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Abstract
Evolutionary game theory mathematically conceptualizes and analyzes biological interac-
tions where one’s fitness not only depends on one’s own traits, but also on the traits of others.
Typically, the individuals are not overtly rational and do not select, but rather inherit their
traits. Cancer can be framed as such an evolutionary game, as it is composed of cells of hetero-
geneous types undergoing frequency-dependent selection. In this article, we first summarize
existing works where evolutionary game theory has been employed in modeling cancer and
improving its treatment. Some of these game-theoretic models suggest how one could antic-
ipate and steer cancer’s eco-evolutionary dynamics into states more desirable for the patient
via evolutionary therapies. Such therapies offer great promise for increasing patient survival
and decreasing drug toxicity, as demonstrated by some recent studies and clinical trials. We
discuss clinical relevance of the existing game-theoretic models of cancer and its treatment,
and opportunities for future applications. Moreover, we discuss the developments in cancer
biology that are needed to better utilize the full potential of game-theoretic models. Ulti-
mately, we demonstrate that viewing tumors with evolutionary game theory has medically
useful implications that can inform and create a lockstep between empirical findings and
mathematical modeling. We suggest that cancer progression is an evolutionary competition
between different cell types and therefore needs to be viewed as an evolutionary game.
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ADT Androgen deprivation therapy
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EGT Evolutionary game theory
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mCRPC Metastatic castrate-resistant prostate cancer
MPC Model predictive control
MRI Magnetic resonance imaging
MTD Maximum tolerable dose
NSCLC Non-small cell lung cancer
PEPI Preoperative endocrine prognostic index
PET Positron emission tomography
PSA Prostate-specific antigen
PSMA Prostate-specific membrane antibody
SEG Stackelberg evolutionary game
SoC Standard of care
TTP Time to progression
VEGF Vascular endothelial growth factors

1 Introduction

Cancer is a disease of unregulated proliferation, caused by abnormal function of genes respon-
sible for regulating cell division. The genesis of cancer has strong ties to human life history
[6,70,93,94,179], and its progression is driven by natural selection, characterized by cancer
cells exhibiting the following three conditions [58]:

1. The presence of heritable variation: Heritable traits vary among different cancer cells,
ultimately as a result of genetic mutations, epigenetics, chromosomal re-arrangements
and other mechanisms associated with genetic instability.

2. A struggle for existence: There are limits to growth due to competition for limited space
and resources.

3. The influence of heritable variation on the struggle for existence: Generally, the likelihood
of cell survival depends on its own traits, and the traits of the others. Cells with traits that
confer higher chances of survival and proliferation will in time increase in frequency
(frequency-dependent selection) [93,94].
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This Darwinian view of cancer aligns with the premises of evolutionary game theory (EGT),
which assumes that evolution tests heritable traits in an ongoing competition for survival
[38,100,127,128]. EGT is a branch of mathematics that has helped to conceptualize and
understand the behavior of real-world biological systems, including several counter-intuitive
biological phenomena [91,92,128,162,182,201], and is being increasingly recognized as an
important tool for mathematical oncologists [18,154,165].

EGT deals with situations where organisms using different strategies and/or possessing
different traits interact with each other. Unlike in classical game theory [139,190,191], these
organisms do not need to be overtly rational, i.e., their strategies (often referred to as “types”)
are inherited rather than rationally chosen [37,100] (although a rational population-level
interpretation of the dynamics is also possible [109]). Some strategies might confer higher
fitness and the individuals using these strategies will in the long run dominate the population.
Thus, if we see cancer as a Darwinian process, it can be described as an evolutionary game,
where cancer cells are the players, their heritable traits correspond to the strategies, and
the payoffs are represented in terms of survival and proliferation (fitness) [38,129]. This is
a dynamic game, as one can analyze how frequencies of different strategies and numbers
of individuals corresponding to these different strategies change in time. We refer to those
changes as evolutionary and ecological dynamics, respectively. Both together are called eco-
evolutionary dynamics.

Compared to other fields of applied mathematics, EGT of cancer is a relatively new
field, just a few decades old [123,181]. Tomlinson was first to explicitly frame cancer as
an evolutionary game [181]. Since then, at least 60 publications on cancer have called their
research game-theoretic. This body of literature has grown into diverse and different group-
ings.Given that cancer is an evolutionary process, cancer treatment could benefit from insights
from evolutionary theory, giving rise to Evolutionary or Darwinian medicine [77,79,83]. The
increasing interest in this field is reflected in the recent update of medical curricula to include
evolutionary reasoning [140]. Clearly, EGT can only improve cancer treatment if there is
something gained from these evolutionary insights. Standard of Care (SoC) in treating can-
cer typically applies therapy at Maximum Tolerable Dose (MTD), to remove as many tumor
cells as fast as possible. For some aggressive cancers, such as advanced Non-Small Cell Lung
Cancer, no better treatment thanMTD has been found so far [9,19,20]. Yet, unless the patient
is cured, the MTD strategy promotes evolution of treatment-induced resistance which leads
to treatment failure [76,164,206].

The fact that even personalized therapies tailored to the cancer’s genetic signature and to
the individual’s genetic disposition fail can be attributed to the extensive adaptive potential
of the human genome. As MTD can only eradicate therapy-sensitive tumor cells, it benefits
therapy-resistant cells [82,146]. Subsequently, growth-limiting constraints due to competi-
tion may temporarily vanish and increase the per capita growth rate of the resistant types
(competitive release [50,68,204]). In turn, some experiments show that when treatment is
stalled (drug holiday), resistant types are typically at a disadvantage (cost of resistance [168],
although this is not universal [113]). This evidence suggests that MTDmight be evolutionar-
ily unwise when it promotes treatment-induced resistance in cancer cells. Additionally, there
is evidence for selection for evolvability in tumor cells, e.g., hyper-mutators [44]. Recent
works showed that a game-theoretic approach may help to provide an alternative to MTD,
based on anticipating and steering the cancer eco-evolutionary dynamics in response to the
treatment [88,165].

The aims of this paper are: (1) to discuss the achievements of the existing works on game
theory of cancer and (2) to show the future potential of game theory to understand cancer
mechanisms, inspire novel research, and design better treatment protocols.
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In the remainder of this paper, we first introduce models where the interaction among
cells is explicitly framed as an evolutionary game, with either no or fixed treatment (Sect. 2).
Second, we will review cancer models where the physician, as a rational player optimizing
their own objective(s), enters the evolutionary game (Sect. 3). Third, we will focus on the
clinical aspects of EGT therapy models (Sect. 4). We close with a discussion on limitations
and future steps in game theory of cancer and its treatment (Sect. 5).

1.1 Mathematical Background

Cancer is a Darwinian disease, in which cancer cells play an evolutionary game between each
other within the dynamic environment of the tumor that also includes diverse normal cells
(stroma) [21,84,181]. The cells may have different types, varying in their (possibly evolving)
level of resistance to a particular treatment or treatment combination [77,84,124,164]. Here,
we do not specify whether these types are just phenotypically or also genetically different—
that is why we confine ourselves to the term “types”, as opposed to “clones” used in some
literature. For some cancers, such as metastatic Castrate-Resistant Prostate Cancer (mCRPC)
and Estrogen Receptor Positive (ER+) breast cancer, cancer types differing in their resistance
levels with respect to a particular treatment have been identified both in vitro and in vivo
[67,73,83,207]. For less researched cancers, such types have not been established yet and
it may be that the level of resistance varies per cancer cell and/or evolves in response to
treatment [151].

Therefore, in themost general game-theoreticmodel of cancer, the resistance of a particular
cancer cell type to a particular treatment is a continuous evolving heritable trait. Then,
individual cancer cells are identified by their value of this trait, which is subject to natural
selection. Here, we will adopt theDarwinian dynamics approach to describe such a situation,
expanding the original model of Vincent and Brown into more dimensions [186].

A vector x(t) = (x1(t), . . . , xn(t))T defines population densities (population size) of
cancer cells of types T = {1, . . . , n} at time t . The fitness of cancer cells of type i ∈ T
may depend on the densities and traits of all cancer cell types. Consequently, the ecological
dynamics of cancer cells of type i are given by

dxi (t)

dt
= xi (t) · Hi (U(t), x(t),m(t)). (1)

Here, U(t) = (
ui j (t)

)
is a resistance matrix, where ui j (t) ∈ [0, 1] indicates the resistance

level of cancer cells of type i , in response to treatment j ∈ � = {1, . . . , p}. Moreover,
m(t) = (m1(t), . . . ,mp(t))T is the vector of doses for each therapy option from the treatment
set �. Without loss of generality, we can assume that m j (t) ∈ [0, 1] for all j ∈ �, where
m j (t) = 1 and m j (t) = 0 correspond to the MTD and no dose of treatment j at time t ,
respectively. In this formulation, we see that the per capita growth rate Hi (U(t), x(t),m(t))
of type i may give rise to both density and frequency-dependent dynamics, as it depends on
x(t) explicitly.

