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The main purpose of this contribution is the control of both torsional and axial vibrations occurring along a rotary oilwell

drilling system. The model considered consists of a wave equation coupled to an ordinary differential equation (ODE)

through a nonlinear function describing the rock–bit interaction. We propose a systematic method to design feedback

controllers guaranteeing ultimate boundedness of the system trajectories and leading consequently to the suppression of

harmful dynamics. The proposal of a Lyapunov–Krasovskii functional provides stability conditions stated in terms of the

solution of a set of linear and bilinear matrix inequalities (LMIs, BMIs). Numerical simulations illustrate the efficiency of

the obtained control laws.
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1. Introduction

Vibrations in mechanical systems are oscillations

occurring without being intentionally provoked that often

have adverse effects on the system performance. In

oilwell drillstring systems, vibrations occurring along the

rod constitute a major source of economic losses since

they cause premature wear and failures of the system

components and prolong the drilling time.

During the drilling process, the interaction between

the cutting device (called the bit) and the rock formation

gives rise to the occurrence of three types of vibrations:

• Torsional vibration. This self-excited rotational

motion, also known as stick-slip, is induced by the

nonlinear relationship between the torque and the

angular velocity at the bit (Jansen and van den

Steen, 1995). The torsional flexibility of the

drilling assembly exacerbates nonuniform oscillatory

behavior causing rotational speeds of more than

twice the nominal rotary table speed or a total

standstill of the bit (Skaugen, 1987).
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• Axial vibration. It is generally induced by torsional

vibration and consists of irregular movements of

the drilling components along a longitudinal axis

causing bit-bounce and rough drilling behavior.

• Lateral vibration. Deep in the hole, the rotating

drillstring interacts with the borehole wall generating

shocks from lateral vibrations (whirling). Lateral

vibration damages the borehole wall and affects the

overall drilling direction (Jansen, 1993).

Extensive research effort has been into the modeling

and control of drilling vibrations put over the past

century. Before the 1960s, investigations were focused on

material strength of the system components, but the trends

have changed to emphasize dynamic behavior (Jansen,

1993). In 1960, Bailey and Finnie of Shell Development

Company developed the first analytical and experimental

study on torsional and axial drilling vibrations (Bailey

and Finnie, 1960). Since then, numerous approaches for

modeling and control have been proposed. The most

popular control techniques are described below.
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Steering torque feedback system (Halsey et al., 1988).

The underlying idea is to adjust the angular velocity

according to torque variations; hence, propagating waves

are dampened at the top extremity instead of being

reflected back to the drillstring. The major shortcoming

of this strategy is that it requires an accurate measurement

of the torque, which, in practice, can be difficult to obtain.

Soft torque rotary system (STRS) (Javanmardi and

Gaspard, 1992). This method is an improved version

of the feedback torque technique. It avoids the task of

measuring the drillstring torque by computing it through

the motor current. A proper tuning of the controller allows

reducing drillstring vibrations.

Proportional-integral-derivative (PID) control (Pavone

and Desplans, 1994). This is a simple strategy to avoid the

stick-slip phenomenon. PID controller gains are obtained

through an appropriate stability analysis. A drawback

of this technique is that the drillstring vibrations are

not sufficiently damped to guarantee an optimal drilling

performance.

H∞-controller (Serrarens et al., 1998). Results obtained

with experimental prototypes have shown that torsional

drilling oscillations are reduced by means of an H∞

control law which is linear, time-invariant and has robust

qualities. However, in order to get a proper control

performance, a very accurate model is required. Another

disadvantage of this method is that saturation constraints

are not well-handled.

Active vibration damper (Jansen and van den Steen,

1995). The basic idea of this method consists in increasing

the viscous damping at the bottom end to avoid drillstring

vibrations. The damping coefficient is modified via a

magnetorheological fluid, which allows manipulating the

viscous properties of the drilling mud. This strategy

allows attenuating the stick-slip vibrations; however,

an optimal drilling operation requires additional control

actions.

Sliding mode control (Navarro-López and

Licéaga-Castro, 2009). This control strategy, introduced

by Navarro-López and Cortés (2007b) and discussed and

modified by Navarro-López and Licéaga-Castro (2009),

is based on the bifurcation analysis of a lumped parameter

model describing the torsional drilling dynamics

developed by Navarro-López and Cortés (2007a). The

stick-slip phenomenon can be mathematically seen as

a sliding motion which occurs when the bit velocity

is zero. The existence of this sliding motion depends

on the weight on the bit and the torque applied by the

surface motor. Such a regime is the main cause of bit

sticking problems. The sliding mode control consists

in introducing another discontinuity surface and forcing

the system to evolve along it. On the new surface, the

bit speed will follow the top-rotary-system speed after

reasonable time, avoiding the bit sticking phenomena.

This strategy does not represent an automatic controller,

but it should be understood as an off-line safe parameters

selection method which helps the driller operators

avoiding bit sticking problems.

D-OSKIL (Canudas-de Wit et al., 2008). D-OSKIL is

a short word for the drilling oscillation killer. This

method uses the weight on the bit as an additional control

variable. The control proposal is based on the fact that a

sufficiently large weight on the bit is required to guarantee

a satisfactory rate of penetration, and if it reaches higher

values, drilling vibrations may arise. An optimal trade-off

between the weight on the bit and the rate of penetration

has to be found. Experimental implementation of such

a mechanism, in a laboratory testbed, is reported by Lu

et al. (2009). One disadvantage of this method is that

its implementation may require repetitive addition and

removal of drill collar sections to properly adjust the

control law, which may come out infeasible and could

induce axial vibrations.

Flatness-based control (Saldivar et al., 2014). The

differential flatness property of the drilling system is

exploited to design a pair of stabilizing controllers

tackling the trajectory tracking problem. This approach

gives rise to an exponential convergence of the error

toward zero, allowing the suppression of undesirable

drillstring vibrations. By means of the flatness-based

controllers proposed by Saldivar et al. (2014), the

stick-slip and the bit-bounce are substantially reduced in a

relatively short period of time; however, the price paid for

control effectiveness is its structural complexity.

Despite the development of numerous methods

for eliminating drilling vibrations, nowadays such

phenomena still greatly affect perforation processes. This

is mainly due to the lack of proper understanding of

the system’s dynamics; in fact, most of the proposed

techniques are based on simplified lumped parameter

models that disregard the distributed nature of the system

and only consider torsional drilling behavior.

The aim of this contribution is the improvement of

the drilling performance through the design of appropriate

stabilizing control laws for the elimination of the most

frequently observed vibration modes: torsional and axial

oscillations. The control design proposal is based on a

reliable drilling system model which allows considering

its distributed nature. An infinite-dimensional model,

given by a partial differential equation (PDE), is used

to describe the torsional waves traveling along the

rod. Through the torque on the bit function which

approximates the frictional interface between the cutting

device and the drilling surface, the PDE model is coupled

to an ordinary differential equation (ODE) representing

the drillstring axial excitations.



The control of drilling vibrations: A coupled PDE-ODE modeling approach
337

Several control methods to stabilize systems

described by coupled PDEs have been proposed over

the last decade (see, e.g., Wu et al., 2010; Yang and

Wang, 2014; Zhang and Zuazua, 2004; Zhou and

Tang, 2012). The most popular strategies include

Lyapunov analysis (Suh et al., 2006), backstepping

(Ma et al., 2013) and forwarding techniques. Despite

the extensive literature on the analysis and control of

distributed parameter systems, little attention has been

paid to an effective and simple technique allowing

stabilization of dynamic systems: the LMI method.

