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The genomes of the migratory locust Locusta migratoria and the termite Zootermopsis
nevadensis were mined for the presence of genes encoding neuropeptides,

neurohormones, and their G-protein coupled receptors (GPCRs). Both species have

retained a larger number of neuropeptide and neuropeptide GPCRs than the better known

holometabolous insect species, while other genes that in holometabolous species appear

to have a single transcript produce two different precursors in the locust, the termite

or both. Thus, the recently discovered CNMa neuropeptide gene has two transcripts

predicted to produce two structurally different CNMa peptides in the termite, while

the locust produces two different myosuppressin peptides in the same fashion. Both

these species also have a calcitonin gene, which is different from the gene encoding

the calcitonin-like insect diuretic hormone. This gene produces two types of calcitonins,

calcitonins A and B. It is also present in Lepidoptera and Coleoptera and some Diptera,

but absent from mosquitoes and Drosophila. However, in holometabolous insect species,

only the B transcript is produced. Their putative receptors were also identified. In contrast,

Locusta has a highly unusual gene that codes for a salivation stimulatory peptide.

The Locusta genes for neuroparsin and vasopressin are particularly interesting. The

neuroparsin gene produces five different transcripts, of which only one codes for the

neurohormone identified from the corpora cardiaca. The other four transcripts code for

neuroparsin-like proteins, which lack four amino acid residues, and that for that reason we

called neoneuroparsins. The number of transcripts for the neoneuroparsins is about 200

times larger than the number of neuroparsin transcripts. The first exon and the putative

promoter of the vasopressin genes, of which there are about seven copies in the genome,

is very well-conserved, but the remainder of these genes is not. The relevance of these

findings is discussed.
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INTRODUCTION

Neuropeptides and neurohormones are important regulators of
physiological processes that may act at the periphery or within
the central nervous system. They are evolutionarily very old and
consequently orthologs are present in both deuterostomes and
protostomes (Mirabeau and Joly, 2013). Their structures are often
insufficiently conserved to establish homology. However, most
neuropeptides act through G-protein coupled receptors (GPCRs)
and due to the co-evolution between the receptors and their
ligands (Park et al., 2002), evolutionary relationships between
different peptides can be confirmed using the sequences of the
transmembrane regions of the GPCRs they activate (Mirabeau
and Joly, 2013). Whereas the structures and the immediate func-
tions, i.e., activation of specific GPCRs, are conserved, their
physiological effects may be quite different. For example, the
neuropeptide SIFamide is expressed in Drosophila exclusively in
four brain neurons that modulate sexual behavior (Terhzaz et al.,
2007), while in ticks the same peptide acts on the salivary glands

and the hindgut (Šimo et al., 2009, 2013; Šimo and Park, 2014).
It is this what makes the study of neuropeptides so interesting, as
it allows one to see how the endocrine and nervous systems and
pathways may evolve over time, thereby ultimately contributing
to a better understanding as to the origin of our own nervous and
endocrine systems.

After the initial genome sequence of Drosophila (Adams et al.,
2000) a significant number of arthropod genomes have followed
suit, most of them from holometabolous insect species. The
three hemimetabolous insect species with a completely sequenced
genome are the louse (Kirkness et al., 2010), the pea aphid
(Richards et al., 2010) and the as yet unpublished genome of
the kissing bug Rhodnius prolixus. An impressively complete neu-
ropeptide transcriptome of the brown plant hopper Nilaparvata

lugens has also recently been published (Tanaka et al., 2014). All
four of those species are very specialized feeders and therefore not
necessarily representative of this group. The termite Zootermopsis

nevadensis and the migratory locust Locusta migratoria both
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belong to more basal insect groups and as their genomes have
recently been sequenced (Terrapon et al., 2014; Wang et al., 2014),
it seems valuable to look at the neuropeptides they encode. A pre-
liminary list of neuropeptide genes present in the Zootermopsis

has already been published (Terrapon et al., 2014), but the actual
number of such genes is much larger and here we also identify
the neuropeptide GPCRs of this species. Locusta is probably the
insect species from which the largest number of neuropeptides
has been biochemically identified, by the Leuven group (Schoofs
et al., 1990a,b,c,d,e, 1991a,b, 1992a,b, 1993a,b, 1994; Paemen
et al., 1991a,b; Veelaert et al., 1995; Tawfik et al., 1999; Clynen
et al., 2001, 2003a,b,c, 2006; Clynen and Schoofs, 2009) and by
many others who identified specific neuropeptides, such as the
various adipokinetic hormones (Stone et al., 1976; Siegert et al.,
1985; Oudejans et al., 1991; Bogerd et al., 1995; Siegert, 1999),
the vasopressin-like peptide (Proux et al., 1987), neuroparsins
(Girardie et al., 1989), the cortiocotropin-releasing factor (CRF)-
like diuretic hormone (Kay et al., 1991; Lehmberg et al., 1991),
ovary maturating parsin (Girardie et al., 1991), FMRFamide
(Lange et al., 1994; Hill and Orchard, 2007) and periviscerokinin
(Predel and Gäde, 2002). Ion transport peptide was identified
from a different migratory locust, Schistocerca gregaria (Meredith
et al., 1996). Obviously, the locust genome is of particular interest
as far as neuropeptides are concerned.

In the present paper, we describe the genes coding several neu-
ropeptides from these two insect species, and the GPCRs of these
neuropetides in the termite. We also discuss the discovery of novel
neuropeptide genes, which have not been identified previously,
i.e., those encoding SMYamide, calcitonin, tryptopyrokinins, and
a salivation stimulating peptide, as well as two locust neuropep-
tide genes that are of particular interest, the neuroparsin and
vasopressin genes.

MATERIALS AND METHODS

The Zootermopsis genome was downloaded from http://www.

termitegenome.org and was analyzed by local BLAST (Altschul
et al., 1997) on a desktop PC. The Locusta genome was searched
using the NCBI web interface and interesting contigs were down-
loaded for a more detailed analysis. Preliminary prediction of
gene models or parts thereof was based on homology with
known insect neuropeptides and their receptors in combination
with likely intron splice sites using Artemis (Rutherford et al.,
2000) as described previously (Veenstra et al., 2012). All short
sequence read archives (SRAs, both genome and transcriptome
data) for these two species that were available at NCBI were
downloaded and the SRA toolkit (http://www.ncbi.nlm.nih.gov/
Traces/sra/?view=software) was used to extract the data in fasta
form, which was then used to build searchable BLAST databases
using BLAST+ (Camacho et al., 2009). The initially predicted
mRNA sequence was used to search all the transcriptome SRAs for
that species. Positive reads were collected and used as input for the
Trinity program (Haas et al., 2013) in order to produce transcripts
that were used to improve and correct the initial predictions using
Artemis. This was an effective method to determine N- and/or
C-terminal regions of proteins that could not be predicted by
homology alone and in cases where there were gaps either within
the contigs or within the scaffolds. The Trinity-Artemis cycle was

repeated as long as the coding regions of the predicted mRNA
sequences were incomplete and the predicted mRNA’s increased
in length. No attempt was made to accurately determine the 3′-
and 5′- ends of mRNAs; read-throughs from neighboring genes
easily give false positives. For some neuropeptides that were pre-
viously isolated and identified from Locusta no DNA sequences
were found in the genome assembly. In those cases we looked in
the genomic SRAs in order to find individual reads that might
contain sequences potentially coding these peptides but that had
not made it into the assembled genome. We then used these
sequences to search the genomic SRAs for similar sequences and
attempted to assemble those reads into mini-contigs using both
edena (Hernandez et al., 2008) and velvet (Zerbino and Birney,
2008), but this was not very successful.

For comparative purposes, a few other insect genomes both
published and unpublished were prospected for specific neu-
ropeptide precursors or GPCRs. Preliminary assemblies of the
genomes of Blattella germanica, Ladona fulva, Ephemera dan-

ica, and Lutzomyia longipalpis were downloaded from https://
www.hgsc.bcm.edu/arthropods/ and those of Phlebotomus pap-

atasi and Diaphorina citri from https://www.vectorbase.org/ and
http://www.psyllid.org/, respectively. Previously published anno-
tated neuropeptide GPCRs from Drosophila, Apis, Tribolium

(Hauser et al., 2008), Bombyx (Yamanaka et al., 2008), a spider
mite (Veenstra et al., 2012), and a plant hopper (Tanaka et al.,
2014) were added to the curated Zootermopsis GPCRs for the
construction of a phylogenetic tree. A few deorphanized proto-
stomian neuropeptide GPCRs were appended to this ensemble.
Phylogenetic trees were made after using MUSCLE (Edgar, 2004)
and/or Clustal Omega (Sievers et al., 2011) for obtaining sequence
alignments on the desktop that were manually inspected and cor-
rected using Seaview (Gouy et al., 2010). Seaview was also used
for selecting the conserved protein regions used for making the
trees. Both PhyML (Guindon and Gascuel, 2003) and FastTree
2 (Price et al., 2010) were used for making trees. As differences
between the two were minimal, only the latter was used for the
larger ones. Convertase cleavage site predictions were guided by
rules previously described (Veenstra, 2000) and signal peptides
were analyzed with Signal P 4.0 (Petersen et al., 2011), but the sig-
nal peptide of the Locusta ion transport peptides were predicted
by the hidden Markov model of Signal P 3.0; the neural network
models of both Signal P 3.0 and 4.0 suggest that these peptides do
not have a signal peptide. The signal anchor of the termite allato-
statin CC was predicted by Signal P 3.0 (Bendtsen et al., 2004) and
confirmed by the forecast of a transmembrane region by a hidden
Markov model (Krogh et al., 2001).