Vincent and Brown developed the concept of a fitness generating function (G-function) as
away to describe the fitness ofmany species (or types) bymaking use of a singlemathematical
expression [186]. A functionG(v,U(t), x(t),m(t)) is said to be a fitness generating function
(G-function) of the population dynamics (1) if

G (v(t),U(t), x(t),m(t))|v(t)=(ui1(t),...,uip(t)) = Hi (U(t), x(t),m(t)), (2)
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where v is a virtual vector variable. Replacing v j in the G-function with ui j for each j ∈ �

yields the fitness of an individual cell of type i in a population defined by the sameG-function.
Using the G-function, we can rewrite Eq. (1) as

dxi (t)

dt
= xi (t) · G (v(t),U(t), x(t),m(t))|v(t)=(ui1(t),...,uip(t)) . (3)

Cancer types with a higher per capita growth rate will persist in the population. Therefore,
the dynamics of the evolution of resistance ui j of the cancer cell of type i in response to a
treatment j (evolutionary dynamics) are given as

dui j (t)

dt
= ki j

∂Hi (U(t), x(t),m(t))

∂ui j (t)
, (4)

which can be rewritten using the G-function as:

dui j (t)

dt
= ki j

∂G (v(t),U(t), x(t),m(t))

∂v j (t)

∣
∣
∣
v(t)=(ui1(t),...,uip(t))

. (5)

Here, ki j is a speed parameter, which is ameasure of heritability and additive genetic variance,
in line with Fisher’s fundamental theorem of natural selection [69]. This speed parameter
may be influenced by many other factors, like mutation rates, population size, population
structure and the underlying genetics of inheritance. For example, in adaptive dynamics, ki j
is linearly increasing with population size and stochastic with respect to other parameters
(canonical equation of adaptive dynamics [61,86,95,130]). For the sake of simplicity, when
modeling (5), it is often assumed that ki j is the same constant for all i and j , while one
could easily imagine that ki j varies in time and may be a (likely nonlinear) function of xi (t).
In the remainder of this paper, we will not write out the time-dependence explicitly; thus,
we shall use U, x and m instead of U(t), x(t) and m(t), respectively. Equations (3) and (5)
constitute the Darwinian dynamics, describing the ecological and evolutionary dynamics of
cancer cells, respectively.

If the ecological dynamics (3) converge to a stable equilibrium x∗ ≥ 0, we call x∗ an
ecological equilibrium. Each combination of resistance and treatment strategies (U,m) may
have an associated vector of stable population sizes x∗, with x∗

i ≥ 0 ∀i ∈ {1, 2, . . . , n}. A
genericUmay have one or more values of x∗, or no equilibrium associated with it, depending
on the G-function. Moreover, even if we assume that the ecological equilibrium exists for any
choice ofU andm, it may be that only a subset of possible values ofU andmwill correspond
to positive equilibrium population sizes. Depending upon the model, its parameters and the
strategiesU andm, there will likely be an upper limit to the number of types that can co-exist
at positive population sizes [90].

Solved together for m fixed at particular values, Eqs. (3) and (5) often determine an
equilibrium solution for x(m) and U(m), which we will denote by x∗(m) and U∗(m),

respectively. The nonzero equilibrium values of x∗
i (m) and their associated strategies(

u∗
i1(m), . . . , u∗

i p(m)
)
form a ‘coalition’ of strategies. If, for a particular choice ofm, these

strategies resist invasion by other mutant strategies, they are called Evolutionarily Stable
Strategies (ESSs) with respect to treatment m [100]. A necessary condition for an ESS is
that the G-function maximizes G with respect to v at the corresponding x∗. Further stability
properties of the ESS can be analyzed (e.g., convergence stability or neighborhood invasion
stability [10,11]).
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In Sect. 2, we will consider existing models of cancer without treatment and those that
consider a predefined fixed treatment. Such treatments may administer a constant dosem or,
for example, pause treatment when the total tumor population is below a certain predefined
threshold, and re-administer it again once the population of tumor cells recover to its initial
size. In Sect. 3, we will consider situations where the physician enters the ‘game against
cancer’ as a rational player, i.e., a player optimizing certain objective(s) with respect to their
treatment strategies, as opposed to executing an a priori decided treatment strategy.

2 Game Theory of Cancer Without Treatment or with a Predefined
Treatment Regimen

In the literature of EGT models of cancer with no or predefined treatment m, the authors
either focus on finding the ESS resistance strategy U∗ at the ecological equilibrium x∗, or
they analyze transient dynamics toward (x∗,U∗) for particular (predefined) choices ofm, to
see what choices of m are better than others in terms of some prespecified metrics, such as
progression-free or overall survival.

We will first present research that utilizes both Eqs. (3) and (5), followed by models that
somewhat simplify the two equations by using afitness and a competitionmatrix, respectively,
and spatial models.

2.1 Models with Eco-evolutionary Dynamics Described by Equations (3) and (5)

Reed et al. introduce the following G-function

G = r
(
(1 − v1)(1 − v2)(1 − v3) − x

K

)
− μ1(v1) − μ2(v2) − μ3(v3) (6)

in their commentary on treating pediatric sarcomas [153]. Here, vi denotes the treatment-
induced resistance to treatment i ∈ {1, 2, 3}, r is the intrinsic growth rate of the tumor cells,
and μi (vi ) = mi

ki+bivi
is the treatment-induced death rate for treatment i . In μi (vi ), mi is the

base treatment-induced death rate of the tumor cells, ki denotes innate resistance, and bi gives
the benefit gained by accumulating resistance toward drug i . Reed et al. adopt the framework
given by (3) and (5) with a G-function defined by (6) to analyze possible strategies to combat
the pediatric sarcoma, motivated by the theory of extinction from ecology, recently discussed
in the oncology literature as well [78,85,153].

Motivated by numerical simulations on different treatment regimens, the authors suggest
that when a cure for pediatric sarcoma is an achievable outcome, the first strike (standard
of care) therapy should be either augmented, or closely followed with diverse second strike
therapies. They hypothesize that application of the “first-strike” and “second-strike” therapies
may improve the standard of care, which typically relies on continuous MTD therapy with a
drug or drug combination until disease progression (or unacceptable toxicity for the patient),
or no therapy at all if the disease is in remission.

In contrast, when it is believed that a cure is unachievable, Reed et al. propose the adaptive
therapy protocol used by Zhang et al. for metastatic castrate-resistant prostate cancer, which
we will discuss in Sect. 2.5 [153,206].
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2.2 Replicator Dynamics with Fitness Matrix

The simplest and often very intuitive game-theoretic cancer models are those where the
fitness of cancer cells is given by a fitness matrix. These models typically assume that the
cancer cells engage in pairwise interactions and, as a result of these interactions, the cells
may reproduce, generating offspring of the same type as the parental cell (although other
interpretations are also possible [109,113]).

Let ai j be the expected number of offspring generated by a cancer cell of type i interacting
with a cell of type j . Alternatively, if ai j ∈ [0, 1], it can define the probability of a cell of type
i producing an offspring of its own type when interacting with a cell of type j . If we have
n types of cancer cells and we know ai j for all i, j ∈ {1, . . . , n}, we can construct an n × n
fitness matrix A = (ai j ). The population (ecological) dynamics of cells of different types
as proportions, q, instead of densities, x, are commonly described by replicator dynamics
[25,26,109,113,115,172,173,194], where qi = xi∑n

i=1 xi
is defined by

dqi
dt

= qi
(
(Aq)i − qT Aq

)
. (7)

Here, the per capita growth rate of cancer cells of type i is given by their expected pay-
off (fitness) (Aq)i minus the mean fitness of the entire population qT Aq. This fitness is
frequency-dependent [49,112] and captures non-cell-autonomous effects that are central to
the ecology of cancer [65,113,125].

The replicator dynamics represent a special case of (3) and (5) as it considers population
(ecological) dynamics only in terms of proportions and does not consider the evolutionary
dynamics of different types of cancer cells. The latter point implies that it fits within the
framework set by Eq. (3) with the G-function defined by (Aq)i − qT Aq, where trait U
simply does not evolve. The dynamics of frequencies qi with i = 1, . . . , n are restricted to
the n-dimensional simplex, i.e.,

∑n
i=1 qi = 1.

