AUTHOR
TITLE
SPONS AGENCY pUB DATE
NOTE
PUB TYPE
EDRS PRICE DESCRIPTORS
IDENTIFIERS
Jorgenson, Dale W.
The Contribution of Education to U.S. Economic Growth, 1948-1973.
National Inst. of Education (ED), Washington, DC. [81]
154p.; For related documents, see CE 034 552-556 and CE 035977.
Reports - Research/Technical (143)
MFOl/PCO7 Flus Postage.
Capital; *Cost Effectiveness; Demography; *Economic Development; Economic Progress; Economic Research; Educational Attainment; *Educational Benefits;
Educational Finance; Educational Research; Elementary Secondary Education; Employment Level; Higher Education; Human Capital; Income; Investment; Labor Force; Labor Force Development; *Outcomes of Education; *productivity; *School Role *Economic Growth; Economic Impact Studies

ABSTRACT

A study analyzed the contributions of education to U.S. economic growth during the years 1948 to 1973. By allocating the growth of the quality of labor input among the contributions of changes in the composition of the labor force by sex, age, education, employment status, and occupation, researchers were able to separate the contribution of education to economic growth from the contributions of other changes in the composition of the labor force. They concluded that investment in education is very large by comparison with labor market input, amounting to 5.13 times labor input in 1973. The rate of growth for investment is twice as high as that of labor input. Investment is highest for elementary education, next to highest for secondary education, and lowest for higher education. Another finding of the study is that while the value of investment per student in constant price rises for males and females with elementary and secondary education, this value peaked for college trained males in 1955 and for college trained females in 1950. (This study is one in a series on the relationship between education and productivity.) (MN)

[^0]THE CONTRIBUTION OF EDUCATION TO

USS. DEPARTMENT OF EDUCATION NATIONAL INSTITUTE OF EDUCATION EdUCATIONAL RESOURCES INFORMATION CENTER (ERIC) $\sqrt{\text { CENTER ERIC }}$ This document has been reproduced ab recurved from the person or argamzation -riginatimg
Mirwe changes pave beef matte to morrow rebroductorn quality

 Bastion of prole
U.S. ECONOMIC GROWTH, 1948-1973
by
Dale W. Jorgenison

1. Introduction Lion to U.S. economic growth during the years from 1948 to 1973. This remarkable quarter century has been dominated by a powerful upward thrust in the level of $U . S$. economic activity. In 1973 the output of the avidian economy stood at 1.306 trillion dollars of 1972 ; by contrast output in 1948 was only 498 billions. The increase in the level of economic activity from 1948 to 1973 was greater than the rise over the whole proceding course of American history.

The growth record of the U.S. economy over the period 1948-1973 is all the more striking in view of the experience of the two preceding decades. The years from 1929 to 1948 were dominated by the Great Depression of the 1930's and the Second World War. For this period Christensen and Jorgenson (1970) have estimated the rate of growth of the U.S. private domestic economy at 2.1 percent per year. For the period 19481960 the U.S. growth rate rose to 3.6 percent per year; from 1960 to 1973 the growth rate averaged 4.3 percent, more than double the average from 1929 to 1948.

In this paper we employ a novel perspective on postwar U.S. economic growth. We show that the driving force behind the massive expansion of the U.S. economy between 1948 and 1973 has been a vast mobilization of capital and labor resources. The most important single contribution to U.S. economic growth during this period was made by the growth in capizal inpuz. The contribution of capital input averaged 1.6 percent per year for the period 1948-1973. The contribution of labor input was another important source of U.S. economic growtin, averaging 1.1 percent per year from 1948 to 1973.

Capital and labor inputs combined contributed 2.7 percent per year to the growth rate of 3.9 percent for the output of the U.S. civilian economy from 1948 to 1973. These two inputs accounted for more than two-thirds of the growth of output that took place. By contrast advances in the level of technology contributed only 1.2 percent per year to the growth of output, less than half the combined contributions of capital and labor inputs. Accordingly, we have emphasized the mobilization of capital and labor resources rather than advances in the level of technology in analyzing postwar U.S. economic growth.

The contribution of education to economic growth takes place through enhancement of the productivity of individual members of the labor force. Increases in hours worked through gains in employment contribute to the growth of labor input. In addition, labor input grows through increases in the proportion of hours worked by more productive members of the work force. We identify this component of growth in
labor input with growth in labor quality. In our approach the growth of labor input is the sum of growth in hours worked and growth in labor quality. Change in the educational composition of the labor force is a very important source of growth in labor quality. However, the contribution of education must be separated from the impact of changes in the composition of the labor force by sex, age, employment status, and occupation.

To implement our approach to the analysis of sources of U.S. economic growth we have developed a methodology based on an explicit model of production and technical change. This methodology is based on an / aggregate production function giving output as a function of capital and labor inputs and time. To identify the role of education in economic growth we represent labor input as a function of types of labor input that differ in marginal productivity. We combine the production function and labor input as a function of its components with necessary conditions for producer equilibrium. These conditions make it possible to identify the marginal product of labor input with the ratio of the wage rate to the price of output. Similarly, we can identify the marginal product of each type of labor input with the ratio of its wage rate to the wage rate of labor input as a whole.

To analyze the sources of U.S. economic growth and to identify the contribution of education we first allocate the growth of aggregate output between contributions of capital and labor inputs and changes in the level of technology? We then separate the contribution of each input between growth in an unweighted sum of its components and growth in input quality. ${ }^{3}$ Labor quality is defined as the ratio between the labor input index and the unweighted sum of hours worked. To identify the role of education we represent labor input as a function of types of labor input broken down by characteristics of individual workers such as sex, age, education, employment status, and occupation. ${ }^{4}$ Utilizing this breakdown of labor input into its components, we allocate the growth of the quality of labor input among the contributions of changes in the composition of the labor forca by sex, age, education, employment status and occupation. This analysis enables us to separate the contribution of education to economic growth from the contributions of other changes in composition of the labor force.

In Section 2 we analyze the sources of U.S. economic growth for the period 1948-1973. We show that the contribution of labor quality is a very important source of U.S. economic growth, accounting for 0.45 percent per year of a total contribution of labor input of 1.09 percent per year. The quality of labor input' grows through increases in the proportion of hours worked by the more productive members of the labor force. In Section 3 we analyze the contribution of education to the growth of labor input in the U.S. economy. We show that the contribution of
education accounts for 0.67 percent per year of a total growth in the quality of labor input of 0.72 percent per year.

While the contribution of education to U.S. economic growth is obviously highly significant, our analysis of the sources of economic growth is subject to very important limitations. The most critical limitation is that educational investment in any year contributes to growth in the quality of the labor force in that year, but also enhances the productivity of individual workers in future years. A second limitation is that measures of labor input focus attention exclusively on market labor activities - hours worked and wage rates of employed persons. Education also contributes to social welfare through nonmarket activities of individuals employed in the labor market and through the activities of individuals not participating in the labor market. 5 In Section 4 we attempt to overcome some of the limications of our analysis of education as a source of economic growth by presenting a measure of investment in education. The most important innovations in our measure of investment in education are these: First, our concept of human capital is based on lifetime labor incomes for all individuals in the U.S. population. ${ }^{6}$ Second, we incorporate both market and nonmarket activities into our measures of labor incomes. This makes it possible to provide measures of lifetime labor incomes for individuals employed in the labor market and for individuals not involved in the labor market.

Third, our measures of investment in education are based on a system of demographic accounts that includes accounts for school enrollment.' Fourth, we combine these accounts with economic accounts for the value of available labor time to obtain measures of investment in education for the U.S. economy as a whole.

To implement our methodology for analyzing the sources of U.S. eocnomic growth we have constructed a complete set of U.S. national accounts for capital and labor inputs as well as for output at the aggregate level. This system of accounts complements the existing U.S. national accounts for output developed by the Bureau of Economic Analysis (1977). Our accounts can be integrated with existing national accounts for capital formarion and weal th in the form of nonhuman capital developed by Christensen and Jorgenson (1969, 1970, 1973a, 1973b). Similarly, to implement our methodology for measuring investment in education we have constructed a set of U.S. national accounts for capital formation through education. Our accounts can be integrated with a new system of U.S. national accounts developed by Jorgenson and Pachon (1982a, 1982b) that includes capital formation and wealth in the form of human capital.

2. Sources of U.S. Economic Growth

In this section we allocate the growth of aggregate output between growth in capital and labor inputs and changes in the level of techrology. We construct data on the rate of technical change by combining price and quantity data for value added, capital input, and labor input. We employ a translog quantity index of the mate of technical change, equal to the difference between the change in the logarithm of value added from period to period and a weighted average of changes in the logarithms of capital and labor inputs. ${ }^{8}$ The weights are given by average shares of each input in value added for the two periods.

The starting point for our measure of the rate of aggregate technical change is a production account for the U.S. economy as a whole in current prices.' The fundamental accounting identity for the economy as a whole is that the value of output is equal to the value of input from the producers' point of view. The value of output excludes sales and excise taxes and includes subsidies received by producers. The value of input includes the value of primary factors of production incorporating supplementary payments and payroll taxes included in labor compensation and property taxes and other taxes on property compensation. Valuation from the point of view of the producer is intermediate between valuation at market prices and valuation at faćtor cost.

Given our definition of output and input from the point of view of the producer, the aggregate production account takes the form given in Table 1. The value of output from the point of view of the producing

REVENUE

1. Gross domestic civilian product
2. + Services of consumers' durables
3. + Services of durables held by institutions
4. + Net rent on institutional real estate
5. - Federal indirect business tax and non-tax accruals
6. + Capital stock tax
7. - State and local indirect business tax and non-tax accruals
8. + Business motor vehicle licenses
9. + Business property taxes
10. + Business other taxes
11. + Subsidies
12. = Value of output from the point of yjew of the producing sector. OUTLAY
13. Income originating in business
14. + Income originating in households and institutions
15. + Incume originating in civilian government
16. $\quad+$ Capital consumption allowances
17. + Business transfer payments
18. + Statistical discrepancy
19. + Services of consumers' durables
20. + Services of durables held by insitutions
21. + Net rent on institutional real estate
22. + Certain indirect business taxes (revenue account above, lines $6+8+9$ +10)
23. . Value of input from the point of view of the producing sector.
sector is equal to the sum of gross domestic civilian product, as defined in the U.S. national income and product accounts, the services of consumers' durables, the services of durables held by institutions, and net rent on institutional real estate. The value of indirect business taxes on output, net of subsidies, is excluded from the value of output from the point of view of the producing sector. The net value of these taxes is equal to the sum of federal and state and local business tax and nontax accruals, less the federal capital stock tax, state and local business motor vehicle licenses, property taxes and other taxes, and federal. subsidies.

As an accounting identity, the value of output is equal to the value of input from the point of view of the producing sector. The value of input includes income originating in business, households and institutions, and civilian government, as defined in the 0.S. national Income and product accounts. The value of input also includes capital consumption allowances, business transfer payments, the statistical discrepancy, and cértain indirect business taxes on property and property compensation. Finally, the value of input includes the imputed value of services of consumers' durables and durables held by institutions and net reat on institutional real estate.

Revenue and outlay accounts arei linked through capital formation and the corresponding compensation of capital services. To make this link explicit, we divide the value of input from the point of view of the producer between labor and property compensation. Property compensation also includes profits, rentals, interest, capital consumption
allowances, business transfer payments, the statistical discrepancy, the property compensation of self-employed, and direct taxes included in outlay on capital services, including business motor vehicle licenses, propertly taxes, and other taxes. Labor compensation includes the compensatron of employees and the labor compensation of the self-employed.

The quantity of aggregate value added is the sum of the quantities of value added in all sectors:

$$
V=\Sigma v_{i}
$$

We can define the price of value added for the economy as a whole P_{V} in terms of prices of value added in all sectors $\left\{p_{V}^{i}\right\}$:

$$
\begin{aligned}
P_{V} V & =p_{V} \Sigma V_{i} \\
& =\Sigma p_{V}^{i} V_{i}
\end{aligned}
$$

Value added for the economy as a whole is equal to the sum of value added over all sectors. The quantity index of value added, the corresponding price index, and value added in all sectors are presented for the period 1948-1973 in Table 2.

Table 2
aggregate value added

YEAR	PRICE		QUANTITY	Value added
1948	. 535		498.420	266.61 .3
1949	. 527		497.007	261.742
1950	. 544		539.467	293.227
1951	. 582		578.305	336.845
1952	. 599		597.858	358.356
1953	. 600		621.816	372.991
1954	. 617		620.042	382,434
1955	. 622		664.014	413.164
1956	. 633		692.491	438.434
1957	. 645		707.485	456.351
1958	. 667		705.689	470.376
1959	. 674		748.836	504.652
1960	. 689		771.174	530.978
1961	. 695		788.039	547.613
1962	. 706		828.168	584.367
1963	. 708	'	867.460	614.488
1964	. 722		914.627	660.355
1965	. 743		967.928	719.641
1966	. 773		1020.897	789.336
1967	. 794		1049.774	833.063
1968	. 823		1101.789	906.418
1969	. 876		1134.840	993.783
1970	. 904		1137.615	1027.976
1971	. 948		1168.719	1108.318
1972	1.000		1233.220	1233.220
1973.	1.065	. :	1306.251	1391.316

Our next objective is to implement an index of productivity for the economy as a whole empirically. We assume that value added V can be expressed as a translog function of capital input K, labor input L, and time T. The corresponding index of productivity growth is the translog Index of the rate of technical change \vec{v}_{T} :

$$
\begin{gathered}
\bar{v}_{T}=\ln V(T)-\ln V(T-1)-\bar{v}_{X}[\ln K(T)-\ln R(T-1)] \\
-\bar{v}_{L}[\ln L(T)-\ln I(T-1)],
\end{gathered}
$$

where weights are given by average shares of capital and labor inputs, $\bar{v}_{\mathbb{R}}$ and \bar{v}_{L}, in value added for the economy as a whole:

$$
\begin{aligned}
& \bar{v}_{K}=\frac{1}{2}\left[v_{K}(T)+v_{X}(T-1)\right], \\
& \bar{v}_{L}=\frac{1}{2}\left[v_{L}(T)+v_{L}(T-1)\right], \\
& \bar{v}_{T}=\frac{1}{2}\left[v_{T}(T)+v_{T}(T-1)\right],
\end{aligned}
$$

and:

$$
\begin{aligned}
& v_{K}=\frac{P_{X} K}{P_{V} V}, \\
& v_{L}=\frac{P_{L}^{L}}{P_{V} V}
\end{aligned}
$$

The value shares are computed from data on the quantities of value added, capital input, and labor input and the corresponding prices, P_{V}, \bar{F}_{K}, and P_{L}.

We assume that capital input and labor input can be expressed as translog functions of individual capital inputs $\left\{\mathrm{K}_{\mathrm{k}}\right.$ \} and individual labor inputs $\left\{L_{q}\right\}:{ }^{10}$

$$
\begin{aligned}
& \ln K(T)-\ln K(T-1)=\sum \bar{v}_{K K}\left[\ln K_{K}(T)-\ln K_{K}(T-1)\right], \\
& \ln L(T)-\ln L(T-1)=\sum \bar{V}_{L \ell}\left[\ln L_{\ell}(T)-\ln L_{\ell}(T-I)\right],
\end{aligned}
$$

where weights are given by average shares of quantities of value added, capital input, ard labor input in the value of the corresponding aggregates:

$$
\begin{array}{ll}
\bar{v}_{K k}=\frac{1}{2}\left[v_{K k}(T)+v_{K k}(T-1)\right], & (k=1,2 \ldots p), \\
\bar{v}_{L \ell}=\frac{1}{2}\left[v_{L \ell}(T)+v_{L \ell}(T-1)\right], & (\ell=1,2 \ldots q),
\end{array}
$$

and:

$$
\begin{array}{ll}
\nabla_{K k}=\frac{p_{K k} K_{k}}{\Sigma F_{K k} K_{k}}, & (k=1,2 \ldots p), \\
v_{L \ell}=\frac{P_{L \ell} L_{\ell}}{\Sigma P_{L \ell}^{L}}, & (\ell=1,2 \ldots q) .
\end{array}
$$

The value shares are computed from data on capital inputs and their prices $\left\{\mathrm{p}_{\mathrm{Kk}}\right\}$ and labor inputs and their prices $\left\{\mathrm{P}_{\mathrm{L} \mathrm{\ell}}\right\}$. .

We next compare the rate of technical change and growth in capital and labor inputs as sources of growth in value added. We present annual growth rates for value added, capital input, and labor input for the period 1948-1973 in Table 3. The rate of growth of value added is the sum of the average rate of technical change and a weighfed average of rates of growth of capital and labor inputs with weights given by the average value shares of the inputs. We present the share of capital input in value added in Table 3. The value share of labor input is equal to unity less the value share of capital input. Applying these weights to the rates of growth of the corresponding input identifies the contribution of each input to economic growth. We present the weighted growth rates of capital and labor inputs and the average annual rate of technical change in Table 3.

Value added grew rapidly throughout the period "1948-1973 with declines in 1949, 1954, and 1958 and a very low but positive growth rate In 1970. The declines lasted for a single year and were followed by sharp recoveries in 1950-1951, 1955, and 1959. Turning to the growth of capital input, we find that declines in value added during the period 1948-1973 were followed by reductions in the rate of growth of capital input one period later. By comparison with the growth of capital input, the growth of labor input was considerably more uneven. While the growth rate of capital input was positive throughout the period, substantial declines in labor input coincided with declines in value addeed in 1949, :

Table 3
CONTRIBUTIONS TO GROWTH IN AGGREGATE OUTPUT 1948-1973

YEAR	Value ADDED	CAPITAL INPUT	Labor INPU'T	average VALUE Sllare of CAPI'TAL INPUT	contributions to growth in aggregate VALUE ADDED:		
					CAPITAL INPUT	LABOR INPUT	TECHNICAL CHANGE
1949	-. 0028	. 0630	-. 0346	. 3470	. 0215	-. 0226	-. 0017
1950	. 0819	. 0375	. 0390	. 3610	. 0137	. 0247	. 0434
1951	. 0695	. 0710	. 0516	. 3576	. 0247	. 0337	. 0110
1952	. 0332	. 0555	. 0262	. 3492	. 0198	. 0165	-. 0031
1953	. 0392	.0340	. 0175	. 3470	. 0118	. 0114	. 0160
1954	- -.0028	. 0389	-. 0285	. 3523	. 0136	-. 0186	. 0020
1955	. 0685	. 0316	. 0311	. 3677	. 0122	. 0194	. 0378
1956	. 0419 ,	. 0530	. 0211	. 3648	. 0193	.0139	-. 0086
1957	. $0214{ }^{\text { }}$. 0416	. 0013	. 3541	. 0148	. 0005	. 0059
1958	-. 0025	. 0348	-. 0278	. 3572	. 0121	-. 0174	. 0027
1959	. 0593	. 0153	. 0356	. 3675	. 0061	. 0223	. 0308
1960	. 0293	. 0347	. 0281	. 3723	. 0129	. 0178	-60014
1961	. 0216	. 0320	-. 0101	. 3720	. 0115	-. 0064	. 0165
1962	. 0496	. 0234	. 0374	. 3714	. 0088	. 0229	. 0178
1963	. 0463	. 0363	. 0110	. 3721	. 0132	. 0073	. 0257
1964	. 0529	. 0350	. 0263	. 3748	. 0134	. 0163	. 0231
1965	. 0566	. 0407	. 0348	. 3801	. 0151	. 0211	. 0203
1966	. 0532	. 0549	. 0424	. 3801	. 0210	. 0265	. 0055
1967	. 0278	. 0594	. 0162	. 3758	. 0222	. 0103	-. 0046
1968 '	. 0483	. 0456	. 0236	. 3705	. 0167	. 0146	. 0169
1969	. 0295	. 0469	. 0259	. 3655	. 0172	. 0162	-. 0038
1970	. 0024	.0470	-.0041	. 3562	. 0165	-. 0025	-. 0116
1971	. 0269	. 0305	. 0031	. 3518	. 0107	. 0015	. 0146
1972	. 0537	.0346	. 0233	. 3596	. 0123	. 0147	.0266 .0130
1.973	. 0.575	. 0469	. 0421	. 3621	. 0171	. 0273	. 0130

1954, and 1958; declines in labor input also took place in 1961 and 1970. Finally, the pattern of technical change, like that of labor input, was relatively uneven with declines in the level of technology in 1949, 1952, 1960, 1967, and 1969-1970. Rapid growth in the level of technology is associated with recoveries in the growth of value added in 1950, 1955, and 1959. Rapid growth in the level of technology also took place during the period 1960-1966; this period was characterized by unusually rapid growth of value added, capital input, and labor input.

The average value share of capital input was very stable over the period 1948-1973, ranging from . 3470 in 1949 and 1953 to .3801 in 1965: and 1966. Accordingly, the cyclical pattern relating growth in value . added to the contributions of capital and labor inputs. is virtually identical to the patterns relating growth in value added to growth in capital and labor inputs. Comparing the contributions of capital and labor inputs and the rate of technical change as sources of growth in value added, we find that the contribution of capital input was positive throughout the period from 1948 to 1973 and relatively even. By contrast, the contributions of labor input and the rate of technical change were negative for five and six of the twenty-five periods, respectively, and relatively uneven.

The contribution of capital input provides the largest single contribution to the growth of output in ten of the twenty-five periods from 1948-1973. The contribution of labor input provides the largest singla contribution in four of these periods. Finally, the rate of technical change provides the largest contribution in ten periods. We
find that the contribution of capital input is greater than that of labor input in fourteen of the twenty-five periods. The contribution of capital input is greater than the rate of technical change in thirteen of the twenty-five periods. Finally, the contribution of labor input is greater than the rate of technical change in only eleven of the twenty-five periods.

We have allocated the sources of growth in value added among growth in capital and labor inputs and the rate of technical change. We next decompose the rate of growth of capital input between rates of growth of capital stock A and quality of capital stock Q_{K}. : Similarly, we decompose the rate of growth of labor input between rates of growth of hours worked H and quality of labor hours Q_{L}. Using indexes of the quality of capital stock and hours worked, we can decompose the rate of growth of value added as follows: ${ }^{11}$

$$
\begin{aligned}
\ln V(T)-\ln V(T-1) & =\bar{\nabla}_{R}\left[\ln Q_{K}(T)-\ln Q_{K}(T-1)\right] \\
& +\bar{v}_{K}[\ln A(T-1)-\ln A(T-2)] \\
& +\bar{\nabla}_{L}\left[\ln Q_{L}(T)-\ln Q_{L}(T-1)\right] \\
& +\bar{\nabla}_{L}[\ln B(T)-\ln H(T-1)]+\bar{v}_{T}
\end{aligned}
$$

The rate of growth of value added is the sum of a weighted average of the rates of growth of capital stock and hours worked, a weighted average of the rates of growth of quality of capital stock and hours worked, and the rate of technical change. In Table 4 we present weighted averof growth of the quality of capital stock and hours worked for the period 1948-1973. We also present weighted rates of growth of capital stock and hours worked for the same period.