RESULTS

The data for Zootermopsis allowed us to predict complete
precursor sequences for virtually all known insect neuropep-
tides, including such recent additions as the CCHamides, ACP,
RYamide, trissin, natalisin, and CNMa (Roller et al., 2008; Hansen
et al., 2010; Hauser et al., 2010; Ida et al., 2011a,b, 2012; Jiang
et al., 2013; Jung et al., 2014). In a number of cases, exons
were lacking either completely or partially from the genome
assemblies, but all these gaps could be filled and/or corrected
with transcriptome data and in a few cases those corrections
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were confirmed with the genomic reads. The predicted tran-
scripts for the neuropeptide GPCRs seem similarly very complete.
The Locusta genome is much bigger, giving rise to much big-
ger introns, and a couple of genes appear to be represented by
different alleles. Furthermore, the Locusta transcriptome data is
much more limited and for some genes non-existent. Thus, the
pyrokinin, and vasopresssin genes are known to be expressed
exclusively or predominantly in the suboesophageal ganglion
(Rémy and Girardie, 1980; Clynen and Schoofs, 2009) and we
expect tryptopyrokinins to be expressed also mainly in this gan-
glion. However, none of these genes is represented in the tran-
criptome SRAs, suggesting the absence of this ganglion from the
trancriptome data. The difficulty to assemble repetitive sequences
using a short read sequencing technology also affected the assem-
bly of the Locusta genome more than the Zootermopsis genome,
particularly in the case of the vasopressin genes, present in various
copies, as well as some genes that code highly similar or identical
multiple copies of the same peptide, such as the calcitonin gene.

The major reason for the less complete Locusta sequences is
the lack of sufficient transcriptome data; the number of reads
was often insufficient for Trinity to build transcripts. The use of
individual transcriptome reads and publicly available expressed
sequence tags (ESTs) from Locusta (Kang et al., 2004; Clynen
et al., 2006; Ma et al., 2006; Chen et al., 2010) allowed us to fill
some gaps, but many remain. It is for this reason that we did
not attempt to predict the neuropeptide GPCRs in this species
(in a few cases we used partially constructed GPCRs for phyloge-
netic tree analysis). Although some genes are thus incompletely
present in the Locusta genome assembly, most of the neuropep-
tides previously identified from the migratory locust were found
in the genome sequences, if not in the assembly itself, at least in
the genomic SRAs. Thus, in spite of the fragmentary nature of the
Locusta genome (1,397,492 contigs vs. 64,771 for Zootermposis)
and the limited amount of transcriptome data, we were able to
deduce the complete sequences of a impotant number of Locusta

neuropeptide precursors, while for others at least a significant
part of their precursor was found.

In a few cases the sequences predicted by the Locusta genome
are slightly different from those previously reported. As most
these differences are easily explained by experimental errors such
as contamination of first amino acid residues in Edman degrada-
tion and/or the same or very similar molecular masses in mass
spectrometry, it seems likely that the genomic sequences are the
correct ones. The genomic sequences also allowed us to con-
firm the sequence of locustamyoinhibin (Schoofs et al., 1994) as
allatostatin C.

We found a total of 59 and 63 different transcripts for neu-
ropeptides and neurohormones in the genomes of Zootermopsis

and Locusta, respectively. In the locust the actual number is
probably even higher as there are likely to be several transcripts
encoding the vasopressin-like peptide, but these could not be
reliably identified. As several of these transcripts are predicted
to produce more than one peptide the number of neuropep-
tides produced by these insects is much larger. The predicted
precursors of these genes are illustrated in the Supplementary
Figures 1, 2, and their sequences are listed in Supplementary
Tables 1, 3.

More important than the actual number of different peptides
produced is the question as to how many different messages
they can transmit. It is plausible that the number of different
neuropeptide receptors will give a more accurate answer to that
question. In the Zootermopsis genome a total of 65 putative neu-
ropeptide GPCRs were identified. Although a large number of
them can be deorphanized in silico by their close structural sim-
ilarity to deorphanized insect neuropeptide GPCRs, others are
orphans, which may not be neuropeptide receptors. On the other
hand some neuropeptides are known to act on receptors that are
not GPCRs, such as insulin, eclosion hormone and at least one of
the peptides encoded by the NPLP1 gene in Drosophila (Chang
et al., 2009; Overend et al., 2011; Vogel et al., 2013). The pre-
dicted Zootermopsis neuropeptide and neurohormone GPCRs are
presented in Supplementary Table 2.

On phylogenetic trees (Supplementary Figures 3, 4), most of
the GPCRs cluster with related GPCRs from other species and
in many cases the receptor can be deorphanized in silico due to
the fact that for one or more of the same group the ligand has
been determined experimentally. It is interesting to see that some
receptors are only present in Zootermopsis, Nilaparvata, and/or
Tetranychus, suggesting that the particular receptor and perhaps
its ligand may have been lost in holometabolous insect species.
In other cases, there may be two receptors for the same neu-
ropeptide. For example, in the case of Zootermopsis GPCR A51
and Nilaparvata GPCRs A38 and A39 it is tempting to speculate
that they might be alternative NPF receptors, while Zootermopsis

GPCR A11 and Nilaparvata GPCR A5 might be SIFamide (or
SMYamide?) receptors.

ACCESSORY GLAND MYOTROPIN II

An unusual peptide identified in Leuven concerns the accessory
gland myotropin II, which was identified from male accessory
glands in Locusta (Paemen et al., 1991b). The sequence of this
peptide is encoded on an EST (Accession # GO240796). The same
sequence can also be deduced from genomic and transcriptomic
data and shows a precursor that does not look like a neuropeptide
precursor as it is missing typical neuropeptide convertase cleavage
sites (Figure 1).

ADIPOKINETIC HORMONE

Adipokinetc hormone (AKH) was identified from migratory
locusts as a hormone from the corpora cardiaca increasing

FIGURE 1 | Locusta accessory gland myotropin. Deduced amino acid

sequence from EST GO240796.1 and genome assembly. Both the genome

assembly and the EST have a few more amino acids at the N-terminus, but

they differ, probably due to the insertion or deletion of a nucleotide. The

sequence shown here is identical between the genome assembly and the

EST. It clearly shows that the isolated active peptide (Paemen et al., 1991b),

shown in blue, is not flanked by classical neuropeptide convertase cleavage

sites.
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hemolymph lipid during flight (Beenakkers, 1969; Mayer and
Candy, 1969). It is made in the glandular cells of the corpora
cardiaca and released during flight. After the identification of the
decapeptide AKH I (Stone et al., 1976), the octapeptides AKH II
and AKH III were identified (Siegert et al., 1985; Oudejans et al.,
1991). The closely related peptide ACP (AKH/corazonin-related
peptide) was initially also considered to be an AKH (Siegert,
1999), but has now been shown to be a different peptide with its
own receptor (Hansen et al., 2010). Unlike AKH it is not expressed
in the glandular cells of the corpora cardiaca but by neurons in
the nervous system (Hansen et al., 2010; Patel et al., 2014). In
the Locusta genome the genes encoding AKH I, II, and III as
well as ACP were identified. Interestingly, a fourth AKH gene
was encountered, which we called AKH IV. Based on the num-
ber of transcriptome reads, AKH IV may be even less expressed
than AKH III (3 vs. 6 reads), which is much less abundantly
expressed than AKHs I and II (586 and 21 reads, respectively).
In the Zootermopsis genome only a single AKH gene was found,
as in many other insect species.

ALLATOSTATIN CC

Allatostatin CC has strong sequence similarity to allatostatin
C and based on this was expected to activate the same recep-
tors (Veenstra, 2009), as now has been confirmed for the beetle
Tribolium castaneum (Audsley et al., 2013). Allatostatin CC does
not appear to be a typical neuropeptide and it was suggested
that it might function as a paracrine secretion, not only secreted
by neurons but also by other cells (Veenstra, 2009). The expres-
sion of this peptide by hemocytes (Accession # FP353238.1,
FP357967.1, FP358784.1, FP359038.1, FP352222.1, FP352474.1)
supports the hypothesis that the peptide is indeed made by non-
neuroendocrine cells. In the Drosophila species as well as tsetse
flies allatostatin CC lacks a signal peptide and instead has a sig-
nal anchor, reinforcing the notion that it is released locally and
not systemically. In the termite the gene similarly encodes a signal
anchor, but in the locust it is predicted to have a classical signal
peptide. Therefore, it appears to be a juxtacrine secretion also in
termites. A peptide secreted as a paracrine or juxtacrine rather
than a endocrine presumably would not need as high an affinity
for its receptor as a hormone. This is indeed what was found for
Tribolium (Audsley et al., 2013).

CALCITONIN AND CALCITONIN-LIKE DIURETIC HORMONE

Anything that stimulates the excretion of water in insects could
potentially be used as the basis for designing a novel pesticide
and putative insect diuretic hormones have therefore received a
lot of attention. One of the identified diuretic hormones has been
called the calcitonin-like diuretic hormone but is also known by
the abbreviation DH31. This peptide was first identified from the
cockroach Diploptera punctata (Furuya et al., 2000) and genes
coding such a peptide are present in all insect genomes. The
Drosophila and Rhodnius homologs have been shown to acti-
vate B-type GPCR’s that are related to the vertebrate calcitonin
receptors (Johnson et al., 2005; Zandawala et al., 2013). This hor-
mone is generally considered to be the insect calcitonin ortholog.
However, the genomes of both Zootermopsis and Locusta con-
tain another gene that encodes peptides showing even stronger

similarity to calcitonin, as they contain a predicted disulfide
bridge.

