 4, Anopheles quadriannulatus; 5, Culex quinquefasciatus. Plus marks indicate positive associations found by evidence type. DDT 

dichlorodiphenyltrichloroethane, PYs pyrethroids, OPs organophosphates, OCs organochlorines, and CMs carbamates

Paper Country Species Resistant to Timeline Correlation 
in space

Correlation 
in time

Correlation 
in quantity

Chemical 
correlation

Diabaté et al. [9] Burkina Faso 1 DDT, PYs + +

Akogbéto et al. [33] Benin 1 NA + +

Tia et al. [15] Cameroon 2 DDT, PYs + + +

Corbel et al. [36] Benin 1, 5 DDT, PYs + +

Tripet et al. [16] Mali 2 DDT, PYs + + +

Chouaïbo et al. [7] Cameroon 1 DDT, PYs + + +

Djouaka et al. [43] Benin 2 PYs + +

Djogbénou et al. [10] Burkina Faso 2 OPs, CMs +

Kerah-Hinzoumbe 
et al. [28]

Chad 1 PYs +

Klinkenberg, et al. 
[26]

Ghana 1 PYs 0

Müller et al. [11] Cameroon 3 PYs + +

Mzilahowa et al. [12] Malawi 1, 4 DDT + + +

Dabiré et al. [8] Burkina Faso 1 DDT, PYs + +

Dabiré et al. [29] Burkina Faso 2 OPs, CMs + +

Nwane et al. [34] Cameroon 2 DDT, PYs + 0 + +

Antonio-Nkondjio 
et al. [44]

Cameroon 2 CMs, DDT, PYs + +

Djègbè et al. [31] Benin 1 DDT, PYs +

Yadouléton et al. [17] Benin 1 DDT, PYs + + +

Badolo et al. [45] Burkina Faso 1 DDT, PYs + + +

Dabiré et al. [30] Burkina Faso 1 OPs, CMs + + +

Abuelmaali et al. [35] Sudan 3 OPs, CMs, PYs + 0 + +

Koffi et al. [27] Cote d’Ivoire 1 OCs, CMs, PYs +

Nwane et al. [14] Cameroon 1 DDT, PYs 0

Nkya et al. [13] Tanzania 1 PYs + +

Nkya et al. [6] Tanzania 2 OCs, OPs, PYs + +
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other environmental toxins. Urban centres characteris-

tically have higher levels of pollution, and until recently, 

this, in combination with personal insecticide use for 

nuisance abatement, constituted the extent of vector 

exposures to toxins in cities; any insecticide resistance 

observed was attributed to these sources [4]. �e recent 

development of urban farming in Africa has added a new 

dimension to the urban environment, and a complex 

modifier of relationships between agricultural insecticide 

use and insecticide resistance in malaria vectors.

�e first comparison made possible by the papers 

reviewed here concerns differences in resistance between 

urban centres with city farming and those without. A 

crude appraisal of mosquito populations from cities with 

and without agriculture suggests that a higher proportion 

of agricultural cities have resistant mosquito populations:

  • Of the ten papers reporting on cities with no record 

of urban agriculture: five found moderate-to-high [9, 

10, 13, 43, 44] and five found low-to-non-existent [6, 

7, 33, 34, 45] levels of insecticide resistance;

  • Of the 12 papers reporting on cities with noted urban 

agriculture activity: nine found moderate-to-high 

[15, 27, 28, 31, 34–36, 44, 45] and three found mixed 

moderate-to-high and low-to-non-existent [8, 29, 30] 

levels of insecticide resistance.

�ese last three papers were all based on the same loca-

tion and conducted by the same research group. Four 

papers sampled at both agricultural and non-agricultural 

urban sites simultaneously [26, 34, 44, 45], thus control-

ling for region, season, and research team. �ree out of 

four of these papers reported higher resistance levels in 

vector mosquito populations from the agricultural urban 

sites than from sites in cities without farming [34, 44, 

45]. �ese three papers, and the crude comparison, sug-

gest that urban agricultural land use may foster increased 

insecticide resistance in malaria vectors.