We find that the growth of capital quality is an important source of growth of capital input, but that it is dominated by the growth of capital stock. Both components of the growth of capital input have positive rates of growth throughout the period 1948 to 1973. The slowdowns in the growth of capital input in 1950, 1955, 1959, and 1971 were associated with declines in rates of growth of both capital stock and its quality. Growth in the quality of hours woriked is an important source of growth of labor input, with positive rates of growth in every year from 1948 to 1973, except for 1961 and 1972. By comparison the growth in hours worked is considerably more erratic with decines in 1949, 1954, 1957-1958, 1961, and 1970. Only the decline in hours worked that took place in 1957 failed to coincide with a decline in labor input. The growth of hours worked exceeded the growth of the quality of hours worked as a source of, growth in labor input in seventeen of the twenty-five periods from 1948 to 1973.

Table 4
CONTRIBUTIONS TO GROWTH IN AGGREGATE INPUT AND the aggregate rate of technical change, 1948-1973

YEAR	QUALITY OF CAPITAL STOCK	CAPITAL STOCK	QUALITY OF HOURS WORKED	HOURS WORKED
1949	.0093	.0122	.0004	-.0230
1950	.0058	.0079	.0085	.0161
1951	.0107	.0140	.0077	.0259
1952	.0083	.0115	.0126	.0038
1953	.0041	.0076	.0052	.0062
1954	.0053	.0083	.0032	-.0218
1955	.0038	.0073	.0011	.0183
1956	.0073	.0119	.0042	.0097
1957	.0051	.0097	.0066	-.0060
1958	.0044	.0076	.0033	-.0208
1959	.0013	.0047	.0048	.0175
1960	.0042	.0086	.0140	.0037
1961	.0036	.0078	-.0032	-.0031
1962	.0025	.0063	.0110	.0118
1963	.0043	.0089	.0016	.0056
1964	.0033	.0100	.0060	.0103
1965	.0040	.0110	.0019	.0191
1966	.0073	.0137	.0079	.0186
1967	.0080	.0141	.0047	.0055
1968	.0055	.0111	.0043	.0103
1969	.0055	.0116	.0005	.0156
1970	.0052	.0113	.0067	-.0092
1971	.0029	.0077	.0011	.0004
1972	.0027	.0095	-.0038	.0186
1973	.0051	.0119	.0034	.0239

We have analyzed the sources of growth of aggregate value added in the U.S. economy over the period 1948-1973 on the basis of annual data from the aggregate production account presented in Tables 3 and 4. Next we summarize these data for the period as a whole and for six subperiods - 1948-1953, 1953-1957, 1.957-1960, 1960-1966, 1966-1969, and 1969-1973 - in Table 5. The first part of this table provides data from Table 3 on growth in output and inputs. The second part summarizes data from Table 3 on the contributions of capital input, labor input, and the rate of technical change to the growth of output from Table 3. The third part presents decomposifions of both the contribution of capital input into components associated with capital quality and capital stock and the contribution of labor input into components associated with labor quality and hours worked. : The final part contains a decomposition of the rate of aggregate technical change into components associated with 1 rates of sectoral technical change and the reallocations of value added, capital input, and labor input among sectors.

For the perió 1948-1973 aggregate value added grew at 3.35 percent per year, while capital input grew at 4.18 percent per year, indicating that the ratio of capital input to output has risen during the period. By contrast labor input grew at only 1.73 percent per year i while the rate of aggregate technical change averaged 1.25 percent per year. The average annual rate of growth of value added reached its maximum at 4.67 percent during the period $1960-1966$, grew at an average annual rate of 4.42 percent in 1948-1953, and fell to a minimum of 2.87

Table 5
AGGREGATE OUTPUT, INPUTS, AND PRODUCTIUITY: RATES OF GROWTH, 1948-1973

23

Table 5 (Concluded)
aggregate output, inputs, and productivity: rates of growth, 1948-1973

Variable	$\begin{aligned} & 1948- \\ & 1973 \end{aligned}$	(average annual rates of growtl)					
		$\begin{aligned} & 1948 \text { - } \\ & 1953 \end{aligned}$	$\begin{aligned} & 1953- \\ & 1957 \end{aligned}$	$\begin{aligned} & 1957- \\ & 1960 \end{aligned}$	$\begin{aligned} & 1960- \\ & 1966 \end{aligned}$	$\begin{aligned} & 1966- \\ & 1969 \end{aligned}$	$\begin{aligned} & 1969- \\ & 1973 \end{aligned}$
CONTRIBUTION OF CAPITAL QUALITY	. 0052	. 0076	. 0054	. 0033	. 0042	. 0063	. 0040
CONTRIBUTION OF cafital stock	. 0098	. 0106	. 0093	. 0070	. 0096	. 0123	. 0101
contribution of LABOR QUALITY	. 0045	. 0069	. 0038	. 0074	. 0042	. 0032	. 0018
CONTRIBUTION OF llours worked	. 0063	. 0058	. 0001	. 0001	. 0104	. 0105	. 0084

percent per year during the period 195T-1960. The average annual rate of growth of capital input reached a maximum of 5.22 percent from 1948 1953, grew at 5.06 percent per year during the period 1966-1969 and fell to a minimum of 2.83 percent per year in 1957-1960. The rate of growth of labor input reached its maximum during the period 1960-1966 at 2.36 percent per year, grew at 2.19 percent per year during the period 1966-1969, and fell to a minimum of .63 percent. per year in 1953-1957.

To analyze the fources of ग.S. economic growth for the period 1948-1973, we next consider the contributions of capital and labor inputs, and the rate of technical change as sources of growth in value added. For the period as a whole the contribution of capital input averaged 1.51 percent per year, the contribution of labor input averaged 1.09 percent per year, and the rate of technical change averaged 1.25 percent per year. Capital input is the most important source of growth In four of the six subperiods - 1948-1953, 1953-1957, 1966-1969, and 1969-1973. Technical change is the most important source of growth during the two subperiods 1957-1960 and 1960-1966. Our overall conclusion is that capital input is the most important source of growth in value added, technical change is the next most important, and labor input is the least important. This conclusion is supported by our analysis of growth for the period as a rhole, by data for subperiods given in Table 5, and by the annual data presented in Table 3.

In order to analyze the contributions of capital and labor inputs In more detail, we consider data on the contributions of capital stock and its quality and hours worked and their quality for the period as a whole and for the six subperiods presented in Table 5. For the period 1948-1973 the contribution of capital stock accounts for almost twothirds of the contribution of capital input. This quantitative relationship between capital stock and its quality characterizes most of the period. The average contribution of capital quality reached its maximum at .76 percent per year in 1948-1953, averaged .63 percent per year during the period 1966-1969, fell to a minimum of .33 percent per year in 1957-1960 and averaged. 40 percent per year in 1969-1973. The contribution of capital stock reached its maximum at 1.23 percent per year in 1966-1969, averaged 1.06. percent per year during the 1948-1953, and fell to a minimum of .70 percent per year in 1957-1960.

For the period as a whole the contribution of hours worked exceeded the contribution of labor quality. For the first half of the period the contribution of hours worked fell below the contribution of the quality of hours worked. For the last half of the period the contribution of hours worked accounts for almost two-thirds of the contribution of labor input.. The average contribution of labor quality reached its maximum at . 74 percent per year in 1957-1960 and declined steadily to a minimum of . 18 percent per year in 1969-1973. The contribution of hours worked reached its maximum of 1.05 percent per year from 1966-1969, averaged 1.04 percent per year during the period 19601966 and only .01 percent per year during the periods 1953-1957 and 1957-1960.

We find it useful to provide additional perspective on our approach to measuring aggregate productivity by comparing qur sources and methods with those of other studies of aggregate productivity. Our measure of the quantity of aggregate output is based on quantities of value added In each producing sector. Our measures of the quantities of aggregate primary factor inputs are based on all types of primary factor inputs. Finally, our measure of aggregate productivity is an index number constructed from data on prices and quantities of value added in all sectors, all types of capital input, and all types of labor input. This measure of productivity is based on a model of production and technical change for the economy as a whole witn the quantity of value added represented as a function of capital input, labor input, and time.

For the U.S. economy as a whole Christensen and Jorgenson (1969, 1970, 1973a, 1973b) have employed an approach to productivity measurement that is broadly similar to ours. Their study of aggregate productivity covers the perion 1929-1969 for the private sector of the U.S. economy. Christensen, Cumings, and Jorgenson (1978, 1980) have extended the estimates of Christensen and Jorgenson through 1973. As in our study, aggregate vai.ue added is defined from the producers' point of view, including the value of sales and excise taxes and including the value of subsidies. However, the quantity of value added is measurei as an index of deliveries to final demand rather than the sum of quantities of value added over industrial sectors. The quantity of capital input is divided
among categories of the labor force broken down by educational attainment, but not by sex, age, employment class, or occupation.

The empirical results of Christensen, Cummings, and Jorgenson (1980) for the period 1948-1973 are very similar to ours. For this period their estimate of the average rate of growth of value added for the private domestic sector of the U.S. economy is 3.95 percent per year; by comparison our estimate of the rate of growth for the civilian sector of the U.S. economy is 3.85 percent per gear. The two estimates are not precisely comparable since Christensen, Cummings, and Jorgenson do not include government sectors in their measure of value added. They estimate the average rate of growth of capital input at 4.16 percent per year for the period 1948-1973; our estimate for this period is 4.18 percent per year. These estimates are for the same sectors of the U.S. economy, since neither set of estimates includes capital input for the government sectors. Christensen, Cummings, and Jorgenson estimate the average rate of growth of labor input at 1.61 percent per year, while our estimate is 1.73 percent per year. Finally thrir estimate of the average rate of technical change is 1.33 percent per yar, while our estimate is" 1.25 percent per year. Again, the two estimates for labor input and the rate of technical change are not precisely comparable since we include labor input for the government sectors and they do not.

Christensen, Cummings, and Jorgenson (1979, 1980) have presented estimates of aggregate productivity for Canada, France, Germany, Italy, Japan, Korea, the Netherlands, and the United Kingdom as well as for the United States. Their estimates cover various periods beginning after 1947 and ending in 1973; the estimates cover the period 1960-1973
for all countries. Groes and Bjerregaard (1978) have developed comparable data for Denmark for the period 1950-1972. On the basis of the close correspondence between our results for the U.S. economy as a whole and those of Christensen, Cummings, and Jorgenson, we conclude that it is appropriate to compare our aggregate results with those for the other countries presented in their study.

Denison (1974) has provided estimates of aggregate productivity for the U.S. economy as a whole covering the period 1929-1969. Earlier, Denison (19671 presented comparable estimates at the aggregate level for Belgium, Denmark, France, Germany, the Netherlands, Norway, the United Ringdom, and the United States for the period 1950-1962. Walters (1968, 1970) has given estimates for Canada for the period 19501967 and Denison and Chung (1976) have given estimates for Japan for the period 1952-1971 that are closely comparable to Denison's estimates for the United States. A detailed comparison of cine results of Ciristensenand Jorgenson (1969, 1970, 1973a, 1973b) and those of Denison (1967) is given by Jorgenson and Griliches 1972a,.1972b).

For the U.S. economy as a whole kendrick (190́l, 1973) has euployed an approach to the measurement of value added through summation over the quantities of value added in all sectors with weights that change periodically. Similarly, his estimates of capital and labor inputs are constructed by summing the corresponding quantities over all sectors with periodcally changing weights. He also presents estimates of çapital and labor inputs based on unweighted sums of the quantities for all industrial
sectors. Kendrick employs unweighted sums as a variant of his principal estimates, which are based on weighted sums with weights that. depend on property and labor compensation by sector. Christensen and Jorgenson and Denison disaggregate capital and labor inputs for the economy as a whole by categories of capital stock and hours worked, but nor by sector.

3. The Contribution of Education

In the previous section we have presented a production account for the U.S. economy as a whole, including measures of aggregate value added, capital input, and labor input. We have utilized these data to allocate the growth of aggregate output among the rate of technical change and the contributions of capital and labor inputs. In this section we analyze the growth of labor input in greater detail in order to identify the contribution of education to U.S. economic growth. We assume that aggregate labor input can be expressed as a translog function of individual types of labor inputs, cross-classified by sex, age, education, employment status, and occupation. A measure of aggregate labor input can be constructed as a translog quantity index number.

For each of the components of labor input the flow of labor services is proportional to hours worked. Defining aggregate hours worked as an unweighted sum of its components, we can define the aggregate index of the quality of hours worked as an index that transforms aggregate hours worked into the translog index of aggregate labor input. This quality index reflects changes in the composition of aggregate hours worked by sex, age, education, employment status, and occupation. To analyze the sources of quality change in aggregate labor input, we introduce partial l indexes of labor input, adding hours worked and the share of labor compensation over some characteristics of the labor force and constructing a translog index over the remaining characteristics. ${ }^{12}$

To analyze the sources of changes in the quality of aggregate labor input we introduce the contributions of each characteristic of labor input as the difference between the rate of growth of the corresponding partial index of labor input and the rate of growth of aggregate hours worked. For example, the contriburion of education to the quality of aggregate labor input is defined as the difference between the rate of growth of a partial index of labor input constructed by adding hours worked and the share of labor compensation over all other characteristics of the labor force -- sex, age, employment status, and occupation -and constructing a translog index over educational groupings.

In this section we begin by outlining the generation of data on labor input. To disaggregate labor input into components that differin marginal productivity we measure wages along with hours worked for labor input broken down by characteristics of individual workers. A novel feature of our data on labor input is that we utilize data from both establishment and household surveys. We have controlled estimates of employment, hours worked, and labor compensation to totals based on establishment surveys from the U.S. national income accounts. On the basis of household surveys we have allocated these totals among categories of the work force cross-classified by characteristics of individual workers. The resulting estimates of hours worked and average compensation per hour provide the basis for our price and quantity indexes of labor input. Our data on labor input are cross-classified by the two sexes, eight age groups, five educational groups, two employment classes and ten occupational groups given in Table $6 .{ }^{13}$

Table 6

CHARACTERISTICS OF LABOR INPITT

SEX:
(1) Male
(2) Female

AGE:
(1) 14-15 years
(2) 16-17 years
(3) 18-24 years
(4) 25-34 years
(5) $35-44$ years
(6) 45-54 years
(7) 55-64 years
(8) 65 years and over

EDUCATION:
(1) 1-8 years grade school
(2) 1-3 years high school
(3) 4 years high school
(4) 1-3 years college
(5) 4 or more years college

EMPLOYMENT CLASS:

(1) Wage and Salary Worker
(2) Self-Employed/Unpaid Family Worker

OCCUPATION:
(1) Professional, Technical, and Kindred Workers
(2) Farmers and Farm Managers
(3) Managers and Administrators, except Farm
(4) Clerical Worker
(5) Sales Workers
(6) Craftsmen and Kindred Workers
(7) Operatives
(8) Service Workers, Including Privare Household
(9) Farm Laborers
(10) Laborers, except Farm

Our first step in developing measures of labor input is to construct employment matrices cross-classified by sex, age, education, employment status, and occupation for each year on the basis of household surveys from the last three decennial Censuses of Population and the Current Population Survey. The resulting employment matrices are controlled to employment totals on the basis of establishment surveys from the U.S. national income and product accounts. Establishment surveys provide an enumeration of jobs rather than persons at work, while housenold surveys count only persons actually at work during the survey week. By using establishment-based estimates of the number of jobs and assigning to absent workers the average annual hours worked by individuals with comparable characteristics, we are able to estimate hours worked for each type of worker on an annual basis.

We estimate hours worked by workers cross-classified by demographic characteristics on the basis of household surveys. We adjust the resulting estimates to control totals from the U.S. national accounts. We define hours worked, for each category of labor input as the product of employment, hours worked per week, and the number of weeks in the calendar year, fifty-two. Our measure of the quantity of labor input is hours worked for each cell of a matrix cross-classified by the characteristics of individual workers. The concepts employed in our estimates of labor input reflect the conventions used in the most recent Census of Population and in the Current Population Survey.

Our third step in developing measures of labor input is to construct labor compensation matrices formen year on the basis of the last three decennial Censuses of Population. The data provide estimates of average compensation per person rather than average compensation per job. To combine these data with estimates of the number of jobs from establishment surveys we first convert average compensation per person to average compensation per job. For this purpose we generate matrices of weeks paid per year for each category of workers. The average number of weeks paid per year, divided by fifty-two, provides an estimate of the number of jobs per person in each category. Labor compensation is the product of average compensation per person, the number of jobs per person, and the number of jobs. Estimates of average compensation per person and the number of weeks paid per year are based on household surveys, while estimates of the number of jobs are based on establishment surveys. Control totals for annual labor compensation are taken directly from the U.S. national income accounts.

To estimate average hourly compensation per person for employees we begin with data on wage and salary income from the last three decennial Censmses of Population. Differences in outlay on labor Input per person reflect differences in marginal products among workers. However, the cost of labor input from the point of view of the producer aiso includes supplements, so that differences in wage and salary income must be adjusted to incorporate employers' contributions to social security and unemployment compensation and other supplements to wages
and salaries. The Census also provides data no total income and earnings. Total income includes property income and transfer pay=ents; eamings include both property and labor income from self-employment. Earnings reported by the Census for self-employed workers and Income of unincorporated enterprises from the U.S. national income accounts include both labor and property income. We have divided Income from unincorporated enterprises between labor and property conponents, assuming that after tax rates of return are the same fo= corporate and noncorporate business. Labor compensation is distriburee among the self-employed on the basis of wage fifferentials among amployes. To derivè labor compensation per hour worked for each category of iabor input, we divide total labor compensation by annual hours worked for each category. Average labor compensation per hour provides a measure of the price of labor input for each cell of a matrix cross-classíied by the characteristics of individual workers.

Our final step in constructing data on labor input is to combine price and quantity data, cross-classified by sex, age, education, employment class, and occúpation into price and quantity indexes of labor input. A novel feature of our approach is that we employ a translog quantity index of labor input. The change in the logarithms of labor input from period to period is a weighted average of changes in the logarithms of hours worked for the components of labor input. The weinits are given by the average shares of each component in labor compensation for the two periods. We also derive a measure of total hours worked by addj.ng hours worked across all categories of labor input. We define the
quality of hours worked as the ratio of labor input to hours worked. Changes in the quality of hours worked represent the dirferences between changes in an index of labor input with hours worked weighted by average labor compensation and cinanges in an unweighted index.

To construct an index of aggregate labor input we assume that aggregate labor input, say $\mathrm{L}(\mathrm{T})$, can be expressed as a translog function of its individual components, so that the translog quantity indes of aggregate labor input takes the form:

$$
\ln L(T)-\ln L(T-1)=\Sigma \bar{v}_{L \ell}\left[\ln L_{\ell}(T)-\ln L_{\ell}(T-1)\right],
$$

where weights are given by the average shares of the individual components in the value of aggregate la'bor compensation:

$$
\bar{v}_{L Q}=\frac{1}{2}\left[v_{L Q}(T)+v_{L Q}(T-1)\right], \quad(\ell=1,2 \ldots q),
$$

and:

$$
\nabla_{L \ell}=\frac{p_{L \ell} L_{l}}{\sum p_{L \ell}^{L}}
$$

$$
(q=1,2 \ldots q)
$$

The value shares are computed from data on hours worked $\left\{L_{\ell}\right\}$ and compensation per hour $\left\{\mathrm{P}_{L_{2}}\right\}$ for each component of aggregate labor input, crossclassiffed by sex, age, education, employment class, and occupation of workers.

In quantifying the effect of changes in the composition of hours worked we begin with the recognition that the relationship between labor services and hours worked is not the same for all categories of labor input. For each of the components of aggregate labor input $\left\{I_{\ell}(T)\right\}$ the flow of labor services is proportional to hours worked, say $\left\{\mathrm{H}_{\ell}(T)\right\}$:

$$
L_{\ell}(T)=Q_{L \ell} \cdot H_{\ell}(T), \quad(\ell=1,2 \ldots q),
$$

where the constants of proportionality $\left\{Q_{L}\right\}$ transform hours worked into flows of labor services. Each of the scalars $\left\{Q_{L_{\ell}}\right\}$ is specific to a given category of labor input but is independent of time. It necessarily follows that the transiog quantity index of aggregate labor input can be expressed either in terms of its components $\left\{I_{\ell}\right\}$ or in terms of the components of hours worked $\left\{\Sigma_{2}\right\}$ or in terms of the components of hours worked $\left\{\mathrm{H}_{\ell}\right\}$:

$$
\begin{aligned}
\ln L(T)-\ln L(T-1) & =\sum \bar{v}_{L \ell}\left[\ln L_{\ell}(T)-\ln L_{\ell}(T-1)\right] \\
& =\sum \bar{v}_{L \ell}\left[\ln H_{\ell}(T)-\ln H_{\ell}(T-1)\right] .
\end{aligned}
$$

We form the aggregate index of/labor input from data on hours worked by workers cross-classified by sex, age, education, employment class, and occupation. Changes in the logarithms of hours worked for each component are weighted by average spaces in the value of aggregate labor compensation.

The relation between agsregate labor input and agsregate hours worked is a function of the changing composition of aggregate hours worked. More precisely, it depends on the factor of proportionality that transforms aggregate hours worked into aggregate labor input. We can define aggregate hours worked, say $H(T)$, as the unweighted sum of its components,

$$
H(T)=\Sigma H_{\ell}(T)
$$

We can then define the agsregate index of the ouality of hours worked, say $Q_{L}(T)$, as an index that transforms agsregate hours worked into the translog index of labor input:

$$
L(T)=Q_{L}(T) \cdot h(T)
$$

It follows that the growth rate of the agsregate index of the quality of hours worked can be expressed in the form:

$$
\begin{aligned}
\ln Q_{L}(T)-\ln Q_{L}(T-1)= & \sum \bar{v}_{L L}\left[\ln H_{L}(T)-\ln H_{\ell}(T-1)\right] \\
& -[\ln H(T)-\ln H(T-1)] .
\end{aligned}
$$

The quality index reflects changes in the composition of aggregate hours worked by workers classified by sex, age, education, employment class, and occupation.

The aggregate index of labor input, the corresponding price index, and the index of the quality of hours worked are presented for the period 1948 1973 in Table 7. Annual data for employment, weekly hours per person, hourly compensation, and total labor compensation and hours worked are also reported. The important conclusion to be derived from Table 7 is that, forty-three percent of the average annual rate of growih of lebor input is accounted for by a shift in the composition of hours worked. The remaining growth in labor input is due to growth in unweighted annal hours reported in the last colum of Table 7. Labor input increases at an average rate equal to 1.73 percent per year. The aggregate quality and unweizhtea hours indexes increase at average ennual rates equel to . 74 and .99 yercents, respectively.