Analysis of several other arthropod genomes, ESTs and tran-
scriptome shotgun assemblies (TSAs) show this gene to be
very generally present in arthropods (Supplementary Figure 5).
Comparing the different encoded arthropod calcitonins reveals
that they can be separated into two distinct classes, which we
have called calcitonin-A and calcitonin-B (Supplementary Figure
6). In the termite this gene produces two different transcripts
(Figure 2). The first one, the A-transcript, codes for a single
calcitonin-A, while the B-transcript encodes three calcitonin-
B peptides. It must be noted that even though both types of
calcitonin have a predicted N-terminal disulfide bridge and a C-
terminal Pro-amide sequence, the remainder of the sequences
show striking differences (Figure 3). The as yet unpublished
genomes of the dragonfly Ladona fulva, the German cockroach
Blattella germanica and the may fly Ephemera danica have very
similar genes, although the number of copies of calcitonin-B on
the second transcript is variable. Both types of peptides are also
produced in phasmids as TSAs from various species attest.

The Locusta calcitonin gene has a gap in its sequence and no
calcitonin-A peptide was found in the genome assembly, how-
ever in the genomic sequence reads a sequence was found that
encodes a calcitonin-A-like peptide, i.e., CYIGGRMGGCDYQDL
KQAQGEDQHLNSIDSPGKR.

Although it is notably absent from Drosophila and other flies
as well as mosquitoes, aphids, Rhodnius, and Hymenoptera, it
is present in the sand flies Phlebotomus papatasi and Lutzomyia

longipalpis as well as beetles and Lepidoptera. Many of the pre-
dicted arthropod calcitonin precursors contain several copies of
this neuropeptide, while the Tribolium genome has even two

FIGURE 2 | Schematic representation of alternative splicing of the

Zootermopsis calcitonin gene. On top the six exons indicated by boxes;

only exons 2–5 are coding exons; non-codings exons are white. Numbers

between the exons indicate the number of nucleotides that separate them.

mRNA1 consists of all exons except the fifth and leads to a precursor from

which a single calcitionin A is produced. mRNA2 lacks the third and the

fourth exons and this will lead the prodcution of the calcitonin B precursor,

from which three calcitonin B’s are predicted. Location of various

calcitonins within the precursor, the mRNAs and the respective exons has

been indicated by red and orange and the signal peptide in yellow.
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FIGURE 3 | Alignment of the insect calcitonins A and B. Note that the overall structures of these peptides are similar, as they have a disulfide bridge at the

N-terminus as well as a C-terminal Pro-amide. Nevertheless, several amino acid residues, indicated by asteriks, in homologous positions are signficantly different.

different genes (Supplementary Figure 5). Transcriptome data
show calcitonin B to be expressed in the insect midgut.

The B-type GPCRs can be expected to include the recep-
tor(s) for the arthropod calcitonins described here. Of the B-type
GPCRs that have not been deorphanized in insects, there is one
that appears to be the best candidate. This group of receptors is
characterized by the B3 receptor from Bombyx (Yamanaka et al.,
2008) and the receptor identified as 72 from Tribolium (Hauser
et al., 2008) and corresponds to cluster A of Cardoso et al. (2014).
We thus looked for homologs of this receptor in other arthro-
pod genomes and found such receptors only in those species that
also have a calcitonin gene. Given our interest in the Locusta

receptors, we included two partial homologs from this species.
The results suggests that in basal insect groups there are two
calcitonin receptors, like in Locusta, Zootermopsis, and the stick
insect Ramulus artemis (Supplementary Figure 4). Interestingly,
phylogenetic trees for the calcitonin-A peptides correspond com-
pletely with one of these receptors, while tree for the calcitonin-B
peptides corresponds perfectly with the other (Figure 4).

CAPA PEPTIDES, PYROKININS, PERIVISCEROKININS, AND

TRYPTOPYROKININS

The nomenclature of these peptides is not always very clear, in
large part because sequences of these peptides are rather simi-
lar and peptides have often been named according to the tissue
they have been identified from or the gene on which they are
encoded. Analysis of their receptors in Drosophila has made it
clear that pharmacologically one can distinguish three different
types of peptides and this has been confirmed in other species
(Iversen et al., 2002; Rosenkilde et al., 2003; Cazzamali et al., 2005;
Homma et al., 2006; Paluzzi et al., 2010; Paluzzi and O’Donnell,
2012). The pyrokinins and tryptopyrokinins have C-terminal
consensus sequences of FXPRLamide and MWFGPRLamide,
respectively, while that of the periviscerokinins is FPRVamide.

The tryptopyrokinins seem to be a relatively recent evolution-
ary innovation, as they have so far not been found in non-insect
arthropods. The close association of their receptors with those
for pyrokinins on evolutionary trees for GPCRs suggests the same
evolutionary innovation (Paluzzi and O’Donnell, 2012). In a few
holometabolous insect species, tryptopyrokinins are known to be
expressed specifically by neuroendocrine cells in the labial neu-
romere of the suboesophageal ganglion. At least in the case of
Drosophila this is achieved by differential processing of the capa
precursor (Wegener et al., 2006) and it has previously been sug-
gested that such a differential processing might also occur in
Bombyx (Veenstra, 2000).

Insects generally have two genes coding for these peptides,
a capa gene coding for periviscerokinins and often a tryptopy-
rokinin, and a pyrokinin gene that encodes pyrokinins and often
a tryptopyrokinin. Both Zootermopsis and Locusta have a third
type of gene that codes for tryptopyrokinins and in the case of
the termite a single pyrokinin. Interestingly, the locust has four
such genes (Figure 5).

The Locusta pyrokinin gene was one of the most difficult genes
to analyze. Some of the genomic reads suggest that there may be
two alleles represented in the genomic reads while transcriptome
reads from the suboeosophageal ganglion, where this gene is nor-
mally predominantly expressed, are lacking from the expression
SRAs. Most, but not all, of the pyrokinins previously identified
from this species (Schoofs et al., 1990e, 1991a, 1992b, 1993b;
Clynen et al., 2003a,b) were found in individual reads of the
Locusta genome.

The periviscerokinin transcript is probably also incomplete,
the part found encodes only two peptides, periviscerokinin,
and TSSLFPHPRLamide, both previously identified (Predel and
Gäde, 2002; Clynen et al., 2003a,b). From the distribution of
these peptides and that of DGAETPGAAASLWFGPRVamide and
GLLAFPRVamide (Clynen and Schoofs, 2009), one would expect
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FIGURE 4 | Schematic phylogenetic trees of insects illustrating the

presence or absence of Calcitonin A and B in blue and their

putative receptors in red. When a peptide or a receptor is absent,

branches are black. Note that in (A) calcitonin A is present in the

same species as its putative receptor while in (B) the same holds for

calcitonin B.

FIGURE 5 | Tryptopyrokinins. The predicted Zootermopsis tryptopyrokinin precursor is expected to yield at least four tryptopyrokinins and one pyrokinin. Of

the four predicted Locusta tryptopyrokinin precursors only one contains a pyrokinin.

to find the latter two also to be expressed by the periviscerokinin
gene, but neither genomic nor transcriptomic reads encoding
these peptides were found.

CNMa

CNMa was very recently identified as a novel insect neuropep-
tide (Jung et al., 2014). The Zootermopsis CNMa gene produces
by alternative splicing two types of mRNA that differ by the inclu-
sion or exclusion of the third coding exon (Figure 6). When the

third coding exon is included in the mature mRNA it should
lead to the production of GNYMSLCHFKICNMamide. In that
case the fourth coding exon will not be translated, since the
third exon contains an in-frame stop codon near its end. When
the third coding is excised from the mature mRNA, the fourth
coding exon is predicted to produce the alternative CNMamide,
i.e., GNPPPLCYFKICNM-amide. The number of transcriptome
reads specific for the first transcript is much smaller (75) than that
for the second (931) and it thus seems plausible that the second

Frontiers in Physiology | Invertebrate Physiology November 2014 | Volume 5 | Article 454 | 6

http://www.frontiersin.org/Invertebrate_Physiology
http://www.frontiersin.org/Invertebrate_Physiology
http://www.frontiersin.org/Invertebrate_Physiology/archive


Veenstra Zootermopsis and Locusta neuropeptides

FIGURE 6 | Schematic representation of alternative splicing of the

Zootermopsis CNMa gene and the different CNMa precursors it

produces. On top the five coding exons indicated by boxes, numbers

between the exons indicate the number of nucleotides that separate them.

mRNA1 consists of all five coding exons and leads to a precursor from

which CNMamide 1 is produced. mRNA2 lacks the fourth coding exon and

this will lead to the translation of the fifth coding exon and the production of

CNMamide 2. Location of two CNMamides within the precursor, the

mRNAs and the respective exons has been indicated by red and orange,

respectively.

peptide is produced in larger amounts than the first. As in several
Hymenoptera and Nilaparvata (Jung et al., 2014; Tanaka et al.,
2014) the termite genome also contains two CNMamide receptor
homologs that on phylogenetic trees cluster tightly with the de-
orphanized CNMamide receptors and hence are most likely the
Zootermopsis receptors for these neuropeptides (Supplementary
Figure 3). Only a single CNMa peptide was found encoded by the
orthologous Locusta gene.

CRF-LIKE DIURETIC HORMONE AND OVARY MATURATING PARSIN

(OMP)

The insect CRF-like neuropeptides are other putative diuretic
hormones and both the Locusta peptide and its Zootermopsis

ortholog have been isolated and sequenced (Kay et al., 1991;
Lehmberg et al., 1991; Baldwin et al., 2001). Ovary maturating
parsins have been found exclusively in locusts, both Locusta and
Schistocerca (Girardie et al., 1991, 1998). This hormone has been
reported to stimulate oocyte growth and induce vitellogenin syn-
thesis (Girardie et al., 1992, 1998; Girardie and Girardie, 1996).
These two peptides are produced by the same neuroendocrine
cells in the brain (Tamarelle et al., 2000). Recently the cDNA
for Schistocerca CRF-like diuretic hormone was found to encode
also OMP (Badisco et al., 2011; Van Wielendaele et al., 2012)
and it is thus not surprising that the Locusta transcript similarly
encodes both hormones. The diuretic hormone precursor from
Zootermopsis does not contain a sequence that is recognizable as
a homolog of ovary maturating parsin, as is the case with pre-
cursors of the CRF-like peptide in all other insect species (Van
Wielendaele et al., 2012). RNAi knockdown of the common pre-
cursor of these hormones in Schistocerca had the opposite effect of
what one would expect based on the reported biological activity

of OMP. Inhibition of the production of OMP and the CRF-like
diuretic hormone accelerated oocyte growth, while injection of
the diuretic hormone inhibited it (Van Wielendaele et al., 2012).
As far as the CRF-like peptide goes, these results are consistent,
but they seem to contradict previous reports on OMP. It might
indicate that ovary maturating parsin does not act like a neu-
ropeptide through a GPCR, but that it has other, indirect effects
at the doses injected. More work will be needed to resolve this
question.