In this contribution, we propose a novel systematic

method for designing control laws aimed at stabilizing the

coupled PDE-ODE system considered. The strategy is

based on Lyapunov stability theory; a pair of conditions

on a Lyapunov–Krasovskii functional proposal and its

derivative allows determining an ultimate bound for the

system trajectories. These stabilizing conditions are stated

in terms of matrix inequalities, which come out feasible

through a suitable choice of the controllers structure.

The performance of the proposed method is

highlighted through simulations of the drilling system

considering numerical parameters that reflect typical

operating conditions in real oilwell drilling platforms. It

will be shown that the obtained control laws are effective

in eliminating coupled drilling vibrations. Furthermore,

a comparative analysis of the system response under two

different control solutions, the soft-torque controller and

the flatness-based approach, is developed. Simulation

results show an improved performance of the control

method presented in this contribution compared with the

specific controllers presented by Tucker and Wang (1999)

as well as Saldivar et al. (2014).

The paper is organized as follows. Section 2

introduces the proposed modeling strategy; a nonlinear

coupled wave-ODE system describes the torsional-axial

behavior of the drilling rod. Section 3 provides sufficient

conditions on a Lyapunov–Krasovskii functional

guaranteeing ultimate boundedness of the system

solutions. Section IV presents a strategic methodology

allowing the design and synthesis of stabilizing feedback

controllers; the obtained stabilization conditions are

stated in terms of the solution of an LMI-BMI feasibility

problem. In Section 5, two popular control strategies to

reduce drilling vibrations are reviewed: the soft-torque

rotary system and the flatness-based control approach.

A comparative analysis based on simulations of the

drilling system allows highlighting the effectiveness of

the BMI-based control approach in suppressing drilling

vibrations. Concluding remarks are given in Section 6.

Notation. Throughout the paper the superscript T
stands for matrix transposition, R

n×m is the set of all

n × m real matrices, the notation P > 0 (P <
0), for P ∈ R

n×m means that P is symmetric and

positive (negative) definite, whereas λmax(P ) denotes its

maximum eigenvalue. The symmetric elements of the

symmetric matrix are denoted by ∗. The notation used

for partial derivatives is as follows:

zζ(ζ, t) =
∂z

∂ζ
(ζ, t),

zt(ζ, t) =
∂z

∂t
(ζ, t),

zζζ(ζ, t) =
∂2z

∂ζ2
(ζ, t),

ztt(ζ, t) =
∂2z

∂t2
(ζ, t),

zζt(ξ, t) =
∂2z

∂ζ∂t
(ζ, t).

2. Drilling system modeling

A sketch of a simplified drillstring system is shown in

Fig. 1.

Winch
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Drill collars
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Fig. 1. Basic scheme of a vertical drilling system.

The main process during well drilling for oil is

the creation of borehole by a rock-cutting tool called a

bit. The drillstring consists of the bottom hole assembly

(BHA) and drill pipes screwed end to end to each other to

form a long pipe. The BHA comprises the bit, stabilizers

to prevent the drillstring from unbalancing, and a series

of heavy pipe sections which are known as drill collars.

We are particularly interested in analyzing two main

phenomena damaging the drilling system components and

delaying the overall perforation process: the torsional and

axial drilling vibrations. Torsional vibrations (stick-slip

phenomenon) are essentially the cause of premature
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breakage of drill pipes. Axial vibrations (bit-bouncing

phenomenon) may severely damage the cutting device.

Self-excited axial and torsional oscillations are intimately

coupled and may occur simultaneously. The complex

nature of coupled drilling vibrations makes the derivation

of a model mathematically challenging and is one of the

reasons why the full system has been rarely considered so

far.

This section presents a mathematical model that

comprises the coupled torsional and axial drilling

dynamics.

The propagation of torsional waves along a drillstring

of length L can be modeled by the damped wave equation

(Challamel, 2000; Fridman et al., 2010; Saldivar and

Mondié, 2013; Tucker and Wang, 1999)

GJ
∂2z

∂ξ2
(ξ, t)− I

∂2z

∂t2
(ξ, t)− γ

∂z

∂t
(ξ, t) = 0, (1)

ξ ∈ (0, L), t > 0,

where the twist angle z depends on length coordinate

ξ and time t. The parameters G and J are the shear

modulus and the polar moment of inertia, respectively.

The distributed inertia moment I is such that I = ρdJ ,

where ρd is the mass density of the drillstring. A

distributed viscous damping γ > 0 is assumed along

the structure. The mechanical model is derived from

the equations describing torsional vibrations of circular

shafts studied by Timoshenko and Young (1955) as well

as Weaver et al. (1990).

An appropriate choice of boundary conditions allows

characterizing the propagating torsional waves along the

drillstring. In the work of Saldivar et al. (2013), the

following boundary conditions are introduced:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

GJ
∂z

∂ξ
(0, t) =ca

[

∂z

∂t
(0, t)− Ω(t)

]

,

GJ
∂z

∂ξ
(L, t) =− IB

∂2z

∂t2
(L, t)− T

(

∂z

∂t
(L, t)

)

.

(2)

It is assumed that the drillstring is rotated from the

surface (ξ = 0) by an electrical motor providing an

angular velocityΩ(t). Due to the kinematic chain between

the rotor and the drillstring upper extremity, Ω(t) does not

match the rotational speed of the load ∂z
∂t
(0, t); this sliding

speed gives rise to the local torsion of the drillstring. The

parameter ca denotes the angular momentum at the top

extremity.

The inferior extremity is subject to a torque T which

is a function of the bit speed ∂z
∂t
(L, t). A lumped inertia

IB is chosen to represent the assembly at the bottom hole.

Torsional dynamics are controlled through the

angular velocity Ω(t) imposed at the surface.

Axial dynamics of the drillstring can be described

by an ordinary differential equation (Challamel, 2000).

The modeling strategy is inspired by the fact that any

mass subject to a force in a stable equilibrium acts as a

harmonic oscillator for small vibrations. More precisely,

the damped harmonic oscillator model describing the

longitudinal drillstring motion is

m0ÿ + c0 [ẏ + Γ(t)] + k0y = −µ1T

(

∂z

∂t
(L, t)

)

, (3)

where the variable y is defined as y = Y − Γ0t, m0, c0,
and k0 represent the mass, damping and spring constant,

respectively, Y denotes the bit axial position. The system

is controlled through the rate of penetration Γ(t), which is

an axial speed imposed at the surface, and Γ0 is a constant

nominal value.

According to Detournay and Defourny (1992), the

coefficient µ1 can be obtained with the following relation:

µ1 = 2 (Rbµbitcbit)
−1

, where Rb is the bit radius, µbit

is the friction coefficient at the bit-rock contact, and cbit

is the so-called bit coefficient. For a bladed bit, cbit is

equal to the dimensionless length of the cutting edge (and

independent of the number of blades). For a flat bit, cbit is

computed as follows: cbit = (6+4ρbit)/(6+3ρbit), where

ρbit is the radial rate of increase in cutter density. Notice

that cbit varies between 1 and 4/3 and may be considered

a constant.