Our next objective is to analyze the effects of changes in the composition of total hours worked For this purpose we consider the components of hours worked, say $\left\{H_{\text {saecoi }}(T)\right\}$, cross-classified by sex, age, education, employment class, occupation, and industry. Previously, we have used a single subscript $\&$ to represent categories of labor input cross-classified bý all characteristics except for industry. The subscript has represented 1600 categories of labor input. In our new notation labor input is cross-classified by two sexes represented by the subscript s, eight age groups represented by a, five education classes represented by e, two employment classes represented by c, ten occupational groups represented by 0 , and fifty-one industry groups represenced by i. Similarly, we consider the shares of the components of labor input in the value of labor compensation for the economy as a whole, say $\mathrm{v}_{\text {saecoi }}(\mathrm{T})$, cross-classified by sex, age, education, employment class, orrusation and industry.

TABLE 7
agGregate labor input

tear ${ }^{-1}$	labor input				EMPLOYMENT	$\begin{gathered} \text { WEEKLY } \\ \text { HOURS PER } \\ \text { PERSON } \end{gathered}$	HourlyCOMPENSATION	HOURS WORKED
	PRICE	QUANTITY	OUTLAY	QUALITY				
1948	. 330	331.760	175.676	. 839	61639	34.3	1.39	126132
1949	. 330	313.068	169.354	. 840	60145	38.9	1.34	121752
1930	. 3140	533.910	184.967	- HSO	61688	38.9	1.48	124977
1451	. 392	562.6159	220.248	. 801	64218	34.9	1.69	130137
1452	. 4112	571.2104	232.060	. $\mathrm{H7} \mathrm{H}$	64981	48.7	1.71	130 ARA
1953	.418	547.1404	245.519	. H HS	65982	$3 \mathrm{~B} \cdot 5$	$1:$ H6	132151
1954	.421	570.791	2.43.549	. 890	04533	3 H .0	1.91	127715
1955	. 440	¢\%H.n日l	254.246	- 492	66118	38.1 37.9 37.4	1.97	131342 133545 132152
1456	. 4 ¢ ${ }^{\text {c }}$	601. 721	2Hi.ash	. 891	67730	37.9	2.11	133554
1451	.492	-0)2.233	296.05 H	. 9107	67880	37.4	2.24	132181 12802
1458	. 511	540.070	299.483	. 911	66416	37.0	2. 34	138028
1959	. 522	601.191	317.024	. 918	68028	37.	2.41	13167 H
1900	. 533	624.6H4	333.0119	. 940	68142	37.0	2.5?	132325
1901	. 557	614.3014	341. 329	-93'	nHA23	3 n .7	2.61	131084
1962	.572	644.354	367.153	. 931	10127	30.8	2.74	134198
1403	. 594	6118.809	38.5.5AP	.9541	70830	36.7	2.85	135415
1904	.611	bue.ons	411.233	. 963	72332	3 b .5	2.94	137660
196.5	. 644	018.197	441.015	. 906	14617	36.5	3.15	1419H8
1900	.643	119.392	491.534	. 979	71717	3 n .2	3.30	146317
1961	.713	731.399	521.153	. 986	79098	34.8	3.53	147633
1408	. 781	744.674	9,74.181	. 993	81010	34.6	3.83	150190
1464	. H 22	7nti. 102	631.3143	. 994	832415	35.5	4.11	153844
1910	. 476	163.140	670.183	1.104	83245	35.0	4.42	151636
1911	. 931	767.025	711.159	1.1000	A3410	54.9	4.71	151707
1912	1.000	184.088	1\%A. 18 Hh	1.1000	8SARS	34.9	5.02	156246
1973	1.0rn	119.209	月49.4n4	1.005	89310	34.9	5.118	162217

Our analysis begins with the construction of "partial" indexes of labor input. We can define a partial index of labor input by adding hours worked and value shares over some characteristics of the labor force and constructing a translog index over the remaining characterisa tics. More specifically, we can define a first-order index of labor input corresponding to each characteristic of labor input by adding hours worked and value shares over all other characteristics of labor input and constructing a translog index over the single characteristic of interest. Since there are six characteristics 'of labor input --sex, age, education, employment class, occupation, and industry -- there are six first-order indexes of labcr input. For example, the firstorder index of labor input corresponding to sex, say L_{s}, can have its growth rate expressed in the form:

$$
\begin{aligned}
& \Delta \ln L_{s}=\sum_{s} \bar{v}_{s} \Delta \ln H_{s}, \\
& =\quad \sum_{s} \bar{v}_{s} \Delta \ln \sum \sum \sum \sum \sum H_{\text {saecoi }},
\end{aligned}
$$

Hhere:

$$
\begin{aligned}
& {\overline{\nabla_{s}}}=\frac{1}{2}\left[v_{s}(I)+v_{s}(I-1)\right], \\
& v_{s}=\sum \sum \sum \sum \sum \sum v_{\text {saecoi }},
\end{aligned}
$$

and the Δ notation signifies first differences in the associated variable, for example:

$$
\Delta \ln L_{s}=\ln L_{s}(T)-\ln L_{s}(T-1)
$$

The resulting first-order index corresponds to sex, but not to age, education, employment class, occupation, or industry.

We can define a second-order index of labor input corresponding to any two characteristics of labor input by adding hours worked and value shares over other characteristics and constructing a translog Index. The second-order index corresponding to sex and age, for example, reflects changes in the composition of agzregate hours worked by sex and age, but not by education, employment class, occupation, or industry. There are fifteen second-order indexes of labor input generated by combinations of two of the six characteristics of labor input. All secondorder indexes are defined in Table 8 together with the six first-order indexes.

Similarly, we can define third-, fourth-, fifth-, and sixth-order indexes of labor input corresponding to any three, four, five, or to all six characteristics of labor input. Continuing our example, the third-order index corrésponding to sex, age, and education reflects changes in the composition of agaregate hours worked by these characteristics, but not by employment class, occupation, and industry. The fourth-order index corresponding to sex, age, education, and class of employment, reflects changes in the composition of aggregate hours worked by these four characteristics. Each fifth-order index captures compositional changes among all but the excluded characteristic. The twenty
third-order, fifteen fourth-order, and six fifth-order indexes are defined in Table 8 as is the single sixth-order index which reflects compositional shifts among all characteristics of labor input.

Special attention must be focused on the fifth-order index of labor input corresponding to all characteristics of labor input except industry. This index corresponds to the index of aggregate labor input $L(T)$ defined above. Recall that the growth rate of the index can be expressed in terms of the components of hours worked $\left\{\mathrm{H}_{2}\right\}$:

$$
\ln L(T)-\ln L(T-1)=\sum^{\bar{T}} L \ell\left[\ln H_{Q}(T)-\ln H_{Q}(T-1)\right] .
$$

In terms of our new notation, this expression has the equivalent form:

$$
\begin{aligned}
& \Delta \ln L=\sum_{s} \sum_{a} \sum_{\mathrm{e}} \sum_{c} \sum_{0} \bar{v}_{\text {saeco }} \quad \Delta \ln H_{\text {saeco }},
\end{aligned}
$$

To construct this index we add hours worked over industries to obtain hours worked cross-claśsified by all characteristics except in̈dustry. Similarly, we add value sheres over industries, obtaining:

$$
\nabla_{I}=V_{\text {saeco }}=\sum_{i} v_{\text {saecoi }}
$$

This index must be contrasted with the sixth-order index of labor input zorresponding to all six characteristics of labor input. This latter index reflects changes in the composition of labor input by industry as well as the five remaining characteristics.

HOURS WORKED (ONE INDEX):

$$
\begin{aligned}
\Delta \ln H=\Delta \ln & \sum \sum \sum \sum \sum \sum H_{\text {saecoi }} \\
& \\
&
\end{aligned}
$$

FIRST-ORDER (SIX INDEXES):

$$
\begin{aligned}
& \Delta \ell I_{s}=\sum_{s} \overline{\mathrm{v}}_{\mathrm{s}} \Delta \ell n \mathrm{H}_{\mathrm{s}},
\end{aligned}
$$

SECOND-ORDER (FIFTEEN INDEXES):

$$
\begin{aligned}
& \Delta \ell n L_{s a}=\sum_{s} \sum_{a} \bar{v}_{s a} \Delta \ell n H_{s a},
\end{aligned}
$$

THIRD-ORDER (TWENTY INDEXES):

FOURTH-ORDER (FIFTEEN INDEXES):

FIFTH-ORDER (SIX INDEXES):

SIXIFH-ORDER (ONE INDEX):

$$
\Delta \ln L_{\text {saecoi }}=\sum_{s, a} \sum_{a} \sum_{e} \sum_{c} \sum_{0} \sum_{i}^{i} \bar{v} \text { saecoi }{ }^{\text {din n }} H_{\text {saecoi }}
$$

To complete the set of partial indexes of labor input we add hours worked over all characteristics of the labor force to obtain an index of agsregate hours yorked. This index does not reflect any change in the composition of habor input. The single index of agsregate hours worked is defined in Table 8 . There is a total of sixty-four partial Indexes of labor invut, corresponding to the six characteristics of the labor force. We present these sixty-four partial indexes of labor input amualiy for the period 1948-1973 in Table 9 . These indexes Corm the basis for our analysis of the effects of the changes in the postwar composition of assregate hours rorked,

Our next objective is to identify the contributions of the changing sex, age, education, employment class, occupation, and industry composition of total hours worked to agsregate economic growth. For this purpose, fe first define an index of total labor quality that captures the effect of all changes in the composition of hours worked. This index is defined in terms of the agsregate hours worked and sixthorder partial indexes described in the preceding section. The rate of growth of the index of total labor quality is defined as the difference betreen the rate of growth of the sixth-order partial index of labor input and the rate of growth of agsregate hours worked. To analyze the effects of changes in the quality of hours worked, we can decompose the index of total labor quality into components corresponding to the contributions of changes in the composition of labor input.

Table 9

TRANSLIJG INDEXES IFF L.AAUK JMPUT

Table 9 （Continued）

IRANSLIJG IGIIEXES DF LAAIH INPUT

YEAK	SA	St．	S 11	S 1	CA	Ct	Cll	－CI
1948	－650	.712	.753	.771	． 778	． 669	.714	.747
1944	． H 20	－6B4	.126	.7110	． 752	． 647	－6H9	.719
1450	.350	． 71.4	.151	． 163	． 785	． 671	.714	． 7113
1451	． $\mathrm{H} / 74$.737	． 7110	－ HOH	－ 111	．701	． 758	－7H9
1932	．H ${ }^{\text {c }}$	． 7110	． 79 H	－H1A	－ 430	.711	． 765	－ H 11
1453	． 898	.157	． 1108	． 1178	－1141	． 772	． 7711	． 410
1454	－Hら9	.135	． 7 HI	.795	．1115	.701	－747	－ 778
195	． 690	． 7 76	． 1303	－619	－H41	－ 726	． 712	－A1）
1956	.900	.771	． HCl	． H 37	． 145	.743	． 790	． 1123
1957	.180	.764	． H 1111	． 832	－A3）	－ 7113	－731	－A19
1958	－H60	.1119	． 1811	－H011	－ 825	－126	． 766	－ 1 H 1
1449	．HE2	.773	． 819	－ $11 c^{\prime} b$	－is＇s	－ 751	744	－614
1960	－900	.7189	．H37	－ 1411	－ $\mathrm{H}_{6} 3$	－761	． 1	.819
1961	． H 70	.785	． 122	－H27	－H49	－76	3	8
1462	.893	A1？	－A43	． 644	－ 4618	.193	－ H 21	836
1903	.849	． 1117	－ HSO	． 659	－ 117	.801	－ H 31	H48
1464	.910	.14311	.1169	－ 416	－192	－ 23.1	－H5C	． H O6
1965	.934	－AnA	－ 140	－906	－418	． 455	－तौ।	． 8.935
190b	． 900	．9n1	． 9311	－ 411	－ 947	－ 119	－423	94t
1967	－ 967	.913	－ 9115	.933	.957	－905	0	905
19 c 18	． 980	.933	－965	－9bH	－972	－928	－9月4	．991）
1464	.497	－1611	－9ヵ9	－9）1	． 493	－ 757	－ 4189	.973
1970	． 999	－ 913	－971	－ 978	． 942	． 9178	.869 .974	． 411
1411	． 9713	.965	． 9101	－．972	.975 1.1100	.962 .010	1．000	1.0010
1972	1．1000	1．000	1．0130	1.1000 1.1038	1.1710 1.033	1.010 1.048	1.1043	1.1059
1973	1．032	1．1148	1.1139	1．1138	1.033	1．）48	1．143	$1 \cdot 10$
＊AVEMAO	． 11018	.10151	． 012.2	.0119	.0111	． 11180	.0152	.0132

of Gllow＇rl

Table 9 (Continued)

THAMSLUH; IHDfXES UF LAMOH INPUY

fRAHSLUC；INIIEXES IIF LABUN INPUT

VEAR	SCO	SCL	$B \wedge F$	sal	SAI	SEII	SF 1	SU1
1948	． 724	．703	． 111	． 761	． 716	． 694	． 6911	． 194
1444	． 7113	． 73.3	．nos	． 13 l	． 71111	． 610	－ 6 ¢H	． 171
1950	． 125	． 717	． 1 ¢	． 767	.117	.603	．692	． 7116
14ら1	． 16.1	． $\mathrm{H⿰丿}$ ，	． 719	． 100	． H 21	． 726	． 131	． 184
145	． 171	． $\mathrm{H} 12{ }^{\text {a }}$	． 703	． H 17	． 136	． 739	． 7114	－Hus
1435	． 7 HI	． H \％	． 110	． 1204	． 11418	.150	． 156	． H 17
1454	． 13	． 1711	．190	． HO 3	． 416	． 126	． 124	． 174
115＇）	． 74.3	．414	.711	－M＇11	－ 439	． 144	． 752	－ 117
1450	．ill	． 438	.190	． 11.59	－1930	． 766	． 171	－H2，
1951	． 790	． 4 ¢ 7	． 7 HH	． 1137	． HSI	． 705	.171	－H10
1453	.115	． 7194	． 169	．1813	－H19	． 744	． 1411	－147
1959	． 103	－ H 2	． 172	－ 830	－H4！	． 109	． 111	－H14
1901	． HC ？	．1431	． 813	． 1150	． 14.15	． 7 H 7	． 7818	－HS1
1401	－Hor	－ 12 Z	－ 8111	－H41	－ H 45	． 7 HI	． 742	－H17
1962	． 1 HS	． 1145	． 1131	－ H_{61}	－ $\mathrm{H67}$	－ 809	－${ }^{\text {Hil }}$	－ 419
1903	－ 440	－Aish	． 1131	－ HOCO	． 1878	－Alt	． H 1 H	． H 149
1904	－Hhil	－ 173	－1151	－ 4 H5	.1192 .920	－ A 3 H . Hos	． 1371	．8n7
1403	．1189	． 90.10	． 1144	.910 .9411	.920 .953	． AOH .907	.1371 .911	.876 .937
1400	．930	－ 410	.910 .929	.9411 .427	.953 .966	．920	－984	． 451
1467 1404	－943	－Ynh	－940	－9／5	．980	0.9112	． 9194	.970
1964	． 917	．990	．973	． 940	1．1）110	－9n9	． 971	． 793
1910	－913	.474	． 212	． 495	． 997	－9011	． 9318	.977
1411	． 9181	．912	． 971	． 4 M	． 478	．972	． 4 ¢5	．9H3
1412	1．0100	1.0010	1．1011）	1.000	1.010	1.000	1．11）19	1.1000
1913	1.1141	1.038	1.0931	1.1135	1.033	1.047	1.1947	1.040
nverna annual	． 11112	．1123	． 1150	.0123	． 11114	． 11164	． 0104	.0131

Jable 9 （Continued）
thallshug fintexes lif lamoli infllt

Yt．AH	CAE	Cn！ 1	CNI	（t） 1	Ct． 1	COI	AEI	AEI
1948	－665	－ 7211	． 714	.1063	． hH 1	． 12.1	－2H3	． 6181
1449	－010	． 690	． 722	－h40	－ 555	.697	． 661	－654
1951	． 676	． 727	． 75 ？	－66？	－6AO	－ 13.2	－h4l	－ 6 AH
1451	．100	． 7011	.794	． 694	． 731	.767	． 7 ？ 1	－ 7 P H
1452	． 132	．71？	． 1111	.712	.734	．$/ \mathrm{HI}$	． 7112	． 747
1435	． 135	－74！	－ $\mathrm{H}^{(1)}$.722	． 745	.700	． 153	． 750
1954	.117	． 7611	.746	.648	． 11 H	－15月	． 712	.134
19.5	.1112	．7い？	．H2？	.723	． 1112	． 782	． 753	． 754
14.5	.759	． 100	． 1339	.741	． 161	－ HON	． 773	． 77 H
1431	.100	． 11118	． 1130	． 1111	．7no	.145	． 713	.171
1958	.744	． 7 ds	－ 1104	.121	． 734	－ 160	.753	－753
1954	$.7 \% 0$	． 11111	． 433	.149	－761	－7414	． 174	． 7 HO
1900	.1 HO	．1139	． $11: 3$.701	.171	－H！？	． 713	．193
19力1	.185	． 111 H	． 1133	． 702	.777	－All 1	． 780	742 .7
1402	． 314	． 1111	－ 115	． 741	－ 1201	－${ }^{82} 20$	． 1817	－HP1
1903	－H2，	． 461	． 1307	． 109	－HOC	－． 815	－ H 25	． 129
1904	． H 414	－H／O	．HAS	． $\mathrm{H}^{3} 4$	－A S1	－4ijb	－ $\mathrm{H} / 17$	． 844
1965	．1173	－AOR	.912	． 185	－ 2 n 4	－AH5	－ A 76	－ 1180
1903	.907	.935	． 9177	． H 9 H	－1）4	． 931	． 912	.917 .932
1407	． 922	－ 917	－960	．911	． 919	－944	．935	.932 .953
$19 \% 11$	－9113	－968	－ 976	． 135	． 9111	－9615	． 9111	.953 .478
1409	.969	－90？	． 998	.965	－ 90.11	．971）	． 974	.478 .970
1970	． 9018	－ 6 （1）	－9）！	－452	－リら川	． 971	.967 .975	.971 .971
1911	.9711	－ 9814	． 976	． 910	－ 9611	．482	.975 .000	.971 1.0011
1412	1．000	1．900	1．10） 10	1．0000	1.0001	1.1111	1.000	1.004
1913	1．1111	1.03818	1．03：1	1．0ゝ1	1．0il）	1.1143	1.015	1.044
AVERAC	． 0130	.0117	． 0129	． 15114	．11173	． 11146	.0170	.0171
ANNUAL RATE OF GHOWTII								

Table 9 (Contloued)

THAHSLAG IUIIF xES HF I AHOH JNPIIT

Table 9 （Continued）

TRANSLIIG IHOEXES UF LAMOR INPUT

YEAR	SAt．l）	SAt．l	S＾111	SIIII	CAf（）	CNEI	CAll	CFIII
1741	－¢りハ	－643	． 7 ¢3	． 649	－bn？	． $67 ?$.725	． 678
1949	． 6111	．6is）	． 726	.177	． 641	． 6.19	． 710	．033
19ら0	.103	－ 61	． 757	．696	－664	． 679	． 7311	－671
1451	.155	.737	． 1011	． 737	－7リ5	． 719	． 774	－714
1952	.153	－154	． 110	． 132	． 7 ？ 4	． 737	． 792	． 734
1453	． 7 ¢n	． 1311	． 11.7	－ 102	.136	－ 151	． H 113	－714
1954	． 115	.743	．1）	. .733	． 115	－72i	． 772	． 715
1955	.760	． 106	．H111	． 157	.740	． 758.	.796	． 734
1956	． 1118	． $7 \mathrm{H4}$	． 11.34	.774	.757	.770	－H13	． 731
1457	． 718 s	． 1113	． 1131	.113	． 137	． 1711	－H1 3	． 75
195\％	－102	． 7514	－ 110 ？	． 747	－ 7 SA	． 7145	． 7113	.730
1954	． 7 Ha	－ 11314	－ 3130	． 174	． 167	． 775	－ 812	.760
1900	－ 8118	． 1804	． 319	． 191	－1H？	－7H7	－AP） 7	.112
1961	－10）	． 796	． 1132	． 7 HI	－7 H0	－7A6	－ 116	－ 770
1902	－1385	． 112	－115n	． H 13	－HU9	－ 1115	－H10	－HII 1
1403	． 1835	． 1314	－H64	－ 120	－ 11 H	－ 8125	． 851	－H09
1404	－ 454	－リち吅	． HHI	．All？	－ 1111	－846	－ 1369	－H3，
1905	．845	． 18 H	． 101	.677	－H／1	－ 171	． 1471	－HoS
1900	．91H	． 971	． 940	． 915	． 411	． 916	． 934	－ 1709
1901	－932	.731	.761	.929	－924	． 932	－934	． 423
1908	.453	． 155	－919	． 930	－4111	－953	－974	－973
1909	－9711	． 91811	1．11011	.976	－9711	． 9111	－9411	－973
1470	． 413	－ 9111	－991	． 461	－9n7	.970 $.9 / 13$	：9815	． .411
1971	－ 118	－ 912	－ 18 H 7	．9711	－． 015	． 0100	1．（1） 0	1.000
1912	1． 1100	1．01）0	1.000	1． 11011	1.000	1．110 114		1.1149
1413	1.1015	1.043	1.036	1．040	1．014	1.1144	1.039	1.10
AVEMAG	． 11161	． 0163	.0123	.11162	．U1HS	． 11176	． 01.14	． 11175
annunl rate								
Of：cinc								

Table 9 (Concluded)

THAHSLOE IHOLXES UH LAHLIK INBUI

OF GHOWII

The index of total labor quality must not be confused with the aggregate index of labor quality introduced in Section 2 above. The latter incorporates the effects of changes in the composition of labor input among all characteristics except industry. This is consistent with the requirements of our aggregate model of production and technical change. The index of total labor quality incorporates the effects of changes in the distribution of hours worked. across all six labor characteristics. This index is the sum of the effects captured in the aह̄regate index of labor quality and the mutually exclusive term measureing the effect of reallocation among industries. Since our present objective is to identify all labor related source characteristics contrabuting to economic growth, the appropriate index is the total quality index. It is this index we decompose into its components.

The partial indexes of labor input derived in the last section and reported in Table 9 are instrumental in identifying the firstand higher-order contributions of the six characteristics of labor input. We can define the first-order contribution of each characteristic of labor input to the rate of growth of total labor quality as the diffference between the rate of growth of the corresponding partial index of labor input and the rate of growth of aggregate hours worked. For example, the first-order contribution of sex to the rate of growth of labor quality, say $Q_{L s}$, takes the form:
$\Delta \ln Q_{\mathrm{Ls}}=\Delta \ln \mathrm{L}_{3}-\Delta \ln H$.