�e second comparison is between vector populations 

in rural farming areas and those in urban farming areas. 

Nine papers sampled at both rural and urban agricul-

tural sites: six groups found higher levels of resistance in 

urban than in rural agricultural sites [8, 15, 29, 30, 36, 45, 

46], two found split results [27, 28], and one found lower 

resistance in urban mosquito populations than in rural 

ones [34]. �e one study that matched their urban and 

rural farming sites by crop type found similar resistance 

levels in these pairs [27]. �ese results tentatively suggest 

that agriculture in urban settings may exacerbate insecti-

cide resistance in vector populations, but potential crop-

type interactions and somewhat mixed results temper 

this association.

�ese studies overall suggest that cities with urban 

farming may be associated with higher vector resistance 

than non-agricultural cities, and potentially higher resist-

ance than rural agricultural sites. Possible relationships 

between peri-urban agriculture and vector insecticide 

resistance remain largely unexplored [46].

Discussion
�e recent revival in research on agriculture’s puta-

tive role in the development of insecticide resistance in 

African malaria vectors has created an opportunity to 

re-evaluate current strategies for managing insecticide 

resistance and reconsider the best directions for policy. 

�is review presents an updated set of criteria, and sev-

eral key modifying factors, by which possible associations 

between insecticide use in agriculture and the develop-

ment of insecticide resistance may be examined, and 

uses these to evaluate the 25 relevant recent publications. 

In 23 of the 25, from across Africa, higher resistance in 

mosquito populations was associated with agricultural 

insecticide use. Crop type had a strong impact on the 

extent of insecticide resistance associated with agricul-

tural insecticide use: cotton was most commonly asso-

ciated with higher resistance in mosquito populations, 

followed by vegetables, while rice was not associated with 

resistance. Farm operators’ pest management strategies 

for insecticide use were associated with insecticide resist-

ance patterns in vector populations. Last, agriculture in 

urban areas was associated with higher levels of vector 

resistance than found in urban areas without farming.

Among the limitations of this broad review are that, by 

necessity, all types of insecticides and all forms of resistance 

were grouped together. Articles published in languages 

other than English and French were not included. Relatively 

few of the African nations experiencing insecticide resist-

ance among malaria vectors were represented in this litera-

ture. In addition to these limitations, it is difficult to predict 

the potential impact that agricultural insecticide use may 

have on malaria outcomes in humans [47]. While in gen-

eral, high levels of insecticide resistance do associate with 

some degree of vector control failure, there are cases where 

vector control has remained effective despite higher resist-

ance levels [48, 49]. Additionally, it is important to consider 

that this review is drawn from a collection of papers that 

are essentially snapshots of insecticide resistance at vari-

ous points and places in time. Each individual study incor-

porated here is subject to its own limitations. �is review 

should therefor not be taken as conclusive evidence for 

any larger conclusions, but rather as a summary of what 

evidence so far exists to help understand the potential role 

agricultural insecticide use may have in the development of 

insecticide resistance in African malaria vectors.
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Conclusions
Further research should seek to quantify the sources 

and scope of vector mosquito exposure to agricultural 

insecticides, ideally incorporating resistance surveil-

lance systems already in place. A better understanding of 

insecticide use in practice and current pest management 

strategies is needed to estimate magnitudes of insecti-

cide exposures from agriculture and prioritize insecti-

cide resistance control efforts accordingly. �e impact of 

urban agriculture in particular requires further explora-

tion, with studies that take different crop types and peri-

urban areas into consideration.

Translational research should aim to evaluate pos-

sible systems for the stewardship of important insec-

ticides. Development of integrated pest management 

strategies that are applicable and economically feasible 

for specific affected regions is crucial, as is outreach 

and education for the myriad agricultural workers 

whose decisions impact the health of their communi-

ties as well as their own livelihoods. On a policy level, 

at any geographic scale, the responsibility for address-

ing insecticide failures cannot fall solely on public 

health agencies.
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