The coupling between subsystems is due to the

torque on bit T approximating the physical phenomena

at the bottom end:

T

(

∂z

∂t
(L, t)

)

= cb

∂z

∂t
(L, t)+Tnl

(

∂z

∂t
(L, t)

)

. (4)

The model of T includes a linear term cb
∂z
∂t
(L, t)

representing the viscous damping torque which

approximates the influence of the mud drilling and

a nonlinear term Tnl

(

∂z
∂t
(L, t)

)

representing the dry

friction torque which models the bit-rock contact. It

is assumed that the growth of instabilities leading to

harmful drilling vibrations arises from the friction torque

which can include velocity weakening laws as in the

work of Challamel (2000), stiction plus Coulomb friction

(Jansen and van den Steen, 1995; Serrarens et al., 1998),

and the Stribeck effect, characterized by a decreasing

friction-velocity map localized around zero velocity, as

in the following model introduced by Navarro-López and

Suárez (2004):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Tnl = WobRbµb

(

∂z

∂t
(L, t)

)

sign

(

∂z

∂t
(L, t)

)

,

µb

(

∂z

∂t
(L, t)

)

= µcb + [µsb − µcb]e
−γb| ∂z

∂t
(L,t)|,

(5)

where Wob > 0 is the weight on the bit, µsb, µcb ∈ (0, 1)
are the static and Coulomb friction coefficients and 0 <
γb < 1 is a constant defining the velocity decrease rate.
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Consider the torsional model (1)–(2) coupled to the

axial one (3) through the torque on the bit function

(4)–(5). In order to take into account external disturbances

and unmodeled dynamics at the lower extremity of the

drillstring, we introduce an additive variable δ(t) into the

second boundary condition. For the sake of simplicity,

we introduce the normalized rod length ζ = ξ/L. The

coupled wave-ODE model reads

ztt(ζ, t) =azζζ(ζ, t)− dzt(ζ, t), ζ ∈ (0, 1), (6a)

zζ(0, t) =g [zt(0, t)− u1(t)] , (6b)

zζ(1, t) =− hztt(1, t)− kzt(1, t) (6c)

− qTnl(zt(1, t)) + δ(t),

ẋ(t) =Ax(t) +Bu2(t) (6d)

+ E1zt(1, t) + E2Tnl(zt(1, t)).

The controllers u1(t) and u2(t) correspond to the angular

velocity provided by the rotary table Ω(t) and to the rate

of penetration imposed at the top end Γ(t), respectively.

The variable δ(t) is assumed to satisfy

δ(t)2 ≤ ε, (7)

with ε > 0 small enough. The vector x(t) is defined as

x(t) = [y(t) ẏ(t)]T , the model parameters are given by

a =
GJ

IL2
, d =

γ

I
, g =

caL

GJ
,

h =
IBL

GJ
, k =

cbL

GJ
, q =

L

GJ
,

and the constant matrices are defined as

A =

[

0 1

− k0

m0

− c0
m0

]

, B =

[

0
− c0

m0

]

,

E1 =

[

0
−µ1cb

m0

]

, E2 =

[

0
− µ1

m0

]

.

3. Ultimate boundedness result

It is well known that most physical real-world systems

exhibit nonlinear characteristics and uncertainties, making

the achievement of exponential stability impossible;

however, the system response oscillates close enough to

the equilibrium to be considered acceptable. In many

stabilization problems, the aim is to bring states close

to certain sets, rather than to a particular state. In

this situation, classical stability notions (for instance,

exponential or asymptotic stability) are not appropriate.

More suitable performance specifications, from an

engineering point of view, are given by the definition of

practical stability, also referred to as ultimate boundedness

with a fixed bound (Khalil, 2002), introduced by La Salle

and Lefschetz (1961) and retaken by Grujić (1973) as well

as Lakshmikantham et al. (1990). These definitions not

only provide information on the stability of the system,

but also characterize its transient behavior with estimates

of the bounds on the system trajectories (Anabtawiii,

2011).

It is worth mentioning that the concept of practical

stability is also referred to as dissipativeness in the sense

of Levinson. This qualitative property is important in the

theory of differential equations, especially in the study of

self-sustained and forced nonlinear oscillations (Rasvan,

2006).

The dissipativeness definition is stated by Levinson

(1944) as follows.

Definition 1. (Levinson, 1944) The system

ẋ(t) = f(t, x) (8)

is called dissipative if there exists some R > 0 such that

limt→∞ |x(t; t0, x0)| < R

for any solution x(t; t0, x0) of (8).

This qualitative property, also called ultimate

boundedness, means that all systems trajectories will

eventually enter into a ball of radius R and will remain

there. The following result states conditions for uniform

Levinson dissipativeness.

Theorem 1. (Yoshizawa, 1960) Assume that there exist

R > 0 and a function V : {x ∈ R
n : |x| ≥ R} ×

[t0,∞) → R
+ which satisfies

α0(|x|) ≤ V (x, t) ≤ α1(|x|), V̇ (x, t) ≤ −α2(|x|)

as long as |x| ≥ R for a continuous nondecreasing ra-

dially unbounded function α0, a continuously increas-

ing function α1, and a positive continuous function α2.

Then the system (8) is uniformly dissipative in the sense of

Levinson.

Various boundedness properties have been

considered by Yoshizawa (1960; 1966), and their

role in establishing existence of self-sustained and forced

oscillations has been pointed out. The basic results on

dissipativeness in the sense of Levinson are also due to

Yoshizawa (1960; 1966).

In the work of Rasvan (2006), some useful results

on the study of systems dynamics are given; the author

analyzes three different concepts of dissipativeness:

classical (standard) dissipativeness, dissipativeness in the

sense of Levinson and dissipativeness in the sense of

system theory. Criteria, applications and connections

between these concepts are proved.

The following result provides conditions on a

Lyapunov–Krasovskii functional proposal to guarantee

ultimate boundedness of the solutions of a boundary-value

problem in finite time. Notice that the result provided

below represents nonrestrictive conditions to obtain an
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ultimate bound of a system subject to perturbations or

disturbances of the form (6). In fact, for the system under

consideration, the additive disturbance variable δ(t), in

general, is assumed to satisfy (7).

Lemma 1 is inspired by the results on input-to-state

stability presented by Fridman et al. (2008) (see also

Fridman and Dambrine, 2010; Fridman et al., 2010).

Lemma 1. Let V (z̃(·, t)) be a Lyapunov–Krasovskii

functional satisfying

∫ 1

0

z̃T (ζ, t)P z̃(ζ, t) dζ ≤ V (z̃(·, t)) ≤ V̄ (z̃(·, t)), (9)

d

dt
V (z̃(·, t)) + σV (z̃(·, t)) ≤ βε, (10)

∀t ≥ 0, σ > 0, β > 0,

where P > 0, z̃(ζ, t) = [zζ(ζ, t) zt(ζ, t) x(t)]
T

and

V̄ (z̃(·, t)) is an upper bound on V (z̃(·, t)). Then, for any

initial function φ̃(ζ, t0) = [zζ(ζ, t0) zt(ζ, t0) x(t0)]
T
,

the ultimate bound defined by

∫ 1

0

z̃T (ζ, t)P z̃(ζ, t) dζ ≤ e−σtV̄ (φ̃(ζ, t0)) +
βε

σ
(11)

is satisfied for t0 = 0, t ≥ Ta(φ̃, ς) > 0, where

Ta(φ̃, ς) =
1

σ
ln

[

1

ς
V̄ (φ̃(ζ, t0))−

βε

ςσ

]

.