This index reflects the effect of changes. in the composition of agzregate hours worked by sex on the rate of growth of labor quality. There are six first-order contributions to the rate of growth of labor quality corresponding to the six characteristics of labor input.

We can define the second-order contribution of each pair of characteristics to the rate of growth of liabor quality as the difference between the rate of growth of the corresponding partial index of labor input and the rate of growith of aggregate hours horked, less the sum of the two first-order contributions of these, characteristics to the rate of growth of labor quality. For example, the sacond-order contribution of sex and age, say $Q_{\text {Lsia, }}$, takes the Eorm:

$$
\begin{aligned}
& \Delta 1 n Q_{L s a}=\Delta \ln L_{s a}-\Delta l n 月-\Delta l n Q_{L s}-\Delta 1 n Q_{L a} \text {, } \\
& =\Delta \ln L_{s a}-\Delta \ln L_{a}-\Delta 1 n L_{s}+\Delta l n H .
\end{aligned}
$$

This index reflects the effect of changes in the composition of agrregate hours worked by sex and age on the rate of growth of labor quality, exclusive of the effects already reflected in tie first-order contributions of sex and age. There are fifteen second-order contributions to the rate of groith of labor quality. These second-order contributions together with the six first-order contributions are defined in Table 10. We can similarly define third-, fourth-, fifth-, and sixthorder contributions of cha:acteristics of hours worked to the rate of

Table 10
CONTRIBUTIONS $=0$ THE GROWTH OF LABOR QUALITY

FIRST-ORDER (SIX INDEXES):
$\Delta \sin Q_{L s}=\Delta \ln L_{s}-\Delta \ln E$.

SECOND-ORDER (FITIEEM EMDETEラ):

$$
\Delta 2 \pi Q_{L_{s a}}=\Delta 2 \pi I_{s a}-\Delta 2 n L_{a}-\Delta 2 \pi L_{s} \div \Delta 2 \pi \text { 日. }
$$

TEITD-ORDER (INETTY INDEXES):

$$
\begin{aligned}
\Delta \ell \| Q_{\text {Lsae }}= & \Delta 2 n I_{\text {sae }}-\Delta \ln I_{s a}-\Delta 2 n I_{s e}-\Delta \ell n I_{\text {ae }} \\
& +\Delta 2 n I_{s}+\Delta 2 n I_{a}+\Delta 2 n I_{e}-\Delta 2 n H
\end{aligned}
$$

FOURTE-ORDER (FIETEEM INDEES):

$$
\begin{aligned}
& \Delta \ln Q_{\text {Lsaec }}=\Delta 2 n I_{\text {saec }}-\Delta 2 n I_{\text {sae }}-\Delta 2 n I_{\text {sac }}-\Delta l n I_{\text {sec }} \\
& -\Delta 2 n I_{\text {aec }} \div \Delta 2 n I_{s a}+\Delta \ln I_{s e}+\Delta 2 n I_{s c} \\
& +\Delta \ln I_{a e}+\Delta \ln I_{a c}+\Delta \ln I_{e c}-\Delta \ln I_{s} \\
& -\Delta 2 \pi I_{a}-\Delta 2 \pi I_{e}-\Delta 2 \pi I_{c}+\Delta 2 \pi \pi .
\end{aligned}
$$

FIFTH-ORDER (SM INDEXES):

$$
\begin{aligned}
& \Delta \ln Q_{\text {Lsaeco }}=\Delta\left\{\pi I_{\text {saeco }}-\Delta l \pi I_{\text {saec }}-\Delta 2 \pi I_{\text {saeo }}-\Delta 2 \pi I_{\text {saco }}\right. \\
& -\Delta 2 n I_{\text {seco }}-\Delta 2 n I_{\text {aeco }}+\Delta 2 n L_{\text {sae }}+\Delta 2 n I_{\text {sac }} \\
& +\Delta 2 n I_{s a 0}+\Delta 2 n I_{s e c}+\Delta 2 n I_{\text {seo }}+\Delta 2 n I_{\text {sco }} .
\end{aligned}
$$

$$
\begin{aligned}
& +\Delta \ln \mathrm{I}_{\text {aec }}+\Delta \ln \mathrm{I}_{\text {aeo }}+\Delta \operatorname{In} \mathrm{I}_{\text {aco }}+\Delta \ln \mathrm{I}_{\text {eco }} \\
& -\Delta 2 n L_{s a}-\Delta 2 n I_{s e}-\Delta 2 n L_{s e}-\Delta I n L_{s o} \\
& \rightarrow \Delta 2 n \mathrm{~L}_{a \mathrm{e}}-\Delta 2 \pi \mathrm{~L}_{\mathrm{ac}}-\Delta 2 n \mathrm{~L}_{\mathrm{ao}}-\Delta 2 \pi \mathrm{~L}_{\mathrm{ec}} \\
& -\Delta \ell I \mathrm{~L}_{e 0}-\Delta 2 n \mathrm{~L}_{c o}+\Delta 2 \eta \mathrm{~L}_{\mathrm{s}}+\Delta \ln \mathrm{L}_{\mathrm{a}} \\
& +\Delta \ln \mathrm{I}_{e}+\Delta 2 \pi \mathrm{I}_{\mathrm{c}}+\Delta 2 \pi \mathrm{I}_{0}-\Delta 2 \pi \mathrm{H} .
\end{aligned}
$$

SIXIE-ORDER (ONE IMDEX):
$\Delta 2 \pi Q_{\text {saecoi }}=\Delta 2 n L_{\text {saecoi }}-\Delta 2 \pi L_{\text {saeco }}-\Delta 2 n I_{\text {saeci }}-\Delta 2 \pi L_{\text {saeoi }}$

$$
\begin{aligned}
& -\Delta l \square L_{\text {sacoi }}-\Delta 2 n L_{\text {secoi }}-\Delta 2 n L_{\text {aecoi }}+\Delta 2 n L_{\text {saec }} \\
& +\Delta 2 n I_{\text {saeo }}+\Delta 2 n \mathrm{I}_{\text {saei }} \div \Delta 2 n \mathrm{I}_{\text {saco }}+\Delta 2 n \mathrm{~L}_{\text {saci }} \\
& +\Delta \ln \mathrm{L}_{\text {saoi }}+\Delta 2 n \mathrm{~L}_{\text {seco }}+\Delta \ln \mathrm{L}_{\text {seci }}+\Delta 2 n \mathrm{~L}_{\text {seoi }} \\
& +\Delta 2 n L_{s c o i}+\Delta 2 n L_{\text {aeco }}+\Delta 2 n L_{\text {aeci }}+\Delta 2 n L_{\text {aeoi }} \\
& +\Delta 2 n \mathrm{~L}_{\mathrm{acoi}}+\Delta 2 \pi \mathrm{I}_{\text {ecoi }}-\Delta 2 \pi \mathrm{~L}_{\text {sae }}-\Delta 2 n \mathrm{~L}_{\text {sac }} \\
& -\Delta \ln \mathrm{L}_{\text {sao }}-\Delta 2 \mathrm{n} \mathrm{~L}_{\text {sai }}-\Delta 2 \mathrm{n} \mathrm{~L}_{\text {sec }}-\Delta 2 \mathrm{n} \mathrm{I}_{\text {seo }} \\
& -\Delta \& n L_{s e 1}-\Delta 2 n L_{s c o}-\Delta 2 n L_{s c i}-\Delta 2 n L_{\text {soi }} \\
& -\Delta 2 n L_{a e c}-\Delta 2 n L_{a e o}-\Delta 2 n L_{a e i}-\Delta 2 n L_{\text {aco }}
\end{aligned}
$$

Table 10 (Continued)
CONTRIBUTIONS TO THE GROWTH OF LABOR QUALITY
$-\Delta \ln I_{\text {act }}-\Delta \ln I_{a 01}-\Delta \ln I_{\text {eco }}-\Delta \ln L_{\text {ec }}$
$-\Delta \ln I_{e 0 I}-\Delta \ln I_{c o i}+\Delta \ln I_{s a}+\Delta I \pi I_{\text {ae }}$
$+\Delta \ln I_{s c}+\Delta \sin I_{s o}+\Delta 2 I I_{s i}+\Delta \operatorname{Ln}_{\text {I }} I_{a e}$
$+\Delta I I_{a c} I_{a c}+\Delta I I I_{a 0}+\Delta I I I_{a i}+\Delta 2 I I_{e c}$
$+\Delta \ln \mathrm{I}_{\mathrm{eo}}+\Delta \ln \mathrm{I}_{\mathrm{ei}}+\Delta 2 \pi \mathrm{I}_{\mathrm{co}}+\Delta \ln \mathrm{I}_{\mathrm{ci}}$
$+\Delta 2 \pi I_{01}-\Delta 2 \pi I_{s}-\Delta 2 \pi I_{a}-\Delta 2 \pi I_{e}$
$-\Delta \ln I_{c}-\Delta \ln I_{0}-\Delta \ln I_{i}+\Delta \ln$ 日.
growth of the quality of labor input by extension of our definitions of first- and second-order contributions. There are twenty third-order indexes, fifteen fourth-order indexes, sic fifth-order indexes, and one sixth-order index. All are defined in Table 10.

By summing the contributions of all orders corresponding to g given set of characteristics of labor input we obtain the partial index of labor quality corresponding to those characteristics. For example our aggregate index of labor quality presented in column 4 of Table 7 is the partial index of labor quality corresponding to all characteristics of labor input ex sept industry. We can represent this index in the form:

$$
\begin{aligned}
\Delta \ln Q_{L} & =\Delta \ln Q_{L s}+\Delta \ln Q_{L a}+\Delta \ln Q_{L e}+\Delta \ln Q_{L c} \\
& +\Delta \ln Q_{L o}+\Delta \ln Q_{L s a}+\Delta \ln Q_{L s e}+\Delta \ln Q_{L s c} \\
& +\Delta \ln Q_{L s o}+\Delta \ln Q_{L a e}+\Delta \ln Q_{L a c}+\Delta \ln Q_{L a o} \\
& +\Delta \ln Q_{L e c}+\Delta \ln Q_{L e o}+\Delta \ln Q_{L c o}+\Delta \ln Q_{L s a e} \\
& +\Delta \ln Q_{L s a c}+\Delta \ln Q_{\text {gao }}+\Delta \ln Q_{L s e c}+\Delta \ln Q_{L s e o} \\
& +\Delta \ln Q_{L s c o}+\Delta \ln Q_{L a e c}+\Delta \ln Q_{L a e o}+\Delta \ln Q_{L a c o} \\
& +\Delta \ln Q_{\text {Deco }}+\Delta \ln Q_{L s a e c}+\Delta \ln Q_{\text {Lsaeo }}+\Delta \ln Q_{L s a c o} \\
& +\Delta \ln Q_{\text {Lseco }}+\Delta \ln Q_{\text {Laeco }}+\Delta \ln Q_{L s a e c o} \cdot
\end{aligned}
$$

.

This index is the sum of five first-order contributions, ten secondorder contributions, ten third-order contributions, five fourth-order contributions, and one fifth-order contribution to the rate of growth of labor quality. This index incorporates the effects or changes in the composition of aggregate hours worked among all cinaracteristics of labor input except industry.

We apply the formulas of Table 10 to the disaggitgated labor daca described above. The resulting quality indexes for each year in the period 1948-1,973 are presented in the second tinrough last columns in Table ll. The first column of this table reports the quality index reprasenting the total contribution made by all sources. It is formed by summing over all Eirst- and higier-order contributions corresponding to all six characteristics of labor input.

The analysis of variance provides an analogy useful in interprecing the first-and higher-orier contributions of the ciaracteristics of labor input to the rate of growth of lacor quelity. Zach of the ciarasterisinies of hours worked corpessonds to a factor in the analysis of variance. The decomposition of the rate of growth of labor quality by all six cinaracteristics corresponds to a six-way layout in the analysis of variance. The first-order contribution of each of the six characteristics corresponds to the main effect of the factor in the analysis of variance. The second-order contrijution of any tro of the six characteristics

DECEMPIISIIIUN OF L.ABHIH BUALITY

Table 11 （continued）

DERUMPIISIIIIV UF I．AHGH HUALITY

YFAR	SA	st．	S01	Sl	CA	CF．	CII	C．I
194 H	－998	． 987	． 979	． 983	． 994	1.009	1.010	1.038
1949	． 99818	．$\because 14$	．9al	． 9811	－974	1.1109	1.1011	1.1139
1950	.997	－9 A ，	． 918	． 482	－945	1.0018	1.003	1.033
1951	． 997	． 9818	．979	． 9143	－996	1.01011	1.005	1.030
1452	． 907	． 9818	． 984	－4H3	－497	1.0107	1.005	1.024
1453	． 407	． 9189	－9ac	－9133	－997	1.600%	1.1109	1.027
1954	－リリ1	－ 989	－ 9 9， 4	． 9845	－991	1.007	1.0005 1.003 1.001	1.028 1.035
14ら5	－907	． 790	－985	． 968	－9911	1.000 1.000	1.0101 1.1101	1．0．2？
1950	－ 90	－991	－987	.9811 9409	－990	1.105	． 949	1.020
1757	－996	－99？	.989 .991	－901	－999	$1.0 n 5$	－909	1.019
1958	－996	－99\％	－991	－9\％1	－9り9	1.1004	1.000	1.010
1454 1480	－993	.903 .903	－901	－ 403	．999	1.11194	． 994	1．1）14
1460 1961	.994 .990	－979	－9＊	－994	－ 9091	1.0113	．999	1.013
1961 1902	－990	－905	－99\％	－リ94	1.0100	1.003	1.000	1.1112
1906 1963	.990 .996	－9\％6	． 90	－90\％	1.000	1.003	． 999	1.1110
1904	－9\％号	．yun	．990	． 945	1.01010	1．002	1．0110	1.0108
11965	－941	－リ91	－99\％	－996	1.000	1.1012	－999	1.007 1.004
1900	．998	．991	－990	． 490	1.01010	$1.10{ }^{1}$	－999	1.0003
1901	－ 9 y9	． 998	－ 9 （9）	－リタ7	1.0100 1.0191	1.001 1.001	1．10）	1．00？
1400	1.1000	． 2 94，	－9ッ4	－907	1.001	1.001	1.000	1.000 ？
1909	1.11010	．994	1．01010	.997 .994	1.0001 1.001	1.001	．999	1.001
1970	－998	． 998	－904	－ 990	1.0001	1.000	1.001	1.001
19\％	1.0101	－999	－990	1．000	1.1100	1.000	1.0110	1.0000
1412	1.11011	1.6100	1.000	1.0190	1.490	－90）		． 999
1913	1.1010	1．010）	－リバ	－94\％	－979	（1）	1.00	－
n CE era	． 11101	．unas	． 110118	.11006	． 0002	$-.11007$	－． 0001	－．tors

Table 11 (Continmed)

Table 11 (Conthued)
DECGMPISSIILIIG IIF LAMIN: JUAI ITY

YEAH	, SCO	31: 1	SaE	SAUS	S^1	SEI	SE 1	S01
19413	1.0105	1.10111	1.1011	1.003	1.005	1.012	1.001	1.0111
1944	1.1115	1.1011	1.11)1	1.003	1.005	1.012	1.001	1.111 .5
10s0	1.105	1.0113	1.0101	1.11018	1.0105	1.1113	1.0111.	1.1115
1951	1.0011	1.1101	1.1101	1.0011	1.0115	1.1112	1.001	1.1114
1952	1.0114	1.101	1.01010	1.6003	1.0114	1.0112	1.001	1.011
1153	1.0104	1.1101	1.000	1.6003 1.603	1.01114 1.1004	1.011 1.011	1.0nc	1.011
145,1	1.0611	1.0112	1.0110	1.003 1.003	1.01101 1.0111	1.1111	1.008	1.011)
1955	1.10011	1.1011	1.0100 1.0010	1.003 1.003	1.01111 1.0113	1.1110	1.1012	1.1119
1950 1957	$1.111) 3$ 1.10193	1.1001 1.101	1.00011 1.0011	1.0008	1.0113	1.0109	1.1002	1.00 H
1457	1.0103 1.0103	1.001	. .999	1.1117	1.0013	1.0009	1.002	1.000
1958 1929	1.0103 1.1022	$1.001)$. 999	1.00 ?	1.018 .5	1.0008	1.002	1.1006
1960	1.1011	$1.001)$	-994	1.003	1.1103	1.007	1.000	1.100
1961	1.0102	1.0010	-9\%9	1.0117	1.1103	1.006	1.000	1.012
1902	1.001	1.1000	-949	1.007	1.00?	1.10105	1.001	1.00?
1903	1.0101	1.0010	-999	1.0007 1.0103	1.002 1.002	1.1004	1.001	1.001
1904	$1.611)$	- पc9	-999	1.017 1.0101	1.002 1.001	1.0004	1.001	1.002
1965	1.01010	-994	.999 .994	1.001	1.091	1.0103	1.001	1.001
1400	1.1001	.909	-999	1.000 .449	1.11110	1.010	1.0010	1.01010
1401	1.00010	- 299	- 190	. 494	1.11010	1.1112	1.001	1.1101
1904	1.000	-909	.999 .049	. 449	1.000	1.1001	1.001	1.0101
1909	1.0001	-909	-949	1.001	1.000	1.1102	$1.101)$. 999
1470	1.1110	1.0011	.979	1.001 1.0110	1.1000	1.100	1.000	. 909
1971	1.000)	1.01011	1.0010	1.000	1.10110	1.1000	1.000	1.000
1912	1.01711	1.0010	1.0110	1.008	1.010	. .999	.979	1.191
1913	-949	1.0100	1.000	1.0110	1.070	- 99	-979	
averac	-	\cdots	-.00011	-. 01001	-.0002	-.0005	-.0001	-.00115

anhunl rate
OF GHOWTII

DECCMPLISIIIOM IIF LAHOH JUAI. ITY

Table 11 (Continued

DECOMPOSIIIHM OF LAHUR JUALITY

Table 11 (Continued)

83

Table 11 (Concluded)

YEAK	AEOI	Scatil	SCAEI	SCAl!	ScFin	SAETI	CafiJI	St, AEM1
$194 H$	1.0110	1.031	1.001	1.001	. 999	1.051	. 997	.979
1444	1.013	1.001	1.1)11	1.001	. 999	1.048	.997	.991)
1950	1.1008	1.001	1.001	1.001	.949	1.1157	. 997	- 199
1951	1.0018	1.001	-1.1001	1.001	. 999	1.1176	-941	. 499
1452	1.0011	1. 6101	1.1100	1.000	.990	1.0) 1.	-991	. 999
1453	1.01)	1.1111	1.000	1.600	. 999	1.1) HH	.997	.999
194	1.1031s	1.1101	1.11)11	1.001	1.000	1.074	.947	.449
1453	1.007	1.001	1.1100	1.000	1.000	1.013	.447	.949
1456	1.0110	1.001	1.0130	1.600	1.000	1.1173	.497	.994
1457	1. ()い	1.001	1.000	1.000	1.000	1.072	. 998	.994
1450	1.1115	1.1101	1.0001	1.000	1.1000	1.062	. 948	.949
1454	1.1015	1.001	1. 1100	1.000	1.1100	1.1161	.9413	. 999
1460	1.9114	1.001	1.1100	.449	.999	1.071	.99B	.949
1401	1.0104	1.0111	1.1000	1.600	.499	1.054	.948	.999
1962	1.0014	1.001	1.000	1.1100	.999	1.049	. 978	. 990
1903	1.003	1.000	1.1010)	1.1100	1.000	1.053	.849	. 499
1964	1.0113	1.000)	1.000	1.0100	1.1)00)	1.04 H	.999	. 499
1905	1.002	1.110)	1.0100	1.000	1.0110	1.041	. 944	. 409
1906	1.1101	1.001)	1.000	.999	. 9097	1.01019	. 494	1.1100
1967	1.19011	1.1000	1. 1100	1.1100	. 994	1.051	.919	1.1160
1908	1.0011	1.000	1.000	1.000	.999	1.04 H	. 999	. 479
1904	1.0000	1.000	1.0100	1.000	. 909	1.041	. 909	1.1000
1910	1.11111	1.1000	1.0100	1.000	1.00)	1.034	.909	1.11011
1471^{\prime}	1.0011	1.0110	1.000	1.1100	1.1500	1.0.09	1.000	1.0000
1412	1.0011	1.0011	1.01) 0	1.000	1.1100	1.0117	1.000	1.1510
1913	.909	1.000	1.010	1.000	1.000	.990	1.000	1.000
AVEILAGE ANNUAL. 1	-.0003	-. 10001	-. 00000	-. 0001	-1) 0110	-.01)24	. 01301	-1)000

annual. rate
of chowril
8%
corresponds to the interaction effect of the two factors in the analysis of variance. The third-, fourth-, Eizth-, and sixth-order contributions to the rate of growth of labor quality correspond to higherorder interactions in the analysis of variance.

The indexes reported in Tables 9 and 11 imply that the shifting demographic, occupational, and incustrial composition of the lajor Force historically has been a very signíicant source of postwar aconomic growth. The sixch-order partial index of labor input given in the last column of Table 9 increases at an average annual tate of 1.58 percent for the period 1948-1973. This represents the sum of the growth rates of aggregate hours worked and the index of cotal quality change. Eorty-one percert of this growth was due to quality change; the quality index given in the first column of Table 11 increases at .69 percent per year. Hours worked account Eor the remaining Eifty-nine percent, growing at an average annual rate equal to .99 percent. However, if the postwar period is
yertitioned at 1960, we obserre that the importance of quality charge hes declimed in both absolute and relative terms. On average; the total quality iidex izcreased . 86 pereent per year over the $2948-1960$ period and . 51 percent per year between 1960 and 1973. At the same time, the imporォance of compcsitidnal changa jecİシed substantialy relative to
 at an arerage . $\ddagger 0$ jeraent armual rate; quality cinange accounted for
 ingut. Anter 9960, the econcmy experiecced a surge in kouns worixec. The urneightei hours index grows at an averaje rate equal to 1.50 percent; labor quaility is respousible for aporoximately tuenty-fire percent oit the Frowti in the sixte-order partial inder of lebor input. An analysis of the most reeent sub-period, 1969-1973, suggests tiat this deciize in the absolute ard relative importance of quality change continued. rinine unadjusted kours morked increased at a 1.34 percent rate during 19691973, labor input grew at a 1.48 percent ancual rate. The difference is the rate of Frowth in the labor quality index. It increases at an averase annual rate equal to . 14 percent, eccounting for less than ten percent of ingut growth.

