
RESEARCH ARTICLE

The contribution of the basal ganglia and

cerebellum to motor learning: A neuro-

computational approach

Javier Baladron1,2, Julien Vitay1, Torsten Fietzek1, Fred H. HamkerID
1*

1 Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany,
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Abstract

Motor learning involves a widespread brain network including the basal ganglia, cerebellum,

motor cortex, and brainstem. Despite its importance, little is known about how this network

learns motor tasks and which role different parts of this network take. We designed a sys-

tems-level computational model of motor learning, including a cortex-basal ganglia motor

loop and the cerebellum that both determine the response of central pattern generators in

the brainstem. First, we demonstrate its ability to learn arm movements toward different

motor goals. Second, we test the model in a motor adaptation task with cognitive control,

where the model replicates human data. We conclude that the cortex-basal ganglia loop

learns via a novelty-based motor prediction error to determine concrete actions given a

desired outcome, and that the cerebellum minimizes the remaining aiming error.

Author summary

In this study, we aimed to better understand motor learning using a neuro-computational

approach. While previous work emphasized different learning regimes of the various

components, the main novelty of our study is the interplay of its components. Notably, we

show that the model accounts well for motor adaptation data of experiments that involve

a cognitive strategy.

Introduction

A commonly assumed role for the motor basal ganglia (BG) is action or motor program selec-

tion [1–6]. The basal ganglia integrate sensory evidence arguing for a particular decision and

disinhibit the corresponding action plan. Such motor program selection involves a focal

removal of tonic neural activity in the output nuclei of the BG to activate the desired move-

ment while increasing other neuronal activity to avoid the execution of unwanted programs

[7, 8]. However, how proper actions are discovered and represented is still unclear.

Although most common tasks addressed by computational models of the basal ganglia only

require choosing a correct action among other actions, e.g. selecting a button as a response to
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sensory input [9–13], some models addressed the role of the BG in a broader context of the

motor system. Magdoom et al. [14] proposed a computational model where the BG makes cor-

rections to movements controlled by the motor cortex. The model was used to show how

reduced dopamine signals in Parkinson’s disease can produce abnormal movements. In an

extended version of this model, the BG amplified low amplitude input signals through stochas-

tic resonance to produce movements [15]. Kim et al. [16] proposed a model where the BG

selects a muscle activation pattern demonstrated by a 2-dimensional reaching task. In the

motor control framework proposed by Manella and Baldasarre [17], the BG modulates the

dynamics of a cortical reservoir that implements a movement. The authors reproduce three

different periodic behaviors of a two-joint arm.

The cerebellum is crucial for maintaining accuracy across multiple movements [18, 19].

Individuals with cerebellar damage have deficits when required to adapt a well-known behav-

ior to a sudden change in environmental conditions [20]. Its role in motor adaptation has

been further confirmed in imaging studies [21, 22]. Cerebellar pathology has also been hypoth-

esized to be related to the Developmental Coordination Disorder, which in children manifests

as a reduced motor performance [23, 24]. The cerebellum may implement a forward model, an

inverse model, or both. Like with the basal ganglia, most models of the cerebellum focus on

internal dynamics but are rarely applied to complex motor tasks. Those computational models

of the cerebellum involved in motor tasks have been mainly developed in the context of neuro-

robotics, often abstract much from biological detail and typically implement a closed-loop

motor control network [25–31].

Influential theories regarding the interaction between different motor systems emphasize

that each system operates with a different type of learning mechanism, with the cerebellum

implementing supervised learning, the basal ganglia reinforcement learning, and the cortex

unsupervised learning [32]. An extended version of this idea, the super-learning hypothesis,

proposes that the three learning mechanisms form an integrated system and act in synergy

[33]. Results from one system may influence another through multiple neural pathways or

neuromodulators.

Houk and colleagues [34, 35] proposed a conceptual framework that suggests distributed

processing modules. It places the cerebral cortex at the center, and independent loops with the

BG and cerebellum feed back to the cortex. The cortico-basal ganglia loops make an initial

course selection that is then narrowed down (or refined) by the corresponding cortico-cerebel-

lar loop. For example, in a reaching task, the cerebellum may use a prediction error to compute

an online corrective movement. Thus, although the cerebellum, cortex, and basal ganglia may

use different learning paradigms, they implement an interactive system capable of handling a

diversity of tasks [36–38].

Shadmehr and Krakauer [39] proposed a theory based on the framework of optimal feed-

back control. Rather than action selection, the basal ganglia are given a higher-level involve-

ment in planning with respect to the cost and reward structure of the task. The cerebellum

implements a forward model to predict the sensory consequences of motor action [40].

Recently, Haar and Donchin [41] combined Houk’s approach [34] with Shadmehr and Kra-

kauer’s optimal control theory. They emphasize the distributed nature of the cortical network.

The cortex-cerebellum loops are assumed to implement a predictive error correction of the

cortical activity. However, their theory assumes the concept of parallel and segregated cortex-

basal ganglia loops and thus, underestimates recent evidence for a hierarchical organization of

cortex-basal ganglia loops [37, 42–44].

In addition to the rather theoretical frameworks discussed above, the interaction of brain

areas relevant to motor tasks can be explored by means of computational models. Very few

computational models have included both, the cerebellum and the basal ganglia. An early

PLOS COMPUTATIONAL BIOLOGY A model on the contribution of the basal ganglia and cerebellum to motor learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011024 April 3, 2023 2 / 29

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1011024


approach [45], in which the cerebellar and basal ganglia circuitry was modeled by means of

simple feedforward neural networks and combined with the DIRECT-model for motor reach-

ing [46], aimed at explaining the behavioral difference between Parkinsonian patients and con-

trols in a motor adaptation task. According to this model, when learning in the basal ganglia is

deactivated to mimic the neurodegeneration of dopaminergic nigrostriatal neurons, continu-

ous erratic movements occur. This compares well to data from patients who show only a crude

adaptation. Recently, Caligiore et al. [36] designed a basal ganglia-cerebellar-thalamo-cortical

system to explain the development of tics in Tourette. Although the model can recreate

changes in the firing rates of cells in animal models of the disease, it does not implement a

motor task. Capirchio et al., [47] used a system-level model to simulate a reaching task, which

requires to reach three targets from a home position. In this model, the basal ganglia are repre-

sented by an actor-critic reinforcement learning account and the cerebellum as a feed-forward

perceptron. Lesions to the cerebellum part showed effects observed in patients with cerebellar

ataxia. Another recent model by Todorov et al. [48] focused on the role of the cerebellum and

basal ganglia in motor adaptation. The basal ganglia implement action selection of a cortical

motor program representing a movement trajectory. It is trained by the difference of succes-

sive reward prediction errors to support learning when performance improved and suppress

the recent action when performance decreases. The cerebellum computes a small correction to

the cortical motor program by means of a neural network trained with error backpropagation.

In their model, any cerebellum-induced change in performance activates learning in the basal

ganglia creating a credit assignment problem about the source of a gain or decline in perfor-

mance. They therefore propose the existence of a critic somewhere in the brain that determines

when each component participates in learning.