As shown by Zeeman, any ESS of matrix A is an attractor (stable equilibrium) of the
replicator dynamics (7) [203]. If such an ESS in tumors exists, reaching it using available
therapies could provide a means for achieving long-term stabilization of tumors and a signifi-
cant increase in progression-free and overall survival [56,113,194].However, it is important to
be aware of the timescales involved and that the equilibria might not be reached [49,111,112],
for example due to ecological constraints on population size [87].

One of the first models that defines the competitive interactions of cancer cells via a fitness
matrix following (7) was called ‘Go-vs-Grow game’ as introduced by Basanta et al. [24].
This model was promptly extended to include glycolysis [26]. Here, the interaction between
three cancer cell types of invasive (Go), autonomous growth (Grow) and glycolytic (GLY)
types was introduced and it was analyzed for how different parameters in the fitness matrix
A influence the game characteristics and ESSs [26]. The main outcomes of this analysis are
that an invasive cancer type is more likely to evolve after the occurrence of the glycolytic
type, and that the therapies increasing the fitness cost of switching to anaerobic glycolysis
might decrease the probability of the emergence of a more invasive cancer type. The follow-
up work includes stromal cells interacting with different types of cancer cells and their role
in promoting cancer invasiveness [25]. Dingli et al. showed that targeting the interactions
between the tumor and the stromal cells, so that the latter outcompete the former ones, can
be a more promising approach, compared to targeting the cancer cells directly [64]. Other
examples of cancer games with the fitness defined by a matrix are the cooperative ones,
following the paper of Axelrod et al. summarizing evidence of cooperation among cancer
cells [21].
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2.3 Estimating Parameters of the Fitness Matrix

Although the above works modeled the interactions between cancer cells of different types
and their environment as a fitness matrix, the parameters of these matrices were not directly
measured, neither in vivo nor in vitro. To remedy this, Kaznatcheev et al. introduced a
technique to directly estimate parameters of the fitness matrix of replicator dynamics from
data measured in vitro [113]. They studied interactions of different cancer cell types in co-
cultures of non-small cell lung cancer (NSCLC) cells [113]. The cancer cell types included
those sensitive (parental) and resistant to the anaplastic lymphoma kinase inhibitor alectinib.
With two cell types, the replicator dynamics describing the change in frequencies of the
parental, q , and resistant, 1 − q , cancer cell types in the population, become

dq

dt
= q(1 − q) ((a12 − a22) (1 − q) − (a21 − a11) q) , (8)

with a fitness matrix A = (
ai j

)
. Kaznatcheev et al. estimated the entries of the fitness matrix

A in Eq. (8) from the growth data of a series of specifically designed in vitro experiments
across four different environmental conditions corresponding to the presence or absence of
targeted therapy and the presence and absence of cancer-associated fibroblasts [113]. They
showed that the games played by the population in vitro produce two qualitatively different
dynamics regimes, i.e., that the dynamics (8) switch the type of game being played by the
population in vitro from a game they term a ‘Deadlock game’ to a game they term a ‘Leader
game’, based on the presence or absence of drug and/or fibroblasts.

While therapy optimization was not the goal of this study (in fact, therapy eventually
failed for all considered cases), Kaznatcheev et al. provided the game assay as a method to
estimate the entries in the fitness matrix from in vitro data [113]. This allows the physician
to anticipate treatment-induced eco-evolutionary responses of cancer cells even before the
treatment is applied in order to steer the eco-evolutionary dynamics of cancer cells during
the course of the treatment [113,164]. Subsequent work focused on quantifying competitive
release in NSCLC [68] and extended the original game to a game with three types of cancer
cells [34]. A similar method was used to observe host-parasite-like interactions between
cancer cell types due to paracrine behaviors [142].

2.4 Replicator Dynamics with Nonlinear Fitness Functions

Although the system studied by Kaznatcheev et al. is well served by replicator dynamics
with fitness given by the linear function (Aq)i , their method can also be used to estimate
parameters for nonlinear fitness functions, i.e., a generalization of (7)

dqi
dt

= qi
(
fi (q) −

n∑

j=1

q j f j (q)
)
, (9)

where the fitness functions fi are not necessarily linear [113].
This case of nonlinear fitness functions has generated extensive theoreticalwork in a public

goods game, where cells can be producers (cooperators) or free-riders on shared resources
produced by the others (defectors) [16]. Themost relevant cases for cancer are the production
of growth factors like vascular endothelial growth factors (VEGF) [12,159], the production
of hostile environments like acidity due to the Warburg effect [13,14,46], or the coupling of
both [115]. Archetti et al. empirically estimated parameters of this nonlinear public goods
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game for neuroendocrine pancreatic cancer cells that produce insulin-like growth factor II,
which supports proliferation and evasion of apoptosis [16,17].

When the public good of VEGF production is coupled with the public good of tumor
acidity, Kaznatcheev et al. showed that targeting the most common cancer cell type through
MTD may lead to a worse long-term outcome for the patient than targeting less common
types [115].

2.5 Lotka–Volterra Models

As original replicator dynamics (7) assume that
∑n

i=1 qi = 1, extensions have been made to
capture situations with a varying total population size. Such extensions involve fictitious free-
space strategies [108,192], but also more general dynamics [101,123,186]. A relatively large
body of literature models interactions between cancer cells of different types and/or interac-
tions between cancer cells and the environment through the Lotka–Volterra (LV) competition
equations and their extensions [30,55,75,206]. TheLVequationswere proposed separately by
Lotka and Volterra to describe competition in one set of models and predator-prey dynamics
in another one [120,189]. Here, we restrict ourselves to the competition models.

While initially the LV dynamics described interactions between two species only, they
can be expanded to model interactions of cancer cells of n types. Moreover, it is possible
to convert the replicator dynamics for n types into the LV model with n − 1 types and vice
versa, by converting the fitness matrix A into the competition matrix of the LV model and
maintaining the same stable equilibria (attractors). The proof of this ESS equivalence can be
found in [100] and [37]. The attractors of the LV dynamics correspond to the attractors of
the replicator dynamics (7) and may correspond to the ESSs of the matrix A, as discussed
before. For instance, the ESSs of the replicator dynamics model of mCRPC of You et al. in
[199] are the same as the ESSs of the LV model in [206]. The LV model describes ecological
dynamics (3), while the evolutionary dynamics are trivial as the resistance trait does not
evolve and therefore corresponds to (5) with the right-hand side of each equation equal to 0.
Alternatively, only the resistant cancer cell type may have evolving resistance, and hereby
carrying a ‘hurdle of evolvability’ [151].

Stable polymorphic equilibria may exist within tumors [22,52]. If the dynamics of the
tumor can be described via Eq. (7) or other dynamics leading to ESSs, then these poly-
morphic equilibria will correspond to ESSs [187]. Furthermore, polymorphic stability in
heterogeneous tumor cell populations has been shown to exist explicitly for some cancers
[17,73].

Likely, the most influential LV competition model of cancer dynamics is that of Zhang et
al. [206]. Thismodel has been derived from the replicator dynamics in [199], while preserving
their ESSs. Subsequently, themodel was expanded so that it allowed formodeling abiraterone
acetate treatment (further referred to as “abiraterone”), assuming that this treatment, applied
together with androgen deprivation therapy (ADT), decreased the carrying capacity of cancer
cells producing testosterone. Moreover, under androgen deprivation, the carrying capacity
of cancer cells dependent on testosterone was made a linear function of the density of the
testosterone producing cancer cells. As such, the originally noncooperative game between
the three cancer cell types includes also cooperative elements. The LV formulation has the
advantage of including population dynamics providing a more realistic modeling framework.
This is because treatment aims at decreasing tumor burden while keeping the proportion
of treatment-resistant cancer cells low. Replicator dynamics models typically capture only
the latter, unless they include birth–death processes. The LV competition model described
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in [206] formed the basis of the adaptive treatment protocol used in a successful clinical
trial (NCT02415621) for metastatic Castrate-Resistant Prostate Cancer. In this trial, serum
Prostate-Specific Antigen (PSA) is considered as a measure of tumor volume and used as the
basis for response assessments. The patients enrolled in the trial received abiraterone at MTD
until their initial PSA levels dropped to half and resumed only when the PSA returned to its
initial value. In this way, patients had individual treatment regimens with varying length of
cycles with and without treatment.