The sources of the postwar change in asgregate labor input can be determined from the quality indexes reported in Table 11. Comparing the main effects, only sex and education have smooth persistent trencis over the 1948-1973 period. The former, reflecting the high rete of
entry of women into low paying jobs, has a negative effect averaging -. 17 percent per year; the latter, caused by the increasing proportion of bighly educated laborers, is positive, increasing at an everage annal rate equel to .67 percent. The mein efiscts of employment class, occupation, and industrf are all positive -- . 17 percent, . 39 zercent, and .31 percent per year, respectively -- but peak in the middle of the nineteensixties. The postrar shift of laborers to high-paying occupations and 1ndustzies slows down considerebly by the end of tiee 1960-1966 gerioc. Conseguently, these ciaracteristics aare little erffect on tctal quality chenge after 1966. उetreen 1966-1973, the main etifects of class, occupation, and indusiry are .07 percent, 19 percent, azd . 04 percert, respectively. The main effect of age reverses itself after 9960. The effect is positive througit 1960, averasing . 24 percent per fear; after 1850, tine effect turns nesative, deciining at an average annual rite egual to -.32 percent. Tris rerersal reflects the entry into the employed labor rorce of a lange number of young laborers who were corn imediately following World Nar II. Their low wages and low imputed prociuctivity acceunt for the negative eisecs 0 ane on lebor qualitj.
 their ajoregate eisect is quanticatirely imporiant. The annual average rate of gronth of the sum of the interpctive erfects equal: -. 54 percent over the full 1948-1973 period. Ead these effects not been corsiered, the quality index would have been found to increase at a 1.32 percer.t annuel rate. This compares te .68 percent when $2 l l$ main and irteraction effects are considered. In brief, failing to consiaer interaction effects
nearly doubles the celculated contribution of changing labor quality as a source of economic growth. Relative to the 1.63 percent averase armal rate of growth in labor's total contribution to economic growth, neglectIng interaction effects would upward bias the calculated contribution by thirty-eight percent. To identify the sources of economic growth, the Interaction effections mong demographic, occupationel, and industrial characteristics must be explicitly incorporated in the anelysis.

Haile secord and ¿izier orłer effects are quantiもatively signisĩant their inclusion does not qualitatively affect the interpretation of the source characteristics of econcmic stowth. The sex and age factors are stili the dominant causes of the decline in the gronth of the ouainty index. The interaction effects on age and sex with each other and other Pactors are generally positive and consequently reaune the agazegate negative eřect of -.22 percent tiat would be inferved by sincivy summing the main eifects of sex and age, -.17 percent and -. 05 percent, respectively. The gositive interaction between sex and occupation for example suggests that women are increasingiy entering high-paying occupation groups. Yet, even when ali interaction effects are teken into account, the conclusion remeins that the changing sex-ag= composition of the assuegate employed lajor force has bad a negatire imact on labor input per nour worked. The combined sex-age contribution to the,total quality index is -.18 percent per yeer over 1948-1973. When the full period is. partitioned into the sub-periods 1948-1960, 1960-1973, and 1969-1973, the sex-nge effect is . 144 percent, -76 percent, and -i. 18 percent, respectively. The incrensing entry of women and young workers into jow-payinz fobs increases hours worked proportionately more than it increases labor input.

4. Investment in Education

Our final objective is to present measures of investment in education for the United States for the period 1948-1973. For this purpose we construct a new data base for measuring lifetime labor incomes for all individuals in the U.S. population. Our data base includes demographic accounts in each year for the population of each sex, crossclassified by individual year of age and individual year of highest educazional attainment. Our demographic accounts include data on the number of individuals anrolled in formal schooling and data on births, deaths, and migration. These demographic accounts are based on annual population data from the U.S. Bureau of the Census. We incorporate more detailed data from the decennial censuses of population to obtain estimates of the population cross-classisied by sex, age, and education. To measure iffetime labor incomes for all individuals in the U.S. population we begin with the data base on labor time devoted to market activities descibed in Section 3 above. We derive estimates of hours worked and labor compensation for each sex by sixty-one age groups and eighteen education groups or a total of 2196 groups for each year. We impute wage rates for nonmarket activities from wage rates for employed indivicuals. We allocate the total time available for all individuals in the population among work, schooling, housenold production and letsure, and maintenance. We exclude maintenance through the satisfaction of physiological needs from our accounts for lifetime labor incomes. We assign the value of time spent in household production and leisura to consumption and time spent in schooling to investment.

Our final step in measuring lifetime labor incomes for all individuals in the U.S. population is to project incomes for future years and to discount incomes for all future years back to the present, weighting income by the probaioility of survival. We combine estimates of lifetime labor incomes by sex, age, and education with demographic accounts for the numbers of individuals to obtain estimates of investment in education. We present these estimates in current and constant prices for the period 1948-1973 sor all individuals in the U.S. population. We compare our estimates of the value of leisure and nonmarker activities with those of Nordhaus and Tobin (1972) and our estimats of investment in education with those or Kendrick (1976).

Our estimates of investment in education are based on a system of demographic accounts. Human capital is accumulated through births, immigration, and invescment in education and decumulated through deaths, emigration, and aging. Our demographic accounts distinguist among individuals by sex, individual year of age, and individual year of highese educational attainment. Individuals must also be classified by school enrollment. status and by emplayment status in order to encompass both market anditionmarket activities that generate labor income. Our accounts include annual estimates of mid-year propulation by sex and age for individuals under 75 years of age. We employ population data from the U.S. Bureau of the Census. Using data from the Censuses of Population for $1940,1950,1950$, and 1970 , we have distributed the population of each sex by individual years of age and indivit dual years of educational atrainment for each year in the period 1947-
1973. Our procedure results in astimates of school enrollment by sex and age for each year. Unfortunately, lack of information on deaths and migration, cross-classified by sex, age, and education, has made it impossible for us to reconcile enrollment data with estimates of transitions Erom one grade to the next.

In this section we present the demographic information in our data base in summary form. Table 12 presents population under 75 years of age and population under 75 years of age and population under one yea= of age, classiミied by sex. We can observe an increase in population oz 44 percent over the period. Sex ratios, defined by the number of males per hundred females, are Erequently used in demographic analysis. The usual pattern of sex ratios, exceeding one huadred at the time of birth and monotonically decreasing with age as a consequence of lower female mortality, is consistent with the data in Table 12. The sex ratio for the population as a whole has declined from near parity at 100.0 at the beginning of the period to 97.2 at the end of the period.

Table 13 presents our estimates of students between 5 to 34 years Of age, classified by sex. Enrollments in the period have practically doubled. Enrollment ratios have increased from 40 percent at the beginning of the period to 54 percent at the end of the 1960's. We observe a sex differential in the enrollment ratios of four percentage points in favor of males throughout the feriod. Sex ratios for the population of school age, 5 to 34 years, at the beginning of the period were very close to parity at 100.1 . For students, sex fatios are ten percent above parity due to male selectivity. As a consequerree of a

Table 12
Total Population 0 to 74 Years of Age by Sex, United States, 1947-73 (Thousands)

Toral

Toral	Male	Female
140,713	70,386	70,327
143,063	71,505	71,558
145,460	72,641	72,819
147,742	73,733	74,009
150,150	74,887	75,263
152,639	76,074	76,565
155,103	77,250	77,853
157,778	78,553	79,225
160,466	79,849	80,617
163,251	81,195	82,056
166,122	82,582	83,540
168,845	83,887	84,958
171,576	85,202	86,374
175,051	86,911	88,140
177,872	88,261	89,611
180,559	89,538	91,021
183,075	90,724	92,351
185,518	91,875	93,643
187,741	92,916	94,825
189,798	93,875	95,923
191,722	94,754	96,968
193,525	95,572	97,953
195,299	96,388	98,911
197,278	97,322	99,954
199,237	98,274	100,963
200,857	99,048	101,809
202,288	99,731	102,557

Less Than Ore Yes:

Total	Male	Female
3,452	1,767	1,685
3,169	1,622	1,547
3,169	1,619	1,550
3,146	1,602	1,544
3,297	1,697	1,621
3,411	1,737	1,574
3,526	1,794	1,732
3,648	1,855	1,793
3,755	1,913	1,842
3,835	1,951	1,884
4,009	2,041	1,968
4,048	2,060	1,988
4,072	2,069	2,003
4,094	2,080	2,014
4,173	2,121	2,052
4,084	2,077	2,007
4,013	2,042	1,971
3,947	2,012	1,935
3,770	1,917	1,853
3,553	1,812	1,743
3,450	1,757	1,693
3,366	1,718	1,648
3,412	1,742	1,670
3,503	1,788	1,715
3,579	1,832	1,747
3,261	1,671	1,590
3,081	1,574	1,507

Table 13
Noningtitutional Population and School. Enrollment 5 to 34 Years of Age by Sex, United States, 1947-73 (Thousands)

Year	Total			Male			Female		
	Population	Enrol.1ment	Percent	Population	Enrollinent	Percent	Population	Enrollment	Percent
		27.725	40.41	34, 318	14,683	42.79	34,298	13,042	38.03
1947	68.616 69.443	28,129	40.51	34,731	14,901	12.91	34, 712	13,227	38.11
1948	69.443 70.066	28,129 28,773	41.07	35,022	15,236	43.51	35,044	13,536	38.63
1950	70,629	29,494	41.76	35,304	15,609	44.22	35,325	13, 884	39.31 40.07
1951	71,075	30.141	42.41	35,540	15,902	44.75	35,535 36,252	14,238 14,640	40.07
1952	72,541	30, 884	42.57	36,289	16,243 16,861	44.76	36,792	15,294	41.57
1953	73,682	32,156	43.64	36,890	17,559	46.79	37,365	16,014	42.86
1954	74.893	33, 574	44.83 45.93	37,528 38,104	17,559 18,210	47.79	37,895	16,692	44.05
1955	75,999	34,903	45.93	38, 104	18,210 18,868	48.71	38,480	17,363	45.12
1956	77,217	36,231	46.92	38,737 39,395	19,555	49.64	39,079	18,047	46.18
1957	78.174	37,603	47.92 48.85	39,395 40,108	20,258	50.51	39,736	18,741	47.17
1958	79,844	39,000	48.85 44.73	40,108 40,851	20,258 20,975	51.35	40.422	19,442	48.10
1959	81.273	40.418	$\begin{array}{r}49.73 \\ \hline 50.50\end{array}$	40,851 41.866	21,807	52.09	41,367	20, 226	48.89
1960	83.233	42.033	50.50	41.866	21,807	52.80	42.198	20,925	49.59
1961	84.961	43.502	51.20	42,763 $4,3,744$	22,576 23,357	53.39	43,095	21,628	50.19
1962	86.839	44,985	51.80	$4,3,744$	23,357 24.159	54.02	4,4,032	22,357	50.77
1963	88.756	4,6,516	52.41	4, 4,721	24,963	54.60	44,983	23,073	51.29
1964	90,700	48,037	52.96	45.717	25,681	54.96	4,5,940	23,666	51.52
1965	99,666	49,348	53.25	46.726	25,681	55.13	4,6,978	24, 223	51.56
1965	94, 792	50,582	53.36	4,7,814	26,358	55.13	47,997	24,772	51.61
1967	96.850	51,798	53.18	48,853	21.025	55.49	48, 992	25,293	51.63
1968	93.853	52.963	53.58	49.861	27.669	55.95	49.952	25,727	51.50
198, ${ }^{19}$	100, 8 ¢ 51	53.971	53.54	50.819	28, 21.6	55.55	50,797	26,090	51.36
1970	1ij2,525	54, A53	53.50	51.728	28, 763	55.60 55.21	51,541	26,231	50.89
1971	104,006	55.196	53.07	52,165	28.965		52,203	26,234	50.25
1972	105,330	55.261	52.47	53,127	29,027		52, 2075	26, 29	49.51
1973	106.493	55,107	51.75	53,718	28,978		52,75		

rapid increase in female enrollment, sex ratios have declined. The greatest decrease -- from 211.2 in 1947 to 153.1 in 1973 -- occurred in higher education.

In Table 14 we present the distribution of students by sex and educational level. Entollment in higher education has increased by 244.4 percent in the period as a whole. The number of female students enrolled In higher education has increased by the greatest proportion, 423.6 percent for the period as a whole. As a consequence of a more rapid rate of growth in enrollment in higher education, the share of higher eciucation in total emrollment has increased from 8.3 percent in 1947 to 14.5 percent in 1973. Enrollment in secondary education has also increased more rapidly than total enrollment. The share of secondary enrollment has increased by three percentage points from 24.6 percent in 1947 to 27.6 percent in 1973. The lowest rate of growth in enrollment by educational level took place at the elementary level. As a consequence, the elementary share in enrollment declined by more than nine percentage points from 67.1 percent in 1947 to 58.0 percent in 1973.

Table 15 presents our estimates of the employment status of the economically active population, defined as the number of individuals 14 years of age and over, by sex. We observe an increase of 40.8 percent In the number of rorkers from 1947 to 1973; this increase was slightly higner than the increase of 42.1 percent in the economically active popa ulation. The numiser of male workers has increased by only 25.0 percent. This constrasts with the 39 percent increase in the economically active male population. Enployment rates, based on number of workers divided

Table 14
School Enrollment by Sex and Educational Attainment, United States, 1947-73
(Thousands)

		Male			Female		
Year	Total	E1em.	Second.	College	Elent	Second.	Colleqe
1947	27726	9638	3476	1570	9962	3336	743
1948	28129	9864	3434	1604	9194	3287	746
1949	28773	10199	3406	1632	9528	3256	752
1950	29495	10581	3379	1650	9884	3244	756
1951	30141	10854	3444	1604	10157	3322	759
1952	30884	111.43	3535	1565	10448	3425	788
1953	32150	11681	3634	1546	10976	3529	
1954	33574	12272	3744	1543	11551	3646	817
1955	34903	12783	3878	1549	12052	3788	852
1956	36231	13234	4056	1578	12490	3974	890
1957	37603	13620	4313	1622	12857	4240	1008
1958	39000	14006	4573	1680	13244	4673	1080
1959	40418	14441	4775	1760	1369	4815	1178
1960	42034	14981	4942	1884	14234	5117	1307
1961	43502	15295	5235	2046	14501	5469	1429
1962	44986	15545	5597	2215	14731	5459	1540
1963	46516	15829	5952	2378	15010	5807	1654
1964	48037	16134	6281	2548	15309	6110	1654
1965	49348	16398	6456	2828	15564	5238	2083
1966	50582	16624	6591	3144	15784	6356	2981
1967	51798	16820	6749	3456	15972	6510	2497
1968	52964	16956	6942	3772	16099	6698	2595
1969	53972	17014	7141	4090	15150	6381	2914
1970	54854	17001	7325	4437	16124	7209	2989
1971	55196	16918	7487	4561	16033	7209	3067
1972	55262	16700	7635	4693	15818	7347	3147
1973	55108	16411	7748	4819	15531	边51	3147

Table 15
Employment Status of the Population 14 Yeara of Age and Over
by Sex, Unjted States, 1947-73 (Thousands)

		Male			Female		$!$	Total	
Year	Economically Active Population	$\begin{aligned} & \text { Employ- } \\ & \text { ment } \end{aligned}$	Percentage Employment Rate	Economically Active Population	$\begin{aligned} & \text { Employ- } \\ & \text { ment } \end{aligned}$	Percentnge Employment Rate	Economi- cally Active Population	Employment	Percentage Employment Rate
1947	52810	43341	82.07	53376	17408	32.61	106187	60749	57.21
1948	53224	43660	82.03 ,	53933	17681	32.78	107158	61341	57.24
1949	53682	42152	78.52	54539	17660	32.38	108222	59812	55.27
1950	54047	43261	80.04	55041	18074	32.84	109089	61336	56.23
1951	51140	444887	81.72	55567	19459	35.02	110008	63946	58.13
1952	54.874	14.758	81.56	56142	19935	35.51	111017	64693	58.27
1953	55240	45634	82.55	56682	200.31	35.31	111963	65665	58.65
1954	55776	44272	79.37	57272	19919	34.78	113049	64191	56.78
1955	56291	449?0	70.80	57909	20960	36.20	114201	54880	57.69
1956	56918	45642	80.19	58643	21043	37.25	115562	67486	58.40
1957	57688	45538	78.94	59519	22151	37.22	117208	67692	57.75
1958	58311	44051	75.54	60264	22061	36.61	118576	66113	55.76
1959	58925	45150	76.62	60984	22683	37.20	119910	67834	56.57
1960	59808	45278	75.70	61933	23256	37.55	121742	68535	56.30
1961	60938	45030	73.90	63194	23601	37.35	124133	68631	55.29
1962	61892	45811	74.02	64299	24113	37.50	126192	69924	55.41
1963	62791	46022	73.29	65364	24611	37.65	128156	70633	55.11
1964	63682	46810	73.51	66425	25323	38.12	130108	72133	55.44
1965	64633	48035	74.32	67531	26425	39.13	132165	74460	56.34
1966	65630	49454	75.35	68674	28062	40.86	134305	77516	57.72
1967	66656	50010	75.03	69872	28922	41.39	136529	78933	57.81
1968	67707	50852	75.11	71098	30012	42.21	138806	80865	58.26
1969	68772	51711	75.19	72314	31319	43.31	141087	83031	58.85
1970	69911	51611	73.83	73579	314.33	42.72	143491	83046	57.88
1971	71113	51540	72.48	74839	31799	42.49	145953	83340	57.10
1972	72310	$526 \% 0$	72.81	76106	33105	43.50	148417	85776	. 57.79
1973	71508	54613	74.30	77349	34.564	1.4 .69	150858	89178	59.11

by the economically active population, have no clear trend at the aggregate level. When the sexes are viewed separately, however, clear trends emerge. Over the period 1947 to $197 \vdots$ there has been a gradual decline in male employment rates and a marked increase in female employment rates of eight percentage points. As a consequence of the increase on female employment rates, the sex ratio for employed workers has declined from 249.0 in 1947 to 158.0 in 1973.

Table lo gives the rate of growth of total population, school enrollment, school age population, eaployment, and economically active population by educational attainment and sex. Growth races are given for the period 1948-i973 and for subperiods corresponding to individual business cycles during the postwar period. Rates of growth of female school enrollment were systematically higher than the corresponding zates of growth of male school emrollment. Female employment also grew more rapidly tham male employment. The table provides a contrast between the behavior of the school age population and school enroliment. Similarly, the table provides a centrast between the behavior of the economically active population and that of employment. Much less variation is found in rates of growth of the school age population than in school enrollment and less variation is found in rates of growth o the economisally active population than in employment.

Table 16
Total Population, School Enrollment, School Age Population, Employment, and Economically Active Population by Sex and Level of Educational Attainment -- Rates of Growth, 1948-1973.

	$\begin{aligned} & 1948 \\ & 1973 \\ & \hline \end{aligned}$	$\begin{aligned} & 1948 \\ & 1943 \\ & \hline \end{aligned}$	$\begin{aligned} & 1953 \\ & 1957 \\ & \hline \end{aligned}$	$\begin{aligned} & 1057 \\ & 10 r 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1960 \\ & 1996 \\ & \hline \end{aligned}$	$\begin{aligned} & 1960 \\ & 1960 \\ & \hline \end{aligned}$	$\begin{aligned} & 1969 \\ & 1075 \end{aligned}$
Elementary							
Male							
Population	. 07	1.01	1.09	. 73	-. 38	-1.55	-.08
Enrollment	2.06	3.44	3.91	3.23	1.75	. 78	-. 90
School Age	. 93	1.33	1.89	1.73	1.08	.15	-. 77
Employment	-3.33	-0.85	-3. 25	-3. 1.9	-4.0.6	-3.69	-5.23
Econ. Active	-1.30	-1.14	. .92	-1.65	-1.78	--2.71	. 19
Female							
Population	. 18	1.15	1.22	. 87	-. 20	-1.40	-.nn
Enrolluent	2.12	3.61	4.03	3.45	1.74	. 77	-. 97
School Age	1.02	1.37	1.96	1.RC	1.21	. 37	-.74
Employmert	-1. 50	0.78 -1.00	0.12 .30	-0.72 -1.56	-2.30 -1.51	$=1.809$	-5.07
Econ. Active	-1.12	-1.00	-. 30	-1.56	-1.51	-2.43	
Secondary							
Male							
Population	2.144	2.10	2.30	2. 84	2.89	2.55	1.90
Enrollment	3.31	1.14	4.38	4.61	4.92	2.70	2.92
School Age	2.10	. 02	1.00	2.23	3.06	2.84	2.92
Employment	1. 98	1.75	1.70	0.34	3.47	1.93	1.56
Econ. Active	2.45	2.10	2.30	2.83	2.89	2.55	1.90
Female							
Population	2.50	2.37	2.34	3.78	2.85	2.00	1.9.2
Enrollment	3.33	1.43	4.00	4.32	4.74	2.63	2.1)1
School Age	1.86	. 91	. 9.9	1.71	2.46	?.4?	2.72
Employment	3.49	3.32	3.611	1.09	4.94	4.33	2.54
Econ. Active	2.51	2.39	2.44	2.78	2.86	2.61	1.93
College							
Male							
Population	3.72	3.31	3.24	3.71	4.36	5.10	2.02
Enrollment	+. 50	-. 73	1.20	5.12	4.91	0.17	4.17
School Age	4.00	2.03	?. 35	3.10	5.97	7.10	4.17
Enployment	4.04	3.48	2.69	4.06	4.08	5.15	5.18
Econ. Active	3.72	3.71	3.24	3.71	4.30	5.19	2.00
Female							
Population	3.30	2.52	2.5\%	3.30	4.25	5. 3.1	2.71
Enrollment	5.93	1.17	4.77	7.42	0.97	.8.07	3.75
School Age	3.98	1.20	1.57	3.05	5.10	7.00	4.32
Employment	4.70	3.21	3.09	6.89	3.85	6.27	6.63
Econ. Active	3.39	?. 52	2.50	3.30	4.20	5.21	2.71

In Section 3 we have described a data base that includes the number of employed persons for the United States on an annual basis, crossclassified by sex, employment class, age, education, occupation and industry. We have aggregated over employment class, occupation, and industry, and distributed the work Eorce of each sex by individual years of age from 14 to 74 and by individual years of educational attainment from one to 18. The data base described in Section 3 also includes data on hours worked and lajor compensation on the same basis as data on employed persons. We have derived annual estimates of hours worked and labor compensation required for measuring incomes from market labor activieies by summing over employment class, occupation, and industry, as before. We obtain average houriy labor compensation for individusis classi⿰ied by the two sexes, sixty-one age groups, and eight education groups for a total of 2195 groups by dividing market labor compensation by hours worked for each group.

Labor input in constant prices is based on data on annual hours worked and lajor compensation per hour, cress-classified by sex, age and education. To construct an index of lajor input, we assume that labor input can be expressed as a translog function of its 2196 cowoonents. The corresponding index of labor input is a translog quantizy Index of individual labor inputs wnere weights are given by average Ehares of each component in the value of labor outlay. Table 17 presents our estimates of the value of market labor activities in current prices, cross-classified by sex and educational attainment, for the U.S. economy from 1947 to 1973. Table 18 presents the corresponding estimates in constant prices of 1972.