Another part of the brain heavily involved in motor execution are the central pattern gener-

ators (CPGs) in the brainstem and spinal cord [49–52], that are not only involved in locomo-

tion but also reaching [53–55]. In mice, stimulation of brainstem neurons in the lateral rostral

medulla leads to complex forelimb reaching and grasping behavior, where different popula-

tions of neurons trigger different patterns of behavior [56]. The large diversity of specialized

motor-related neurons in the brainstem integrates information from the cortex, thalamus, cer-

ebellum, and basal ganglia [57]. CPGs became very popular in the research field of neurorobo-

tics leading to sophisticated demonstrations of complex motor actions [58–61]. However,

CPGs need some form of more high-level control when recruited for goal-directed behavior.

We introduce here a systems-level computational model that includes the basal ganglia,

motor cortex, cerebellum, and brainstem. The focus of our study is the potential division of

labor and learning in motor coordination, particularly in reaching and motor adaptation tasks.

However, we do not aim to develop a rigorous implementation of neuro-biological details for

each subsystem, given the still relatively poor understanding of the neural circuits in these

brain parts.

Results

Model design

The model was designed in an open-loop control framework (Fig 1) in order to study its

potential and limitations. In an open-loop control framework, the CPGs already provide

movement dynamics but need to be under top-down or feedback control [58]. Our plant is a

robotic arm with four degrees of freedom. In the reaching task, the shoulder’s yaw, pitch and

roll, and the elbow were each controlled by an independent CPG network following the imple-

mentation of Nassour et al. [58, 62]. Each CPG network is formed by three layers: a rhythm

generation layer that can generate multiple activity patterns, a pattern formation layer that
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shapes the generated pattern, and a motor neuron layer that drives the joint. While we do not

neglect the existence of feedback pathways and closed-loop control, we start here with a model

that does not include feedback except for learning. Thus, further upstream motor centers have

to provide parameters that manipulate the movement dynamics of the CPG. Our model deter-

mines those parameters from two components. The motor cortex-basal ganglia interactions

select concrete actions while the cerebellum fine-tunes those actions. The existent network in

the brain is of course more complicated. For example, output neurons of the basal ganglia that

project to the thalamus have collaterals that target different regions of the brainstem [56]. The

term concrete action refers to the observation that movements can be decomposed into a finite

set of elementary movements [63] and that activation of the motor cortex produces a limited

set of muscle activations [64]. Action selection (BG) and action refinement (cerebellum) are

learned through different biologically plausible mechanisms.

A recent hypothesis about the functional structure of the cerebellum is that the recurrent

connectivity in the cerebellar cortex implements a reservoir of dynamic activities [65–67]

instead of the classically hypothesized feedforward structure. Inputs from the cerebral cortex

enter via the mossy fibers a strongly connected recurrent network formed by granule and

Golgi cells in the cerebellar cortex, allowing complex patterns to evolve over time even after

the inputs have stopped [68]. These spatio-temporal patterns in the reservoir can then be

detected by the Purkinje cells to produce appropriate responses [69]. In order to benefit from

this dynamical function of the cerebellum, we use the reward-modulated reservoir framework

proposed by Miconi [70] as a model of the cerebellum. While the model of [70] is agnostic

with respect to localizing the reservoir in any particular area of the brain, it has been used to

control a musculoskeletal model of the human arm with four degrees of freedom and 16 mus-

cles in a reaching task with two fixed targets. The reservoir learns by means of a perturbation

learning rule, where random perturbations are individually applied to the neurons of the

Fig 1. Design of the model. A goal position, that may be determined by the pre-motor cortex-basal ganglia loop, has to be reached. This goal informs both, a motor

cortex-basal ganglia loop and the cerebellum. The motor cortex-basal ganglia loop selects a concrete action, which determines the parameters of the CPG in the

brainstem. Learning occurs when an achieved hand position is novel through dopamine-modulated Hebbian plasticity that reinforces the association between the

executed action and the reached hand position. The cerebellum produces small adjustments to the CPG parameters that reduce the distance between the goal and the

achieved position in the current task. Learning occurs through perturbation-based learning using the distance between the goal and the reached position as an error

signal.

https://doi.org/10.1371/journal.pcbi.1011024.g001
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reservoir with varying amplitude and fixed frequency during a trial. At the end of a trial, the

reached location is compared to the intended location to compute an aiming error signal.

Depending on whether this error decreased or increased compared to the last similar trial, the

weights inside the recurrent network are adapted depending on the occurrence of a perturba-

tion (which is maintained by an eligibility trace) and the improvement or worsening of the

aiming error. Perturbation learning is an alternative to error backpropagation and is consid-

ered more biologically plausible as all computations are local to the neurons.

Although the reservoir network of [70] is not related to the particular structure of the cere-

bellum, its neurons can be divided into two groups, depending on whether they are output

cells or not. Following the interpretation of the cerebellum as a reservoir computing machine

[66, 67], output neurons would correspond to the Purkinje cells and non-output neurons to

the granular and Golgi cells. Cerebellar parallel fibers implement therefore the readout con-

nections, and recurrent connections between granule and Golgi cells provide the necessary

dynamic behavior. However, there is no explicit distinction between excitatory granule cells

and inhibitory Golgi cells in the version of the model that we use.

The cortex-basal ganglia component is inspired by recent ideas regarding a hierarchical

organization of the basal ganglia and cortex [42, 43]. Specifically, we proposed that the brain

achieves goal-directed behavior through a cascade of decisions made by the multiple cortico-

basal ganglia loops, each creating an intermediate objective at a different abstraction level [44].

Planning starts in the ventral or limbic loop with the desire for a particular internal or external

reward known to be achievable given the current state. The dorsomedial or associative domain

then determines the state needed to be reached in order to obtain the reward. The desired state

is transformed into a motor goal by a further loop, e.g., by moving the hand to a particular

location to satisfy the objective of reaching the object. Finally, the motor goal is transformed

into a concrete action plan that may be executed by an open loop model, e.g. central pattern

generators (CPGs). Let’s summarize the above concept with an example from everyday life:

Our limbic system signals the need for water and we decide to reach for a glass of water, which

in turn determines the motor goal in form of the spatial coordinates x,y,z, or the correspond-

ing joint angles. The motor cortex-basal ganglia loop will then select a concrete action that

moves the arm to the motor goal. The advantage of our hierarchical approach is that the motor

goal is task-independent. After a decision about the target object is determined by the premo-

tor loop, the reaching action does not need further information about those decisions made by

the earlier loops. As we have already shown how such a set of decisions could be learned by

dopamine-modulated plasticity [44, 71], we focus here on the motor loop only and how a

motor goal is transformed into a concrete action and its final execution.

We have also recently demonstrated that learning in multiple cortex-basal ganglia loops

cannot rely on a single prediction error signal being identical for all loops [44]. While a reward

prediction error is well suited for the limbic loop, the motor loops should be trained by differ-

ent signals to make them specific to the motor content, independent of the planning and moti-

vational aspects of the task. We use here a dopamine response that indicates the novelty of the

achieved movement [72].

A further implication of our framework is that the goal location coming from the pre-

motor cortex has initially no meaning. The meaning of such internal signals must be first dis-

covered by active exploration via the environmental act-and-sense loop. Learning occurs after

the motor action by sensing its outcome—the reached location—in the premotor cortex. Thus,

the outcome is linked to the action that leads to the outcome, providing meaning to the goal

signals from the premotor cortex. In our motor loop, actions are initially randomly activated

and a phasic increase of dopamine indicates the novelty of the achieved movement, modulat-

ing plasticity in the motor striatum to connect outcomes to concrete actions. Supported by the
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ideomotor theory [73–75], we assume that this active exploration via the environmental act-

and-sense loop is a necessary step that takes place prior to goal-directed behavior—but may

continue during the lifetime—as the brain has initially no representation of the body kinemat-

ics (and dynamics).