ECLOSION HORMONE

As in some other species, both the locust and the termite have
two genes encoding an eclosion hormone. It seemed interest-
ing to know whether this gene duplication is a relatively recent
or a more ancient event. We used the BLAST website at NCBI
to find DNA sequences that might code for such hormones and
made a phylogenetic tree of the sequences. Results suggests that
in some cases, such as Locusta, the butterfly Danaus plexippus and
mosquitoes the duplication is relatively recent, but in the case of
the termite, Tribolium, Nilaparvata, and the psyllid Diaphorina

citri it looks like the second eclosion hormone gene is quite old
(Supplementary Figure 7).

ELEVENIN

Elevenin is a neuropeptide encoded on a mRNA initially iden-
tified from the L11 neuron in Aplysia californica (Taussig et al.,
1984). Although the actual peptide has never been identified, sim-
ilar neuropeptide precursors are common in mollusks and the
peptide has been called elevenin (Veenstra, 2010a). Such neu-
ropeptide precursors have also been deduced from the genome
of Caenorhabditis elegans (Yamada et al., 2010) and a spidermite
(Veenstra et al., 2012) as well as the trancriptome of the plant
hopper Nilaparvata (Tanaka et al., 2014). Both the Locusta and
Zootermopsis genomes contain an elevenin gene, which turns out
to be present in quite a few species (Figure 7). Interestingly, a very
large number of Periplaneta elevenin ESTs come from the testis
of this species (Chen et al., 2013). As there is an intron in the
middle of the sequence coding elevenin it is difficult to find it in
genomes, particularly in those of holometabola where primary
sequences appear more variable. Nevertheless, as the structure
of the elevenin gene is well-conserved (Supplementary Figure
8), there is no doubt that the predicted peptides are authentic
elevenin orthologs. Although we did find a single Coleopteran
sequence from Dastarcus helophoroides, we were unable to find
it in the Tribolium genome.

FMRFamide AND MYOSUPPRESSIN

The termite myosuppressin gene is similar to that of other insect
species, but in the locust the RNA produced from this gene is
alternatively spliced into two mRNAs that each produce a dif-
ferent myosuppresin (Figure 8). Most of the mRNA (62 vs. 8
transcriptome reads) codes for PDVDHVFLRFamide, the pep-
tide initially identified from Schistocerca (Robb et al., 1989) and
later also from Locusta (Schoofs et al., 1993a; Peeff et al., 1994).
The other mRNA codes for EDVGHVFLRFamide, a peptide
almost identical to ADVGHVFLRFamide which was identified
as a second myosuppressin from Locusta (Peeff et al., 1994).
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FIGURE 7 | Deduced amino acid sequences of protostomian elevenins.

Note that the peptide is not only present in insects, but also in velvet

worms (Peripatopsis), mollusks (Lottia, Aplysia, Idiosepius, Doryteuthis,
Crassostrea), polychaetes (Capitella, Alvinella), nematodes (Caenorhabditis,
Ascaris, Pristionchus), crustaceans (Daphnia), and arachnids (Tetranychus).

Also note that the sequences of the peptide in holometabolous insect

species is less conserved.

Both species also have a gene encoding FMRFamides. In the
termite, it encodes six copies ending in NFIRFamide and four
copies in NFVRFamide plus a number of other pepides. The
Locusta FMRFamide transcript could not be reconstructed com-
pletely, but the part that was found codes for one FIRFamide and
four FLRFamides, including GSERNFLRFamide. The latter pep-
tide has a molecular mass very similar to LWENLRFamide, the
sequence proposed for a peptide isolated from the gut of Locusta

(Hill and Orchard, 2007) as well as GQERNFLFRamide, identi-
fied from the ventral nerve cord (Lange et al., 1994). Six tran-
scriptome reads show that this sequence is part of a gene that is
expressed.

INSULIN- AND RELAXIN-LIKE PEPTIDES

A single insulin gene was found in the migratory locust and six
such genes were identified in the termite. One of the termite
genes codes a peptide homologous to the Drosophila insulin-
like peptide (dilp) 7. This peptide is significantly different from
other insect insulin-like peptides and is predicted to bind a
GPCR activated by relaxin-like hormones, rather than the clas-
sical insulin tyrosine kinase receptor (Veenstra et al., 2012). We
have therefore called it relaxin-like, rather than insulin-like. It has
two different transcripts that are predicted to yield very similar
peptides.

NEUROPARSIN

The Zootermopsis genome contains a neuroparsin gene with
three coding exons that lead to the production of a single
mRNA. The Locusta neuroparsin gene produces five different
mRNAs (Figure 9). Transcript 5 is the one that encodes neu-
roparsin as it has been isolated from the corpora cardiaca

FIGURE 8 | Schematic representation of alternative splicing of the

Locusta myosuppressin gene and the different myosuppressins it

produces. On top the three coding exons indicated by boxes, numbers

between the exons indicate the approximate number of nucleotides that

separate them. mRNA1 consists of coding exons 1 and 2 and leads to a

precursor from which EDVGHVFLRFamide is produced. mRNA2 is made up

of coding exons 1 and 3 and its ensuing precursor will yield

PDVDHVFLRFamide. Location of two myosuppressins within the

precursors, the mRNAs and the respective exons has been indicated by red

and orange, respectively.

(Girardie et al., 1989; Lagueux et al., 1992). The presence of
five transcripts is similar to the situation in Schistocerca gregaria

where four different neuroparsin mRNAs have been identified
(Janssen et al., 2001; Claeys et al., 2003). The Locusta neu-
roparsin 5 transcript and the Schistocerca neuroparsin 1 transcript
code for the neuroparsins that were isolated from the corpora
cardiaca.

It is of interest to note that the proteins predicted from the
Locusta neuroparsin transcripts 1–4 are lacking a four amino
acid sequence in the middle of the molecule (Figure 10) and
this is also the case for the other neuroparsin transcripts identi-
fied from Schistocerca (Janssen et al., 2001; Claeys et al., 2003).
Although it is clear from earlier work that the neuroparsin pri-
mary sequences are very variable, notably in holometabolous
insect species (Veenstra, 2010b), the neuroparsin core appears
much better conserved (Figure 10). It is for this reason that we
prefer to give the proteins predicted from these novel transcripts
a different name and call them neoneuroparsins to distinguish
them from the hormones identified from the corpora cardiaca.

Analysis of the expression of the various Locusta neuroparsin
transcripts reveals that transcripts 1, 2, and 3 have much higher
expression levels than those of 4 and 5. In all the Locusta tran-
scriptome SRAs combined, there are 520,499,475 reads, of which
115,938 correspond to exons 1 and/or 2 (the exons that are com-
mon to all neuroparsin transcripts), 127,664 correspond to exons
3, 4 or 5, 116 to exon 6 and 203 to exon 7. In the SRA specific for
the nervous system of Locusta (SRR167712) there are 28,946,371
individual reads, with 11,936 for exons 1 and/or 2, 12,637 for
exons 3, 4 or 5, 33 for exon 6 and 66 for exon 7. These numbers
show that a very large majority of neuroparsin transcripts is cod-
ing for one of the predicted neoneuroparsins 1, 2 or 3, whereas
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FIGURE 9 | Schematic representation of alternative splicing of the

Locusta neuroparsin gene and the different transcripts originating from

it. On top the seven coding exons indicated by boxes, numbers between the

exons indicate the approximate number of nucleotides that separate them.

The five different mRNA’s produced from this gene all share the first two

coding exons and then add their specific exon to it. The first four transcripts

encode a neoneuroparsin and the fifth transcript leads to the production of

neuroparsin.

FIGURE 10 | Sequence alignment of neuroparsin and the

neoneuroparsins with cysteine residues in red. The Locusta transcript 5

and Schistocerca transcript 1 correspond to the isolated and identified

neuroparsins, the other Locusta and Schistocerca transcripts are

neoneuroparsins. Notice that although the spacing between the cysteine

residues is more variable near the N- and C-terminal regions of these

proteins, it is very constant in the core of the protein between cysteine

residues 4 and 13. However, in the neoneuroparsin four residues are lacking

between cysteines 7 and 8, suggesting that the three dimensional structures

of these molecules may be different from that of the neuroparsins.

only a tiny minority codes for neuroparsin as identified from the
corpora cardiaca.

NEUROPEPTIDE-LIKE PRECURSORS

Using mass spectrometry four proteins were identified as precur-
sors for peptides in the Drosophila CNS (Baggerman et al., 2002).
Only one of them, neuropeptide-like precursor 1 (NPLP1), has
typical neuropeptide convertase cleavage sites. NPLP1 orthologs
were found in both the termite and the locust. In Drosophila

the structure of these peptides seems very variable between
the different peptides. However, when the different paracopies
from Zootermopsis are aligned, a conserved N-terminal consen-
sus sequence becomes visible (Figure 11). Similar sequences are
recognizable in the precursors of Locusta and Drosophila NPLP1.
Drosophla NPLP1-VQQ, the only NPLP1 derived peptide known
to have biological activity (Overend et al., 2011), conforms only
partially to this consensus sequence (Figure 11), so it is plausible
that some of these peptides have a different active site.