Table 17
Value of Market Labor Activitiea by Sex and Educational Attainment，1947－1973 （Hilllons of Current Dollars）

Year	Total	Male			Female		
		Elementary	Secondary	College	Elementary	Secondary	College
1917	169.3	51.3	5月．8	29．6	7．${ }^{\text {H }}$	15．8	h． 0
1448	178.1	53.6	61．9	31.4	8.3	10.6	t． 5
1944	177.5	52.1	61.0	37.2	8.4	16.9	6.4
1450	191.0	54.4	64． 18	35.6	8.9	1H．？	H．？
1951	215.5	61：1	14.5	40.5	10.1	20.9	8.6
1032	230.2	02． 2	H0． 5	44.9	10.3	22.8	9.5
1453	240.1	04.1	87． 4	49.6	10.7	34.3	10.0
1454	2．4． 3	01.2	17.7	51.2	10.3	25.0	10.5
1955	263．5	b？． H	45.1	55.4	11.7	27.4	11.6
1950	284.9	65.6	103.0	60.4	11.9	30.5	12.5
1957	299．2	65.6	110.1	65.2	12.1	32.7	13.6
1451	301.11	03． 1	110.5	68.4	12.0	33.9	14.6
1054	324.7	64.6	130.6	74.5	13．月	36.4	15.7
1001	339.9	66.5	176.9	H14．0	12.1	33.4	17.7
1401	34 H .8	61.0	1 PA．1	A ${ }^{\text {．}} 3$	12.5	39.4	19.5
1402	370.3	59.11	13 A． 5	97．${ }^{\text {H }}$	12.0	4.2 .2	21.1
1905	387．4	60．8	$11^{\text {b }}$ ． 9	90.9	12.6	45.8	21.5
1904	413.0	b）． 1	159.11	10R．1	12.7	119.8	23.5
1405	443.1	n2． 3	112.11	115.3	12.9	54.8	25.3
1900	484.7	011.0	184.9	12 月．13	13.4	61.0	PH．h
1467	$51 \% .0$	64．8	174．${ }^{\text {\％}}$	143.6	14.0	6h． 0	31.6
190\％	56.9 .4	66.5	819.0	1129.3	14.5	73.7	36.4
1909	626.7	69.0	239．5	178：5	15.1	84.2	40.5
1970	hur． 1	73.6	251．5	105．4	15.7	A5．A	45.4
1471	714.8	6H．to	Ph7．8	215.3	15.10	95.6	5？．n
$14 / 2$	783.1	69．7	¢！1．4	230.7	15.1	108.0	59．
1473	8ちゃ． 1	70.6	321.1	269.9	15.4	120.0	6H．${ }^{\text {d }}$

Table 18
Value of Market Labor Activities by Sex and Educational Attainment，1947－1973 （Blllions of Constant Dollarg）

1941	556.9	163.9	195．A	107.5	24.1	49.4	21.3
1948	561.1	162.6	197.1	104.9	24.5	50.0	22.0
1949	543.3	154.7	188．7	103.5	24.3	49.5	22.6
1950	564.5	101．6	195.0	109.3	24.2	51.1	25.4
1951	586.3	1t1．h	204.1	113.4	26． 3	$55_{1 .} 7$	－ 24.8
1952	598.8	157．${ }^{15}$	$211 . ?$	120.4	25.3	5月．1	25．9
1453	009.4	154.9	218.0	125．H	2500	59.5	26．1
1454	594.6	145.4	213.3	12h．1	23．4	59.7	？h．？
1955	b10．H	134.1	2？ 1.4	129.0	25.1	63.5	27．6
1930	021.4	140.6	P27．0	133.1	25.4	6h． 9	2H． 4
1451	b19．7	133.3	227．9	136.2	24.7	th． 4	29． 7
145H	605.1	122.9	271.5	138.3	23.9	68． 7	29.9
1939	b23．9	123.3	230.11	148.9	24.6	71.4	30.9
1900	041.0	126．0	237.8	157．0	22．4	b4．b	33.1
1401	636.2	110.2	232． 7	16．1．0	22.7	72.7	36.8
1902	65%	104.11	244.5	171.4	21.3	76．0	39.4
1463	uc， 3.2	102．8	244．h	177．0	21．${ }^{\text {1 }}$	79.0	38.3
1404	077.9	97.1	259.1	177.9	20.8	82． 7	39.9
19も5	699.4	4h． 3	26H．9	184．7	20.11	A 7.3	41.9
1900	721.1	94.3	27H．8	197．3	19.5	9）．2	44.5
1907	732.6	90.5	279.3	203.0	19.5	94.2	46.1
196ね	$7 山$ ¢． 9	116．3	285．1	200.9	18.5	$9 \% .6$	44.4
．1964	7ヶら．2	H2． 9	290.6	219.0	17.9	103.7	51.1
1470	765.6	Hal 1	－49．H	2711.3	17.7	9R． 0	52.8
1971	703.1	72． H	245．7	230.0	15.7	102．6	56.4
1972	7H3．1	69.7	291．9	239.7	15．1	10A． 0	59.7
1473	H15．2	65．2？	303．4	24t． 5	14.3	112.2	64．6

The value of market labor compensation in current prices has increased by 411.6 percent over the postwar period. The proportional iacreases were greatest for college trained workers -- 811.8 percent for males and 1046.7 percent for females. By contrast compensation for workers with only elementary education has increased by 37.9 percent for males and 97.4 percent for females. Compensation for workers with secondary education has increased by 446.6 peraent for meles and 659.5 percent for females. For all levels of educational attainment the proportional increase for females has exceeded that for males. The corresponding patterns for market labor compensation in constant prices are very similar. Labor compensation in constant prices represents a quantity index of labor input. The quantizy of labor input for the economy as a wiole has increased by 46.4 percent over the postwar period. The quantity of labor input for workers with only elementary eiucation has fallen 60.2 percent for males and 40.7 percent for females. By contrast the quantity of labur input for college trained workers has increased by 150.2 percent for males and 203.3 percent for females. The corresponding increases for workers with secondary education were 34.4 percent for males and 127.1 percent for females.

We next analyze the sources of growth in labor input in more detail. For each of the 2196 components of the labor force incorporated into our data base, labor input is the product of the the number of persons employed and annual hours worked per person. We present,estimates of the number of persons employed, Eross-classified by sex and educational attainment, in Table 19. We present the corresponding estimates of annual hours worked per person, also cross-classified by sex and educational

Table 19
Employment by Sex and Educational Attainment, 1947-73
(Thousands)

Year	Total	Male			Female		
		Elementary	Secondary	College	Elementary	Secondary	College
1947	60749	19747	$1772 H$	5 H6t	5769	9039	2601
1448	61342	19687	17935	6038	58711	4124	2679
1449	59812	119911	17254	5991	5 A5H	9044	2759
1950	61336	19531	17133	6295	5777	9217	3081
1951	63946	19556	18442	6489	62913	10147	3.015
1252	64694	19046	18489	$6 \mathrm{HC3}$	6109	10620	3.147
1953	65666	18866	19543	$71 H 6$	6114	10773	3.146
1954	64192	$17 \mathrm{BL4}$	19233	7225	SAhA	10857	3.195
1955	65881	17549	19456	7415	6157	11460	3.344
1450	67486	17218	$20 b 67$	772 H	6.289	12115	3440
1451	67692	10.501	20469	B005	b. 145	12448	3561
1958	66113	15344	21470	8137	5919	12475	3637
1930	67834	15293	2.1353	8550	6032	12940	3711
1960	68535	15011 H	21147	9044	6013	12865	4.374
1401	68632	$137 \mathrm{H4}$	21624	9623	5764	13384	4454
1906	69924	13 c. 54	22531	10226	5479	13913	4722
1903	70633	12774	23047	10201	5514	14493	4609
1904	72133	12104	24056	10590	5356	15179	4789
1965	74460	12014	$2500 ?$	10960	5273	16074	507 A
1960	77516	11701	26106	115511	5235	17311	5517
1967	78933	11393	26262	12356	5231	17833	5855
1004	80865	10455	27005	12803	5096	18515	6372
19.04	83031	10554	27065	13493	4946	19714	6659
1970	83046	$105 \mathrm{H3}$	37113	13917	18116	19364	7224
1971	83340	9443	271144	14613	4403	19831	7520
1472	85776	c) 071	261411	15452	4252	20914	7939
1973	89178	9 לha	29414	16605	403 H	2.11144	8683
				103	-		

attainment, in Table 20. Finally, we define the quality of hours worked as the ratio of the translog index of labor input from Tabie 18 to the number of hours worked by the corresponding coaponent of the work ミorce. Labor input then becomes the product of the number of persons employed, annual hours worked per person, and the quality of hours worked. We present indexes of labor quality by sex and educational attainment in Table 21. Employment declines for both male and female workers with elementary education, increases substantially for workers with secondary education, and increases very rapidly for college rrained workers. By contrast hours worked per person decline: for workers of both sexes at all three levels of ecucational attainment. Changes in. the qualizy of hours worked within each category are relatively small.

Finally, we analyze changes in the structure of labor input Eor the 0.S. economy over the period 1947-1973. For this purpose we presant growth rates of the value of market labor activities in current and constant prices. The quantity of labor input per worker, and the price of labor input for the period as a whole and for six subperiods in Tajle 22. The annual growth rates for market labor compensation in current and constant prices for the postwar period as a whole reflect the trends we have already analyzed in Tables 17 and 18. For both males and females the price of labor input increases most rapidly for college trained workers, next most rapidly for workers with secondary education, and least rapidiy for workers with elementary education. The pacterns are positively correlated with the growth of labor input within these categories -- higher rates of price increase are associaced with hagher rates of growth of labor input.

Annual Hours per Person by Sex and Educational Attalnment, 1947-73

Year	Total	Male			Pemale		
		Elementary	Secondary	College	Elementary	Secondary	College
				3193	1 H29	1A\|4	$1{ }^{1} 95$
1947	2055	2134	2143	2183 2184	1 H23	1 Al 3	1 AYC
19118	2048	2135	2135	2184	1809	1799	1473
1949	2026	2103	2113	2161 2157	1 H 12	1799 1801	1859
1450	2028	2106	P 1117 3	2157 2158	1805	1801 1797	1 Rta
1051	2027	2111	? 119	2168	1 1780	1797	1 ¢a?
1952	2016	? 1116	2112	2149 3130	17811	1777 1790	1 has
1.933	2005	20月6	2109	2130	17011	1790	1 R23
14311	1983	2065	3004	2108	1777	1773	1430
;065	1988	20%	? 071	? 113	1788	1784	1 AP?
1956	1973	2047	? 0 ¢ 2	2. 007	1781	1779	1 HIIH
1957	1947	3080	2026	2071	1750	1760	$1 \mathrm{HO4}$
1954	1932	2001	? 010	20ヶ5	1768	1766	1 H12
1954	1938	3005	3014	2 214%	1618	1595	16 HI
1960	1928	26 6, 3	2076	214%	172	1731	1770
1901	1915	1945	1994	20111 2050	1705	172 H	1771
1402	1915	1093	20115	2050 2014	1703	1773	1760
1903	1913	1495	2009 1090	2043 2043	1692	1719	1765
1904	1905	1080	1799	2045	1 ¢H1	1718	1742
1965	1904	1985	2001 1090	2035	1639	1 ¢R4	1730
1960	1884	1971	1990 1971	203\%	1618	1673	1715
1967	1868	1962	1971	200t	1603	1 bt?	1705
19 nH	1854	1949	1957	2004 2005	1603	1659	1694
1.964	1849	1449	1953	2019 2019	15 HL	1574	1633
1970	1824	1453	1917	1974	1567	1623	1 the
1971	1819	1915	1977 192	19 Ml	1559	1.625	1 1thb
1917	1820	1901	1932	19112	15115	1621	1 th3
1973	1817	1 AOH	1931	1 गme	1 ¢15	1 bil	

Quality of Labor Input by Sex and Educational Attainment, 1947-73
(1972 = 1.000)

Year	Total	Male		
		Elementary	Secondary	College
1447	0.894	-961	9h?	
1948	0.895	-964	-9hr	1.017
19.14	0.898	. 965	- 96t	1.016
1950	0.909	-974,	- 97	1.0,0)
1951	0.906	. 971	-976	1.078
1932	0.919	976	-94\%	1.033
1953	0.926	. 977	-948	1.044
1434	0.934	. 9 HO	1.001	1.058
1955	0.933	. 943	1.000	1.058
1950	0.933	. 983	. 999	1.049
1957	0.939	-9月t	1.001	1.049
1938	0.946	-944	1.005	1.050
1959	0.948	. 497	1.002	1.043
1960	0.969	1.007	1.009	1.077
1401	0.967	. 904	1.005	1.045
1902	0.980	. 995	1.010	1.0115
1463	0.980	1.000	1.007	1.051
1904	0.985	1.003	$1.0 n \mathrm{~h}$	1.051
1905	0.985	1.007	1.000	1.05 ?
1966	0.986	1.001	1.001	1.045
1967	0.991	1.00s	1.007	1. 03 H
1968	0.99\%4	1.010	1.0177	1.1137
1964	0.994	1.000	1.004	1.035
1970.	1.008	1.009	$1.0 ? 1$	1.11 ? 0
1971	1.004	. 999	1.007	1.01 H
$191 ?$	1.000	1.000	1.1100	1.000
1913	1.003	. 896	. 993	. 9045

Female

Elementary	Secondary	College
1.005	. 914 A	. 965
1.005	. 95.7	.971
1.007	. 948	.979
1.015	. 9 hb	. 989
1.012	- 0 a 3	. 985
1.009	.909	. 998
1.004	$.971^{\circ}$	1.003
1.004	$.97 \%$	1.00 h
1.003	. 978	1.009
. 998	. 977	1.010
1.004	. 980	1.013
1.007	. 984	$1: 017$
1.013	. 984	1.026
1.013	. 991	1.006
1.005	. 446	1.044
1.002	. 995	1.052
1.010	. 997	1.050
1.009	. 947	.1.054
1.011	. 995	1.053
1.000	. 995	1.047
1.1114	.993	1.0135
. 947	. 997	1.017
. 991	. 998	1.009
1.014	1.017	. 999
.993	1.003	1.004
1.000	1.1)00	1.000
1.005	.99H	. 999

Table 22
Value of Market Labor Activicies by Educational Attainment and Sex，Rates of Growch，1948－1973

1948	1948	1953	1957	1960	1906	1969
1973	1953	1957	1960	1960	1969	1973

ELEM

MALE

MALE VALUE（CUQRENT）			.60	． 43	－． 63	2． 54	$\begin{array}{r}.57 \\ \hline .57\end{array}$
VALUE（CURRENT）	1．12	3.69	－308	－ 1.87	－4．71	－14．20	－5．83
VALUE（COVSTA．VT）	－3．59	－．90	－3．08	-1.87 1.32	－． 76	－． 59	－． 77
PER CAP．（COVSTANT）	－． 32	－． 11	－． 50	1.32 7.35	4.28	7.03	0.90
PEICE ITDEX	4.84	4.69	．4．44	7．35	4.28	7.03	0.90
FEMALE			3.02	． 21	1.61	4.14	．42
VALUE（CURPEMT）	2.47	5.15	3.0 ？	－3．15	－2．29	－2．90	－ラ． 0
Value（Constant）	－2．14	． 44	－ 30	－7．1．	-2.29 -.00	－1．04	－．53
PE゙K CAP．（EONSTANT）	－． 60	－． 35	－．49	－7．44	3.99	7.25	6.27
$\begin{gathered} \text { PRICE INDEX } \\ \text { SECOND } \end{gathered}$	4.72	4.68	3.40	3.46	3.99	7．25	6.27
MALE				4.76	6.90	9.24	7.62
VALUE（CURCEVT）	6.91	7.16	5.92	1．4． 2	2.69	1.39	1.00
VALUE（COASTAリT）	1.73	2.04	1.11	1.47	－． 82	－． 55	－． 50
PER CAP．（CIINSTANT）	－． 27	－ 20	－． 50	1.07	－． 82	6.76	6.50
PHICE INDEX	5.00	5.02					
FEMALE				． 77	10.55	11.33	9.27
VALUE（CURRENT）	3.24	7.04	7．58	－1．86	10．5	1．01	1.90
VALUE（CMNSTA．1T）	3.29	3.52	3．50	－1．86	－． 87	－． 40	－．39
PEF．CAF．（COA，STAIT）	－． 26	14	－． 12	P．94	0	7.04	7.14
PKICE I＇UUEX COLLEG	4.80	4.2	3	？	4	7．04	
MALE				． 1	7.37°	11．48	10.90
VALUE（CUPRENT）	8.98	9.54		－	3．44	4.42	4.03
VALUE（COMSTAVT）	3 0 04	3.70	2．00	． 67	－． 70	－\＆ 3	－1．25
PER CAP．（CJNSTAMT）	－． 47	． 15	－．7c	3．81	3.30	6.70	6．61）
PHICE IVDEX	5.15	$5 \cdot 63$	4.9	3.	コ．ご		
FEMALE					8.81	12． 25	14．15
VALUE（CIJRRENT）	9.93	9.15			5.04	4.72	－． 01
VALUE（CUNSTANT）	4.40	3.42	9	－ $2 \cdot 5$	1．48	-1.95	－． 70
PEP，CAP．（CO：ISTAINT）	－．40	． 15	－． 35	－	3.54	7．20	7.70
PRICE IMOEX	5.30	5.54	4.98	\％	3.59		

In Figure 1 we present age-earnings profiles for different periods to fllustrate the character of the data base employed in the estimation of labor input in constant prices. These profiles also indicate porential applications of our data on labor input in other areas of research. We have derived average per capita earaings Erom market labor activities by single years of age, aggregating labor compensation over sax and education and dividing by population. We have then normalized all ageeamings profiles to age 44 winere labor compensption per person is highest. Figure 1 presents age-earnings per capita for selected years - 1947, 1956, 1965, 1973. The profiles are very similar from ages 14 through 55, but after age 55 we nore a decrease in participation in the labor market by these age groups.

Figure 1
Relative Earninge by Age
Selected Years, United Statea, 1947-73

115

We have now completed the presentation of the utilization of human resources in the labor market. Our next objective is to evaluate the time spent on nonmarket activities, considering both consumption and investment activities. The importance of the valuation of nonmarket activities is widely recognized. Nordhaus and Tobin (1972) have incorporated nonmarket activities into their measure of economic welfare. Kendrick (1976) and Eisner (1978) have extended the national income and product accounts by imputing value to time spent outside the labor market. ${ }^{14}$ UnEortunarely, there is no clear agreement on whar types of activities should be included or on methods appropriate for valuaticn of nonmarket activities.

To account for nonmarket labor activities in a complete accounting system, we consider only contributions to final product and deduct all uses of time that are instrumental to the production of goods. Six types of nonmarket activitios are commonly distinguished in studies of time allocation -- production of goods and services within the household unit, volunteer work outside the household unit, commuting to work, formal education, lel.sure, and the satisfaction of physiologičal needs such as earing and sleeping. ${ }^{15}$ We classify time spent satisiying physiological needs as maintenance and exclude this time from our measure of time spent in nonmarket activi=ies. We assume that the time avaiiable for all market and nonmarket activities has been constant over time and is equal to fourteen hours per day for all individuals.

We allocate the annual time available for all Individuals in the population among work, sciooling, household production and leisure, and maintenance. Our system of demographic accounts includes the enrollment status for individuals of each sexi between five and 34 years of age. We estimate the time spent in formal schooling for all individuals by assigning 1300 hours per year to each person enrolled in school. ${ }^{16}$ We allocate time spent in schooling to investment. Similarly, our demographic accounts inciude employment status for individuals of each sax between 14 and 74 years of age. Hours worked for all employed individuals, classified by sex, age, and education, are included in our data base for market labor activities. We allocate time that is not spent working or in fomal schooling directly to consumption. For aif indiViduals this time is equal to the difierence between fourteen hours per day and time spent iorking or in school.

The final step in the measurement of lifetime labor incomes is to impute the value of labor compensation for nonmarket activitias. ${ }^{17}$ for this purpose we first obtain average hourly lahor compensation for all employed persons, cross-classified by sex, age, and education, from our data base for market labor activities. Second. we estimata marginal tax rates for all employed persons, again cross-classified by sex, age, and education. ${ }^{18}$ We multiply compensation per hour by one minus the marginal tax rate to obtain imputed hourly labor compensation for nonmarket activities other than formal schooling. Since individuals under. fourteen years of age do not participata in the labor force, cheir
imputed hourly labor compensation is set equal to zero. Individuals over seventy-four'years of age are also assigned zero as their hourly labor compensation.

We multiply compensation per hour by one minus the marginal tax rate to obtain the value of compensation per hour for nonmarket activities. Hours used in nonmarket activities are obtained by subtracting hours spent on the mariket and hours spent'in formal education from the total time available. Table 23 presents our ëstimates of the value of leisure and nonmazket labor activities other than formal education in current prices, cross-classified by sex and efucational attainment, for the U.S. economy from 1947 to 1973. Table 24 presents the corresponding estimates in constant prices of 1972.

The value of nonmarket activities in current prices has incraased of 421.2 percent over the postwar period by comparison with the 411.6 percent increase in the value of market labor activities. Similarly, the value of nonmarket activities in constan= prices, a quantity index of labor time devoted to these activities in constant prices, has increased by 50.9 percent by comparison with an increase in the quantijiy of market labor activities of 46.4 percent. Proportional increases in the value of nonmarket labor activities in both current and constant prices were largest for workers with college education, next larges for those with secondary education, and smallest for those wits elementary education. This pattern coincides with that for increases In the value of market labor activities. By contrast proportional Increases for the value of nonmarket labor activities were largest for male sorkers, the reverse of the pattern for market labor activisies,

Value of Nonmarket Labor Activities by Sex and Educational Attainment (Billions of Current Dollars)

Male

Year	Total	Elementary	Secondary	College
1947	371.8	B2a 5	73.7	33.2
19158	405.7	$4 \mathrm{H}$.	42.2	3A. 5
1949	429.5	91.5	84.3	117.8
1950	446.2	90.1	45.0	45.4
1931.	407.7	45.5	49.6	49.1
1932	"Нサ. 1	07.2	104.7	53-3
1453	S18.9	101.3	113.0	57.3
1954	555.2	105. 8	124.0	63. ${ }^{\text {c }}$
1935	540.2	$10 \mathrm{H.l}$	131.9	69.0
1956	bal.e	114.7	143.9	75.4
1451	tins. 5	121.3	157.2	${ }^{4} 3.0$
1938	704.1	124.7	1 1\%9.3	90.1
1454	733.9	127. ${ }^{\text {A }}$	179.9	96.4
1900	762.2	124.6	145.6	101.1
1901	809.4	130.2	200.3	113.3
190\%	अ44.2	131.3	311.2	121.0
1903	4146.6	132.3	233.5	12R.A
1904	956.4	130.9	245.4	147.9
1405	1016.0	139.2	261.9	153.5
1906	1096.3	144.4	3 H1. 1	171.4
1967	1171.2	147.8	3113.2	1117
1408	1269.7	151.0	331.0	207.1
1904	1379.5	145.7	360.3	230.1
1970	1340.8	160.1	1103.7	? 66.6
1971	1711.0	$1 H 1.5$	$153 . ?$	297.4
1972	11114.2	1 1H4.5	4185.3	315.6
1973	1900.0	211.3	ヶ1\%.?	$33 \mathrm{h}$.