See the proof in Appendix.

4. Control design: Practical stabilization

conditions

The main idea in designing stabilizing controllers is to

propose a suitable Lyapunov–Krasovskii functional such

that the conditions (9) and (10) of Lemma 1 are satisfied

along the trajectories of the closed-loop system.

The following result provides a set of conditions

under which the trajectories of the drilling system, in

a closed-loop with a pair of predetermined controllers,

admit an ultimate bound.

Theorem 2. The trajectories of the drilling system de-

scribed by the coupled wave-ODE system (6) in a closed

loop with the controllers

u1(t) = c11ztt(1, t) + c12zt(1, t) (12)

+ c13Tnl(zt(1, t)) + c14zt(0, t),

with c1i ∈ R
1×1, i = 1, . . . , 4, and

u2(t) = c2x(t), c2 ∈ R
1×2, (13)

admit the ultimate bound (11) if the matrix inequalities

P > 0, Ψ < 0, Φ < 0,

where

P =

⎡

⎣

ap χ [ζ + 1] 0
χ [ζ + 1] p 0

0 0 R

⎤

⎦ , (14)

Ψ =

[

−2pd− χ+ σp −dχ [ζ + 1] + σχ [ζ + 1]
∗ −aχ+ σpa

]

,

(15)

and

Φ

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Φ11 Φ12 Φ13 Φ14 0 −2aχh
∗ Φ22 Φ23 Φ24 E1

TR Φ26

∗ ∗ Φ33 Φ34 ET
2 R −2aχq

∗ ∗ ∗ Φ44 0 0
∗ ∗ ∗ ∗ Υ1 + σR 0
∗ ∗ ∗ ∗ ∗ 2aχ− β

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(16)

with

Φ11 = 2aχh2 − aχg2c211,
Φ12 = 2aχhk − pah− aχg2c11c12,
Φ13 = 2aχhq − aχg2c11c13,
Φ14 = aχg2c11 [1− c14] + pagc11,
Φ22 = 2aχk2 + 2χ− 2pak − aχg2c212,
Φ23 = 2aχkq − paq − aχg2c12c13,
Φ24 = aχg2c12 [1− c14] + pagc12,
Φ26 = a[p− 2χk],
Φ33 = 2aχq2 − aχg2c213,
Φ34 = aχg2c13 [1− c14] + pagc13,

Φ44 = −aχg2 [1− c14]
2
− χ− 2pag + pagc14,

are satisfied for some p > 0, χ > 0, β > 0, R > 0 and

any c2 ∈ R
1×2, c1i ∈ R

1×1, i = 1, . . . , 4.

Proof. Consider the Lyapunov–Krasovskii functional

V (z̃(·, t)) =

∫ 1

0

z̃T (ζ, t)P z̃(ζ, t) dζ,

with

z̃(ζ, t) = [zζ(ζ, t) zt(ζ, t) x(t)]
T ,

and P defined in (14) with p > 0, a > 0, χ > 0 and

R > 0. Notice that condition (9) is satisfied with

V̄ (z̃(·, t)) = λmax(P )

∫ 1

0

‖z̃(ζ, t)‖2 dζ.

Now, we establish the conditions under which the

inequality (10) is satisfied. The proposed functional can

be rewritten as

V (zζ(·,t),zt(·, t), xt) = V1(zζ(ζ,t)) + V2(zt(ζ, t))

+ V3(zζ(ζ,t),zt(ζ, t)) + V4(xt),
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where

V1(·) = pa

∫ 1

0

z2ζ (ζ, t) dζ,

V2(·) = p

∫ 1

0

z2t (ζ, t) dζ,

V3(·) = 2χ

∫ 1

0

[ζ + 1] zζ(ζ, t)zt(ζ, t) dζ,

V4(·) = xT (t)Rx(t).

Taking time derivatives of each term of V , we obtain

V̇1(·) = 2pa

∫ 1

0

zζ(ζ, t)zζt(ζ, t) dζ, (17)

V̇2(·) = 2p

∫ 1

0

zt(ζ, t)ztt(ζ, t) dζ. (18)

Substituting the wave equation (6a) into (18) yields

V̇2(·) = 2pa

∫ 1

0

zt(ζ, t)zζζ(ζ, t) dζ

− 2pd

∫ 1

0

z2t (ζ, t) dζ.

Integration by parts of
∫ 1

0
zt(ζ, t)zζζ(ζ, t) dζ gives

∫ 1

0

zt(ζ, t)zζζ(ζ, t) dζ = zt(ζ, t)zζ(ζ, t)
∣

∣

∣

1

0

−

∫ 1

0

ztζ(ζ, t)zζ(ζ, t) dζ,

Then we obtain

V̇2(·) = 2pa zt(ζ, t)zζ(ζ, t)|
1
0 (19)

− 2pa

∫ 1

0

ztζ(ζ, t)zζ(ζ, t) dζ

− 2pd

∫ 1

0

z2t (ζ, t) dζ.

The derivative of V3 is

V̇3(·) = 2χ

∫ 1

0

[ζ + 1] zζ(ζ, t)ztt(ζ, t) dζ

+ 2χ

∫ 1

0

[ζ + 1] zζt(ζ, t)zt(ζ, t) dζ.

Substituting the wave equation (6a) yields

V̇3(·) = 2aχ

∫ 1

0

[ζ + 1] zζ(ζ, t)zζζ(ζ, t) dζ

− 2dχ

∫ 1

0

[ζ + 1] zζ(ζ, t)zt(ζ, t) dζ

+ 2χ

∫ 1

0

[ζ + 1] zζt(ζ, t)zt(ζ, t) dζ. (20)

Integration by parts of
∫ 1

0 [ζ + 1] zζ(ζ, t)zζζ(ζ, t) dζ
gives

∫ 1

0

[ζ + 1] zζ(ζ, t)zζζ(ζ, t) dζ

= [ζ + 1] z2ζ (ζ, t)
∣

∣

∣

1

0

−

∫ 1

0

[ζ + 1] zζζ(ζ, t)zζ(ζ, t) dζ

−

∫ 1

0

z2ζ (ζ, t) dζ.

Then we obtain

2

∫ 1

0

[ζ + 1] zζ(ζ, t)zζζ(ζ, t) dζ

= [ζ + 1] z2ζ (ζ, t)
∣

∣

∣

1

0
−

∫ 1

0

z2ζ (ζ, t) dζ. (21)

Now, observe that

2zζt(ζ, t)zt(ζ, t) =
∂

∂ζ

[

z2t (ζ, t)
]

.

Then

2

∫ 1

0

[ζ + 1] zζt(ζ, t)zt(ζ, t) dζ

=

∫ 1

0

[ζ + 1]
∂

∂ζ

[

z2t (ζ, t)
]

dζ.

Note that ∂
∂ζ

[

z2t (ζ, t)
]

= 2zt(ζ, t)zζt(ζ, t). Then

∫ 1

0

[ζ + 1]
∂

∂ζ

[

z2t (ζ, t)
]

dζ

= 2

∫ 1

0

[ζ + 1] zt(ζ, t)zζt(ζ, t) dζ.