Reaching with the cerebellum alone

As a reference, we initially test the reservoir model from Miconi [70] to mimic cerebellar learn-

ing. Following the procedure introduced by Miconi, the activity of all cells in the reservoir is

randomly initialized to a small value at the beginning of each trial, the corresponding input is

set, and the network is simulated for 200 milliseconds. The input is then deactivated and the

network relaxes its activity for 200 additional milliseconds. The mean activity in the last 200

milliseconds of the reservoir’s output cells is then transformed linearly into the six parameter

values of each CPG layer (4 joints, therefore 24 output values). Thus, the reservoir encodes the

values for the full arm movement, i.e. all joints. The network has to learn reaching movements

towards 8 different arbitrary targets within the arm’s workspace.

The perturbation learning rule used in the reservoir depends strongly on three parameters:

the learning rate (η) or step size, the perturbation frequency (f) which determines how often

the activity of the cells is perturbed, and the perturbation amplitude (A) which determines the

size of the perturbation. Therefore, f and A control the level of noise in the network. Models

with a small learning rate or low noise parameters decrease the error only by a small amount

(see Fig 2A). Models with intermediate levels of noise or learning rate are able to solve the task

but converge to different error levels. Models with faster learning become unstable: the dis-

tance to the goal initially decreases, reaches an asymptotic value, and then increases again. The

same network configuration does not become unstable in a simpler version of the task in

which only 2 goals are required to be learned (see Fig 2B). Results of an exhaustive parameter

variation are given in S1 Fig.

On a further control configuration, CPGs are removed and the activity of the reservoir’s

output cells is directly linked to the change in the 4 joint angles. Those angles are transformed

into a resulting hand position using a kinematic model. Networks with less noise are weaker

than those including the CPGs (see Fig 2C). Fast networks become unstable, similarly to the

model that includes the CPG. Thus, the CPG component is rather beneficial and does not

account for the observed limitation of the reservoir when asking it to learn movements to a

larger set of goal locations.

In summary, motor learning by the reservoir alone is sensitive to learning parameters, par-

ticularly when multiple target movements are required.

Reaching with the cerebellum and basal ganglia

In order to test if the division of labor between the basal ganglia and the cerebellum can avoid

instabilities, we tested our full neuro-computational model (see Fig 3 for a more detailed view

of the model), involving both components, on the same reaching task as before.

The possible concrete actions are encoded by a neural population called the motor cortex,

which is part of a motor cortex-basal ganglia loop. Each cortical cell projects to a set of neurons

that use a population code to represent the CPG parameter values (see Fig 3). Each cell in these

parameter populations is assigned a preferred parameter value. The final parameter value is

decoded by computing a sum over the preferred parameter values, weighted by the activity of

the corresponding cell. The weights of the connections from the action encoding population

to the parameter encoding populations are fixed and random.
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Fig 2. Reservoir’s performance. Performance of the reservoir with different parameter configurations: eta is the

learning rate, f is the frequency of the perturbation and A is the amplitude of the perturbation. For each configuration,

50 different simulations are run, each with a different random seed producing different initial conditions, goals, and

noise values. On all plots, the Euclidean distance between the goal and reached location over all simulations and

including different goals is shown. A: The reservoir sets the parameters of a CPG network controlling each joint. The
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The basal ganglia network is a simplified version of our previous model [44, 76, 77], includ-

ing only a direct pathway (striatum! substantia nigra pars reticulata! thalamus! cortex).

Selection occurs when the constant inhibition exerted by the substantia nigra on the thalamus

is removed by a corresponding activation in the striatum, allowing a specific cell in the thala-

mus to get activated and increase the firing rate of the corresponding concrete action. Despite

some agreement on the functional role of different basal ganglia pathways there is nevertheless

some variability particularly with respect to the indirect and hyperdirect pathway [4]. For the

purpose of our study, we only need an intact function of the direct pathway and thus keep the

model simple to save computation time. However, more complex motor tasks may benefit

from considering additional basal ganglia pathways.

Dopamine-modulated Hebbian learning in the striatum links the input from the goal-

encoding cells to the motor program. Novelty-based learning in the basal ganglia works as fol-

lows: After every movement, the input activity of the dopamine cell is increased from its base-

line to 1, triggering plasticity in striatal neurons. The activity reached by the dopamine cells is

system is expected to learn 8 goals. Slow-learning networks hardly reduce the error. Fast-learning networks are

unstable: They initially appear to learn the task, but then networks tend to forget previous knowledge. B: The same

network is used but asked to only learn 2 goals. Configurations that were unstable with 8 goals are stable in this simpler

version of the task. C: The output of the reservoir is transformed directly into joint angles (no CPGs are used). The

performance of this network is worse than when including the CPGs. Shaded area next to each curve show the

standard deviation of the mean.

https://doi.org/10.1371/journal.pcbi.1011024.g002

Fig 3. Detailed view on the computational model. Arrows indicate excitatory synaptic connections between neurons. Red arrows indicate plastic connections. Lines

ending with a circle indicate inhibitory connections. The closed motor cortex-basal ganglia loop has as many stripes as concrete actions. The direct pathway within the

basal ganglia selects one of 120 possible concrete actions. This large number of actions ensures sufficient movement diversity within the reaching space of the arm. Each

action is represented in a discrete channel connecting the corresponding cortical, striatal, substantia nigra pars reticulata (SNr), and thalamic cells. Each discrete action

activates multiple sets of neurons representing possible CPG parameter values. Each CPG is formed by three layers: RG is the rhythm-generator layer, PF is the pattern

formation layer and MT are the motor neurons. The 6 parameters per CPG being adapted are: the time constant τm, a shape parameter for the current–voltage curve of

the fast current σf, the potassium conductance normalized to the leak conductance σs and the injected current iinj of the rhythm generator neurons of the CPGs. Further,

α0 and θ0 which are the slope of the sigmoid and the center of the curve of the pattern formation layer of the CPGs. The final parameter value associated with each action

is computed by integrating the activity of parameter cells weighted by their preferred parameter value. The cerebellum receives as input an abstract representation of the

current goal (no position), one cell per possible goal. In the brain, that position may be encoded within the thalamus of the premotor loop. 24 of the 400 cells in the

reservoir project outside (6 parameter values x 4 CPGs) and their activity contributes to the final CPG parameters. Only a single set of neurons for just one CPG is shown

in the figure.

https://doi.org/10.1371/journal.pcbi.1011024.g003
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however limited by a prediction obtained from the inhibition produced from the striatum,

which is also subject to plasticity. The dopamine level reaches its maximum value only when

an action is executed for the first time as the striatal inhibition increases after each movement.

The same dopamine signal reaches all cells.

Unlike previous action-selection models of the BG, we only implement plasticity between

the premotor cortex and the basal ganglia. It is common in computational models to assume

that the BG implement a winner-take all mechanism between input action channels [6]. In

classical action-selection models, the main inputs to the BG loop are the available actions and

the BG must select one of them, usually the most salient one. In those models, the BG does not

implement any transformation of the input information, it only removes the less salient action

channels. Plasticity is then implemented in the connections within the loop (motor cortex) to

assure a proper action selection. Based on our previous models [9, 44, 77, 78], we instead

assume that each BG loop learns a goal-response map, which links objectives to appropriate

actions. The input to the loop is different than action-selection models as it results from the

information processing in previous loops. For selecting concrete actions, plasticity is then

required at the projections from the premotor cortex, not necessarily at the projections from

the motor cortex.