Female

Elementary	Secondary	College
69.8	H5. 5	27.1
73.7	93.4	10.0
73.8	99.5	37.6
76.1	10.5 .0	$34 . \mathrm{H}$
7h.0	110.3	37.1
78.?	116.3	39.4
H1. 1	124.1	4 ¢ .1
H1.9	133.5	46.3
81.9	139.6	49.1
84.1	150.1	52.7
B6. 1	161.0	51.3
87. ?	171.8	61.8
85.3	17A.A	65.8
90.8	189.7	70.5
H9. 3	201.6	74.7
A9. 8	211.7	79.1
90.5	236.4	85.1
95. 7	243.6	93.9
98.3	26P. 9	100.4
104.3	2A3.0	111.9
102.9	306.1	124.0
112.1	332.5	136.0
119.1	302.3	152.1
120.H	410.3	179.?
135.1	447.3	195.4
136.5	441.3	P11.0
114.4	518.3	P36.4

Value of Nonnarket Labor Activities by Sex and Educational Attainment (Billione of Constant Dollara)

Male

Year	Total	Elementary	Secondary	College
1947	1224.1	2 HI .4	201.1	12h.2
194%	1243.8	2714.0	269.3	131.8
1944	1264.1	274.9	277.5	137.5
1950	1282.1	271.3	245.1	143.2
1951	$129 \% .3$	2 28.7	391.9	14 A .0
1452	1314.18	200.5	398. 7	153.0
1953	1330.4	2ヶ3.?	3115.5	15 H .0
1934	13117.7	260.3	312.8	167.6
1455	1365.1	2157.?	320.0	169.4
1456	1384.0	251.?	327.7	175.5
1457	1404.1	251.4	335.6	181. ${ }^{\text {1 }}$
1458	1422.4	247.3	313.6	1AR.2
1459	1411.2	2112.9	352.1	105.0
1400	14n7.2	239.2	3h). h	203.0
1961	1494.5	2.7 .4	371.9	210.0
1902	1517.9	2.32.9	$3 \mathrm{H1.9}$	218.9
1903	1543.7	227.3	341.7	227.4
1904	$150 \mathrm{H}$.	231.4	401.6	230.3
1905	1597.4	215.9	412.8	245.7
1960	$162 \mathrm{H.7}$	210.3	4)4.1	256.5
1961	1060.6	2011.1	434.0	26A.0
1408	1691.6	19H. 2	446.2	2H0.1
1404	1727.3	191.6	457.7	297. ${ }^{\text {20, }}$
1970	1703.4	1184.5	470.1	30ヶ. ${ }^{\text {a }}$
1471	1791.2	$1 \mathrm{H7} .3$	477.0	310.9
1972	1819.2	189.5	4115. 3	315.6
1473	1 11177.6	191.7	1103.3	320.5

where proportional increases were largest for female workers.
Finally, we analyze changes in the structure of nonmarket labor activities for the U.S. economy over the period 1948-1973. For this purpose we present growth rates of the value of nonmarket labor activities in current and constant prices, the quantity of nonmaricet activity per worker, and the price of labor utilized in nonmarket activities for the period as a whole and for six subperiods in Table 25. As in the analysis of the structure of markat labor activities, the annual growth rates for monarket labor compensation in current and constant prices for the postwar period as a whole reilect the trends we have analyzed 1n Tables 23 and 24. For boch males and females the price of labor utilized in nonmarket activities increased most rapidly for college trained workers, next most rapidly for workers with elementary education and least rapidly for workers with secondary education. For the price of labor utilized in market labor activities the increases were greatest for college trained workers and least for workers with elementary education.

Table 26 presents a comparison between our results and those obtained by Nordhaus and Iobin (1972) for four years in which comparable estimates are available. For this purpose we have taken the base for all price indexes employed in our estimates of the value of nonmarket labor aceivity to be 1958. Nordhaus and Tooin's estimates are six to fifteen percent above our estinates in current dollars, and twelve to thirteen percent above our estimates in constant dollars. Since their estimates are derived using wage rates before taxes, we would expect an upwazd blas.

Table 25
Value of Nonmarket Labor Activities by Educational Actainment and Sex, Rates of Growth, 1948-1973

	$\begin{aligned} & 1948 \\ & 1973 \end{aligned}$	$\begin{aligned} & 1948 \\ & 1953 \end{aligned}$	$\begin{aligned} & 1953 \\ & 1957 \end{aligned}$	$\begin{aligned} & 1957 \\ & 1960 \end{aligned}$	$\begin{aligned} & 1900 \\ & 1900 \end{aligned}$	$\begin{aligned} & 1966 \\ & 1969 \end{aligned}$	$\begin{aligned} & 1969 \\ & 1073 \end{aligned}$
MALE							
VALUE (CURRENT)	3.55	2.77	4.60	. 92	2.49	2.53	7.04
value (COnstaint)	-1.48	-1.00	-1.14	-1.t5	-2.12	-3.06	.01
PEK CAP. (CONSTANT)	-1.55	-2.08	-2.20	-7.36	-1.75	-1.53	. 70
phice index FEMALE	5.10	3.91	5.30	2.61	4.71	5.76	7.92
value (CURGENT)	2.89	2.06	1.71	1.50	2.35	4.50	5.83
Value (Constant)	-1.59	-1.32	-1.44	-2.05	-2.15	-2.89	. 11
PER CAP. (CUNSTANT)	-1.77	-2.45	-2.02	-2.89	-1.89	-1.46	. 78
PRICE IHOEX SECOND MALE	4.55	3.42	. 3.19	3.62	4.60	7.61	5.71
VALUE (CIJRUENT)	7.64	6.58	8. 59	5.69	7.17	8.62	9.51
value (cunstant)	2.45	2.55	2.39	2.6?	2.64	2.53	1.80
PER CAP. (CINSTAMT)	. 01	. 45	. 07	-. 21	-. 24	.03	-. 10
PRICE INOEX female	5.07	3.93	0.07	3.99	4.41	5.90	7.3月
value (Current)	7.09	5.94	6.73	5.62	6.90	$8.5 月$	9.30
value (cunstant)	2.53	2.74	2.42	2.57	2.71	2.71	1.92
PER CAP. (EUVSTANT)	. 02	. 35	-. 02	-. 21	-. 14	. 10	-. 01
PKICE INOEX COLLEG MALE	4.4n	3.02	4. 21	2.07	4.08	5.71	7.30
VALUE (CHKRENT)	9.05	8.28	9.70	H.90	9.20	10.31	9.94
value (cinistant)	3.62	3.70	3.57	3.74	3.98	4.51	2.70
PEN CAP. (CDNSTANT)	- 610	. 34	. 31	. 03	-. 37	-. 65	-. 30
phice tivex FEMALE	5.25	4.42	5.92	2.95	5.02	5.50	7.49
value (Curnent)	8.42	6.99	8.01	7.17	8.00	10.75	10.51
value (coristagi)	3.27	2.84	2.06	3. 15	3.85	4.72	2.51
pef cap. (cijnstant)	-. 1 ?	. 32	. 08	-. 14	-. 40	-. 46	-. 17
PKICE IMDEX	4.99	4.03	5.22	3.80	4.00	5.76	7.77

Table 26

> Value of Nonnarket Labor Activities Selected Years, $1947-1973$ (Billions of Dollars)

Year	Current			Constant. (1958)		
	J-P	Nordha Tobin	Ratio	J-P	Nordha Tobin	Ratio
1947	371.8	393.6	. 945	607.9	682.4	. 891
1954	555.2	637.0	. 871	667.6	753.1	. 884
1958	704.1	794.6	. 886	704.1	794.6	. 386
1965	1016.01	1096.9	. 926	790.3	886.7	. 891

The measurement of human capital is a very active area of research. Investment in formal education has been measured by Scinultz (1961), Machlup (1962), Kendrick (1976) and many others. ${ }^{19}$ To estimate lifetime labor incomes for all individuals in the U.S. population we distinguish among three stages in the life cycle. In the first stage individuals may participate in. formal schooling, but not in the labor market. In the second stage individuals may enroll in school and also work. In the third stage individuals may participate in the labor market, but not in formal schooling. For individuals in the third stage of the life cycle total labor compensation is the sum of compensation Eor amarket labor activities after taxes and imputed compensation for nonmarket labor activities. For individuals in the second stage of the life cycle total labor compensation also includes imputed labor compensation for schooling. For incividuals in the first stage of the life cycle labor compensation includes only the imputed value of time spent in schooling.

For an indivodual in the third stage of the life cycle, we assume that expected incomés in future time periods are equal to the incomes of indivicuals of the same sex and education, but with the age that the individual will have in the future time period, adjusted for increases in real income. We assume that real incomes rise over time at the race of Harrod-neutzal technical change, which we estimate at two percent per year. We weight income for each future year by the probability of survival, given the initial age of the individual. We obtain these
probabilities by sex from publications of the National Center for Health Stiatistics. Where necessary, these survival func"ions, giving probabillty of survival by age and sex, are incerpolated by means of standard demographic technique. Finally, we discount expected future incomes at a real rate of return of four percent per year to obeain the lifetime labor income of an individual of a given sex, age, and education.

For an individual at the second stage of the life cycle, combining foral schooling aith the possibility of panticipation in the labor warket, we impute the value of time speat in schooling through its impact on liferime labor income. For an individual of a given sex and age who is completing the highest level oí schooling, grade eighteen, lifetime labor income is the discounted value of expected future labor incomes for a person of that sex and age and eighteen years of schooling. The Imputed labor compensation for the time spent in formal sciooling is equal to the difference between the lifetime labor incomes of an individual with eighteen years of ecucation and an individual with the same sex and age and one less year of education, less tuition and fees for that grade of schooling. Total labor compensation is equal to the value of time spent in formal schooling plus labor compensation for market and nonmarket activitias other than formal schooling.

For an individual completing grade seventeen, lifetime labor income is equal to the lifetime labor income of an individual of the same sex and education, but one year older, plus expected labor compensation for one year, discounted back to the present and multiplied by the probability of survival fer one year. Expected labor compensation is equal to the
probability of enrollment in grade eighteen, multiplied by market and nonmarket labor compensation for a person enrolled in that grade, and one minus the probability of enrollment, multiplied by market and nonlabor compensation for a person with seventeen years of education, not enrolled in school. As before, the imputed labor compensation for the time spent in formal schooling is equal to the difference between the Iffetime Incomes of an individual with seventeen years of education and an Individual with the same sex and age and one less year of education, less tuition and fees. Using the same approach to defining Iffetime labor incomes for individuals complesing earlier grades, lifetime incomes and imputed lajor compensation for the tize spent in formal schooling can be deternined for individuals completing sixteen years of education, fifteen years of education and so on.

For an individual in the first stage of the life cycle, where partictpation in the labor market is ruled out, the value of labor compensation is limited to the imputed value of schooling. Iifetime incomes for individuals at this stage of the life cycle can be determined for individuals completing one year of education, two years of education, and so on, working back from higher levels of education as outlined above. For individuals too young to be enrolled in school, imputed labor compensation_is zero, but lifecime labor incomes are well defined. The value of a newborn entrant into the population is equal to the ifetime labor income of the individual at age zero.

To estimate investment in human capital through education we employ data on lifetime labor incomes, cross-classified by single year of age and single grade of highest educational attainment. We use the increments in lifetime labor incomes and the number of individuals enrolled in school to estimate the value of investment in education. In Table 27 we present our estimates of the investment in Eormal education in current dollars. The most striking feature of our estimates is the high values we obtain. In 1947 investment through formal education is 2.7 times the value of mariket labor input. The rate of growth of the value of investane in education, 10.8 percent per year, is considerably higher than the rate of growti of the value of labor input, 6.5 percent per year. Investment is highest for elementary education, second highest for secondary education, and lowest for higher education. Considering the shares of each level of educatior. in total investment, we observe a decrease in the shares of secondary and higier education. Considering shares in investment by sex, we see that the male share has decreased throughout the postwar period. , $>$
"Table 28 presents our estimates of investment in formal education in constant dollars. We observe the same striking features: Investment in education is very large by comparison with market labor input, amounting $=05.13$ times labor input in 1973; the rate of growth is nigher than the rate of growth in labor input -- 3.0 percent per year for investment in education versus 1.5 percent per year for labor input. Investment is highest for elementary education, next to highest for secondary education, and lowest

Table
Investment In Formal Education by Sex and Educational Aetainment, 1947-73 (Billions of Current Dollars)

Table
Investment in Formal Education by Sex and Educational Attainment, 1947-73 (Billions of Constant Dollars)

		Male			Fernale		
Year	Total	Elementary	Secondary	College	Elementary	Secondary	College
1947	2870.4	1241.9	425.5	71.8	786.3	295.8	49.2
1948	29.27 .1	1275. ${ }^{\text {l }}$	424.2	74.7	809.2	292.8	50.5
1949	3013.6	1328.1	422.8	- 77.2	844.2	289.7	51.9
1950	3108.8	1390.5	417.2	79.7	881.7	286.8	52.9
1951	3195.5	1433.7	424.5	80.4	912.2	291.8	52.9
1952	3285.4	1476.5	433.8	81.0	942.7	298.5	52.9
1953	3430.1	1551.6	414.4	81.6	996.3	308.2	5391
1954	3613.6	1639.7	463.6	83.0	1054.4	318.6	54.3
1955	3776.7	1719.4	479.3	84.6	1108.4	329.2	55.8
1956	3941.4	1795.6	499.7	86.2	1159.4	343.0	57.5
1957	4109.8	1867.6	526.0	88.3	1207.4	360.7	59.8
1958	4284.1	1931.4	563.6	90.9	1248.8	387.0	62.4
1959	4462.3	1994.9	603.5	93.7	1293.2	411.8	65.3
1960	$4,664.6$	2078.7	637.3	97.9*	1350.8	430.5	69.4
1961	4847.5	2161.6	659.6	102.9	1406.0	442.2	74.9
1962	5029.5	2223.6	702.0	109.7	14.38.7	472.6	82.8
1963	5213.2	2269.9	759.6	116.8	1468.2	509.4	89.2
1964	5397.6	2323.2	813.1	122.9	1501.6	542.5	94.3
1965	5572.6	2377.0	861.6	129.0	1535.2	570.7	99.1
1966	5725.6	2429.2	893.8	140.3	1566.3	582.8	113.3
1967.	5862.1	24.71 .6	914.3	155.0	1594.4	594.0	126.8
1968	5992.2	2518.7	942.5	166.8	1617.0	610.3	137.0
1969	6110.7	2519.4	976.6	117.5	1631.8	629.7	145.7
1970	6215.5	2569.4	1012.8	189.5	1618.6	649.2	156.0
1971	6255.8	2566.3	1035.3	195.6	16.35 .4	663.3	160.1
1972	6263.1	2512.9	1057.7	201.7	1618.7	677.7	164.4
1973	6244.9	2505. 2	1079.4	201.7	1593.3	691.4	168.8

for higher education. While investment in current prices increases throughout the postwar period, investment in constant prices peaks in 1972 and begins to decline. Investment in constant prices for elementary education peaks for both males and females in 1970. Investment in constant prices for secondary and higher education increases throughout the postiwar period for both sexes.

In Table 29 we prasent the investment in formal tucation per student in current dollars. We present the corresponding estimates in constant prices of 1972 in Table 30. The estimates of investiment per student are very high, considerably in excess of per caplta earaings. Second, the highest levels of investment per student correspond to elementary education. Third, investment per student at the college level is higher for females than for males. Fourth, while the value of investment per student in constant prices rises for males and females with elementary and secondary education, this value peaks for college trained males in 1955 and for college trained females in 1950. These results are very different from the usual Eindings on investment in education, In interpreting our estimates it is important to recall that we include the value of leisure and nonmarket activities in lifetime labor incomes, producing very large values for investment in education and reducing the differance between males and females. We measure expected lifetine labor income of a person with one additional year of education from life, • time labor incomes of persons fith all higher educational attainment levels by means of the nested procedure described above.

Table
29
Investment per Student by' Sex and Educational Attainment, Market and
Nonnarket Labor Activities, 1947-73
(Thousands of Current Dollars)

Investment per Student by Sex and Educational Attaiment, Market and Nonmarket Labor Activities, 1947-73
(Thousands of Constant Dollars)

Year	Total	Male			Pemale		
		Elementary	Secondary	College	Elementary	Secondary	College
1947	103.5	$12 \mathrm{H.9}$	122.4	45.8	H7. 7	8 8. 7	$66 . ?$
1448	104.1	120.3,	133.5	4 A .6	BH.O	H9.1	67.7
1949	104. 7	$130 . ?$	1211.1	47.3	BH.6	A9.0	nR. 4
1950	105.4	131.1	123.5	$4{ }^{4.3}$	H9. ${ }^{\text {? }}$	112.4	70.0
1951	106.0	132.1	123.2	50.1	19.4	87. ${ }^{\text {\% }}$	69.7
1952	106.4	132.5	122.7	51.7	90.7	87.2	6A. ${ }^{\text {H }}$
1953	106.9	132.8	133.1	52.8	90.8	47.3	67.3
1954	107.6	133.6	123.8	57.8	91.3	H7.4	66.4
1955	108.2	134.5	123.6	54.6	92.0	86.9	65.4
1950	108.8	135.7	123.2	54.6	92.8	86.3	63.9
1951	109.3	137.1	12.20	54.4	93.9	HS. 1	62.9
1458	109.8	137.9	133.3	54.1	94.3	86.?	61.9
1954	110.4	$13 \mathrm{H.1}$	176.4	53.2	94.5	HA. 1	60.5
1900	111.0	138.7	179.0	51.9	94.9	89.4	5 H .9
1461	111.4	141.3	176.1	50.3	97.0	86.4	57.3
1962	111.8	143.0	175.4	49.5	97.7	A6. 4	57.9
1903	112.1	143.4	177.6	49.1	97.8	87.7	5月.0
1404	112.4	144.0	139.4	4 A .2	98.1	8A. 8	57.0
196	112.9	145.0	133.5	45:6	$9 \mathrm{H.h}$	41.5	53.2
1960	113.2	146.1	135.6	44.6	90.?	91.7	54.4
1967	113.2	147.3	135.5	44.8	99.8	91.2	55.3
1968	113.1	$14 \mathrm{H.5}$	135.8	44.2	100.4	91.1	54.4
1964	113.2	144. ${ }^{\text {H }}$	136.8	43.4	101.0	91.5	54.1
1970	113.3	151.1	$13 \mathrm{H}$.	42.7	101.6	92.1	53.5
1971	113.3	151.7	138.3	117.9	102.0	92.0	53.6
1972	113.3	152.3	138.5	113.0	102.3	92.2	53.6
1473	113.3	152.7	139.3	-43.1	103.6	92.7	53.6

Table 31 presents rates of growth of investment value in formal education by period. For each of the three educational levels and the two sexes, four sets of values are presented. The first corresponds to the value measured in current prices; the second corresponds to values measured in constant prices of 1972; the third corresponds to values per student in constant dollars; and the fourth corresponds to the price deflator of investment in formal education. 'Considering the current dollar values we observe that average annual rates of growth for Eemales over the period 1948-73 exceed the average annual rates of growth for males for elementary, secondary, and higher education. In this peziod the highest rate of growth for males occurs for: secondary education, while the highest rate of growth for males occurs for secondary eiucarion, wille the highest rate of growth for females occurs for higher education. Growth rates for the six subperiods presented in Table 31 are similar but not identical to those for the period as a whole.

Considering the constant dollar values presented in Table 20 we find that average annual growth rates for the deriod as a whole are very similas for males aŕd females at the elementary level, are higher for males at the secondary level, and are higher tor females in higher aducation. For subperiods we can observe a displacement of the maximum rate of growth by educational level that reflects the displacement of the "baby-boom" group through the educational sector. For the 1953 to 1957 'period the highest rate of growth corresponds to elementary education; for the 1957 to 1960 period the highest rate of growth sorresponds to secondary education; for the last two subperiods, the highest. . rate of growth corresponds to higher education.

Investment in Formal Education by Sex and Educational Attainment 1948-1973, Rates of Growth

1948	1948	1953	1957	1960	1966	1969
1973	1953	1957	1960	1966	1969	1973

ELEMENTARY							
MaLE							
value (Current)	9.89	10.10	13.33	10.25	9.53	8.10	7.87
VALUE (CONST.NT)	2.74	3.99	4.74	3.63	2.63	1.62	-. 44
PER CAP. (CONSTANT)	. 67	. 53	. 80	. 39	. 87	. 84	. 47
PRICE INDEX	6.96	5.88	8.20	6.38	6.72	6.37	8.34
EEMALE							
TALUE (CuRrent)	10.93	11.79	16.14	10.36	9.09	9.21	9.28
VALUE (CONSTANT)	2.75	4.25	4.92	3.81	2.50	1. 38	-. 60
PER CAR. (CONSIAVT)	. 62	. 62	. 85	. 35	. 75	. 60	. 38
PRICE INDEX	7.96	7.24	10.69	6.31	6.44	7.73	9.93

SECONDARY

To eliminate the effect of the size of a given age cohort we present investment in education in constant prices per student in Table 31. For the postwar period as a whole the growth of investment per student at the elementary level is positive for both males and females and similar in magnitude. Growth of investment per student at the secondary level is positive for both sexes, but the average annual growth rate for males exceeds that for Eemales. Investment per student in constant prices in higher education is megative for the postwar period as a whoie and is more negative for females than for males. Rapid gains in enrollment rather than increases in investwent per student account for the increase in investment in constant prices for both sexes over the posewar period.

To bring out the implications of our methodology for measuring lifeEime labor incomes, we have escimated investment in formal education by conventional methods. For this purpose we have restricted the returas to market labor eamings land considered only the earaings of persons with one additional year of schooling. We have used the same rata of revurn and rate of increase in wáges as in estimates that include the value of nonmarket labor activities. In Table 32 we present the resulting estimates of investment in education in current dollars. We.can observe that using more conventional methodology the value of investment in education is reduced dramatically, that the greatest reduction occurs as the elementary level, and that returns to investment in education for fenales are reduced more than the returns to investment for males.