Integrating by parts, we get

∫ 1

0

[ζ + 1] zt(ζ, t)zζt(ζ, t) dζ

= [ζ + 1] z2t (ζ, t)
∣

∣

∣

1

0
−

∫ 1

0

z2t (ζ, t) dζ

−

∫ 1

0

[ζ + 1] zt(ζ, t)zζt(ζ, t) dζ.

Equivalently,

2

∫ 1

0

[ζ + 1] zζt(ζ, t)zt(ζ, t) dζ

= [ζ + 1] z2t (ζ, t)
∣

∣

∣

1

0
−

∫ 1

0

z2t (ζ, t) dζ. (22)
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Substituting (21) and (22) into (20) yields

V̇3(·) = aχ [ζ + 1] z2ζ (ζ, t)
∣

∣

1

0
− aχ

∫ 1

0

z2ζ (ζ, t) dζ

− 2dχ

∫ 1

0

[ζ + 1] zζ(ζ, t)zt(ζ, t) dζ (23)

+ χ [ζ + 1] z2t (ζ, t)
∣

∣

1

0
− χ

∫ 1

0

z2t (ζ, t) dζ.

The derivative of V4 along the trajectories of (6d) is then

V̇4(xt) = ẋT (t)Rx(t) + xT (t)Rẋ(t)

= [Ax(t) +Bu2(t) + E1zt(1, t)

+E2Tnl(zt(1, t))]
T
Rx(t)

+ xT (t)R [Ax(t) +Bu2(t)

+E1zt(1, t) + E2Tnl(zt(1, t))] .

We seek the stabilization of axial drilling dynamics.

For the sake of simplicity, we choose u2 as in (13). This

choice guarantees the quadratic form of V̇4(xt), i.e.,

V̇4(xt) = xT (t)Υ1x(t) + ΥT
2 Rx(t) + xT (t)RΥ2, (24)

where

Υ1 = ATR+RA+ cT2 B
TR+RBc2,

Υ2 = E1zt(1, t) + E2Tnl(zt(1, t)).

In view of (17), (19), (23) and (24), the time

derivative of V is given by

V̇ (·) = 2pa

∫ 1

0

zζ(ζ, t)zζt(ζ, t) dζ

− 2pa

∫ 1

0

ztζ(ζ, t)zζ(ζ, t) dζ

− 2pd

∫ 1

0

z2t (ζ, t) dζ − aχ

∫ 1

0

z2ζ (ζ, t) dζ

− 2dχ

∫ 1

0

[ζ + 1] zζ(ζ, t)zt(ζ, t) dζ

− χ

∫ 1

0

z2t (ζ, t) dζ + 2pa zt(ζ, t)zζ(ζ, t)|
1
0

+ aχ [ζ + 1] z2ζ (ζ, t)
∣

∣

1

0

+ χ [ζ + 1] z2t (ζ, t)
∣

∣

∣

1

0

+ xT (t)Υ1x(t) + ΥT
2 Rx(t) + xT (t)RΥ2.

In view of the second condition of Lemma 1, we

derive the following expression:

V̇ (·) + σV (·)

= −2pd

∫ 1

0

z2t (ζ, t) dζ − aχ

∫ 1

0

z2ζ (ζ, t) dζ

− 2dχ

∫ 1

0

[ζ + 1] zζ(ζ, t)zt(ζ, t) dζ

− χ

∫ 1

0

z2t (ζ, t) dζ + xT (t)Υ1x(t)

+ ΥT
2 Rx(t) + xT (t)RΥ2 + σpa

∫ 1

0

z2ζ (ζ, t) dζ

+ σp

∫ 1

0

z2t (ζ, t) dζ

+ 2σχ

∫ 1

0

[ζ + 1] zζ(ζ, t)zt(ζ, t)dζ

+ σxT (t)Rx(t) + Π,
(25)

where

Π = 2pa zt(ζ, t)zζ(ζ, t)|
1
0 + aχ [ζ + 1] z2ζ (ζ, t)

∣

∣

1

0

+ χ [ζ + 1] z2t (ζ, t)
∣

∣

1

0

= 2χz2t (1, t) + 2aχz2ζ (1, t) + 2pazt(1, t)zζ(1, t)

− χz2t (0, t)− aχz2ζ (0, t)− 2pazt(0, t)zζ(0, t).

The introduction of the boundary conditions

(6b)–(6c) yields

Π = 2χz2t (1, t) + 2aχ [−hztt(1, t)− kzt(1, t)

−qTnl(zt(1, t)) + δ(t)]2

+ 2pazt(1, t) [−hztt(1, t)− kzt(1, t)

−qTnl(zt(1, t)) + δ(t)]

− χz2t (0, t)− aχ [g [zt(0, t)− u1(t)]]
2

− 2pazt(0, t) (g (zt(0, t)− u1(t))) .

Our purpose is to rearrange the terms of (25) into

symmetric matrices. According to the condition (10), the

negative definiteness of these matrices guarantees ultimate

boundedness of the system trajectories. The choice of

the controller u1 is based on the fact that a necessary

condition for a symmetric matrix to be negative definite

is that all the diagonal entries be negative.

For the stabilization of torsional trajectories we

propose the controller structure given in (12), which

facilitates the possibility of the negative definiteness of the

obtained symmetric matrices. More precisely, Π is written
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as

Π =2aχ
[

h2z2tt(1, t) + 2hkzt(1, t)ztt(1, t)

+ 2hqztt(1, t)Tnl(zt(1, t))− 2hztt(1, t)δ(t)

+ k2z2t (1, t) + 2kqzt(1, t)Tnl(zt(1, t))

− 2kzt(1, t)δ(t) + q2T 2
nl(zt(1, t))

−2qTnl(zt(1, t))δ(t) + δ(t)2
]

+ 2χz2t (1, t)

+ 2pazt(1, t) [−hztt(1, t)− kzt(1, t)

−qTnl(zt(1, t)) + δ(t)]− aχg2
[

c211z
2
tt(1, t)

+ 2c11c12zt(1, t)ztt(1, t) + c212z
2
t (1, t)

+ 2c11c13ztt(1, t)Tnl(zt(1, t))

− 2c11 [1− c14] ztt(1, t)zt(0, t)

+ 2c12c13zt(1, t)Tnl(zt(1, t))

− 2c12 [1− c14] zt(1, t)zt(0, t)

+ c213T
2
nl(zt(1, t)) + [1− c14]

2
z2t (0, t)

−2c13 [1− c14]Tnl(zt(1, t))zt(0, t)]

− χz2t (0, t)− 2pagzt(0, t) [zt(0, t)

− c11ztt(1, t)− c12zt(1, t)

−c13Tnl(zt(1, t))− c14zt(0, t)] .

From the inequality (7) we have that δ(t)2 − ε ≤ 0.

Then, for any β > 0, the following inequality is satisfied:

− β
[

δ(t)2 − ε
]

≥ 0. (26)

This condition represents an additional restriction to

be considered. To this end, we take it into consideration

within the stabilizing condition given by the second

condition of Lemma 1, i.e., we add the term (26) to the

expression for V̇ (·) + σV (·) and we obtain an inequality

of the form V̇ (·) + σV (·) − βε ≤ Ξ, where Ξ is a

quadratic term, defined according to Eqns. (25)–(26).