The cerebellum is modeled as a pool of 400 randomly connected cells. The projections

within the pool are plastic and follow a perturbation-based learning rule [70]. 24 of those 400

project outside (6 parameters per joint). The activity of these output cells is added to the

parameter value encoded in the parameter cells before they are set in the CPGs.

The basal ganglia are trained prior to the task simulation until the model replicates a ran-

domly selected outcome for three times in a row. The main goal of this process is for the basal

ganglia to create a map between outcomes (final hand positions) and concrete actions. During

training, 120 actions are activated randomly, the outcome is observed and finally the associa-

tion strength between the outcome and the action is increased. This creates a meaning for the

pre-motor cortex neurons, which do not have one until activated by an observation. On each

simulation a different set of 120 actions are defined, each associated with a random set of CPG

parameters. Later, the outcome-action map is be used to select an action based on a desired

outcome (Fig 4). The BG therefore are not trained on the goals of the task, but develop knowl-

edge about the possible actions to choose from. Activity of the BG during an example trial is

shown in S2 Fig.

We simulated the same reaching task with 2 and 8 goals. We used in the cerebellum a learn-

ing rate η = 0.8 and noise parameters f = 9 and A = 20. These parameters correspond to a fast

network, which produced an unstable behavior when learning the task directly. Our simula-

tions show that, with the full model, both tasks can be learned without any problem of stability.

The reason is that learning is simpler as the BG introduce an initial solution through a concrete

action and only small adjustments are produced by the cerebellum (see Fig 5). Not surpris-

ingly, learning is also much faster than with the cerebellum alone.

Visuomotor adaptation task

After demonstrating the model’s basic functionality, we now investigate its ability to explain

observations in motor adaptation. Motor adaptation refers to a particular type of motor learn-

ing in which a well-known action is modified to maintain performance after a change in the

environment or the body [79]. One common way to study adaptation in an experimental set-

ting is to impose a visuomotor rotation [80]. In such experiments, participants are seated in

front of a screen and are required to move a cursor toward a target location with a straight

inward-outward movement [81]. The cursor is not visible throughout the whole trajectory.
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During the movement, the cursor remains initially at its starting position and then indicates

the movement reversal point. Thus, subjects only obtain visual feedback about their movement

outcome with respect to its endpoint. After several baseline trials, the cursor’s coordinate sys-

tem is rotated with respect to the coordinate system of the hand movement space. As partici-

pants are not informed about the manipulation and only observe the outcome, they slowly

alter their behavior to cope with this perturbation. Errors are reduced trial by trial suggesting

that it is controlled by an implicit learning process. Once the perturbation is removed, an

Fig 4. Basal ganglia training. The initial training of the basal ganglia is performed by randomly activating desired

outcomes. A: Learned trajectories of 120 concrete actions of an example simulation. Each of the 120 lines in the plot

represents the trajectory of the hand after selecting one action starting from the same position in one simulation. The

basal ganglia can therefore select one among 120 trajectories. B: Result of learning in the basal ganglia by exploration

via the environmental act-and-sense loop. At the beginning of every training trial, a random goal (desired hand

position) is activated. Then, if no action cell had a strong enough firing rate, a random action is activated by setting its

activity to 1. The basal ganglia learn to map the reached position with the activated action. Thus, learning associates the

outcome with the action that leads to the outcome (act-and-sense). The plot shows that, over time, intended outcomes

become associated with an action that closely reaches it. The blue line represents the mean distance over 50 simulations

and the orange line is the average of the mean distance with a time window of 10 trials.

https://doi.org/10.1371/journal.pcbi.1011024.g004
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aftereffect is observed: The participants initially overcompensate and then slowly, trial by trial,

return to normal movements [80]. However, when participants were instructed about the

nature of the perturbation and an instruction to compensate for it, they immediately applied it

and had almost no error in the trial after the information has been given [80].

We confront our model with the visuomotor adaptation task used by Mazzoni and Kra-

kauer [80]. After initial training on the baseline trials on two random goals, the coordinate sys-

tem of the cursor is rotated by 45 degrees. As with the participants, we have three types of

model simulations: in a first simulation, the model receives no information about the pertur-

bation (rotation group); in a second simulation, the model is forced to adopt an explicit cogni-

tive strategy by instructing it to direct the movement 45 degrees counterclockwise (rotation +

strategy group); and in a third simulation the model is also instructed to direct the movement

45 degrees counterclockwise but the cursor is not perturbed (strategy group).

The perturbation is simulated in our model by rotating the final outcome of the hand move-

ment by 45 degrees, as also human subjects have no visual feedback of their arm trajectory.

Thus, after the rotation is introduced, the models make a 45 degree error (in Fig 6 at trial 100).

The manipulation leads to an error signal in the cerebellum, which shows a strong increase

once the rotation is introduced, but it does not induce novelty-based learning in the BG. In the

strategy condition, the model is instructed to counter the perturbation, as with human subjects

in the original experiment of Mazzoni and Krakauer. The instruction to counter the perturba-

tion is given to our model as a change in the goal represented in the premotor cortex. The new

goal corresponds to a position rotated from 45 degrees with respect to the initial one. The new

input triggers the BG to select a different concrete action, one that moves the arm closer to the

new goal direction. As with the participants, the instructed model immediately reduces the

error close to zero (trial 103 in the Fig 6). This rapid change in movement direction, similarly

to what was observed in humans, is in our model proposed by action selection at the BG level,

as the cerebellum outputs only gradual corrections and requires multiple repetitions to adapt.

In the following trials, the new motor goal is maintained and therefore the basal ganglia con-

tinues selecting the same concrete action. The change in the motor goal due to the instruction

also affects the error computed at the level of the cerebellum, as the observed position of the

Fig 5. Training the full model in a reaching task. The full model includes a cortex-basal ganglia component that has

been pretrained to allow the selection of a concrete action to a given arbitrary goal. The full model is then tested with

either 2 or 8 random goal positions and required to learn to execute a movement to the given goal. The full model is

not unstable when the number of goals is increased from 2 to 8. The shaded area next to each curve shows the standard

deviation.

https://doi.org/10.1371/journal.pcbi.1011024.g005
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pointer is compared to the intended motor outcome (aiming error, not task error). Impor-

tantly, as observed in human subjects, this explains why the model shows increasingly large

directional errors over the following trials, over-adapting to the perturbation.

In the original experiment of [80], after over-adapting to the perturbation, participants

were instructed to stop using the explicit strategy. We give our model this information by a

change in the goal, setting it back to the initial position, changing therefore again the concrete

action, and as a consequence the error at the cerebellum. The new concrete action produces an

immediate change in the direction, as observed in humans (see the increase in the error in Fig

6 rotation+strategy group around trial 300). When the perturbation is finally removed (10 tri-

als after the last instruction), models and subjects show an after-effect and the error slowly

declines. During this last period there is no further change in the motor goal and the correc-

tions are therefore only produced by the cerebellum.