Although obviously any peptide present in the brain can
be called a neuropeptide, it is perhaps more likely that the

other three precursors do not produce neuropeptides that acti-
vate GPCRs. It is for this reason that NPLP2, NPLP3, and
NPLP4 are not considered here. A somewhat similar case can
be made for the ITGQGNRIF precursor identified in a simi-
lar fashion from the honeybee brain (Hummon et al., 2006).
In that case the observed peptide is indeed produced by cleav-
age at a typical convertase cleavage site and hence may well
be produced by peptidergic neurons, but the part of the pre-
cursor that is best conserved appears to be a large protein of
unknown function. Orthologs of the honey bee ITGQGNRIF
precursor are present in both genomes (Supplementary Figure
9), as are orthologs of the honeybee NVPIYQEPRF pre-
cursor (Supplementary Figure 10). Interestingly, the Blattella

homolog of the latter contains a sequence that is almost
identical to baratin, a neuropeptide isolated from the brain
of the cockroach Leucophaea maderae (Nässel et al., 2000).
Immunoreactivity to baratin and its Bombyx ortholog has
been described from neurons and neuroendocrine cells in
Leucophaea and Bombyx (Nässel et al., 2000; Mitsumasu et al.,
2009).
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FIGURE 11 | Sequence alignment of some of the predicted mature

peptides from the NPLP1 precursors of Zootermopsis, Locusta, and

Drosophila. Note that although the sequences are highly variable, a

consensus sequence can observed.

NPF AND sNPF

The two species each have two genes coding for an NPF-like pep-
tide. As suggested by a phylogenetic tree based on the predicted
NPF sequences, this duplication of the NPF gene has an ancient
origin and appears to predate the separation of the Chelicerates
from the Mandibulata (Supplementary Figure 11), as was pre-
viously suggested (Nuss et al., 2010). Transcriptome data show
that the Carabid beetle Pogonus chalceus also has these two NPF
genes, although we could only find the NPF 1 gene in Tribolium.

The termite NPF 1 gene is similar to the Bombyx NPF1 and the
Daphnia NPF gene in that it has a second transcript (NPF1b),
where an optional exon gets added between the two others (Roller
et al., 2008; Dircksen et al., 2011). This optional exon appears to
be generally present in insects, because it was found in the NPF
1 genes and/or transcripts from cockroaches, phasmids, beetles,
and Lepidoptera. The Locusta NPF 1 gene of Locusta also has this
optional exon (Supplementary Figure 12). The termite has a third
NPF gene, which may have become a pseudo gene. Although it
has clear sequence similarity to NPF, including the typical intron
site in the sequence coding the C-terminal and there are tran-
criptome reads corresponding to this sequence, it looks like the
latter do not form a viable mRNA. A peptide very similar to the
predicted structure of Zootermopsis NPF 1a has been identified
from another termite species and it also has an NPF 1b tran-
script. Expression data show both transcripts of the NPF 1 gene
in the central nervous system and the fore- and mid-gut (Nuss
et al., 2010). Recent work showing that Schistocerca NPF is impor-
tant in the regulation of feeding and male reproduction (Van
Wielendaele et al., 2013a,b,c) concerns the ortholog of Locusta

NPF1a.
Both the termite and the locust have one gene coding for sNPF,

which in the locust codes for two paracopies and in the termite
for one. The Locusta transcript is very similar to the one recently

described from Schistocerca (Dillen et al., 2014). Although the first
identified sNPF from insects was isolated from cockroach midgut
(Veenstra and Lambrou, 1995), the sNPF gene is not expressed
in the midgut of Schistocerca (Dillen et al., 2014), and thus likely
neither in Locusta. This suggests that sNPF isolated from the cock-
roach midgut was present in the visceral nervous system, like in
Drosophila (Veenstra et al., 2008).

ORCOKININS AND ORCOMYOTROPINS

Orcokinins were initially isolated from Orconectes limosus, a cray-
fish (Stangier et al., 1992) and similar peptides have also been
identified form cockroaches and locusts (Pascual et al., 2004;
Hofer et al., 2005). Orcokinin genes are generally present in
insects. A more detailed analysis of this gene in Rhodnius pro-

lixus showed its mRNA to be alternatively spliced (Sterkel et al.,
2012). The newly discovered mRNA was called the B-trancript
and the peptides produced from it the B-orcokinins; similar
transcripts are generally present in insects and may be specific
for the midgut, at least in Rhodnius and Drosophila (Sterkel
et al., 2012; Veenstra and Ida, 2014). Orcokinin-B is an evolu-
tionary old peptide that can be found in the precursors pre-
dicted from TSA from species as diverse as Glomeris postulata

(Myriapoda, Accession # GAKW01029956), Calanus finmarchi-

nus (Maxillopoda, Accession # GAXK01131805) or Speleonectes

cf. tulumensis (Remipedia, Accession # JL137063.1).
The orcomyotropins were similarly discovered from Orconectes

limosus (Dircksen et al., 2000). Sequencing of the genome of
Daphnia pulex revealed that the orcokinins and the orcomy-
otropins are encoded by the same gene and this led to the
discovery that orcomyotropin-like peptides are also encoded by
at least some insect orcokinin genes (Dircksen et al., 2011).
This was also found in Locusta and Zootermopsis, which have
both an orcokinin gene encoding both types of orcokinins well
as orcomyotropin-like peptides. Interestingly, a peptide isolated
using a tachykinin antiserum from the cockroach Leucophaea

maderae is the only insect orcomyotropin physically identified
from insects (Muren and Nässel, 1997); as it has a C-terminal
Arg residue it may represent an incompletely processed pep-
tide (Figure 12). Some of the peptides predicted from orcokinin
genes, such as the Locusta peptides NLDGLGGGHLLRQT and
SGLDSLSGATFGEQ predicted from the orcokinin A transcript
or SLDGIGGGNLVG from Tribolium, share sequence similarity
with both the orcomyotropins and the orcokinin B’s.

In both the locust and the termite, two different orcokinin
transcripts were found, with the B-transcripts encoding large
numbers of orcokinin B’s and the A-transcripts encoding smaller
numbers of orcomyotropins and orcokinin A’s.

SALIVARY GLAND SALIVATION STIMULATING PEPTIDE

The salivary gland salivation stimulating peptide (SGSSP) was
identified from the salivary glands of Locusta by its ability to stim-
ulate the production of cAMP in the same tissue and its sequence
reported to be EVGDLFKEWLQGNMN (Veelaert et al., 1995). Its
likely precursor contains a number of identical copies of almost
the same peptide (Figure 13); the 7th residue in the Edman degra-
dation may have been incorrectly assigned as Lys while it should
have been Gln, while in the majority of copies encoded by the
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precursor the penultimate amino acid residue is Val rather than
Met. The predicted precursor shown here is what we believe the
best consensus sequence based on the transcriptome and genome
data (Figure 13). This is the type of repetitive DNA sequence

FIGURE 12 | Sequence of a number of insect orcomyotropins.

Sequences of Daphnia and insect orcomyotropins. Notice the strong

sequence similarity of the Leucophaea peptide identified with a tachykinin

immuno assay (Muren and Nässel, 1997) with the predicted Blattella
orcomyotropin 1. The Arg residue in red can be expected to be removed by

a carboxypeptidase.

that is hard if not impossible to resolve with the short paired-
end sequences as used for the Locusta genome. It is therefore not
impossible that a duplication present in the genome assembly
that we removed, is indeed real and/or that the actual number of
copies of this peptide encoded on this precursor is either larger or
smaller. It is worth noting that not only the deduced amino acid
sequences for the various paracopies are identical, but so are the
DNA sequences encoding them. This suggests a very recent origin
for the multiplication of the number of paracopies encoded by
this gene. This is an unusual peptide as homologs of this peptide
have never been found in other species and even with the large
amounts of genomic and transcriptomic data available today we
were unable to find a homolog in other species.

SIFamide AND SMYamide

SIFamide is a peptide initially identified from flies by using a
bioassay on Locusta (Janssen et al., 1996) and it is now known
to be present in many different arthropods. In both the termite
and the locust there is a second gene encoding a SIFamide-like
peptide, which we have called SMYamide to stress its similarity
to SIFamide, even though the predicted C-terminal in Locusta

is actually AMYamide (Figure 14). An SMYamide gene is also
present in the preliminary assembly of the cockroach Blattella ger-

manica, but was not found in several other arthropod genomes

FIGURE 13 | Salivary gland salivation stimulating peptide. (A)

Organization of the gene, the mRNA consists of two coding exons

leading to prepropeptide of which the N-terminus is a typical signal

peptide (yellow) followed by the propeptide that contains about 12

copies of the mature peptide (dark blue) separated by convertase

cleavage sites (red); the exact number could be smaller or larger as

explained in the text. (B) Nucleotide sequence of the part of the

precursor coding for multiple copies of the active peptide. Note that

there is not a single nucleotide substitution in the sequences coding

for the various copies, suggesting a recent origin for the amplification.

At the bottom the translation of the repeat sequence in amino acids,

the Lys-Arg convertase cleavage site is in red.
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that are currently assembled. An independent duplication of the
SIFamide gene was previously reported for the silkworm, where
the gene has been called IMFamide (Roller et al., 2008). A com-
parison of the genomic sequences shows that the duplication in
Lepidoptera is independent from that in cockroaches, locusts, and
termites. The expression of the SMYamide gene appears to about
10 percent of that of the SIFamide genes (2 vs. 17 transcriptome
reads in Locusta and 447 vs. 5210 in Zootermopsis).