After symmetrization of the cross terms, we have that

Ξ =
∫ 1

0 ηT1 Ψη1dζ + ηT2 Φη2. Then

d

dt
V (·) + σV (·) − βε ≤

∫ 1

0

ηT1 Ψη1 dζ + ηT2 Φη2,

where

η1 = [zt(ζ, t) zζ(ζ, t)]
T ,

η2 = [ztt(1, t) zt(1, t) Tnl(zt(1, t)) zt(0, t) x(t) δ(t)]
T
,

and Ψ, Φ are defined in (15) and (16), respectively. �

The fulfillment of the inequality (10) is conditioned

by the negative definiteness of matrices Ψ and Φ, which

entails the problem of the feasibility of the LMI Ψ < 0
and the BMI Φ < 0. Notice that the particular structure

of the controller u1 with appropriate values of c1i ensures

the negativity of the diagonal terms of matrix Φ.

Remark 1. The choice of the term χ[ζ + 1] in (14)

does not contribute to the positive definiteness of matrix

P . In fact, taking χζ instead of χ[ζ + 1] leads to less

conservative conditions to satisfy P > 0 (considering χζ
instead of χ[ζ + 1] in (14), P > 0 is always satisfied

for ζ = 0, and for ζ = 1, the inequality is guaranteed

for ap2 > χ2, but considering χ[ζ + 1], the positive

definiteness of P is restricted to ap2 > χ2 for ζ = 0,

and to ap2 > 4χ2 for ζ = 1). However, if we consider

χζ instead of χ[ζ + 1] in (14), matrix Φ would never be

negative definite since the terms −aχg2c211 and −aχg2c213
would not appear and the diagonal terms Φ11 and Φ33

would be positive.

5. Numerical results

In this section, the effectiveness of the proposed control

approach is highlighted through simulations results.

The numerical values of the physical parameters

used in the following simulations (given in Table 1)

reflect typical operating conditions in real oilwell drilling

platforms.

Table 1. Numerical values of the drilling system parameters.

Symbol Value Symbol Value

G 79.3×109 N m−2 I 0.095 kg m

J 1.19× 10−5 m4 Rb 0.155575 m

Wob 97347 N IB 89 kg m2

µcb 0.5 µsb 0.8

cb 0.03 N m s rad−1 m0 37278 kg

k0 1.55× 106 kg s−2 Γ0 0.1 m s−1

L 1172 m c0 16100 kg s−1

µ1 257 m−1 γb 0.9

ca 2000 N m s ς 0.1

ε 0.5 γ 0.1 N s

The numerical values corresponding to the torsional

and axial drilling dynamics were taken from the work

of Challamel (2000), and the ones corresponding to

the frictional torque on the bit model from that of

Navarro-López and Suárez (2004).

The dry friction torque at the rock-bit interface is

approximated by the nonlinear function given in (5).

It is assumed that the additive noise signal accounting

for external disturbances and modeling errors satisfies

δ(t)2 ≤ 0.5. The initial conditions are such that

∫ 1

0

‖φ̃(ζ, t0)‖
2 dζ = 3.25.

The torsional and axial reference velocities considered are

10 rad s −1 and 0.1 ms −1, respectively.

5.1. Steady-state, stick-slip and bit-bounce. The

stick-slip phenomenon consisting in torsional vibration of
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the drillstring constitutes the major source of failures in

drilling operations. It is characterized by stick phases,

during which the rotation stops completely, and slip

phases, during which the angular velocity of the tool

increases up to two times the nominal angular velocity.

This phenomenon occurs when a section of the rotating

drillstring is momentarily caught by friction against the

borehole, and then releases. The bit might eventually

get stuck and then, after accumulating energy in terms of

torsion, be suddenly released; the string rotation speeds

up dramatically and large centrifugal accelerations occur.

The occurrence of torsional vibrations contributes

to the excitation of irregular movements of the

drilling components along their longitudinal axis causing

bit-bounce and rough drilling behavior that destroys the

drill bit, damages the BHA and increases the total drilling

time.

The steady-state of the drilling system corresponds

to a constant rate of penetration of the drill bit Γ while

rotating at a constant speed Ω. Figure 2 shows the angular

and axial bit velocities in the steady-state. Simulation

results are in close agreement with field observations

regarding the stick-slip and the bit-bounce.
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Fig. 2. Drilling system trajectories in the steady-state: bit an-

gular velocity zt(1, t) (stick-slip) (a), bit axial velocity

Ẏ (t) (bit-bounce) (b).

The steady-state performance undergoes various

qualitative changes when the rotating and penetration

speeds are changed. These qualitative changes

are typically captured in a bifurcation diagram that

characterizes the variations of equilibrium points into

limit cycling vibrations. Figure 3 shows the torsional

trajectories of the drilling system in a two-dimensional

phase with the relative variable zt(1, t); the bit motion

converges to a limit cycle.

In the work of Boussaada et al. (2012), the stability
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Fig. 3. Stick-slip limit cycle.

of the steady-state of the drilling system (considering

coupled axial-torsional dynamics) is investigated;

the qualitative dynamic response of the system is

characterized through a local bifurcation analysis. With

this study, it is concluded that large speeds are eventually

stable for all weights on the bit, but such large speeds may

not be practically feasible. In fact, a common empirical

strategy to avoid torsional drilling vibrations consists in

increasing the angular velocity provided by the rotary

table. One of the disadvantages of the strategy is that

a substantial increment in the angular speed induces

lateral problems, such as irregular rotation, which causes

repeated collisions between the rod and the borehole

walls. The shocks may damage the drilling system

components and deteriorate the borehole wall affecting

the overall drilling direction. Even though operational

guidelines are helpful in reducing string vibrations,

they cannot guarantee an optimal drilling operation; for

this reason, effective elimination of drilling vibrations

requires feedback control actions.

5.2. Control of drilling vibrations. The proposed

control approach ensures ultimate boundedness of

a measure involving torsional-axial drilling system

trajectories; the strategy succeeds in eliminating the

stick-slip and bit-bounce phenomena.

Using Theorem 2, it is possible to synthesize the

controllers (13) and (12) by means of an appropriate

computational tool such as the add-on toolbox PENBMI

integrated with the TOMLAB optimization environment.

This toolbox, developed in cooperation with PENOPT

GbR as well as researchers Michal Kǒcvara and Michael

Stingl of Erlangen–Nürnberg University, solves convex

and semi-definite programming problems subject to linear
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and bilinear matrix inequalities. The algorithm, developed

on MATLAB and C code, combines ideas of the

(exterior) penalty and (interior) barrier methods (Ben-Tal

and Zibulevsky, 1997) with the augmented Lagrangian

method. Roughly speaking, the method is based

on the selection of penalty/barrier functions penalizing

inequality constraints and satisfying some properties such

as strict convexity, by instance. For a detailed description

of the algorithm, see the work of Kǒcvara and Stingl

(2003).

The maximum exponential decay rate for which the

conditions of Theorem 2 are satisfied is σ = 0.8. A

feasible result of the LMI Ψ < 0 with Ψ given in (15)

is

p = 0.7406, χ = 0.9559.

Using the above values, a feasible result of the BMI Φ < 0
with Φ given in (16) is

c11 = −0.0067, c12 = −0.04699, c13 = −0.0548,

c14 = 0.6642, c2 = [0 2.0234], β = 16.8149,
(27)

R =

[

551.7373 11.7383
11.7383 13.4465

]

.