Our simulations of the rotation group (no instruction) show no immediate direction

change. Like the human subjects, the model slowly adapts to the perturbation reducing the

error trial by trial. Once the perturbation is removed, an aftereffect is again observed: A change

in the direction of the error and a slow return to zero.

The simulations of the group that was instructed, but not perturbed, show no slow change

in the error and no aftereffect. The change in the concrete action moves the arm toward the

new desired direction and only very small changes are introduced by the cerebellum, as errors

are computed according to the new instructed motor goal (aiming error). Thus, no after-effect

Fig 6. Visuomotor adaptation. Test of the model with a visuomotor rotation task [80]. After initial training on baseline trials, the

coordinate system of the cursor is rotated by 45 degrees. Then, after 200 trials interacting in the perturbed environment, the

conditions return to the baseline. The first row shows the performance of models that, after 2 trials in the perturbed experiments,

are informed about the perturbation by changing the goal location and re-setting the goal location later on (ROTATION

+ STRATEGY). The second row shows models that are not informed about the perturbation (ROTATION). The third row shows

models that are provided with the new goal, but the environment was not perturbed (STRATEGY).

https://doi.org/10.1371/journal.pcbi.1011024.g006
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occurs, similar to the data from human subjects. A comparison of the error signal in the Cere-

bellum under the three conditions can be observed in S3 Fig.

When we remove the cerebellum such that it provides no contribution to the CPG, in the

rotation+strategy condition the BG compensates for the perturbation and the over-adaptation

observed in the full model does not occur (S4 Fig).

Concluding, our model can replicate the main properties of the data of [80]. However, we

spotted also small differences such that the model’s implicit learning process is slower than

those of the participants. This could be because in the experiment of Mazzoni and Krakauer,

the subjects were expected to make wrist movements of only 2.2cm, much shorter than in our

setup.

Motor variability

Although motor variability has been often considered an undesired characteristic that should

be avoided, it has been shown that task variability is a good predictor of individual learning

ability [82–84]. Greater task-relevant variability predicts faster learning.

In our model, learning in the cerebellum depends on perturbations to the activity of the

cells and requires appropriate noise levels. In the reservoir, noise is defined by two parameters:

the frequency by which a perturbation is introduced into the activity of the cells and the ampli-

tude of this perturbation.

We compare models with different frequencies and amplitudes in the same perturbation

task used in the previous section. Models with higher noise amplitude adapt faster to the

rotated environment (see Fig 7 top). Increasing the noise frequency also allows a faster

Fig 7. Variability in the visuomotor adaptation task. Higher levels of noise produce faster adaptation until a particular noise level is

reached. The plot on the top shows the performance of models with different perturbation amplitudes. The plot below shows the

performance of models with different perturbation frequencies.

https://doi.org/10.1371/journal.pcbi.1011024.g007
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adaptation (see Fig 7 below). However, changes in the learning speed saturate at sufficiently

large values: the learning speed is not further improving when the frequency level is increased.

This compares well with the observations of van der Vliet et al. [82]

Discussion

Our computational model is meant to advance the ongoing discussion on the contribution of

the basal ganglia and cerebellum to motor learning. In the 3D-reaching task, we demonstrate

the benefit of the concrete action selection by the basal ganglia, compared to a cerebellum-only

model. Combined with the basal ganglia, the cerebellum is now only required to fine-tune the

motor parameters, but not to learn and store all parameters of the arm movement. This further

agrees with the super-learning hypothesis [33], as both learning systems interact in a pipeline

organization: with the cerebellum using the results of the BG. Simulations with the full net-

work are able to reach a good performance with parameter values that produced unstable

behavior in an isolated Cerebellum model.

Of course, this advantage depends a lot on the assumed complexity of computation local-

ized in the cerebellum and on the complexity of the control architecture. While we have used

an open loop control and a target endpoint, models from the neuro-robotics community (e.g.

[26, 85, 86]) typically use feedback control, which ensures that the desired endpoint will be

reached, while a trajectory planner sets up the desired joint angles and the according velocities.

In those approaches, models representing the cerebellum are embedded in the circuitry as for-

ward and inverse models, and help to bring the actual trajectory closer to the desired trajec-

tory. However, references to the basal ganglia in those studies are rather abstract and no

explicit models of the basal ganglia have been used to solve robotic motor-control tasks. Dem-

onstrating our model in the motor reaching task is meant as a proof of concept, but not to

compete with state-of-the-art robotic solutions.

Adaptation tasks that include an additional cognitive strategy to counter the error [80]

provide an interesting test scenario for our model. When human subjects are informed to

use a strategy to overcome an error due to a rotational bias, they nevertheless continue

adapting, leading to increased errors, although the strategy was effective and the task could

have been done without error. In our model, the cognitive strategy affects the motor goal

encoded in the premotor cortex and as a result, a different concrete action in the basal gan-

glia is selected to compensate for the rotational bias. However, although the cognitive strat-

egy works fine for the task, the cursor endpoint is not consistent with the motor goal, which

leads to continuous adaptation and to an increasingly bad performance on the task. This

clearly shows that motor adaptation depends on an error signal that uses a motor goal (pre-

sumably defined in sensory space) but not a task goal. However, recent studies showed that

under conditions where the sensory prediction error is non-zero, the task error can also

have an influence [87] and both errors may interact with each other, presumably within the

cerebellum [88].

The error used for cerebellar learning can be computed in different ways. It may be com-

puted by comparing the predicted sensory consequences of the planned motor action with the

outcome, i.e. sensory feedback, see also [20]. Alternatively, the motor goal [89] may already be

defined in sensory space (cursor at an intended location) and the executed action is selected to

reach this goal. Our approach follows this direct updating account without the need to use a

forward model for computing a sensory prediction error. Recently, similar ideas have been put

forward and the latter approach has been formulated as direct policy updating [90] and com-

pared to the traditional framework according to which a forward model is updated and

inverted for motor control. There is an ongoing debate about the need for motor-based
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forward models beyond the own body if error signals can be obtained by alternative action-

outcome frameworks [91].

A critical assumption of our model is novelty-based learning in the BG. Traditionally, BG

models use reward prediction errors as a model of dopaminergic signalling, where reward is

linked to the task performance. However, there is evidence that dopamine neurons encode

multiple signals and that different types of dopaminergic cells are connected with distinct

brain networks [92]. Many cells fire to non-rewarding events [72]. Thus, motor learning may

not be directly driven by a signal following task performance. Novelty signals allow the basal

ganglia to acquire knowledge that is task-independent, reducing catastrophic forgetting. In

our model, synaptic plasticity follows a 3-factor learning rule, with dopamine as the third fac-

tor. The size of a phasic increase in the dopamine signal depends on the prediction computed

on basis of the activation of striatal neurons. With repetitions of the same action, the predic-

tion increases and thus the dopamine signal decreases. As the dopamine signal depends on an

internal context, here the activation of striatal neurons, it allows, in principle, learning of dif-

ferent tasks independent of childhood experience. However, we consider our novelty-based

learning being a comparably simple implementation of this interesting field of research.

Taylor and Ivry [93] designed a mathematical setpoint state space model to replicate the

data of [80]. The model includes a learning equation to calculate the current internal estimate

of the rotation. Different from previous approaches using similar techniques to model other

adaptation protocols, their equations include a representation of an explicit strategy. Its biolog-

ical implementation, however, is unclear and no reference to action selection or the basal gan-

glia has been made.