SULFAKININ

Although a Locusta sulfakinin has been identified (Schoofs et al.,
1990d) the part of the gene coding this neuropeptide is not in
the current genome assembly. However, a single transcriptome
read was found to encode it and part of the sulfakinin gene could
then be reconstructed using the genomic reads. It shows that
the gene is similar to other insect sulfakinin genes in encoding
two different sulfakinins, but the second copy does not adhere to
the C-terminal consensus sequence, as the Met residue has been
replaced by a Phe residue.

VASOPRESSIN-LIKE PEPTIDES

In the Zootermopsis genome a single vasopressin gene was
encountered, but the Locusta genome seems to have 6–8 such
genes. This estimate is based on the number of genomic reads that
encode the CLINTCPRGGKR sequence present in various Locusta

genomic SRAs. Interestingly the first exon of the Locusta gene as

FIGURE 14 | Comparison of the SIFamide and SMYamide sequences.

All peptide have C-terminal amides. Note that although the SIFamide

sequence is well-conserved between Drosophila and Locusta the

C-terminus of SMYamide, although similar to SIFamide, is significantly

different.

well as the putative promoter sequence upstream of it, including
a TATA box and a near perfect match of motif 1 of the Drosophila

core promotor described by Ohler (2006), are very well-conserved
(Figure 15). Three sequences in the genome assembly are com-
pletely identical to this consensus sequence. Of the other eight
highly similar sequences in the assembly we detected one that has
a single silent nucleotide substitution, another that lacks the last
G in the GTAAG splice donor site, and a third one that has sev-
eral nucleotide substitutions, some of which are predicted to lead
to a different, but just as functional, signal peptide. In the latter
sequence the amino acid immediately after the Lys-Arg convertase
cleavage site is predicted to be a Asp residue rather than the Ala in
the other sequences. Finally, there are four incomplete sequences
and one that misses a piece in the DNA coding the prepropeptide
and cannot produce a vasopressin-like peptide. Whereas the first
exon and the DNA sequence immediately preceding it, are very
well-conserved between the different genes, this is not the case
for the other exons or the intron following the first coding exon.
Although it is possible to identify some putative second exons,
we were unable to identify the third. Those exons seem to be
much less conserved than the first one. It is not clear whether the
current genome assembly of the various vasopressin genes is cor-
rect, as the short length of the reads makes it difficult to assemble
repetitive sequences or multiple copies of a similar gene.

DISCUSSION

Both the locust and the termite have a virtually complete set
of insect neuropeptide genes, the only ones that seem to be
lacking are a dilp 7 homolog in Locusta and dilp 8 homologs
in both species. Nevertheless, as explained below we think the
dilp 8 homologs may actually be present but escaped detec-
tion. However, this does not necessarily mean that these two
species have all insect neuropeptides. For example, in Nilaparvata

a GPCR was found that is clearly related to the vertebrate TRH
receptors (Tanaka et al., 2014), but such a GPCR was not found
in the Zootermopis genome, and hence it may be that the termite
does not have a gene coding its ligand, although it is also possi-
ble that this particular GPCR is encoded by the small part of the
genomic DNA that is lacking from the genome assembly. These
two species not only have what seems to be an almost complete
set of neuropeptide genes, but they also appear to use these genes
more intensively (two different CNMa transcripts in termites, two
myosuppressin transcripts in the locust) and have some extra

FIGURE 15 | Nucleotide sequence of the putative promoter and first

coding exon of various Locusta vasopressin genes. The TATA box and

a near perfect copy of the first motif of the Drosophila core promoter

(Ohler, 2006) are emphasized, while the putative intron donor splice site

is in bold italics. The conceptually translated protein is indicated below

the DNA sequence and the predicted signal peptide is highlighted in

yellow, the convertase cleavage site in red, the glycine residue

transformed into the C-terminal amide in purple, the vasopressin-like

sequence in light blue and the two cysteine residues that will form the

disulfide bridge in orange.
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neuropeptide genes, the tryptopyrokinin and SMYamide genes.
Furthermore, on the phylogenetic GPCR trees, the termite has
more often than other species two receptors on each leaf. Some
of these genes merit special discussion.

CALCITONIN

The presence of calcitonin genes in insects has not been previ-
ously reported. The calcitonin-like insect diuretic hormone that
activates a calcitonin-like GPCR was generally assumed to be the
insect calcitonin ortholog. We here show that insects not only
have an authentic calcitonin gene, but also that in the more
basal insect groups it produces two different types of calcitonin-
like peptides. We were also able to identify candidate receptors
for the different calcitonins. Although definitive proof that these
GPCRs function as calcitonin receptors is lacking, the evidence
is compelling. Like calcitonin B, several of the its putative recep-
tors are expressed in the midgut, as shown both by ESTs and
TSAs data as well as the GPCR expression data from the silk
worm (Yamanaka et al., 2008). This peptide thus seems to be an
important midgut peptide and it is plausible that calcitonin A pre-
cursors, which yield only a single peptide per prepropeptide, is
made predominantly in the central nervous system.

Processing of the insect calcitonin-B precursors seems differ-
ent from that of other insect neuropeptide precursors, including
the calcitonin-A precursor. Although this peptide has so far only
been identified in silico, given its well-conserved structure and
that of its precursors, it must be assumed that these precursors
are cleaved by proteases at Lys-Arg base pairs. Common neu-
ropeptide convertases, however, don’t usually cleave next to the
cysteine residue of a disulfide bridge (Devi, 1991; Rholam et al.,
1995; Veenstra, 2000). As suggested by the structures of the pre-
cursors of calcitonin-like diuretic hormones that, like calcitonins,
have a C-terminal Pro-amide, common neuropeptide conver-
tases also seem to have difficulty cleaving immediately behind the
dipeptide Pro-Gly [all the arthropod precursors of the calcitonin-
like diuretic hormone have several dibasic amino acid residues
following the Pro-Gly in the precursor, just as found here for
the Locusta and Zootermposis DH31 precursors (Supplementary
Figures 1, 2)]. Yet, in the insect calcitonin B precursors the com-
mon convertase cleavage site is very close to a Cys residue and
the Pro-Gly is followed by a single Lys-Arg pair. Indeed, in some
species (Tribolium, Bombyx) the cleavage seems to happen at the
sequence Pro-Gly-Lys-Arg-Cys, i.e., a convertase site that is both
immediately after a Pro-Gly sequence and next to a Cys residue.
This implies processing by a different convertase.

INSULIN- AND RELAXIN-LIKE PEPTIDES

Insects have often multiple insulin genes. In Drosophila there are
eight, in the silkworm almost fifty (Mizoguchi and Okamoto,
2013). The migratory locust appears to be an exception with only
one insulin gene found, but the termite has six such genes. The
structural variability of the peptides predicted from these genes is
large, yet many species have only a single classical insulin tyrosine
kinase receptor. It is thus obvious that several of these peptides
must act on the same receptor. Curiously, while in the locust only
a single insulin gene was identified, three tyrosine kinase receptors
were reported from its genome (Wang et al., 2014).

The Drosophila genes CG34411 and CG31096 code for GPCRs
predicted to have relaxin-like ligands. Neither of these receptors
is activated by drosophila dilp 2 (Van Hiel et al., 2014). Dilp 7 has
a structure that is much better preserved than the other insulin-
like peptides and has unambiguous homologs in mollusks and
even some deuterostomes, while genes encoding such a peptide
are only present in those genomes that also have a homolog of the
Drosophila gene CG34411. This suggests that dilp 7 is the ligand
for this receptor (Veenstra et al., 2012) and it thus seems appro-
priate to call it a relaxin-like peptide. The ligand for GC31096
may well be the recently identified dilp 8 (Colombani et al., 2012;
Garelli et al., 2012), as it not only has a relaxin-like structure, but
is also expressed in the ovary (Chintapalli et al., 2007). As the
structure of dilp 8 is poorly conserved it is very difficult to iden-
tify in insect genomes. Nevertheless, as termites have its putative
receptor (Supplementary Figure 3), we think it is plausible it also
has a dilp 8 homolog. We did not find a dilp 7 homolog in the
Locusta genome, nor evidence for its putative receptor, but there
are Locusta genomic contigs of a GPCR gene that is an ortholog of
Drosophila GC31096 and we thus think the migratory locust may
well have a dilp 8 ortholog.

The dilp 7 and 8 homologs should perhaps be called relaxin-
like peptides, as this reflects better their relationship to the
vertebrate hormones. The other insulin-like peptides on the
other hand are functionally similar to the insulin-like growth
factors (Mizoguchi and Okamoto, 2013). Interestingly, in many
species, including the migratory locust, such peptides are also
expressed in the fat body (Lagueux et al., 1990; Okamoto et al.,
2009a,b), where, like the vertebrate ILGFs there is no convertase
to remove the C-peptide. Although the absence of removal of
the C-peptide has only been confirmed biochemically in the silk
worm (Okamoto et al., 2009a), it seems likely that the same is
true for other insect species (Mizoguchi and Okamoto, 2013). In
those species that have multiple genes encoding insulin-like pep-
tides, only one of them is expressed in the fat body. Although in
Drosophila the insulin-like peptide expressed in the fat body is not
expressed in endocrine cells, other genes, like dilp 3 and dilp 5 are
expressed in both peripheral tissues and endocrine cells (Brogiolo
et al., 2001; Chintapalli et al., 2007; Veenstra et al., 2008). It has
been shown that an increase in the expression of dilp 3 by midgut
muscle is associated with an increase in gut size (O’Brien et al.,
2011), suggesting that independently of whether the insulin-like
peptide is produced by endocrine cells in the brain or periph-
eral cells it activates the same receptor, even as its structure is
likely different from that of the insulin-like peptides made by
neuroendocrine cells.