The stabilizing controllers are then given by

u1(t) = −0.0067ztt(1, t)− 0.04699zt(1, t) (28)

− 0.0548Tnl(zt(1, t)) + 0.6642zt(0, t),

and

u2(t) = 2.0234ẏ(t) = 2.0234Ẏ (t)− 2.0234Γ0. (29)

Figure 4 shows the trajectories of the controllers u1

and u2; note that they do not exhibit significant variations,

which is a favorable feature regarding the saturation

constraints of control inputs in real plants.

Figures 5 and 6 show the closed-loop system

trajectories zt(ζ, t) (distributed angular velocity), x1 =
y = Y − Γ0t (deviated axial position) and x2 =
ẏ = Ẏ − Γ0 (deviated axial velocity). According

to the obtained results, the stick-slip and bit-bounce

are effectively eliminated by means of the wave-ODE

model-based controllers (28)–(29).

Notice that, initially, small amplitude oscillations are

observed at the surface (ζ = 0), while at the bottom (ζ =
1) the amplitude of the oscillations is more important, as

reported in real wells.

In view of Lemma 1, an ultimate bound on the

drilling system trajectories is given by

∫ 1

0

z̃T (ζ, t)P z̃(ζ, t) dζ ≤ e−σtV̄ (φ̃(ζ, t0)) +
βε

σ

= 1.79× 103e−0.8t + 10.5093,

0 2 4 6 8 10 12 14 16 18 20
8

9

10

11

Time  (s)
(b)

u
1
 (

t)

0 2 4 6 8 10 12 14 16 18 20
−2

−1

0

1

Time  (s)
(a)

u
2
 (

t)

Fig. 4. Control trajectories.
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Fig. 5. Distributed angular velocity zt(ζ, t), ζ ∈ (0, 1); the

closed-loop system (6), (28)–(29).

where

V̄ (φ̃(ζ, t0)) = λmax(P )

∫ 1

0

∥

∥φ̃(ζ, t0)
∥

∥

2
dζ

for t ≥ Ta(φ̃, ς) > 0,

Ta(φ̃, ς) =
1

σ
ln

[

1

ς
λmax(P )

∫ 1

0

∥

∥φ̃(ζ, t)
∥

∥

2
dζ −

βε

ςσ

]

= 12.2361s.

In order to assess the performance of the wave-ODE

model-based control approach, the next section presents

a brief review of two additional control strategies to

eliminate drilling vibrations: the soft-torque controller

and the flatness-based control method. The response of

the system under the three different control strategies is

compared.

5.3. Discussion. As explained above, there exist

several methods to tackle drilling vibrations; this

section provides a brief review of two of them:

the soft-torque system and the flatness-based control

approach. Simulations results show that both of them

lead to the suppression of torsional and axial vibrations;
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Fig. 6. Axial trajectories of the closed loop system (6), (28)–

(29): x1 = Y − Γ0t (a), x2 = Ẏ − Γ0 (b). Variables

Y and Ẏ represent the axial position and axial velocity,

respectively.

however, improved results can be obtained by using the

control approach proposed in this contribution, compared

with the response observed when the specific controllers

presented by Tucker and Wang (1999) as well as Saldivar

et al. (2014) are used.

Soft torque rotary system (STRS). This system was

developed by the Shell company in the early 1990s

(Javanmardi and Gaspard, 1992). The STRS is a PI-like

speed controller which involves a pair of gains κi (drive

stiffness in Nm/rad) and κp (drive damping in Nms rad−1)

that must be calculated according to the drillstring and

BHA configuration. The STRS is defined as follows

(Tucker and Wang, 1999):

⎧

⎨

⎩

uΩ(t) = κp
˙̃ξ(t) + κi ξ̃(t),

ξ̃(t) = Ω0 t−
ν

ωc

Tc(t)− z(0, t) + ξ0,
(30)

where uΩ(t) is the motor torque provided by the rotary

table, Ω0 denotes a prescribed angular velocity, ξ0 is the

displacement of the drillstring at the upper extremity from

its reference value, ωc is the cut-off angular frequency and

ν is an additional control parameter. The variable z(0, t)
denotes the angular position at the top extremity, κp and

κi are the proportional and integral controller gains, and

Tc is the output of a low-pass filter applied to the contact

torque.

Flatness-based control. In nonlinear systems theory, the

flatness property refers to the ability of dynamical systems

of being exactly linearized via endogenous feedback

(Fliess et al., 1995). The main attribute of flat systems is

that the state and input variables can be directly expressed

without integrating any differential equation, in terms of

one particular set of variables called a flat output (or a

linearizing output) and a finite number of its derivatives

(Fliess et al., 1995). The flatness property of a nonlinear

dynamical system is useful to deal with trajectory tracking

problems. The flatness property of the drilling system was

proved by Knuppel et al. (2014). Based on the fact that

the elimination of drilling vibrations requires the angular

and axial velocities of the drilling bit to follow a constant

reference path, a pair of controllers aimed at tackling the

steering problem is designed by Saldivar et al. (2014).

The flatness-based control laws are defined as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

uΩ(t) =k1zt(0, t) + k2 [zt(1, t− τ) + γ(t)]

+ k3v(t) + k4Tnl (zt(1, t− τ) + γ(t))

v(t) =k5z
ref
tt (1, t+ τ) + k6I + k7ztt(1, t− τ)

+ k8Tnl (zt(1, t− τ) + γ(t))

− k8Tnl (zt(1, t− τ))

I =2zt(0, t)− zt(1, t− τ)− zref
t (1, t+ τ),

γ(t) =

∫ t

t−2τ

v(ξ) dξ,

(31)

and
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

uΓ(t) =k̄1wt(0, t) + k̄2 [wt(1, t− τ̃ ) + γ̄(t)]

+ k̄3v̄(t) + k̄4Tnl (zt(1, t− τ) + γ(t))

v̄(t) =k̄5w
ref
tt (1, t+ τ̃ )− k̄6Ī + k̄7wtt(1, t− τ̃)

+ k̄8Tnl (zt(1, t− τ) + γ(t))

− k̄8Tnl (zt(1, t− τ))

Ī =2wt(0, t)− wt(1, t− τ̃)− wref
t (1, t+ τ̃ ),

γ̄(t) =

∫ t

t−2τ̃

v̄(ξ) dξ,

(32)

where zt and wt denote the angular and axial drillstring

velocities, respectively, uΩ(t) and uΓ(t) stand for the

torque provided by the rotor at the surface and the upward

hook force, and they satisfy the relations uΩ(t) = ᾱu1(t),
uΓ(t) = β̄u2(t), where the angular momentum and the

viscous friction coefficient are taken as ᾱ = 2000 N m s

rad−1 and β̄ = 200.025 kg s−1, respectively. The time

delays τ , τ̃ and the controller gains ki, k̄i, i = 1, . . . , 8,

depend on the physical parameters of the system.

The main idea of flatness-based control design

is to compute the control inputs such that the errors

between the desired and actual trajectories satisfy the

stable dynamics leading to exponential convergence of

the torsional and axial trajectories zt(1, t), wt(1, t) to the

reference velocities zref
t (1, t), wref

t (1, t). Notice that the

advanced terms in (31) and (32) correspond to prescribed

references, computed at t+ τ and at t+ τ̃ , i.e., in advance

of time.