Motor adaptation, but not particularly the role of cognitive strategies, has also been mod-

eled by Todorov and colleagues [48] using a model of the basal ganglia and cerebellum. In

addition to several differences at the implementation level, there are noticeable differences at

the conceptual level of the model design that shall be discussed. According to their model,

both the cerebellum and basal ganglia aim to counteract the perturbation. The cerebellum uses

the error between the movement endpoint and the target to compute a correction of the motor

program. Different from our approach where the basal ganglia are trained by a novelty learn-

ing rule, their basal ganglia model is trained by a temporal difference of the movement error,

indicating an increased or decreased success on the task. Due to conflicts in the adaptation

process, they created a critique that implements an arbitrator which controls when adaptation

should be led by the basal ganglia and when by the cerebellum.

In our model, the basal ganglia select a motor action that is under strategic control. For

example, to move a cursor upwards, it can choose to move the hand in a different direction.

We have proposed a cognitive-to-motor hierarchy that can convert a task goal into a motor

goal and the choice of the particular action [44], while we here only modeled the motor selec-

tion part. At the motor level, learning in the basal ganglia should not follow a task-perfor-

mance reinforcement signal, but rather a motor-performance signal. In the present study,

based on the heterogeneity of the dopamine system [94], we decided to learn on basis of a nov-

elty learning rule in the basal ganglia. If the achieved position after a cerebellar correction is

similar to positions observed during the initial training, then no learning will occur in the

basal ganglia and therefore no conflict between the basal ganglia and the cerebellum occurs.

Further, even if the position is new, learning will occur according to the achieved position and

not the current motor goal, producing no conflict in the following trials.

The adaptation experiment we simulated includes an explicit instruction which produces

an immediate reduction in the error. We represented this as a change in the motor goal which

allows the BG to select a new concrete action, changing instantaneously the simulated move-

ment direction. In comparison, the BG in the motor adaptation model of Todorov and
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colleagues [48] learns by means of a temporal difference of the task-performance between the

current and previous trials and thus, adapts slowly and requires an exploration period after the

perturbation is introduced to find the appropriate correction. In order to simulate an explicit

strategy, the model of Todorov et al. would need to include an additional mechanism. Further,

forcing the BG to learn on task-performance will counteract the learning in the cerebellum,

which rather predicts against an ongoing adaptation towards larger task errors as observed in

human subjects in the strategy condition.

Limitations

Models for understanding motor behavior and motor learning can cover many different disci-

plines. They may include aspects of computational neuroscience, neurorobotics, artificial neu-

ral networks, learning rules, and control theory. From each particular viewpoint, present

models have limitations, due to the complex nature of the research topic. We aimed for a sys-

tems-level design to study the share of labor of different parts performing a simple robotic task

and an experimental task in motor adaptation. Of course, each of our model components

abstracts a lot from the brain area it shall represent. Our model of the basal ganglia covers

some aspects of computational neuroscience and has been previously studied a lot and com-

pared to experimental data [9, 44, 71, 76, 77], although here we only considered the direct

pathway of the basal ganglia. The model of the CPG is biologically well-motivated, but more

directed at a functional level for neurorobotics [58, 62]. The model of the cerebellum is quite

abstract from its biological counterpart and is modeled as a reservoir with perturbation learn-

ing, thus avoiding the backpropagation learning rule. It is now also known that basal ganglia

and cerebellum are not largely independent of each other but interconnected [95]. Through

such direct projections, adaptations learned by the cerebellum could be transmitted to the

basal ganglia which could then guide a learning process that incorporates them into the con-

crete action. Here, we do not consider any direct connection between those structures but sim-

ply add their output before setting the parameters of the joints.

The model’s motor cortex is not well motivated on the basis of physiological data but is lim-

ited to the idea of representing compact actions. Further, our motor cortex only includes fixed

connections. Plasticity is known to occur in the motor cortex and is critical for the develop-

ment of complex behaviors [96, 97]. In our model, plasticity in the motor cortex could help to

optimize the set of actions available to the basal ganglia. For example, parameter refinements

learned by the cerebellum could be then incorporated into the cortical representations of the

corresponding concrete action. It has been already suggested that sensorimotor knowledge

could be exported from the cerebellum to the cortex [98, 99].

Our model does not add much to the field of control theory and to its already sophisticated

models of closed-loop control, as we have taken an open-loop approach. However, our

approach may be extended to test theories of intermittent control which aim to describe con-

trol tasks by serial ballistic movements [100, 101]. The motor tasks we modeled do not pose a

challenge to the neurorobotics community. However, a better understanding of the potential

contribution of different brain parts can be helpful for designing more sophisticated robots,

particularly with respect to the division of labor between cortical areas, basal ganglia, and the

cerebellum.

We have also related our model with data suggesting that noise is beneficial for learning

[83]. As observed in behavioral experiments, higher variability leads to faster learning. We

need however to be careful with these observations, as planning noise needs to be differenti-

ated from execution noise [82]. Our model only includes planning noise, which is represented

by small perturbations of the activity of cerebellar cells, but does not include execution noise
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which could be produced at the level of the muscles and independent of the high-level signal

reaching the joints. In our simplified implementation, the same high-level signal will produce

always the same movement, something that may not happen in a more realistic environment.

The relation between planning and execution noise, and the linked credit assignment problem,

are topics for future studies. Further, there is evidence that the nervous system can regulate

variability according to the context [102]. Increasing reward probabilities can reduce move-

ment variability while decreasing reward probabilities produce the contrary effect [103].

Our model has not been compared to human kinematic data as other previous approaches

based on reinforcement learning [104]. All simulations shown here use random actions to

highlight that the model can learn to use any type of movements.

We should emphasize here that at the present stage our results are limited to a proof of con-

cept. In order to accept the hypothesis presented here, more experiments are required and a

proper comparison to other models of the basal ganglia—cerebellum network are necessary.

Further, for now only a qualitative comparison with experimental data is presented.

Conclusion

Brainstem circuits are highly specialized centers for motor control which are informed by

more upstream centers such as the motor cortex, thalamus, basal ganglia, and cerebellum [57].

How central pattern generators (CPGs) are influenced by basal ganglia and cerebellar sub-sys-

tems has been the central aim of our model design. We propose that cortex-basal ganglia loops

select concrete actions that can be fine-tuned by the cerebellum. While the traditional view

links learning in the basal ganglia to reward-based learning, and in the cerebellum to super-

vised learning, our approach suggests that learning in the basal ganglia is not uniform, but

rather depends on the origin of the cortex—basal ganglia loop [44]. While the limbic basal gan-

glia are well suited for learning about the success of the task, the motor basal ganglia shall

rather consider aspects of motor execution, such as a novelty-based dopamine signal. This dis-

sociation of labor allows us to explain the surprising observation that human subjects continue

to adapt in motor adaptation tasks, although they perform the task without error. In our

model, the basal ganglia can counteract the perturbation in motor adaptation by a cognitive

strategy. However, as the cerebellum learns about the difference between the intended position

and the final arm position, it further contributes to adaptation.

Materials and methods

Central pattern generator

Each CPG network is composed of three layers: rhythm-generation neurons, pattern forma-

tion neurons, and motor neurons. More details about its neurophysiological basis can be

found in [62].