Table 32
Investment per Student by Sex and Educational Attainment, Market
Labor Activities Only, 1947-1973 (Thousands of Current Dollars)

Table 33 presents a comparison in constant dollars of the results of our two different methods for estimating Investment in education. The share of market returns is given by the percentage of the value obtained using market returns in the value obtained using the nested procedure with both market and nommarket returns. We observe that the estimate using the more restricted definition of labor incomes is only eIght to nine percent of the estimate derived using the more comprenensive definition. The lowest percentage in the table corresponds to females enrolled in elementary school; the estimate of investment in education using the restricted definition of labor incomes is a little more than one percent of investment using the comprehensive defiaition. The higiest percentage corresponds to males enrolled in college with the restricted definition of returns ranging from 64 to 69 percent of the comprehensive definition.

There are no other estimates of investment in education on the basis of lifetime labor incomes to compare with our results. However, we can compare our estimates with estimates based on cost of education. In Table 34 we piresent a comparison of our estimates with those of Kendrick (1976). ${ }^{20}$ Kendrick's estimates of the value of investment are only 4 to 5 percent of our estimates. As indicated in Table 33, the traditional method of imputing Investment in education from lifetime earnings results in escimates betheen 8 and 9 percent of our estimates, fmplying that the traditional metiod of imputing lifetine earnings leads to estimates that are twice as large as those based on costs of education. Our overall conclusion is that the most Important innovasion we. have made is to incorporate both market and nonmarket activities into our measures of lifetime labor income.

Table
33
Percentage of Investment Based on Market Labor Activities
to Total Educational Investment, 1947-1973

Year	Totrl		Male			Female		
			Elenentary	Secondary	College	Elementary	Secondary	College
1947	9.2	:	8.3	13.0	65.4	1.5	10.1	32.7
1948	9.1		8.2 "	12.9	65.2	1.5	10.0	32.7
1949	8.9		8.1	12.8	65.0	1.4	9.9	32.6
1950	8.8		8.0	12.7	64.8	1.4	9.9	32.5
1951	8.7		7.9	12.8	64.5	1.4	9.9	32.2
1952	8.6		7.8	12.9	64.3	1.3	9.9	32.1
1953	8.5		7.8	12.9	64.2	1.3	9.9	31.8
1954	8.3		7.7	12.9	64.0	1.3	9.9	31.3
1955	8.3		7.6	12.9	63.9	1.3	9.9	30.8
1956	8.2		7.6	12.9	64.0	1.3	9.9	30.5
1057	8.1		7.5	12.9	64.2	1.3	9.8	30.1
1958	8.1		7.5	13.0	64.4	1.3	9.8	29.8
1959	8.2		7.5	13.0	64.7	1.3	9.9	29.6
1960	8.2		7.4	12.9	65.1	1.4	10.0	29.3
1961	8.1		7.3	12.8	65.5	1.4	9.9	28.8
1962	8.2		7.3	12.7	65.9	1.4	9.6	28.1
1963	8.3		7.2	12.7	66.4	1.4	9.6	28.1
1964	8.5		7.2	12.9	67.1	1.4	10.0	28.6
1965	8.5		7.2	12.7	67.6	1.4	9.8	28.9
1966	8.5		7.1	12.4	67.6	1.4	9.7	27.4
1967	8.6		7.1	12.4	67.4	1.4	9.7	27.0
1968	8.8	-	7.0	12.4	68.3	1.4	9.7	27.7
1969	8.9		7.0	12.3	68.8	1.4	9.7	28.1
1970	9.1		7.0	12.3	68.9	1.4	9.6	28.2
1971	9.1		7.0	-12.2	68.7	1.4	9.7	28.2
1972	9.3		6.9	12.2	68.5	1.5	. 9.6	28.2
1973	9.4		6.9	12.2	68.4	1.5	9.6	28.2

Table 34
Investment in Education Based on Costs and on Lifetime Labor Incomes, 1947-1969

Year	Btilions of Current Dollars			B1llions of 1958 Dollars		
	J-P Based	Kendrick Cost Based	Ratio	J-? Income Based	Rendrick Cost Based	Ractio
1947	450.4	28.0	16.07	1037.9	43.4	23.90
1948	498.7	30.7	16.20	1058.4	44.5	23.80
1949	554.6	30.4	18.22	1089.8	43.0	25.34
1950	600.9	33.6	17.88	1124.1	45.9	24.46
1951	660.0	38.8	17.00	1155.1	49.9	23.12
1952	721. 5	42.5	16.95	1188.0	52.2	22.75
1953	814.1	45.9	17.72	1243.2	54.6	22.76
1954	961.2	44.9	21.39	1306.7	52.4	24.94
1955	1098.7	50.8	21.59	1365.6	57.4	23.76
1956	1214.6	56.2	21.60	1425.2	60.5	23.54
1957	1384.9	81.3	22.57	1486.1	63.2	23.49
1958	1549.1	63.7	24.30	1549.1	63.7	24.30
1959	1721.6	71.4	24.10	1613.5	68.8	23.43
1960	1900.0	75.2	25.24	1686.7	70.6	23.88
1961	2159.5	79.8	27.03	1752.8	73.2	23.92
1962	2362.7	88.2	26.76	1818.6	78.7	23.08
1963	2535.0	95.8	26.44	1885.1	83.2	22.66
1964	2887.0	106.1	27.19	1951.7	89.1	21.90
1965	3059.1	- 118.4	28.84	2015.0	96.4	20.89
1966	3434.1	137.4	24.99	2070.7	107.6	19.24
1967	3830.7	148.6	25.75	2119.7	112.0	18.92
1968	4087.1	: 170.4	23.99	2166.7	121.8	17.78
1969	4499.8	192.3	23.39	2209.6	129.9	17.00

Footnotes

1. An aggregate production function was introduced by Cobb and Douglas (1928). References to aggregate production studies jased on this approach are given in a survey paper by Douglas (1948). SeEerences to more recent studies of production at the aggregace level are given by Kennedy and Thi=iwall (1971) and Nadizi (1970). More recent references are given by Takayama (1974).
2. Alternative approaches to generating data and analyzing the sources of U.S. economic growth at the aggregate level are Eiscussed jy Christensen and Jorgenson (1969, 1970, 1973a, 1973b), Denison (isj2, 1967, 1969, 1972, 1974), Jorgenson and Griliches (1967, 1972ミ, 1972b), and Kendrick (1961, 1973).
3. The breakdown of capital inpuc by ciass of asset anc legal $\mathfrak{E x}$ of crganization was originaced by Christensen and Jorgenson i!969, 1970, 1973a, 1973b). Changes in the structure of capital input for the ünizad States have been discussed by Griliches and Jorgenson (1966) and jy Jorgenson and Griliches (1967, 1972a, 1972b). Gollop and Jorzenson (1980) have presented the first results based on this approach ar the sectoral level.
4. The breakdown of labor input by demographic characearisitics was originated by Griliches (1960) and by Denison (1962, 1967, 1974). Changes in the structure of labor input for the United States have been discussed by Jorgenson and Griliches (1967, 1972a, 1972b). Gollop and Jorgenson (1980) have presented the first results based on this approzch at the sectoral level.
5. Welfare measures of aggragate economic activity for the United States have been presented by Sametz (1968) and by Nordhaus and Tobin (1972). Proposals for measuring welfare have been reviewed by Campell and Peskin (1979), the United Nations (1977), and Beckerman (1978). Detailed references to the Iicerature are given by Campbell and Peskin (1979). We present a comparison between our estimates of the value of time spent in nomarket actevities and those of Nordhaus and Tobin in Table 25 below.
6. Previous attempts to employ lifetime incomes as a basis for measuring human capital have been limited to earnings Eor men based on market labor activities. Estimates of inis type have been prasented by Weisorod (1961), Miller (1965), Miller and Hornseth (1967), the•U.S. Bureau of the Census (1968, 1974), and Graham and Nebb (1979).
7. Demographic accounting is discussed in detail by stome (1971) and the UnIted Nations (1975).
8. The translog index of technićal change was introduced by Christensen and Jorgenson (1970). It was first derived from the trans$10 g$ production Eunction by Diewert (1977) and by Jorgenson and Lau (1977). The translog production function was introduced by Christensen, Jorgenson, and Lau (1971, 1973).
9. The role of an ag8regate production account in a complete accounting system for the U.S. economy is discussed by Christensen and Jorgenson (1969, 1970, 1973a, 1973b).
10. The translog index numbers were introduced by Fisher (1922) and have been discussed by Tornquist (1936), Theil (1965) and Kloek (1966). They were first derived from the translog production function by Diewere (1976).
11. The decomposicion of growtin in labor input between groweh in hours worked, and growth in labor quality is discussed in greater detail in Section 3 below.
12. Detailed discussions of quality indexes and applications to disaggragated labor data can be found in the doctoral dissertations by Barger (1971) and Chinloy (1974). Chinloy (1980) presents an application to U.S.:aggregate data." Extremely valuable assistance in programing the computations was provided by Peter Derksen.
13. The initial design of our approacn to the measurement of labor input, the collection of d'ata, and much of the required estimation were carriad out in collaboration with Peter Chinloy. The results of his measurement and analysis of lab̈or input for the U.S. economy at the aggregate level are reported in his doctoral dissertation. See Chinloy (1974).
14. Campbell and Peskin (1979) have summarized accounting sysqens developed by Rendrick (1976, 1979), Ruggles and Ruggles (1970, 1973), and Eisner (1978, 1980). Kendrick's accounting system is also discussed by Engerman and Rosen (1980). We present a comparison between our•estimates of investment in education and human wealth and those of Kendrick In Section 4 below.
15. An economic theory of time allocation is presented by Becker (1965). Detailed references to more recent literature on time allocation are given by Murphy (1980). Results of a comprehensive and recent empirical study for the United States are presented by Juster, Courant, Duncan, Rooinson, and Stafiord (1978). Kendrick (1979) sumarizes the results of an unpublished paper by Wehle, comparing seventeen studies of tiale allocation for the United States, covering the period 1924-1976.
16. A revien of estimates of time spent in formal schooling is given by Parsons (1974).
17. Nineteen empirical studies of the valuation of nommarket labor activizies for the United States are surveyed by Murphy (1980). Kendrick (1979) provides recent estimatas covering the period 1929-1973.
18. Houthakker (1959) has allocated income taxes to individuals on the basis of demograpinic characteristics. We control the total taxes paid on lador incomes to estimates for the U.S. economy as a whole based on the methods of trane and Klein (1953).
19. A complece account for the educational sector is needed to estimate rates of return to educational investment. Estimates ofinvestment in education have been presented by Schultz (1961). Rates of. return are given by Becker (1964). Kendrick (i976) provides escimatas covering the period 1929-1969. Detailed references to recent literature are provided by Campbell and Peskin (1979).
20. Kendrick's estimates of human capital have been compared with estimates based on lifetime labor incomes for males betwaen the ages of 14 and 74 for the United States, excluding the value of nonmarket activities, for the year 1969 by Graham and I'esb (1972).

References

Barger, William J. (1971), The Measurement of Labor Input: U.S. Manufacturing Industries, 1948-1966, Ph.D. Dissertation, Harvard University, unpublished.

Becker, Gary S. (1964), Human Capital, New York, Columoia University Press; 2nd ed., 1975.
(1965), "A Theory of the Allocation of Time," Economic Journal, Vol. 75, No. 299, September, pp. 493-517.

Beckerana, Nilired (1978), Measures of Leisure, Eguality, and Nelfare, Paris, Organization for Economic Co-operation and Development.

Bureau of the Census (1940), Census of Population, 1940, Washingeon, U.S. Government Printing OEfice.
(1950), Cansus of Population, 1950, Washington, U.S. Government Printing Ofisice.
(1960), Census of Population, 1960, Washington, U.S. Government Printing Office.
(1968), "Annual Mean Income, Liferime Income, and Educational Attainment of Men in the United States, for Selected Years, 1950 to 1966," Current Population Report, Series P-60, No. 5ó, Nashington, U.S. Govarnment Printing Ofinice.
(1970), Cansus of Population, 1970, Washington, U.S. Government Printing Office.
(1974), "Annual Mean Income, Lifatime Income, and Educational Attainment of Men in the United States, for Selected Years, 1950 to 1972," Curzent Population Report, Series P-60, Yo. 92, Washingion, U.S. Government Printing Oifice.

Bureau of Economic Analysis (1977), The National Income and Product Accounts oi the United States, 1.929-1974; Statistical Tables, Washington, U.S. Government Printing Oifíice.

Campbell, Beth, and Janice Peskin (1979), "Expanding Economic Accounts and Measuring Economic Welfare: A Review of Proposals," Washington, Bureau of Economic Analysis, U.S. Deparment of Commerce, October.

Chinloy, Peter T. (1974), Issues in the Measurement of Labor Input, Ph.D. Dissertation, Harvard University, unpublisined.
(1980), "Sources of Quality Change in Labor Input," American Economic Review, forthcoling.

Christensen, Laurits R. and Dale W. Jorgenson (1969), The Measurement of U.S. Real Capital Input, 1929-1967," Review of Income and Wealth, Series 15, No. 4, December, Pp. 293-320.
(1970), "U.S. Real Product and Real Factor Input, 1929-1967," Review of Income and Wealth, Series 16, No. 1, March, pp. 10-50.
(1973a), "Measuring the Performance of the Private Sector of the U.S. Economy, 1929-1969," in Milton Moss, ed., Measuring Economic and Social Performance, New York, National Bureau of Economic Research, pp. 233-238.
(1973b), "U.S. Income, Saving, and Wealth, 1929-1969,"
Review of Income and Wealth, Series 19, No. 4, Decemoer, PD. 329362.

Christensen, Laurits R., Dianne Cummings and Dale W. Jorgenson (1978), "Productivity Growth, 1947-1973: An International Comparison," in W. Dewald (ed.), The Impact of International Trade and Investment on Employment, Nashington, U.S.G.P.P., PP. 211-233.
(1980), "Economic Growth, 1947-1973: An International Comparison," in John W. Kendrick and Beatrice Vaccara, eds., New Develooments in Productivity Measurement, Chicago, University of Chicago Press, Vol. 41, Pp. 595-698.

Christensen, Laurits R., Dale W. Jorgenson and Lawrence J. Lau (1971), "Conjugate Duality and the Transcendental Logarithaic Production Function,". Econometrica, Vol. 39, No. 4, July, pp. 255-256.
(1973), "Transcendental Logarithmic Production Frontiers," Review of Economics and Statistics, Vol. 55, No. 1, February, pp. 28-45.

Cobb, Charles W. and Paul H . Douglas (1928), "A Theory of Production," American Economic Review, Vol. 18, No. 1, March, pp. 139-165.

Denison, Edward F. (1962), Sources of Economic Growth in the United States and the Alternatives Before Us, New York, The Committee

- for Economic Development.
(1967), Why Growth Rates Differ, Wasiington, The Brookings Institution.
(1969), "Some Major Issues in Productivity Analysis: An Examination of Estimates by Jorgenson and Griliches," Survey of Current Business, Vol. 49, No. 5, Part II, May, pp. 1-27. .
(1972), "Final Comments," Survey of Current Business, Vol'52, Part 2, May, pp. 95-110.
(1974), Accounting for United States Economic Growth, 1929 to 1969, Washington, The Brookings Institution.

Denison, Edward F., and William K. Chung (1976), How Japan's Economy Grew So Fast, Washington, The Brookings Institution.

Diewert, W. Erwin (1976), "Exact and Superlative Index Númbers," Journal of Econometrics, Vol. 4, No. 2, May, pp. 115-146.
(1977), "Aggragation Problems in tine Measurement of Capital," Discussion Paper 77-09, Department of Economics, University of Britisi Columbia, March.

Douglas, Paul H. (1948), "Are There Laws of Production?" American Economic Review, Vol. 38, No. 1, March, pp. 1-41.

Eisner, Rober:.(1978), "Total Ircomes in the United States, 1959 and 1969," Reviaw of Income and Wealth, Series 24, No. 1, March, pp. 41-70.
(1980), "Capital Gains and Income: Real Changes in the Value of Capital in the United States, 1946-1977," in Dan Usier, ed., The Measurement of Capital, Chicago, University of Chicago Press, pp. 1757342.

Engeman, Stanley, and Sherwin Rosen (1980), "New Sooks on the Measurement of Capital," in Dan Usher, ed., The Measurament of Capieal, Chicago, University of Chicago Press, Pp. 153-170.

Fisher, I. (1922), The Making of Incex: Numbers, Boston, Houghton Mifflin.

Frane, Lenore, and Lawrence R. Klein (1953), "The Estination of Disposable Income by Distributive Shares," Review of Economics and Statistics, Vol. 35, No. 4, November, Pp. 333-337.

Gollop, Frank M., and Dale W. Jorgenson (1980), "U.S. Productivity Growth by Industry, 1947-1973," In John W. Kendrick and. Beatrice Vaccara, eds., New Developments in Productivity Measurement, Chicago, University of Chicago Press, Vol. 41, pp. 17-136.

Graham, John W., and Roy H. Webb (1979), "Stocks and Depreciation of Human Capital: New Evidence from a Present-Value Perspective," Review of Income and Wealch, Series 25, No. 2, June, pp. 209-224.

Griliches, Zvi (1960), "Measuring Inputs.in Agriculture: A Critical Survey," Journal of Farm Economics, Vol. 42, No. 4, December, pp. 1411-1427.

Griliches, Zvi, and Dale W. Jorgenson (1966), "Sources of Measured Productivity Charige: Capital Inpuc," The American Economic Review, Vol. 56, No. 2, May, pp. 50-61.

Groes, Mils, and Pater Bjerregaard (1978), Real Product,: Real Factor Input and Productivity in Denmark, 1950-1972, Copeninagen, Institure of́ Economics, University of Copenhagen.

Houchakker, Hendrick S. (1959), "Education and Income," keview of Ëconomics and Statistics, Vol. 41, No. 1, February, pp. 24-2S.

Jorgenson, Dale W. and Zvi Griliches (1967), "The Explanation of Productivity Change," The Revien of Economic Studies, Vol. 34 (3), No. 99, July, pp. 249-83.
(1972a), "Issues in Growth Accounting: A Reply t"o Edward F. Denison," Survey of Current Business, Vol. 52, Part 2, May, pp. 65-94.
(1972b), "Issues in Growth Accounting," Final Reply,"
Survey of Current Business, Vo1. 52, No. 5, Part 2, May, pp. 111.
Jorgenson, Dale W. and Lawrence J. Lau (1977), Transcendental Logarithmic Ueility Function, Amsterdam, North-Holland, fortheoming.

Jorgenson, Dale W., and Alvaro Pachon (1982a), The Accumulation of Auman and Nonhuman Nealth," in R. Hemming and F. Modigliani (eds.), The Determinants of National Saving and Wealth, Londin, Macmillan, fortheoming.
(1982b), "Lifetime Income and Human Capital, in P. Streeten (ed.), Human Resources: Concepts and Measurement, London, Macmillan, forthcoming.

Juster, F. Thomas, Paul Courant, Greg J. Duncan, John Robinson, and Frank P. Staffford (1978), Time Üsc in Economic and Social Accounts, Ann Arbor, Institute for Social Research, University of Michigan.

Kendrick, John W. (1961), Productivity Trends in the United States, Princeton, Princeton University Press.
(1973), Postwar Productivity Trends in the United States, 1948-1969, New York, National Bureau of Economic Research.
(1976), The Formation and Stocks of Total Capital, New York, Columbia Universicy Press.
(1979), "Expanding Imputed Values in the NaEional Income and Product Accounts," Review of Income and Wealth, Series 25, No. 4, December, Pp. 349-364.

Kennedy, Charles, and A.P. Thirlwall (1972), "Technical Progress: A Survey," Economic .Tournal, Vol. 82, No. 325; March, pp. 11-72.

Kloek, T. (1960), Indexcijiers: enige aethodologisch aspecten, The Hague, Pasmans.

Machlup, Fri:z (1962), The Production and Distribution of Knowledge in the United Stazes, Princeton, Princeton University Press.

Miller, German P. (1965), "Lî̂etime Income and Economic Growth," American Economic Review, Vol. 5j, No. 4, Septemoer, pp. 834-844.

Miller, Herman P. and Richard A. Hornseth (1967), "Present Value of Estimated Iffetime Earnings," Technical Paper No. 16, Washington, Bureau of the Census, U'.S. Deparment of Comerce, March.

Murphy, Kartin (1980), "The Measurement and Valuation of Household Nonmarket Time," washington, Bureau of Economic Analysis, U.S. Department of Commerce, March.

Nadiri, Mohammed I. (1970), "Some Approaches to the Theory and Measurement of Total Factor Productivity: A Survey," Journal of Economic Literatuze, Vols 8, No. 4, December, pp. 1137-1178.

Nordhaus, William ®. and James Tobin (1972), Economic Growth, New York, National Bureau of Economic Research.

Parsons, Donald O. (1974), "The Cost of School Time, Foregone Earnings, and Human Capical Formation," Journal of Political Economy, Vol. 82, No. 2, Part I, March-April, pp. 251-256.

Ruggles, Nancy, and Richard Ruggles (1970), The Design of Economic Accounts, New York, Columbia University Press.
and \qquad (1973), "A Proposal for a System of Economic and Social Accounts," in Milton Moss, ed., The Measurement of Social and Economic Performance, New York, Columoia Universicy Press.

Same t2, A.W., (1968), "Production of Goods and Services: The Measurement of Economic Growth," in E.B. Sheldon and W. Moore, eds., Indicators of Social Change, New York, Russell Sage Foundation.

Schultz, Theodore W. (1961), "Investment in Human Capital," American Economic Review, Vol. 51, No. 1, March, pp. 1-17.

Stone, Richard (1971), Demographic Accounting and Model Building, Paris, Organization for Economic Cooperation and Development.

Takayama, Akira (1974), "On Biased Technological Progress," American Economic Review, Vol. 64, No. 4, September, pp. 631-639.

Theil, B. (1965), "The Information Approach to Demand Analysis," Economerrica, Vol. 33, No. 1, January, pp. 67-87.

Tornauist, Leo (1936), "The Bank of Finland's Consumption Price Index," Bank of Einland Monthly Bulletin, No. 10, pp. 1-8.

Unized Vations (1975), Towards A System of Social and Demograpinie Statistics, New York, Department of Economic and Social Afiains, Unized Narions.
(1977), The Feasioility of Welfare-Oriented Measures to Supplement the National Accounts and Balances: A Technical Repore, New York, Department of Economic and Social Affairs, United Nations.

Walters, Dorothy (1968), Canadian Income Levels and Growth: An International Perspective, Ortawa, Economic Council of Canada.
(1970), Canadian Growth Revisited, 1950-1967, Ottawa Economic Council of Canada.

Weisorod, Burton A. (1961), "The ValuaEion of Buman Capical," Jourial of Political Economy, Vol. 69, No. 5, October, pp. 425-436.

[^0]:

 * Reproductions supplied by EDRS are the best that can be made