Zhang et al. achieved this by simulating SoC with MTD of abiraterone combined with
ADT, using clinically motivated parameters, to show how SoC strongly selects for the
testosterone-independent cancer cell type, due to competitive release [50,204,206]. This
means that resistant cancer cells eventually outcompete other cells. The above described pro-
tocol for adaptive therapy assumes that, in the absence of treatment, resistant cells are less fit
than sensitive cells [206] (standard assumption on the fitness costs of resistance in ecology
[1,171]). This assumption can, however, be relaxed, as shown in [188]. Both the simulated
adaptive therapy and the clinical trial treatment regimen applied abiraterone together with
ADT until the tumor volume dropped below half of its initial value, as indicated by the blood
serum level of PSA. From that moment on, abiraterone was discontinued, until the tumor
volume recovered to its initial level. Then, the cycle was repeated. This has two anticipated
effects:

1. Cancer cells are not dominated by the drug-resistant cell type.
2. The cumulative drug dose is lower.

An interesting finding is that a lower initial proportion of sensitive cells leads to longer
periods of time until the PSA reaches its initial level. Adaptive therapy also results in a
gradual increase in the resistant cells from cycle to cycle, but this happens much slower than
with the SoC.

In summary, Zhang et al. demonstrated that this adaptive therapy regimen leads to a longer
time to progression (TTP) than SoC therapy under any initial conditions [206]. With their
simple but effective approach, the adaptive therapy is not yet completely optimized. Instead,
the conditions to pause and restore the abiraterone treatment are rules of thumb related to
the current tumor volume. The corresponding clinical trial has shown that patients’ TTP
increased remarkably with this regimen. Recent updates of this clinical trial (NCT02415621)
are consistent with the initial findings [206,207]. The adaptive therapy protocol prolonged
TTP with less than half of the cumulative drug dose and appears to be successful for all
patients that were initially responsive. Currently, the patients’ median TTP has nearly tripled.
Conversely, most patients receiving the SoC have progressed.

Cunningham et al. adopted optimal control theory to optimize the abiraterone therapy
from [206] with respect to different criteria, such as minimizing the variance of the total
tumor burden [54]. This will be discussed in more detail in Sect. 3.

Meanwhile,West et al. investigated amulti-drug approach for mCRPC [196]. For simplic-
ity, they limited themselves to a two-drug approach where the secondary drug is supposed to
suppress the sub-population which is resistant to the primary drug. Accordingly, they consid-
ered the treatmentwith docetaxel (chemotherapy) and abiraterone, considering also a cell type
which is resistant to both docetaxel and abiraterone.They conducted simulations parametrized
on patients that progressed in the mentioned clinical trial by Zhang et al. (NCT02415621)
and reached the conclusion that the administration of docetaxel together with abiraterone
would have significantly increased TTP [207]. Based on the first Zhang’s trial, more tri-
als on adaptive therapy have been initiated (e.g., in melanoma—NCT03543969, in thyroid
cancer—NCT03630120, and also the second Zhang’s trial in mCRPC—NCT03511196).
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There are other examples of game-theoretic models guiding clinical trials. For example,
West et al. consider a trial on stage 2 and 3 estrogen receptor-positive breast cancer and
treatment with an aromatase inhibitor and a PD-L1 checkpoint inhibitor combination, which
attempts to lower a preoperative endocrine prognostic index (PEPI) that correlates with
relapse-free survival [195]. They adopted a game with a 4 × 4 fitness matrix, which was
then embedded in an ecological model of tumor population-growth dynamics. The resulting
model predicts evolutionary and ecological dynamics that track changes in the PEPI score.
By comparing different possible treatment regimens, they proposed a therapy planwith a one-
month kick start with the immune checkpoint inhibitor followed by fivemonths of continuous
combination therapy as the most effective therapy choice. Current practice either uses the
drugs in combination or just uses the aromatase inhibitor.

LV models can be extended to include other cells interacting with the cancer cells, such
as T-cells (as predators), as shown in [30,149]. Alternatively, one may be interested in the
role of non-immune cells, such as cancer-associated fibroblasts that may inhibit or facilitate
the fitness of all or just some types of cancer cells [113,197]. The parameters of LV models
can also be inferred directly from in vitro experiments following a procedure similar to the
game assay [142].

2.6 Spatial Game-Theoretic Models and RelatedWork

There is evidence that spatial interactions among cancer cells and/or interactions of cancer
cells with their environment influence intra-tumor heterogeneity, the spatial properties of
tumors, and patient prognosis [124].

In space, tumors can be viewed as complex evolving structures, consisting of cancer
cells, normal cells, blood vasculature, inter-cellular spaces, and various nutrients, such as
oxygen and glucose [80,129]. Cancer cells, often of distinct types, compete for space and
nutrients and engage in direct interactions. They both contribute toward and are affected
by their microenvironments, within which they consume available resources, to proliferate
and survive [66]. Within these neighborhoods, there are eco-evolutionary feedbacks where
limiting resources impact the total abundance of cancer cells, and interactions between tumor
cells influence the frequency of cell types. Moreover, spatially explicit data (e.g., biopsies,
histological samples and magnetic resonance imaging (MRI)) are becoming more and more
available [163,193]. Pathologists often measure and score spatial distributions of cancer
cell types, vasculature, immune cells, and other tumor properties [147,208]. Also, cancer
biologists increasingly recognize the ubiquity of spatial heterogeneity within tumors [32,
124,170].

For these reasons, spatially explicit models have increased in popularity. However, one has
to be careful in inferring and interpreting game parameters from measurements in spatially
explicit systems [109,110].

Spatially explicit EGT cancer models can take the form of diffusion processes framed
as partial differential equations [180] or models can be agent-based [48,121,122]. In some
special cases, it is possible to use analytic techniques to transform and solve spatially explicit
EGT models in the same way as the implicit models we described above [110,114,137].

In graph-based models, the cancer cells may be represented on vertices of a network, such
as Voronoi graphs [15], motivated by the claim that real biological tissues appear closest to
those [53,118]. Alternatively, individual cells may occupy a space on a spatial grid described
as squares or hexagons [148,175]. Agent-based models can also consider continuous space
where the cancer cells are represented by continuously varying spatial coordinates in one,
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two or three dimensions, often extending the replicator dynamics (7) into spatially explicit
scenarios [24,74,199,200]. In this case, the interactions between the different cell types are
typically more or less local and depend on how cells interact with each other, how much they
can move, how far do density-dependent effects with neighbors extend, and/or how far to
place a focal cell’s daughter cell.

For example, You et al. modeled the interaction of mCRPC cells under ADT as an evo-
lutionary game with three types of cancer cells (cells requiring testosterone, cells producing
testosterone as a public good, and cells independent of testosterone) [199]. A fitness matrix
defined a focal cell’s probability of proliferating when interacting with other cells. The ESSs
and transient dynamics of the non-spatial version of this game were compared to the transient
dynamics and eco-evolutionary equilibria of a spatial variant of this game. The spatial version
was an agent-based continuous-space model with a birth-death process. Only when interac-
tions between cancer cells of the spatial model were global did the resulting evolutionary
equilibria correspond to the ESSs of the original nonspatial game.

3 Game Theory of Cancer Treatment

From a game-theoretic perspective, the physician is not a real player when the treatment
protocol is decided a priori. This is the case for continuous MTD, metronomic therapies,
and adaptive therapy when the therapy switching rules are decided beforehand. This was the
case in the models introduced in Sect. 2.