The rhythm-generator layer is composed of two cells that can generate self-rhythms. The

membrane potential (V) of these cells is defined by:

tm
dV
dt

¼ � ðV � Af tanhððsf=Af ÞVÞ þ q � iinjÞ

ts
dq
dt
¼ � qþ ssðV � EsÞ

ð1Þ

where τm and τs are time constants, iinj is the injected current, q is the lumped slow current, σs
is the potassium conductance normalized to the leak conductance, σf is a dimensionless shape
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parameter for the current–voltage curve of the fast current and Af is the width of the N shape

of the fast current.

Pattern formation neurons are modulated by the rhythm-generator neurons and by sensory

neurons encoding the current joint angles. The activation function is defined by:

PF ¼
1

1þ ea0aPFððy0þyPFÞ� IPFÞ

IPF ¼
WrgRGþ

Pn
j¼1
WjSj

nþ 1

ð2Þ

where RG is the activation of the rhythm generator neurons,Wrg is the weight for the connec-

tion from the rhythm generator neuron, Sj is the activity of the sensory neurons andWj the

weight of the connections from the sensory neurons. αPF is a descending control signal that

modulates the activity of pattern formation cells and θ0 is the center of the sigmoid function

that controls the balance between the extensor and the flexor.

Motor neurons are defined by:

MN ¼
1

1þ e5ð0:5� IMN Þ

IMN ¼
WpfPF þ

Pn
k¼1
WkSk

nþ 1

ð3Þ

The final joint angle (U) is obtained by combining the extensor and flexor motor com-

mands:

U ¼ AmpðMNE � MNFÞ þ Uref ð4Þ

where Amp is an amplification factor,MNF andMNE are the flexor and the extensor motor

neurons activation. Uref is the joint reference angle.

The parameters τm, σf, σs, iinj of the rhythm generator neurons and the parameters α0,θ0 the

pattern formation neurons of all CPGs are set as a results of the BG and cerebellum interac-

tions. The value for the fixed parameters are shown on Table 1.

Table 1. Fixed parameter values for the CPGs.

Parameter Value

Af 5.0

τs 20xτm
αPF 1

θPF 0

Wrg 1

Wpf 1

Amp 5.0

https://doi.org/10.1371/journal.pcbi.1011024.t001
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Basal ganglia

The firing rate of neurons in the basal ganglia is defined by the following equation:

t
dmpj
dt
þmpj ¼

X

i2Ne

wijri �
X

i2Ni

wijri þ Bþ �j;

rj ¼ ðmpjÞ
þ
:

ð5Þ

wherempj is the membrane potential, rj is the firing rate, τ is a time constant, wij is the weight

between the presynaptic neuron i and postsynaptic neuron j, Ne is the group of cells that have

an excitatory projection to neuron j, Ni is the group of cells that have an inhibitory projection

to neuron j, B is a baseline value and �j is a noise term drawn from a uniform distribution. ()+

converts negative numbers to 0.

Plasticity in the cortico-striatal projection follows the learning rule:

tw
dwij
dt
¼ fDAðDAðtÞ � BDAÞCij � ajðrj � �rPOSTÞ

2 ð6Þ

where wij is the weight between cortical cell i and striatal cell j, fDA(DA(t) − BDA) is the dopa-

mine modulation which depends on a phasic change between the current dopamine level (DA
(t)) and the baseline dopamine level (BDA), Cij is the correlation between cortical cell i and

striatal cell j and ajðrj � �rPOSTÞ
2

is a normalization term that limits the weight growth.

Based on biological findings [105, 106], a phasic increase in dopamine (DA(t)> BDA)

strengthens the weights between active neurons while a phasic decrease (DA(t) < BDA) reduce

their value. The function fDA(x) controls the rate of increase and decrease and takes values Kb
for positive x and Kd for negative x.

The correlation term (Cij) is computed following the equation:

Cij ¼ ðri � �rPRE � gPREÞðrj � �rPOST � gPOSTÞ
þ

ð7Þ

where ri and rj are the firing rates of cortical cell i and j, rPRE is the mean firing rate of the corti-

cal population and rPOST is the mean firing rate of the striatal population, γPRE and γPOST are

thresholds.

The dopamine level DA(t) is computed following the activity of a cell whose activity is gov-

erned by:

t
DAðtÞ
dt
þ DAðtÞ ¼ PðtÞð1:0 �

X

i2StrD1

wDAij riÞ þ BDA ð8Þ

where BDA is the baseline dopamine level, P(t) controls that dopamine changes are produced

only after a movement is executed, being 1 after a movement and 0 otherwise. The dopamine

level is inhibited through direct striatal connections with weights wDAij .

Projections from the striatum to the dopaminergic cell are plastic and governed by the fol-

lowing rule:

tw �
dwDAij ðtÞ
dt

¼ 3ðDAðtÞ � BDAÞ � ðriðtÞ � �rPREÞ
þ ð9Þ

All fixed parameter values are shown in Table 2.
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Cerebellum

The cerebellum module follows the reservoir computing framework proposed by [70]. It is

composed of 400 neurons with a firing rate ri(t) given by:

t
dxi
dt

¼ � xiðtÞ þ
P
JijrjðtÞ þ

P
BikukðtÞ

riðtÞ ¼ tanhðxiðtÞÞ
ð10Þ

where Jij are plastic local weights, uk(t) is the activity of the goal encoding cells, which is 1 if

goal k is currently active and 0 otherwise, and Bik are random weights drawn from a uniform

distribution between -0.2 and 0.2.

At every time step the value of xi(t) is perturbed with a probability f. Perturbations are intro-

duced by adding to x a random value drawn from a uniform distribution between −A and A.

The learning rule depends on an eligibility trace given by:

eijðtÞ ¼ eijðt � 1Þ þ ðrjðt � 1Þ � ðxiðtÞ � �xiÞÞ
3

ð11Þ

The weight change (ΔJ) is then defined as:

DJij ¼ � Zeij�EðE � �EÞ ð12Þ

where E is the error in the current trial and �E is the mean error. The initial value of the weights

Jij are drawn from a normal distribution with a mean of 0 and a standard deviation of 0.05.

Kinematic model

The position of the wrist (x) given the output joint angles of the CPGs is computed by per-

forming a set of matrix operations following the simple kinematic of the humanoid robot

Table 2. Values for the fixed parameters of the basal ganglia.

Parameter Value

τ 10

w striatum-snr 0.8

w snr—thalamus 0.6

w thalamus—cortex 1.0

w cortex—striatum 0.5

B striatum 0

B snr 1.1

B thalamus 0.9

BDA 0.1

γPRE 0

γPOST 0.1

https://doi.org/10.1371/journal.pcbi.1011024.t002

PLOS COMPUTATIONAL BIOLOGY A model on the contribution of the basal ganglia and cerebellum to motor learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011024 April 3, 2023 20 / 29

https://doi.org/10.1371/journal.pcbi.1011024.t002
https://doi.org/10.1371/journal.pcbi.1011024


James [107, 108]. This provides us with a fast transformation from angles to hand position.

