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Abstract 
 
The development of the Kouyoumjian & Pathak UTD diffraction coefficient will be summarized.  
Applications of the UTD on basic and complex structures (from ground planes to airframes), based on my 
own personal experience, will be presented and the impact of the K & P UTD diffractions coefficient will 
be highlighted.  
 

1. Introduction 
 
 When electromagnetic fields strike sharp surface discontinuities, such as edges and corners, they 
create diffraction.  In high-frequency methods, the field generated when a wave impinges upon a PEC 
wedge can be accounted by using Geometrical Optics (GO), based more on Snell’s Law of Reflection, and 
Diffraction based on Fermat’s Principle for diffraction [1].   The diffraction phenomenon and its field 
contributions can be accounted for by utilizing diffraction coefficients for the appropriate discontinuities.  
This procedure leads to field predictions which become even more accurate as the frequency increases, and 
are usually referred to as high-frequency asymptotic methods; in the limit should approach the exact 
solution.  The diffraction coefficients are derived by performing a high-frequency asymptotic expansion, 
using the Method of Steepest Descent (Saddle Point Method), based on the exact solution of a source at and 
near a PEC wedge.  Based on page limitations, this procedure is not going to the outlined here but it is 
detailed in [1].  
 
One set of diffraction coefficients were derived by Keller [2], and they were dubbed as Keller’s diffraction 
coefficients based on the Geometrical Theory of Diffraction (GTD).  These diffraction coefficients 
exhibited singularities along the incident and reflection shadow boundaries (ISB and RSB), and limited 
their use.  Another set of diffraction coefficients were derived by Kouyoumjian and Pathak [3], and they 
were dubbed as the K & P diffraction coefficients based on the Uniform Theory of Diffraction (UTD).  The 
UTD diffraction coefficients eliminated the singularities along the ISB and RSB and provided smooth 
transition from one side to the other side of the respective shadow boundaries.  In addition, they provided 
more accurate representation of the field.  This was accomplished in the UTD formulation by introducing 
Fresnel integral transition functions which removed the singularities and provided a more accurate 
representation of the field at and near the shadow boundaries.  The UTD diffraction coefficients received 
international acclaim and expanded the application of diffraction theory to many otherwise intractable 
boundary-value problems, from simple geometries (such as strips and ground planes) to more complex 
(such as airframes, ships, and ground vehicles).   
 
The same approach was later implemented to diffraction by wedges, both interior and exterior, with 
impedance surfaces utilizing Maliuzhinets functions [1], [4].  The diffraction coefficients for the wedge 
with impedance surfaces are related to those of K & P; however the K & B are basically multiplied by a 
factor utilizing Maliuzhinets and auxiliary Maliuzhinets functions to obtain those of the impedance wedge.  
Also for the impedance wedge, an additional component is introduced to account for surface waves, which 
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are usually more prevalent for low grazing angles.  Some of these applications, from basic structures (such 
as ground planes) to more complex (such as airframes aircraft, including the Space Shuttle) will be 
illustrated in this presentation based on my own experience as a graduate student, practicing engineer, and 
faculty, especially during the early development stages of GTD/UTD.  The immense impact of the K & P 
UTD diffraction coefficients will be highlighted.  
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