NEUROPARSIN AND NEONEUROPARSINS

The data on the expression of the Locusta neuroparsin gene are
truly intriguing. The number of neuroparsin transcripts seems
to be similar to the number of transcripts of other neuropep-
tides. For example, there are 79 transcriptome reads for the
periviscerokinin gene, a gene that appears well-expressed in the
ventral nerve cord (Predel and Gäde, 2002) and 154 reads for
the myosuppressin gene. Although 154 is a higher number than
66 neuroparsin specific reads, this is due to the much longer
nucleotide sequence used to probe the SRAs (279 nucleotides for
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the myosuppresin gene, 368 for the periviscerokinin gene but only
144 for exon 7 of the neuroparsin gene). Thus, it is the num-
ber of neoneuroparsin transcripts that is extremely high, while
the number of neuroparsin transcripts seems normal. This means
that it is unlikely that the neoneuroparsins are produced by clas-
sical neuroendocrine cells in the nervous system, of which the
total numbers are perhaps 10–20 times those of the neuroparsin
cells. This implies that neoneuroparsins are expressed by a large
number of neurons, perhaps all.

Transcripts from the neuroparsin gene are also produced by
the fatbody as well as ovary and testes, both in Locusta and
Schistocerca (Lagueux et al., 1992; Claeys et al., 2003, 2005,
2006b). From the Locusta data it is impossible to ascertain
whether or not the fat body produces only neoneuroparsins, or
whether it also makes neuroparsin, but the data from Schistocerca

suggest that although neuroparsin is expressed in the fat body,
neoneuroparsin expression levels are about 500-fold higher
(Claeys et al., 2005). As maturation of these proteins does not
depend on specific processing enzymes typically present in neu-
roendocrine cells, they are expected to be secreted efficiently
through the constitutive pathway. The question is what are these
neoneuroparsins doing and why are they made in such large
quantities? The four amino acid sequence (Gly-Gly-Pro-Tyr) that
is lacking in the neoneuroparsins (Figure 10) can be expected
to be important for correct protein folding as both Gly and Pro
significantly affect the secondary structure of proteins. This sug-
gests that the structure of the neoneuroparsins is different from
that of neuroparsin and this difference may affect their binding
to the receptor. It is difficult to understand why the neoneu-
roparsins would bind better to this receptor than neuroparsin.
On the other hand, why would evolution favor the appearance
of molecules that bind less efficiently to the receptor if the insect
then needs to make these molecules in large quantities? After
all, transcriptome estimates suggest that as many as 1 out of
2500 proteins made by the locust could be a neoneuroparsin.
Could it be that the neoneuroparsins do indeed bind to the
receptor but are unable to stimulate it and hence act essentially
as neuroparsin antagonists? For as unusual as such an explana-
tion seems, it could explain why they are made in such large
amounts. In Locusta neuroparsin has an anti-juvenile hormone
effect (Girardie et al., 1987), while in Schistocerca juvenile hor-
mone and ecdysone increase transcripts for the neoneuroparsins,
but not for neuroparsin (Claeys et al., 2006a), thus suggesting
that the structural difference may be associated with a func-
tional difference between the neoneuroparsins and neuroparsin.
Unfortunately, a neuroparsin receptor has not yet been iden-
tified and hence the relative binding and stimulating activities
of neuroparsin and the neoneuroparsins cannot be determined.
The function of neuroparsin remains obscure, but it could be
an important differentiation hormone (Veenstra, 2010b), an idea
consistent with their effects on neurons in culture (Vanhems et al.,
1990). If this were true, it might well have an important role in the
differentiation between gregarious and solitary forms as also sug-
gested by their expression in Schistocerca (Claeys et al., 2006a).
Although the metabolic cost of producing so many neoneu-
roparsins seems high, the value of polymorphism for species
survival is clear.

TRYPTOPYROKININS AND SALIVATION

If the existence of specific tryptopyrokinin genes was not unex-
pected, the question still arises as to why should the locust need
four such genes? In Drosophila and Bombyx, the tryptopyrokinin
receptor is strongly expressed in the salivary gland (Chintapalli
et al., 2007; Yamanaka et al., 2008). Although this is not the case
in Rhodnius (Paluzzi and O’Donnell, 2012), it seems nevertheless
possible that in locusts tryptopyrokinins are important regulators
of salivation. Apart from four tryptopyrokinin genes the locust
also has evolved what looks like an entirely new neuropeptide
gene (see below) encoding mulitple copies of a neuropeptide that
increases salivation by means of the stimulation of intracellu-
lar cAMP (Veelaert et al., 1995). The tryptopyrokinins usually
are released as hormones into the hemolymph, but the saliva-
tion peptide is present in the salivary glands and can thus be
expected to be released directly in the gland. It thus appears that
the locust may have five neuropeptide genes controlling saliva-
tion in addition to salivation control by aminergic motoneurons
in the suboesophageal ganglion and perhaps still other neuropep-
tides (see e.g., Ali et al., 1993). Even if our suggestion that the
tryptopyrokinins may regulate salivation in the migratory locust
were to be incorrect, the salivation peptide still raises the ques-
tion as to why this locust needs to reinforce control of its salivary
glands by what appears to be a novel neuropeptide. We believe
the answer may be that this is not an ordinary but a migratory
locust. Once millions of locusts descend on a field to feed, they all
have great interest in starting to feed fast and furiously; for if not,
there will be nothing left. The physiological changes from flying
to feeding full speed are dramatic, but if the insect does not man-
age to make the transition fast, it will starve. Perhaps this explains
why this species has four tryptopyrokinin genes and still evolved
an entirely new salivation neuropeptide.

VASOPRESSIN

It is unfortunate that we were unable to determine the
sequence(s) of the last part of the precursor of the vasopressin-
like peptide. It is known from humans that numerous muta-
tions of the neurophysin part of the vasopressin precursor will
lead to autosomal dominant familial neurohypophyseal diabetes
insipidus, as due to the incorrect folding of the vasopressin pre-
cursor in the endoplasmatic reticulum the cells producing vaso-
pressin die (Christensen et al., 2004). Obviously, human life span
is much larger than that of a locust, and if neurons only die after a
year, the locust would be dead anyway, but it still raises interesting
questions with regard to the synthesis of this neuropeptide. When
the vasopressin-like peptide was isolated from Locusta, it was fol-
lowed by both RIA and a bioassay that measures an increase
in amaranth secretion by the Malphigian tubules (Proux et al.,
1987). However, when the identified peptide was synthesized in its
monomeric form, i.e., in the same form as vasopressin, it had no
biological activity. It was only active, when it was synthesized as
an anti-parallel dimer. This was very surprising as all vasopressin-
related peptides are known as monomers and a dimer had never
been found. Proteins and peptides containing disulfide bridges
need a mechanism to avoid the formation of inappropriate disul-
fide bridges like those occurring in vasopressin dimers. It seems
a reasonable hypothesis, that neurophysins may help the proper
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folding of the vasopressin precursor and once they are no longer
made correctly, “errors” in the form of dimers may occur. As will
be discussed below, the cells making the vasopressin-like pep-
tide in Locusta need to make it in large quantities. One way to
speed up production is to condense the gene; the short distance
between the TATA box and the transcription start site of the vari-
ous vasopressin genes (Figure 15) suggests that this has occurred.
Another way would be to get rid of the neurophysin part of the
precursor, which might then facilitate the formation of dimers. It
is for this reason that it will be very interesting to see the complete
sequence(s) of this precursor.

The function of this peptide in insects is poorly understood.
Although it was initially proposed that the peptide had a diuretic
function (Proux et al., 1987), it turned out that a vasopressin-like
peptide from Locusta in any conformation (monomer, parallel
dimer or anti-parallel dimer) failed to stimulate fluid secretion by
the Malphigian tubules (Coast et al., 1993). The current hypoth-
esis is that the peptide may act indirectly through the release of
a brain diuretic hormone (Aikins et al., 2008). This peptide has
received less attention than other insect neuropeptides because
it is absent from Drosophila. Consequently, we still know very
little about its physiology. In the pond snail the orthologous pep-
tide acts on the vas deferens (Van Kesteren et al., 1995), while
in Schistocerca there is sexual dimorphism of the axons in the
terminal ganglion (Tyrer et al., 1993). Others have shown that
ovariectomy of female crickets leads to a decrease in neurose-
cretory material in these neurons that is associated with changes
at cellular level suggesting an increase in peptide production
(Dürnberger et al., 1978). Together these data may indicate a
reproductive function for this peptide.

AMPLIFICATION OF NEUROPEPTIDE GENES

Some neuropeptide genes are amplified, while others are not. In
the locust, the insulin gene is not amplified, whereas it is amplified
in many other insect species. On the other hand, the Locusta vaso-
pressin gene is amplified, while in other species it is not. Thus, it
seems an appropriate occasion to discuss this phenomenon. It is
interesting to note that often the same genes are amplified in dif-
ferent species. In insects, these are usually the AKH and insulin
genes. The latter shows a high degree of amplification. There
are six genes in Drosophila, many more in the silk worm (e.g.,
Mizoguchi and Okamoto, 2013) and five in the termite genome.
However, whereas in Bombyx and Drosophila numerous insulin
genes are expressed by a limited number of brain neuroendocrine
cells, only a single insulin gene is expressed in the fat body of
both species. We think this is a clue as to why the insulin gene
is amplified. Whereas the fat body consists of many cells and a
small amount of insulin made by each of these cells will suffice to
attain a physiologically relevant hemolymph concentration of this
peptide, this is a much more difficult task to achieve by a limited
number of neuroendocrine cells in the brain. It seems that two
copies of the insulin gene (one on each chromosome) is simply
insufficient to keep up with the large amounts of mRNA needed
to produce the quantities of hormone that need to be secreted.
When it is a matter of a small neuropeptide, the number of para-
copies on the gene can be amplified. For example, leucokinin
appears to be a diuretic peptide that in Drosophila is produced