Here, we consider the case where the physician becomes a true player in the game. When
viewing cancer as an evolutionary game between the physician and the cancer cells, a natural
question arises: Can we drive cancer into a stable state, corresponding to either a cure or a
chronic disease, which is not too harmful for the patient and can be maintained at a stable
tumor burden? This concept of stability corresponds to the Evolutionarily Stable Strategies
introduced in Sect. 2. Alternatively, if cure or stable tumor burden cannot be achieved,
a relevant question is whether we can maximally delay undesirable states (e.g., too high
tumor burden or too high level of resistance), by more dynamical treatment protocols than
currently used as SoC. To this aim, we introduce an objective function to be optimized

by the physician, Q (U(·), x(·),m(·)) , which varies with m(·) def= [m(t)]t∈[0,T ] , U(·) def=
[U(t)]t∈[0,T ] , x(·) def= [x(t)]t∈[0,T ]. We can refer to this function as the Quality of Life
function of the patient. The physician’s goal is to find the optimal m∗(·) which optimizes
such an objective, i.e., find

m∗(·) = argmax
m(·) Q (U(·), x(·),m(·)) , (10)

where Q has been decided by the physician and patient a priori. In such a situation, cancer
cells are playing an evolutionary game with each other and their eco-evolutionary dynamics
can still be described by Eqs. (3) and (5). However, they become followers in a Stackel-
berg (i.e., leader-follower) game, with the physician as a rational leader [164]. Since the
followers are evolutionary players, we call these types of games Stackelberg evolutionary
games (SEGs), in accordance with recent research on this topic [156,158]. It is noteworthy
that the physician, as the only rational player in this SEG, can anticipate and steer the eco-
evolutionary response of the cancer cells defined by (3)–(5), while the cancer cells can only
adapt to the actions already taken by the physician. The theory of Stackelberg games was
originally devised in economics to conceptualize interactions with an imbalance in control or
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Table 1 Instances of Stackelberg evolutionary games (SEGs) of cancer treatment considered in this review

Physician

steering to (x∗,U∗) Another objective

Cancer dynamics Transient at (x∗,U∗) Section 3.1 Section 3.2

– Section 3.3

power, e.g., the competition between a market leader and follower [27,97]. Its extension into
SEGs not only applies to cancer treatment, but also to other problems involving a rational
player interacting with an evolutionary system such as pest management, fisheries manage-
ment, or the control of infectious diseases [39,40,96,158].

Here, we divide existing literature into two categories:

1. SEGs with cancer cells in eco-evolutionary equilibria: Here, it is assumed that an equilib-
rium x∗ and ESS U∗ is reached for any given choice ofm. Under this condition, we look
for a constantm that maximizes Q(U∗(m), x∗(m),m).

2. SEGs where the cancer cells are assumed to be in their transient phase, with their eco-
evolutionary dynamics driven by Eqs. (3)–(5).

When it comes to the objective of the leader,we identify two important categories of literature:

1. SEGs where the leader aims at steering the cancer cells into their eco-evolutionary equi-
libria, assuming application of a constant dose once such an equilibrium is achieved. Here,
the goal for the patient is not cure. The strategy becomes “treat to contain”, similarly to
what happens with chronic diseases.

2. SEGs with different objectives for the leader, such as minimization of the tumor burden,
minimization of its variance, or maximization of the TTP.

In Table 1, we summarize these options and indicate the sections where each is discussed.

3.1 Physician Steering Cancer into an ESS

Most cancer biologists and many modelers see cancer as only transient dynamics with little
focus on the idea of reaching an equilibrium (U∗, x∗) of its eco-evolutionary dynamics,
and even fewer within an explicit game-theoretic setting. However, there is evidence that
eco-evolutionary dynamics in cancer cells do have attractors whether reached or not [67,83].
Theseworks report that if these equilibria are reached, cancer can be containedwith a constant
dose of treatment, lower than the MTD. Martin et al. and Carrère suggested that reaching
the ESSs of the cancer dynamics may be a successful strategy for keeping the patient with
a metastatic cancer alive [45,123]. Cunningham et al. focused on steering mCRPC into an
eco-evolutionary equilibria, for the model from [206], where one competition coefficient
was increased to a value above 1 [56]. This was based on a study, demonstrating that the
competition coefficients among different cancer cells of different types may often be above 1
[73]. Cunningham et al. first adopted a numerical optimal control approach, with a forward-
backward sweep method to steer mCRPC to a sustainable eco-evolutionary attractor [56].
While they showed that reaching such an attractor is feasible for most patients, they focused
also on a rules of thumb approach to reach these attractors if they are unknown, without
complicated optimization of the treatment protocols. They demonstrated that dose titration,
i.e., gradual increase in treatment dose, can lead to a sustainable ESS.
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3.2 Physician Optimizing Objectives Other than Reaching the ESS,While Cancer
Cells are in Their Transient Phase

Martin et al. were probably the first authors who applied optimal control in cancer treatment,
with focus on various objectives for the physician [123]. They considered a population of
drug-sensitive and drug-resistant cancer cells, where the goal was to slow the growth of drug-
resistant cells, which also served to maximize patient survival time. Three types of tumor
growth models were investigated: Gompertz, logistic, and exponential. For each model, they
adopted an analytical optimal control approach to find feedback controls that specify the
optimal tumor mass as a function of the size of the resistant sub-population [27,33,150].
With exponential and logistic tumor growth, the tumor burden during therapy had little
impact on survival times. With Gompertzian tumor growth, therapies maintaining a large
tumor burden doubled or even tripled patient survival time. A revolutionary finding of this
paper was that maintaining a high tumor burden is optimal for Gompertzian tumor growth
and close to optimal for exponential and logistic tumor growth. Hence, it is not necessary
to know the precise growth characteristics of a tumor to schedule anticancer drugs. Their
results also implied that trying to contain the tumor may be the best strategy for keeping
patients alive. A growing literature using optimal control to design better treatment strategies
has emerged as a follow-up to this work [5,116,138,185].

Orlando et al. modeled cancer cells trading off resistance between two different drugs
with the physician minimizing the tumor burden through optimal control theory [144]. They
showed that a relatively static treatment using both drugs at equal levels is optimal when
cancer cells benefit from specializing in response to a single drug rather than a generalist
resistance strategy, while a more dynamic treatment with the concentration of drugs varying
over time is more effective when the cancer cells adopt a generalist resistance strategy [144].

Carrère focused on in vitro tumors, consisting of cells that were sensitive or resistant to
a certain drug [45]. The setting was similar to [123], but with parameters validated by an in
vitro study [45]. They adopted optimal control theory and showed analytically that to reduce
the tumor volume while preserving its heterogeneity, one needs to apply lower than the MTD
treatment dose.

Warman et al. focused on a fitness matrix model of the vicious cycle of metastatic prostate
cancer cells co-opting bone remodeling [192]. The authors introduced fractionated follow-up
therapy—chemotherapywhere dosage is administered initially in one solid block followed by
alternating smaller doses and holidays—and showed that it is better than either a continuous
application or a periodic one.

In [88],Gluzman et al. optimized treatment in a public goodsmodel of interactions between
glycolytic and acidic cells, introduced by Kaznatcheev et al. [115]. The total drug usage and
time to recovery were optimized by solving the corresponding Hamilton–Jacobi–Bellman
equation, similar to [56]. They concluded that the optimal treatment policies can significantly
decrease the total amount of drugs prescribed, while also increasing the fraction of initial
tumor states from which recovery is possible. This paper supports the claim that lower doses
of treatment will be more effective for containing tumors than MTD.

Cunningham et al. optimized abiraterone treatment from [206] using boxed-constrained
optimized [54]. They considered various objectives for the physician and show that mini-
mization of the tumor volume variance, thus keeping the tumor burden as stable as possible,
may be the best objective for keeping the patients from progressing while not applying too
much drug.
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Fig. 1 Illustration of the difference between Stackelberg equilibrium, Nash equilibrium, andMaximum Toler-
able Dose in the cancer treatment game. The solid line represents the best response of cancer cells (followers)
to any possible scalar treatment level m ∈ [0, 1], the dotted line the best response of the physician (leader) to
any possible resistance level u ∈ [0, 1]. The panel on the left shows the cancer cells population at equilibrium,
while the panel on the right shows the quality of life of the patient for the same situation. In the green area, the
population of cancer cells goes extinct, while in the red area it grows above the survival threshold of the patient
and as such, it is incompatible with life. The yellow area represents the situation in-between, with different
levels of quality of life. Three different outcomes of the game are presented: ‘MTD’ corresponds to the case
where the physician plays a fixed Maximum Tolerable Dose strategy, ’N’ corresponds to adjusting the dose
according to the resistance rate of cancer cells, until a Nash equilibrium is reached, and ’S’ corresponds to
anticipating the cancer cells’ resistance strategy. Adapted from [157] (Color figure online)

Itik et al. introduced a model describing competition between normal cells and tumor
cells [105]. The model also includes the effects of the immune system. They proposed a
linear time varying approximation technique to construct an optimal control strategy for the
nonlinear system which is valid not only within small perturbations around the equilibrium
point, but also for global dynamics of the system. The objective was to eliminate the tumor
cells while minimizing the amount of drug. It should be noted, that as evolution of resistance
is not included in the model, it is likely more relevant for treatment of early stage cancers,
as opposed to advanced and metastatic cancers.