G34 ¼

cos
p

2
þ elbow

� �
� sin

p

2
þ elbow

� �
0 0:16cos

p

2
þ elbow

� �

sin
p

2
þ elbow

� �
cos

p

2
þ elbow

� �
0 0:16sin

p

2
þ elbow

� �

0 0 1 0

0 0 0 1

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

G23 ¼

cos
p

2
þ roll

� �
0 sin

p

2
þ roll

� �
0

sin
p

2
þ roll

� �
0 � cos

p

2
þ roll

� �
0

0 1 0 0:22

0 0 0 1

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

G12 ¼

cos
p

2
þ yaw

� �
0 � sin

p

2
þ yaw

� �
0:05cos

p

2
þ yaw

� �

sin
p

2
þ yaw

� �
0 cos

p

2
þ yaw

� �
0:05sin

p

2
þ yaw

� �

0 � 1 0 0

0 0 0 1

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

G01 ¼

cosðpitchÞ 0 � sinðpitchÞ 0

sinðpitchÞ 0 cosðpitchÞ 0

0 � 1 0 0

0 0 0 1

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

G02 ¼ G01 � G12

G03 ¼ G02 � G23

G04 ¼ G03 � G34

x ¼ G04 �

0

0

0

1

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5
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where x is the position of the wrist, elbow is the angle of the elbow joint in radians, roll is the

angle of the shoulder roll joint in radians, yaw is the angle of the shoulder yaw joint in radians,

and pitch is the angle of the shoulder pitch joint also in radians.

Training and task simulation details

For the simulations in the reaching task, goals are selected by adding a random number of

degrees to the initial arm configuration and then computing the hand position. This ensures

that goals are reachable. Only goals that are at a minimum distance of 0.5 from the initial hand

position are considered to avoid very short movements.

Every simulation starts with a basal ganglia training block. At the beginning of each trial of

this block, the network is simulated with no inputs for enough time to allow it to return to its

baseline activity. Then, a random goal is generated and the baseline of the cortical input cells

changes according to a Gaussian function with the difference between the cell’s preferred posi-

tion and the goal. The network is then simulated for 200ms and the activity in the motor cortex

is observed. If the maximum activity in the motor cortex is less than 0.05, a random concrete

action is selected and the activity of the corresponding action cell is set to 1. If the maximum

activity is larger than 0.05, the activity of the most active concrete action is set to 1. Then, an

additional 150ms are simulated to allow the parameter encoding cells to reach a stable activity

pattern.

Parameter values are then computed by reading the activity of the parameter encoding

cells. A sum over the activity of the cells is computed, weighted by the cells’ preferred parame-

ter value. The values for σf, σs are limited between 5 and 10, iinj is limited between -4 and 4, τM
is limited between 5 and 15, α0 and θ0 are limited between 0.001 and 2.

A movement is executed by solving the CPG equations and transforming the final angles

into a hand position using the kinematic model. The baseline of the input cortical cells is then

changed according to this new position and the model is further simulated for 100ms. Finally,

the baseline of the dopamine cell is increased to 1.0 to allow learning, and a final 100ms is sim-

ulated. The activity of the dopamine cells during this period is further restricted through stria-

tal inhibition.

In simulations with 8 goals, the simulation speed is increased by computing the concrete

action for each goal in advance. After the initial basal ganglia training, 8 additional trials are

simulated, each with one of the goals that will be used later during the task simulation. The

concrete action selected and the corresponding parameter values are saved for future use.

Then, during the task simulation, the output values of the cerebellum are added to the saved

concrete action values.

On every trial during the task simulation, the activity of the cerebellum cells is initially set

to a uniform random value between -0.01 and 0.01. Then the corresponding input cell is acti-

vated and the network is simulated for 200ms. The input is then turned off and an additional

200ms is simulated. The mean of the activity of the output cell during this final period is con-

sidered as the output of the network and added to the parameters obtained through the con-

crete action. This process was used originally by Miconi [70].

After executing the movement, the Euclidean distance between the goal and the achieved

position is computed and used as an error function to train the reservoir. The mean error con-

sidered in the learning rule is computed independently for every goal.

In visuomotor rotation paradigms, normally only 2-dimensional movements on a plane are

allowed by fixing the arm accordingly. Rotations are introduced according to this two-dimen-

sional plane. As our model normally produces three-dimensional movements we defined the

plane according to which the position will be rotated. To solve this problem, we first train the
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model to reach 2 goals as in the reaching task. Then, during the perturbed period, the final

hand position computed with the kinematic model is rotated by a fixed amount of degrees

around the axis formed by the vector resulting from the cross-product between the two goals

used during training. Angular errors are computed by first projecting the initial and final hand

position to the same plane and determining the angle formed by the final position, the initial

position, and the goal. Small values mean that the movement is made in the direction required

to reach the goal.

When simulating the rotation and strategy group, a similar technique to reduce computa-

tion time was used as when the 8 goals reaching task were simulated. The parameters for each

goal and their 45 degrees rotations are computed in advance after the initial basal ganglia

training by simulating additional trials. Then, the output of the cerebellum is added to the

stored values. Changes in the motor goal are then simulated by recalling a different value

from memory. Simulations with the only rotation group are made by solving the complete

network.

All simulations were implemented using the neural simulator ANNarchy: a software tool

designed for distributed rate-coded or spiking neural networks [109]. The code was written

using ANNarchy’s python interface, however, the simulator generated parallel C++ code. Each

simulation was ran using 2 threads on a computing server with two AMD EPYC 7352 24-Core

processors and 256 GB memory. Each simulation of the whole model takes around 12 hours.

We ran 25 simulation in parallel on the same machine.

Supporting information

S1 Fig. Effect of learning speed and noise levels in the performance of the reservoir. We

ran multiple simulations with different values for the perturbation frequency (f), the perturba-

tion amplitude (A) and the learning rate (eta). The color in each plot represents the distance

between the achieved position and the goal position. Goals were selected randomly but always

with an distance of at least 0.5 from the initial hand position. The plots show that low ampli-

tude impede learning as the hand has stayed close to the initial position. With high enough

amplitude to produce a strong movement, the network is sensitive to the value of the other

parameters. High errors points are intermixed with low error points. High error points are

more common when the three parameter values are high.

(EPS)

S2 Fig. Activity of the basal ganglia during an example trial. Activation of a goal position in

the pre-motor cortex will activate the basal ganglia loop which will select one between the 120

available concrete actions. Each line in the figure correspond to one action channel. In this

example the red action is selected. Selection starts by an activation of Striatum D1 cells which

then inhibit the SNr. The constant inhibition that reaches the thalamus is then reduced allow-

ing it to activate. Due to its thalamic inputs the motor cortex activates. Finally feedback con-

nection to the striatum further enhance the selection.

(EPS)

S3 Fig. Error signal in the cerebellum during the visuomotor adaptation task. Each plot of

the figure shows the error signal guiding learning in the model’s cerebellum during the adapta-

tion task under one of the three different conditions. Aiming error is the distance between the

current motor goal and the achieved position. On the first two conditions, once a perturbation

is introduced the error increases and is then reduced with learning. Removing the perturbation

produces a second increase in the error which is again slowly reduced trial by trial. In the
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STRATEGY condition, the change in the concrete action by the basal ganglia keeps a low error

in the cerebellum and avoids learning.

(EPS)

S4 Fig. Visuomotor adaptation without the cerebellum. We ran 50 simulations of the

rotation + strategy condition where after the initial training with two random goals the cere-

bellum’s corrections were removed. Once the perturbation is introduced, the model makes a

large error which is then reduced after it is instructed to counter the perturbation (trial 103).

Different to the previous simulations with the full model, the error stays flat until the model is

instructed again. By the end of the simulation no aftereffect is observed. Shadow area next to

the curve shows the standard deviation. The variability between simulations is explained by

the fact that each time we use a different set of random concrete actions.

(EPS)
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