Figure 7 shows the angular and axial bit velocities

of the drilling system in a closed loop with three

control strategies: the soft-torque system, flatness-based

controllers and the control method proposed in this
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contribution. Clearly, the system trajectories converge

faster to the desired target via the control laws (28)–(29).
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Fig. 7. Bit trajectories under different control strategies—the

soft-torque control (30) (dotted line), the flatness-based

controllers (31)–(32) (thin line), the wave-ODE model-

based controllers (28)–(29) (thick line): angular velocity

at the bottom extremity zt(1, t) (a), axial velocity at the

bottom extremity Ẏ (t) = wt(1, t) (b).

Note that although the STRS is aimed at eliminating

only the stick-slip phenomenon, the axial vibrations are

also diminished because of the coupling between torsional

and longitudinal dynamics.

Numerical values of the gains of the soft torque

and flatness-based controllers used by Tucker and Wang

(1999) as well as Saldivar et al. (2014) are given in

Table 2.

6. Concluding remarks

We have addressed the problem of control design for

a class of coupled wave-ODE systems; the importance

of the present contribution lies in the significant

engineering application involved: the elimination of

drilling vibrations.

Through LMI-BMI techniques we have established

feedback controllers guaranteeing ultimate boundedness

of the system trajectories, which inherently implies

practical stabilization of the coupled system.

The performance of the proposed strategy is

evidenced by simulations of the drilling system under

three different control approaches: the soft-torque system,

flatness-based control and the one proposed here. It

has been shown that the control method presented in

this contribution provides improved results; the stick-slip

and bit-bounce are eliminated faster than with the other

control solutions.

Table 2. Numerical values of the gains of the soft torque and

flatness-based controllers.

Control gain Numerical value

kp 0.3658 N m s rad−1

k1 2.0048 × 103 N m s rad−1

k2 −4.8067 N m s rad−1

k3 30000 N m s2 rad−1

k4 210
k5 6.4085 × 10−5

k6 −1.6021 × 10−4 s−1

k7 0.9999
k8 −0.0070 rad N−1 m−1 s−2

ki 0.1672 N m rad−1

k̄1 1.4020 × 105 N s m−1

k̄2 −140000 N s m−1

k̄3 40000 kg

k̄4 3500 m−1

k̄5 0.5833
k̄6 −1.4583 s−1

k̄7 0.4167
k̄8 −0.0365 N−1 s−2

It is worth mentioning that the proposed systematic

method to design stabilizing control laws can be easily

extended to treat more general systems.
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Saldivar, B., Mondié, S., Loiseau, J. and Rasvan, V. (2013).

Suppressing axial torsional coupled vibrations in oilwell

drillstrings, Journal of Control Engineering and Applied

Informatics 15(1): 3–10.

Serrarens, A., van de Molengraft, M., Kok, J. and van den

Steeen, L. (1998). H∞ control for suppressing stick-slip in

oil well drillstrings, IEEE Control Systems 18(2): 19–30.

Skaugen, E. (1987). The effects of quasi-random drill bit

vibrations upon drillstring dynamic behavior, Techni-

cal Report SPE 16660, Society of Petroleum Engineers,

Dallas, TX.

Suh, Y., Kang, H. and Ro, Y. (2006). Stability condition of

distributed delay systems based on an analytic solution to

Lyapunov functional equations, Asian Journal of Control

8(1): 91–96.

Timoshenko, S. and Young, D. (1955). Vibrations Problems in

Engineering, Third Edition, D. Van Nostrand Company,

Princeton, NJ.

Tucker, R. and Wang, C. (1999). On the effective control of

torsional vibrations in drilling systems, Journal of Sound

and Vibration 224(1): 101–122.



The control of drilling vibrations: A coupled PDE-ODE modeling approach
349

Weaver, W., Timoshenko, S. and Young, D. (1990). Vibra-

tions Problems in Engineering, Fifth Edition, John Wiley

& Sons, New York, NY.

Wu, J., Li, S. and Chai, S. (2010). Exact controllability of wave

equations with variable coefficients coupled in parallel,

Asian Journal of Control 12(5): 650–655.

Yang, L. and Wang, J. (2014). Stability of a damped hyperbolic

Timoshenko system coupled with a heat equation, Asian

Journal of Control 16(2): 546–555.

Yoshizawa, T. (1960). Stability and boundedness of

systems, Archive for Rational Mechanics and Analysis

6(1): 409–421.

Yoshizawa, T. (1966). Stability Theory by Lyapunov’s Second

Method, The Mathematical Society of Japan, Tokyo.

Zhang, X. and Zuazua, E. (2004). Polynomial decay and control

of a 1-D hyperbolic-parabolic coupled system, Journal of

Differential Equations 204(2): 380–438.

Zhou, Z. and Tang, S. (2012). Boundary stabilization of a

coupled wave-ode system with internal anti-damping, In-

ternational Journal of Control 85(11): 683–693.

Belem Saldivar received a B.Sc. degree in

electronics and telecommunications engineering

from UAEH, Pachuca Hidalgo, Mexico, in 2007.

She obtained an M.Sc. degree in automatic con-

trol from CINVESTAV, Mexico City, Mexico, in

2010 and Ph.D. degrees in automatic control as

well as informatics and applications from CIN-

VESTAV and IRCCyN, Nantes, France, in 2013.

Since 2014 she has been a CONACYT research

fellow at the Autonomous University of the State

of Mexico (UAEM). Her research is focused on the modeling, analysis,

and control of dynamical systems.
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Appendix

Proof of Lemma 1

Multiplying (10) by eσθ gives

d

dθ

[

eσθV (z̃(·, θ))
]

≤ βεeσθ ,

and integration of the above expression from t0 to t yields

eσtV (z̃(·, t)) − eσt0V (φ̃(ζ, t0)) ≤
βε

σ

[

eσt − eσt0
]

.

Without loss of generality, we assume t0 = 0; then

we obtain

V (z̃(·, t)) ≤ e−σtV (φ̃(ζ, t0)) +
βε

σ

[

1− e−σt
]

.

It follows from (9) that

∫ 1

0

z̃T (ζ, t)P z̃(ζ, t) dζ ≤e−σtV̄ (φ̃(ζ, t0))

+
βε

σ

[

1− e−σt
]

.

Then we have

∫ 1

0

z̃T (ζ, t)P z̃(ζ, t) dζ ≤e−σt

[

V̄ (φ̃(ζ, t0))−
βε

σ

]

+
βε

σ
.

(A1)

For the initial conditions fulfilling V̄ (φ̃(ζ, t0)) ≤ βε/σ,

∫ 1

0

z̃T (ζ, t)P z̃(ζ, t) dζ ≤
βε

σ
, ∀t ≥ 0;

otherwise, if V̄ (φ̃(ζ, t0)) > βε/σ, we look for a time

instant Ta(φ̃, ς) at which the ultimate bound (11) is

satisfied.

In view of (A1), Ta(φ̃, ς) should guarantee
∫ 1

0
z̃T (ζ, t)P z̃(ζ, t) dζ ≤ ς + βε/σ for ς > 0, small

enough, i.e.,

ς =e−σTa

[

V̄ (φ̃(ζ, t)) −
βε

σ

]

.

From the above expression we have

eσTa =
1

ς

[

V̄ (φ̃(ζ, t)) −
βε

σ

]

,

and the result follows.
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