3.3 Physician OptimizingVarious Objectives,While Cancer Cells Dynamics are at ESS

Once the ecological equilibrium x∗ and the ESS resistance strategies U∗ are reached, a
constant dose m∗ can keep the cancer dynamics contained [156,157,165]. Finding such
equilibria for cancer eco-evolutionary dynamics andm∗ for maximizing the patient’s quality
of life was the main goal of [156] and [158]. For monomorphic cancer cell populations, less
treatment leads to a higher quality of life (Fig. 1; from [157]).
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Their approach considered a monomorphic population of cancer cells, with evolving
resistance as a scalar trait. However, the fact that MTD leads to an outcome which is not
better and usuallymuchworse in terms of quality of life than theNash equilibrium,which is in
turn not better and usually much worse than the Stackelberg equilibrium, can be generalized
to the situation with vector-valued traits and to the case of a polymorphic population of
sensitive and resistant cells.

4 Clinical Relevance

Application of EGT principles in therapy, in order to anticipate and steer cancer eco-
evolutionary response, is a powerful tool, but relies on our ability to estimate tumor size and
composition prior to treatment. The intra-tumoral evolutionary process leads to sub-clonal
diversification and generates the genetic and phenotypic intra-tumor heterogeneity, which
determines the tumor composition and therefore the evolutionary state [124]. In order to opti-
mize the model parameters, determined by the tumor composition, monitoring of the tumor’s
behavior during therapy is required. At best, this encompasses continuous surveillance of the
total number of tumor cells and their cell type composition. In clinic, the personalized ther-
apeutic strategy then needs to be optimized after every measurement, i.e., after each clinical
visit. Kaznatcheev et al. recently showed how to assess the game played by different cell
types of non-small cell lung cancer cells in vitro [113]. This game changes in response to
different treatment regimens. Due to the in vitro setup, the experiments could be monitored
with relative ease by performing time-lapse microscopy. However, in a clinical setting the
key constraint is the low amount of information available about intra-tumoral evolution and
the speed of evolution during treatment. It is still challenging to identify, quantify and mon-
itor the evolving strategy distribution in heterogeneous tumors. A sufficient technology for
this is yet unavailable; however, several techniques can be proposed which we discuss in the
following paragraphs.

Firstly, tissue biopsies of the primary tumor and of metastases can be sampled to reveal
genetic and phenotypic differences between cancer cell types. Genetic differences are
revealed by genome sequencing, while phenotypic heterogeneity is typically assessed with
histology techniques and proteomics [32]. Nevertheless, tomonitor the cancer cells’ response
to treatment, tissues need to be isolated at the time of initial diagnosis as well as successively
sampled throughout treatment. In the clinic, such repeated biopsies are not easily acceptable,
due to their invasive nature and expense. Such is the case in taking biopsies of disseminated
bone disease in mCRCP patients [72]. Furthermore, often only a fraction of the tumor is
isolated, which does not represent the complete genomic and phenotypic landscape, and the
detection of small lesions and deriving biopsies from them is a major challenge [104,145].

Secondly, an alternative approach is based on liquid biopsies. They consist of several
sources of tumor material including circulating tumor DNA (ctDNA) and circulating tumor
cells (CTCs). The ctDNA is a DNA released by malignant cancer cells, with diagnostic
genetic and epigenetic alterations. Several studies have shown that exome-wide analysis of
ctDNA may contribute to monitoring the evolution of acquired drug resistance and track the
outgrowth of resistant cell types [42,135,136,143]. To be able to use the genotypic informa-
tion obtained from ctDNA, we need to know the relationship between mutations and their
phenotypic impact, i.e., the genotype-phenotype map [4,141]. Predicting what genotypes
will eventually evolve to drive phenotypic resistance remains a significant challenge [63].
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From CTCs, besides genotypic information, phenotypic information about the strategy
distribution can directly be obtained for use in the EGT models. CTCs represent intact,
viable non-hematological cells with malignant features. The resistant CTC populations may
be phenotypically distinct from their precursors in physical size, shape and surface marker
expression. For instance, Tsao et al. detected tumor progression and proliferation of resistant
melanoma cell types by observing surface marker up-regulation from CTCs [183]. They
saw how a widening of the signal distribution detected by spectroscopy, reflected a more
heterogeneous CTC population. In mCRPC, Zhang et al. detected testosterone producing
cells by the presence of CTCs expressing CYP17A1, which is a key enzyme for androgen
synthesis [206,207]. Androgen receptors (AR) can also be detected andmonitored in real time
frommCRPCCTCs. TheAR splice variant 7 was proved to be predictive of resistance to anti-
AR treatment, such as ADT therapy and treatment with both abiraterone and enzalutamide
[8,131,132,166,178]. Additionally, CTCs can be assayed for human epidermal growth factor
receptor 2 (HER2) in breast cancer, which contributes to treatment resistance [51,152]. This
technique may also be applied to display the strategy distribution in other cancer types, when
specific up-regulation or down-regulation of specific surface markers in resistant cell types
occurs.

Taking liquid biopsies and isolatingCTCshas advantages over conventional tissue biopsies
since they are less invasive to the patient. Additionally, it may reflect the heterogeneity of
the tumor more appropriately and it allows continuously monitoring of a patient’s tumor
composition [119]. Nevertheless, the liquid biopsies provide neither spatial information nor
information on the composition of individual metastatic lesions, since the primary tumor
and its metastases are not measured individually. Accordingly, liquid biopsies may contain
a mixture of tumor cells originating from multiple independent lesions. Analyses of primary
and disseminated tumor cells show large differences in genetic variation [167], and CTCs
are unlikely to represent the full spectrum of mutations and differences in protein expression
in tumor lesions since CTC biopsies might only show the ‘tip of the iceberg’ [205]. While
it is better to have this aggregated information as a proxy for the cancer’s evolutionary
dynamics than no information at all, the information found this way can be used to measure
the evolutionary states of different metastatic lesions if multiple metastatic lesions located
at different sites shed CTCs homogeneously or if the variation in the composition of these
lesions is low.This is shown inBRAFstatus concordance in primary andmetastaticmelanoma
[35,36] and colorectal carcinoma and KRAS mutation status in colorectal adenocarcinoma
[60]. Alternatively, one needs to identify the tissue of origin of CTCs by using expression
profiling of organ-specific metastatic features. Studies have shown that certain methylation
patterns are tissue specific, which may serve to determine the source of tumor cells or ctDNA
[117,169].

Thirdly, another approach is blood sampling to measure blood serum markers. These are
biomarkers produced by specific tumor cell types. In studies by Zhang et al., prostate can-
cer volume is determined by assessing PSA levels in the blood, while in the latter research
testosterone blood levels under androgen deprivation are measured [206,207]. The testos-
terone levels are used as a proxy for the amount of testosterone-producing cancer cells.
Nevertheless, whether each tumor cell produces the same amount of PSA might depend on
the sensitivity of the tumor cells to androgen stimulation for the expression of PSA. Some
cell types have been shown to lose sensitivity to androgen and produce even more PSA
than androgen sensitive cell types [59,106]. This feature that differs between prostate can-
cer cell types might provide ways to measure androgen-independent and dependent types
of cancer cells. However, this is again aggregated information combining all metastatic
lesions. A study in melanoma showed a higher expression of BRAF (V600E) oncoprotein in
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vemurafenib-resistant tumor cells compared to sensitive cells. This difference might be used
for parameterizing EGT models of melanoma [174]. For other cancer types investigated in
adaptive therapy studies, there is a lack of reliable biomarkers presented yet.

Fourthly, modern imaging techniques are another emerging approach for gaining tumor
and intra-tumoral metrics. Imaging can provide a holistic view of the entire tumor and since
it is noninvasive, it is suitable for repeated monitoring. Magnetic resonance imaging (MRI)
and computed tomography (CT) can be used to track spatial and temporal patterns of hetero-
geneity. For example, these techniques may reveal tumor habitats such as necrosis, hypoxia
and vascular permeability. Such habitats may select for different cells with varying levels of
responsiveness to therapy [176,177].

Radiomics provide images of tumor habitats which seek correlations between cell pheno-
types and their visual appearance. Quantitative imaging features can include shape, edge to
volume ratio, texture or tissue environment. Such features can be built into predictive models
relating image features to tumor cell types [3,81]. It has already been demonstrated in studies
of patients with glioblastoma multiforme that differences in cancer cell protein expression
within a tumor correlate with regions of varying contrast-enhancement from MRI images
[62,99]. However, before quantitative imaging features can be used for clinical monitoring
of cancer cell strategies, it needs to be ensured that specific imaging features can be linked
to the underlying composition of cell types that differ in their response to treatment.