from a gene encoding a single copy (Terhzaz et al., 1999), while
mosquitoes that after a blood meal increase diuresis, make three
copies from the same gene (Veenstra et al., 1997). It is obviously
more difficult to produce multiple copies of a larger neuropep-
tide, probably even more so when it contains several disulfide
bridges that need to be formed correctly on entry of its precursor
into the endoplasmatic reticulum. The hypothesis that it is a mat-
ter of quantity that needs to be produced is strongly reinforced
by the observation that the Locusta vasopressin gene is ampli-
fied. In other insect genomes only a single copy of this gene has
been found, as is the case for the termite as well as several other
insects for which preliminary genome assemblies are available. So
why is vasopressin so different in Locusta? In Locusta the neu-
rons producing this peptide seem to have acquired an endocrine
function with the peptide being released as a hormone from neu-
rohemal terminals located on the thoracic peripheral nerves. In
other locusts, such as Schistocerca gregaria, these cells are not only
much smaller but they neither have these neuroendocrine release
sites (Tyrer et al., 1993). Interestingly, in some crickets these neu-
rons appear to have independently acquired a neuroendocrine
function; in those animals the neurohemal release site is located
on the ventral side of the brain (Weinbörmair et al., 1975). It is
thus clear that in Locusta the amount of peptide that needs to
be made to achieve physiological effects is much larger than in
Schistocerca, because in Locusta the peptide is released as a hor-
mone into the hemolymph whereas in Schistocerca the peptide is
released only within the central nervous system. Thus, the corre-
lation between quantity of peptide released and number of genes
holds very well and it is hard to escape the notion that this is the
reason why this particular gene got amplified. We would expect
that crickets too may well have more than one vasopressin gene,
whereas Schistocerca should need only one. Another solution to
the problem would have been to increase the number of neurons
producing this peptide, but it is probably much more difficult for
a spontaneous mutation to alter the developmental program of
neurogenesis in such a precise fashion than to duplicate a gene.
Indeed, the number of endocrine cells in the corpora cardiaca
producing AKH seems much more variable, from hundreds in
locusts and cockroaches to about 20 in Drosophila.

SIFamide AND SMYamide

Both the locust and termite have a second gene that codes for
a SIFamide related peptide. The same phenomenon has been
described previously for Bombyx mori (Roller et al., 2008) and
may well be generally occurring in Lepidoptera as such a gene
is also present in the genomes of several other Lepidoptera. The
SIFamide neurons are very large and their axons innervate many
regions of the neuropile in insect species as diverse as Drosophila

and Schistocerca (Terhzaz et al., 2007; Gellerer et al., 2014). Thus,
these neurons likely produce and release large quantities of neu-
ropeptides. However, as they release their peptide exclusively
within the nervous system, a single gene could be sufficient, as
is the case for example for the Schistocerca vasopressin neurons.
Furthermore, whereas the primary sequence of the active peptide
predicted from the various Locusta vasopressin genes is perfectly
conserved, that is not the case for the SIFamide offshoot. Since
the C-terminal of SIFamide has been very well-conserved during
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evolution, this suggests that neither SMYamide nor IMFamide
has the same affinity for the SIFamide receptor as SIFamide
itself. Intriguingly, both Locusta and Zootermopsis not only have
a GPCR that is likely the SIFamide receptor, but also a second
GPCR that seems to be closely related to this putative SIFamide
receptor (Zootermopsis A11 in Supplementary Figure 3), raising
the question whether that receptor might be more specific for the
predicted SMYamides. However, this second receptor also has a
homolog in Nilaparvata (Tanaka et al., 2014; see Supplementary
Figure 3, Nilaparvata_A11), but SMYamide has so far not been
found in this species. We hypothesize that the duplication of the
SIFamide is not maintained because of a need to produce more
peptide, but rather to produce a different one.

In Drosophila SIFamide is produced by four very large
interneurons that appear important for behavior. Sexual behav-
ior in males is notably perturbed in flies that lack these neurons
or which production of the peptide has been abolished by selec-
tive expression of SIFamide specific RNAi (Terhzaz et al., 2007).
In Bombyx mori (Roller et al., 2008), the SIFamide-related pep-
tide IMFamide is expressed not only in neurons homologous to
the Drosophila SIFamide neurons, but also in a more ventrally
located bilateral pair of neurons (Roller et al., 2008). Recent work
on Schistocerca shows similar SIFamide immunoreactive neurons
in this species (Gellerer et al., 2014). Given the strong similarity
between SIFamide and SMYamide, it is likely that SIFamide anti-
sera cross-react with SMYamide and it will be interesting to see
which, if any, of the SIFamide immunoreactive neurons produce
SMYamide in the locust.

DE NOVO EVOLUTION OF NEUROPEPTIDES

As indicated in the introduction, most neuropeptides and their
receptors are evolutionarily very old and many have homologs
in both deuterostomes and protostomes. The sequence of a neu-
ropeptide GPCR is generally sufficient to predict its likely ligand
due to the coevolution between receptors and ligands. This eas-
ily leads to the generalization that neuropeptides and receptors
always coevolve. Indeed, there are very few examples of instances
where one can make the argument that a neuropeptide evolved
de novo.

The locust genome contains three genes that code unusual
biologically active peptides, ovary maturating peptide, accessory
gland myotropin II and SGSSP, the salivation peptide. None
of these peptides have been found in any other insect orders
and, with the exception of ovary maturating parsin, which is
also made by another migratory locust, Schistocerca gregaria,

not even in other insect species. This suggests a recent ori-
gin of these peptides. The accessory gland myotropin II was
isolated from the male accessory gland. When males copulate
with a female they not only transfer sperm, but also mate-
rial made by the accessory glands, containing many substances
that change female physiology. In particular they may induce
ovulation and make the female reluctant to mate again. It is
known that the accessory gland proteins evolve very rapidly
(e.g., Wolfner, 2002; Panhuis et al., 2006), and it is there-
fore less surprising that this particular peptide has not been
found in other species. Nothing is known about its mode
of action and as it is derived from a protein that lacks the

typical neuropeptide convertase cleavage sites it is unlikely to
be a classical neuropeptide, although it might act through a
neuropeptide GPCR.

Ovary maturating parsin on the other hand is a neuropep-
tide. It was isolated from the corpora cardiaca and brain of the
migratory locust and it has impressive effects on reproductive
physiology of Locusta (Girardie and Girardie, 1996; Girardie et al.,
1998). In Locusta it is produced from the same gene that pro-
duces the CRF-like diuretic hormone and the same is true for
Schistocerca (Van Wielendaele et al., 2012). No clear homologs
of this peptide have been identified in other insect species and
immunoreactivity with antiserum against this hormone is only
detected in locusts (Richard et al., 1994). However, it cannot be
excluded that it is the function rather than the structure of this
peptide that has been conserved and it may yet be determined
that parts of the CRF-like diuretic hormone precursor in other
insect species have similar effects. Nevertheless, experiments will
be needed to address the apparent contradiction between the
results of injections of this peptide and eliminating its production
by RNAi silencing.

The most interesting Locusta peptide with regard to neu-
ropeptide evolution is the salivation peptide. It looks like a real
neuropeptide, as its precursor has the typical convertase cleavage
sites and it stimulates the production of cyclic AMP, which usu-
ally occurs after interaction with a GPCR. On the other hand, it
looks like this peptide has effectively evolved de novo, as similar
peptides have not been found elsewhere and at the very least the
amplification of the number of paracopies of the neuropeptide
must be of a very recent origin as nucleotide mutations in the
sequences coding them have yet to appear. Although it remains to
be proven that this peptide acts on a GPCR, this seems the most
likely explanation for an increase in intracellular cyclic AMP. It
is hard to imagine that it would not act on a preexisting GPCR.
Identification of the mechanism of action of this peptide seems
thus of much interest.

There are other examples of what appear to be de novo evo-
lution of ligands for existing neuropeptide receptors. On the one
hand there are the examples of the tachykinins in salivary glands
of the mosquito Aedes aegypti (Champagne and Ribeiro, 1994)
and on the other hand there are the male accessory gland pep-
tides in various insects that act on neuropeptide receptors in the
female. The famous Drosophila sex peptide (Kubli, 2003) and the
so called head peptide from the mosquito Aedes aegypti (Brown
et al., 1994; Naccarati et al., 2012) both act through neuropep-
tide receptors, those for allatostatin B and short NPF, respectively
(Kim et al., 2010; Poels et al., 2010; Yamanaka et al., 2010; Liesch
et al., 2013). While the origin for both of them is obscure, in the
case of the mosquito the DNA sequences (Stracker et al., 2002)
suggest not only that this peptide has a recent origin, as it is lack-
ing in other mosquitoes, but also that its origin is independent
from the sNPF neuropeptide gene. Such “accidental” evolution of
new ligand receptor combinations may be more common than
generally realized. We will only find it when it has happened in
a clade that has become a success during evolution. A possible
example of such a successful de novo association between a lig-
and and a receptor is provided by prostaglandin D and the DP2
receptor (Hirai et al., 2001).
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CONCLUSION

If there is a message from these genomes, it is probably that
we will need more physiology. Genome analysis mostly identi-
fies neuropeptide genes that we know already. Of course, there
are interesting details to discover, such as the alternative splic-
ing of the myosuppressin gene in Locusta or the CNMa gene
in Zootermopsis, or the calcitonin gene and the putative iden-
tification of its receptors. The most interesting findings of the
Locusta genome concern the salivation peptide, vasopressin, neu-
roparsins, and the tryptopyrokinins, but these findings pose
more questions than can be solved by bioinformatics alone.
Real physiology will be needed to answer these questions. The
importance of physiology is nicely illustrated by the salivation
peptide. If this peptide had not been previously shown to stim-
ulate salivation we would not have a clue as to its function and,
consequently, it would hardly be perceived as interesting. The
physiological significance of the neuroparsins, tryptopyrokinins,
and the vasopressin-like peptide similarly awaits physiological
experiments.
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