Positron Emission Tomography (PET), which can be performed along with CT or MRI
scans, provides additional anatomic and spatial information. PET scans can show differential
amounts and patterns of uptake of radiotracers by cells within a tumor. This might provide
the ability to label and quantify the resistant as well as the sensitive cells. For example, the
variability of tumor glycolytic metabolism within the same lesion can be assessed with the
use of 2-flouro-2-deoxy-D-glucose F 18 ([18F]-FDG) PET imaging [28]. Uptake patterns
influence, thus patients’ outcome and thus provide insights into the prevalence of resistant
cancer cells within the tumor. Additionally, PET imaging using fluorodihydrotestosterone F
18 ([18F]-FDHT) permits labelling and detection of androgen receptors [202]. Accordingly,
a combination of [18F]-FDG and [18F]-FDHT PET imaging can identify AR positive and
negative lesions, and therefore the ability to discriminate sensitive and resistant prostate
cancer cell types [71]. A radiotracer to label prostate-specific membrane antibody (PSMA),
a cell surface protein with high expression in prostate cancer cells, is also available for PET
imaging. PSMA is expressed on nearly all prostate cancer cells, and therefore accessible to
labelling [126]. Furthermore, it is under research whether the radiotracer N-succinimidyl-
4-[18F]fluorobenzoate ([18F]-SFB) is suitable for labeling HER2 overexpressing cells in
breast cancer [198].

Modern imaging techniques may hold more promise than tissue and liquid biopsies. This
is because it can reveal relevant information about both the location of the lesions and
the tumor cell types within these lesions, to reveal both tumor eco-evolutionary dynamics
and spatial characteristics. Furthermore, it is noninvasive and overcomes sampling errors of
biopsies. In particular, we propose PET imaging because it can provide insight in both total
tumor mass and the tumor’s cell type composition. Therefore, the discovery of radiotracers,
which are able to classify different tumor cell types, is of uppermost clinical importance.
Nevertheless, current modern imaging studies mostly focus on how tumor metrics and not
cell type composition can be used as a prognostic marker for overall survival, malignancy or
therapy response. For example, Aerts et al. used radiomic data from CT images of patients
with early stage NSCLC and used a response phenotype that can predict a patient’s sensitivity
toward Gefitinib therapy [2]. In order to parameterize the EGT models, all different tumor
cell types in a tumor need to be identified and monitored.
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It may be worthwhile to use newly developed techniques such as organoids [155,184] and
xenografts [41] to measure cell type compositions and protein expression to monitor tumor
evolution and improve our understanding of the eco-evolutionary dynamics. Early preclinical
in vivo studies of adaptive therapy included ovarian cancer cell line xenografts treated with
carboplatin, and MDA-MB-231/luc triple-negative and MCF7 ER+ breast cancer cell lines
treated with paclitaxel. In all cases, adaptive therapy could stabilize tumor volume, though
the underlying sub-populations were not explicitlymeasured [67,83]. In both of these studies,
once initial tumor volume control was achieved, it could be maintained with constant or even
progressively smaller drug doses, suggestive of stable eco-evolutionary equilibria.

Once patient-specific data of tumor cell types are available and monitored, it can be
used to parameterize and optimize the EGT models to guide adaptive therapy protocols
[98]. Subsequent measurements to inform patient specific parameters would then greatly
improve modeling and predictions regarding tumor characteristics [206,207]. After every
measurement, the optimal next step in the adaptive therapeutic protocol could be calculated
and used to stabilize the tumor burden, or may even be steered to create a pathway toward
cure. To compare different mathematical models and seek the optimal cancer treatment, an
optimal control theory approach may suffice [7,47,54,57,133,134,160]. Additionally, model
predictive control (MPC) can use real-time monitored data to update the optimal cancer
treatment. MPC involves model-based control techniques which can update the model and
the optimal treatment schedule with each new clinical measure [134].

Critically, a model for tumor treatment can only be as effective as its associated empiri-
cal methods allow, i.e., in order to parameterize and validate it. Data may be retrospective
(histologies, radiographies, biopsies, etc.) as well as derived frommouse or cell culture stud-
ies. For mapping genotypic or phenotypic data to treatment strategies, traditional statistical
approaches can be used, but opportunities for machine learning and/or artificial intelligence
are evident [43,107]. Furthermore, the in vitro and in vivo competition assay has been shown
to be well suited to feed EGTmodels. Such experiments have already shown that the success
of cancer lineages depends on its frequency and the frequency of all other lineages with other
strategies [23,102,103]. General models, when augmented by measurements, will permit
EGT to inform clinical practice [89].

5 Discussion

We have reviewed the application of EGT in modeling tumor progression with and without
treatment. When considering treatment models, we made a distinction between those with
a priori defined treatment or no treatment vs. those where the physician enters the game
and actively adjusts treatment strategies during the course of the treatment in response to the
metrics of the cancer’s eco-evolutionary state.

We considered evolutionary approaches to treatment and anticipated increased life
expectancy from evolutionary therapy as compared to the traditional therapy, when resis-
tant types are either pre-existing or evolve in response to therapy.

The biggest obstacle to applying EGT treatment methods to clinics remains the difficulty
of estimating the tumor composition which currently can be done only for some types of
cancers. Therapy for such cancers is particularly suited for our approach. They have discrete
cell types and can therefore be understood via simpler EGT models. We reviewed some
approaches for estimating the tumor composition in Sect. 4.
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There is a clear gap between the complexity of the models that we introduced by (3) and
(5), with a resistancematrixU, and existingmodels, where either scalar or vector-valued traits
are considered. We could find no research where one actually considers the resistance level
of each known cancer type to each possible treatment. In all research we reviewed, resistance
was either a single evolving trait of a monomorphic cancer population, a strategy within a
polymorphic cancer population with one treatment, or multiple strategies of a polymorphic
population with multiple treatments, where the resistance to these treatments does not evolve
according to (5) but represents discrete and fixed strategies. The effects of these modeling
assumptions (monomorphic or polymorphic population) and how they impact the superiority
of adaptive therapy over continuous therapy with MTD have been recently investigated by
Pressley et al., where time to progression for monomorphic and polymorphic models was
compared between adaptive therapy and MTD [151]. The most general form of the cancer
model, given by (3) and (5), has recently been used byReed et al. tomodel pediatric sarcomas,
where tumor growth is suppressed by multiple drugs, toward which resistance is evolving
(e.g., vinorelbine, dactinomycin, cyclophosphamide) [153].

Most commonly used replicator dynamics and LV equations describe only one of the
Eqs. (3) and (5). There is a rich theory for both, presumably as these models are simpler than
the most general ones.

Some topics are not addressed in this paper that may become relevant for the future
use of game theory for cancer and its treatment. For example, we did not specify whether
the cancer cells’ types correspond to genetic or non-genetic traits (e.g., epigenetics; [161]).
Generally, we believe that this does not influence the conceptualization of the game-theoretic
models. Furthermore, whether strategies are genetic, epigenetic or phenotypically plastic
will, at times, influence evolutionary speed. It may be that the tumor micro-environment can
influence the epigenetics of a cell and thereby change its type, while this would not be the
case if the type is genetically determined. Future models may need to pay close attention to
the role of the micro-environment on the capacity for cancer cells to switch strategies. This
switching may also happen in cancer stem cells (CSCs) and have consequences for tumor
heterogeneity and the composition of cancer cell types. This may be interesting to study in
the context of EGT modeling and cancer therapy.

Many common cancer types are shown to be propagated by small populations of CSCs.
Genetic and epigenetic alterations can lead to CSCs emerging from non-stem cells endowed
with stem cell properties. Therefore, stem cell identity may not be strictly a property of that
cell, but may also depend on extrinsic cues provided by the adjacent cells and microenviron-
ment. If stemness is not an intrinsic property, the malignant cells will regenerate new cancer
stem cells, even if those with stem-like properties have been eliminated. Accordingly, the
stem state of a cell is a dual phenotype. Therefore, in modeling CSCs a choice must be made
on whether stemness is an intrinsic property or whether cell type switching takes place or
not. Analysis of the evolution of stemness can help to identify whether these different types
of stemness evolve according to different selective pressures, such as tissue maintenance and
repair. This phenomenon also poses the question as to how non-genetically encoded plasticity
will affect EGT modeling.

To conclude, many game theoretical models hypothesize on cancer behavior that yet
has to be validated with real data [29,31,151,188]. Close communication and collaboration
between theoretical and empirical scientists will be of the utmost importance in advancing
evolutionary therapies based on evolutionary game theory, to improve treatment results and
patients’ quality of life.
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165. StaňkováK, Brown JS, DaltonWD,GatenbyRA (2019)Optimizing cancer treatment using game theory.
JAMA Oncol 5(1):96–103

https://doi.org/10.1088/1478-3975/9/6/065007
https://doi.org/10.1088/1478-3975/9/6/065007
https://doi.org/10.1158/0008-5472.CAN-15-1743
https://doi.org/10.1158/0008-5472.CAN-15-1743
https://doi.org/10.1002/zamm.19630431023
https://doi.org/10.1002/cncr.32777
https://doi.org/10.1038/380240a0
https://doi.org/10.1038/s41559-018-0785-y
https://doi.org/10.1038/s41559-018-0785-y


340 Dynamic Games and Applications (2022) 12:313–342

166. Steinestel J, LuedekeM,ArndtA, Schnoeller TJ, Lennerz JK,WurmC,MaierC,CronauerMV,Steinestel
K, Schrader AJ (2019) Detecting predictive androgen receptor modifications in circulating prostate
cancer cells. Oncotarget 10(41):4213

167. StoeckleinNH,Klein CA (2010)Genetic disparity between primary tumours, disseminated tumour cells,
and manifest metastasis. Int J Cancer 126(3):589–598

168. SunC,WangL,Huang S, HeynenGJJE, PrahalladA, Robert C, Haanen J, BlankC,Wesseling J,Willems
SM, Zecchin D, Hobor S, Bajpe PK, Lieftink C, Mateus C, Vagner S, GrernrumW, Hofland I, Schlicker
A,Wessels LFA, Beijersbergen RL, Bardelli A, Di Nicolantonio F, Eggermont AMM,Bernards R (2014)
Reversible and adaptive resistance to BRAFV600E inhibition in melanoma. Nature 508(7494):118–122.
https://doi.org/10.1038/nature13121

169. Sun K, Jiang P, Chan KCA, Wong J, Cheng YKY, Liang RHS, Chan W, Ma ESK, Chan SL, Cheng
SH et al (2015) Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive
prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci 112(40):E5503–E5512

170. Swanton C (2012) Intratumor heterogeneity: evolution through space and time. Can Res 72(19):4875–
4882

171. Szakács G, Hall MD, Gottesman MM, Boumendjel A, Kachadourian R, Day BJ, Baubichon-Cortay H,
Di Pietro A (2014) Targeting the achilles heel of multidrug-resistant cancer by exploiting the fitness cost
of resistance. Chem Rev 114(11):5753–5774

172. Taylor C, Fudenberg D, Sasaki A, NowakMA (2004) Evolutionary game dynamics in finite populations.
Bull Math Biol 66(6):1621–1644. https://doi.org/10.1016/j.bulm.2004.03.004

173. Taylor PD, Jonker LB (1978) Evolutionary stable strategies and game dynamics. Math Biosci 40(1–
2):145–156

174. Thakur MD, Salangsang F, Landman AS, Sellers W, Pryer NK, Levesque MP, Dummer R, McMahon
M, Stuart DD (2013) Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug
resistance. Nature 494(7436):251–255

175. Thalhauser CJ, Lowengrub JS, Stupack D, Komarova NL (2010) Selection in spatial stochastic models
of cancer: migration as a key modulator of fitness. Biol Direct 5(1):11–21

176. Thews O, Nowak M, Sauvant C, Gekle M (2011) Hypoxia-induced extracellular acidosis increases
p-glycoprotein activity and chemoresistance in tumors in vivo via p38 signaling pathway. In: Oxygen
transport to tissue XXXII. Springer, pp 115–122

177. Tixier F, LeRest CC,HattM,AlbarghachN, Pradier O,Metges J, Corcos L,VisvikisD (2011) Intratumor
heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to
concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52(3):369–378

178. Todenhöfer T, Azad A, Stewart C, Gao J, Eigl BJ, Black PC, Joshua AM, Chi KN (2016) Correlation of a
novel whole blood RT-PCR assay measuring AR-V7 expression with outcomes in metastatic castration-
resistant prostate cancer (mCRPC) patients treated with abiraterone acetate (ABI)

179. Tollis M, Boddy AM,Maley CC (2017) Peto’s Paradox: how has evolution solved the problem of cancer
prevention? BMC Biol 15(1):1–5. https://doi.org/10.1186/s12915-017-0401-7

180. Tomasetti C, Vogelstein B, Parmigiani G (2013) Half or more of the somatic mutations in cancers of
self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci 110(6):1999–2004

181. Tomlinson IPM (1997) Game-theory models of interactions between tumor cells. Eur J Cancer
33(9):1495–1500

182. Trivers RL (1971) The evolution of reciprocal altruism. Q Rev Biol 46(1):35–57. https://doi.org/10.
1086/406755

183. Tsao SC, Wang J, Wang Y, Behren A, Cebon J, Trau M (2018) Characterising the phenotypic evolution
of circulating tumour cells during treatment. Nat Commun 9(1):1–10

184. Verduin M, Hoeben A, D DR, Vooijs M, (2021) Patient-derived cancer organoids as predictors of
treatment response. Front Oncol. https://doi.org/10.3389/fonc.2021.64198

185. VillasanaM,OchoaG,Aguilar S (2010)Modeling and optimization of combined cytostatic and cytotoxic
cancer chemotherapy. Artif Intell Med 50(3):163–173

186. Vincent TL, Brown JS (2005) Evolutionary game theory, natural selection, and Darwinian dynamics.
Cambridge University Press, Cambridge

187. Viossat Y (2015) Evolutionary dynamics and dominated strategies. Econ Theory Bull 3:91–113. https://
doi.org/10.1007/s40505-014-0062-4

188. Viossat Y, Noble R (2021) A theoretical analysis of tumor containment. Nat Ecol Evolut 5(6):826–835
189. Volterra V (1927) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi.

Accademia dei Lincei
190. von Neumann J (1928) Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100(1):295–320.

https://doi.org/10.1007/BF01448847

https://doi.org/10.1038/nature13121
https://doi.org/10.1016/j.bulm.2004.03.004
https://doi.org/10.1186/s12915-017-0401-7
https://doi.org/10.1086/406755
https://doi.org/10.1086/406755
https://doi.org/10.3389/fonc.2021.64198
https://doi.org/10.1007/s40505-014-0062-4
https://doi.org/10.1007/s40505-014-0062-4
https://doi.org/10.1007/BF01448847


Dynamic Games and Applications (2022) 12:313–342 341

191. von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University
Press, Princeton

192. Warman PI, Kaznatcheev A, Araujo A, Lynch CC, Basanta D (2018) Fractionated follow-up chemother-
apy delays the onset of resistance in bone metastatic prostate cancer. Games 9(2):19

193. Waclaw B, Bozic I, PittmanME, Hruban RH, Vogelstein B, NowakMA (2015) A spatial model predicts
that dispersal and cell turnover limit intratumour heterogeneity. Nature 525(7568):261–264

194. West J, Ma Y, Newton PK (2018) Capitalizing on competition: an evolutionary model of competitive
release in metastatic castration resistant prostate cancer treatment. J Theor Biol 455:249–260

195. West J, Robertson-Tessi M, Luddy K, Williamson DFKPDS, Harmon C, Khong HT, S, BJ, Anderson
ARA, (2019) The immune checkpoint kick start: optimization of neoadjuvant combination therapy using
game theory. Clin Cancer Inf 3:1–12. https://doi.org/10.1200/CCI.18.00078

196. West JB, DinhMN,Brown JS, Zhang J, AndersonARA,GatenbyRA (2019)Multidrug cancer therapy in
metastatic castrate-resistant prostate cancer: an evolution-based strategy. Clin Cancer Res 25(14):4413–
4421. https://doi.org/10.1158/1078-0432.CCR-19-0006

197. Wu A, Liao D, Tlsty TD, Sturm JC, Austin RH (2014) Game theory in the death galaxy: interaction of
cancer and stromal cells in tumor microenvironment. Interface Focus 4(4):20140028. https://doi.org/10.
1098/rsfs.2014.0028

198. Xavier C, Blykers A, Vaneycken I, D’Huyvetter M, Heemskerk J, Lahoutte T, Devoogdt N, Caveliers V
(2016) 18F-nanobody for PET imaging of HER2 overexpressing tumors. Nucl Med Biol 43(4):247–252

199. You L, Brown JS, Thuijsman F, Cunningham JJ, Gatenby RA, Zhang J, Staňková K (2017) Spatial vs.
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