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ABSTRACT

Histone 3 lysine 9 trimethylation (H3K9me3) is a conserved histone

modification that is best known for its role in constitutive

heterochromatin formation and the repression of repetitive DNA

elements. More recently, it has become evident that H3K9me3 is also

deposited at certain loci in a tissue-specific manner and plays

important roles in regulating cell identity. Notably, H3K9me3 can

repress genes encoding silencing factors, pointing to a fundamental

principle of repressive chromatin auto-regulation. Interestingly, recent

studies have shown that H3K9me3 deposition requires protein

SUMOylation in different contexts, suggesting that the SUMO

pathway functions as an important module in gene silencing and

heterochromatin formation. In this Review, we discuss the role of

H3K9me3 in gene regulation in various systems and the molecular

mechanisms that guide the silencing machinery to target loci.
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Introduction

In eukaryotic nuclei, DNA associates with proteins to form a

higher-order complex known as chromatin. Early observations

distinguished differently stained regions of interphase chromatin,

termed ‘euchromatin’ and ‘heterochromatin’, reflecting regions that

decondense or remain condensed during interphase (Heitz, 1928).

Although euchromatin is mostly associated with active transcription,

heterochromatin is usually (but not always) associated with gene

silencing. The repressive properties of heterochromatin have been

attributed to the denser packing of DNA that might make it less

accessible to transcription factors and the transcriptional machinery.

There are two broad types of heterochromatin. Constitutive

heterochromatin is present in all cell types and is typically

composed of repeat-rich and gene-poor regions around centromeres

and telomeres. In contrast, facultative heterochromatin is established

in a cell type-specific manner on genomic regions that generally have

normal gene density (Elgin and Reuter, 2013). In this context, the

establishment of facultative heterochromatin on specific genomic

regions usually correlates with transcriptional repression.

The basic unit of chromatin is the chromatosome, which consists

of DNAwrapped around octamers containing two copies each of the

histone proteins H2A, H2B, H3 and H4, and a linker histone H1.

Specific residues on histones can be post-translationally modified

via the covalent addition of chemical groups, such as acetyl, methyl

and phosphoryl, as well as by small protein modifiers such as

ubiquitin and SUMO (Small Ubiquitin-likeModifier) (Bannister and

Kouzarides, 2011). The activity of the enzymatic ‘writers’ that carry

out these modifications is counterbalanced by ‘eraser’ enzymes that

can remove the modifications. Histone modifications regulate the

accessibility of DNA to the transcriptional machinery and can serve

as marks to recruit effector proteins with diverse functional

outcomes. Trimethylation of histone 3 lysine 9 (H3K9me3) and

lysine 27 (H3K27me3) are the best-known histone modifications

associated with gene repression and heterochromatin. These marks

are established and recognized by distinct writer and reader

complexes, and are typically localized to different genomic

regions, suggesting that they associate with distinct types of

chromatin. H3K27me3 is found on many regions silenced in a

cell-specific manner, such as the X-chromosome and the

developmentally regulated homeotic (HOX) genes (Beuchle et al.,

2001; Plath et al., 2003; Ringrose and Paro, 2004; Schuettengruber

et al., 2017). The role of H3K27me3 in controlling expression of

developmentally regulated genes has been extensively studied

(reviewed by Aloia et al., 2013; Schuettengruber et al., 2007;

Schuettengruber et al., 2017). Although H3K27me3-marked

domains are often referred to as ‘facultative heterochromatin’, not

all cell-specific heterochromatic domains are marked by H3K27me3

(see below) and someH3K27me3-marked regions are not condensed

(e.g. Becker et al., 2017).

In contrast, H3K9me3 is enriched in constitutive heterochromatin

such as centromeric and telomeric repeats from yeast to human

(Richards and Elgin, 2002). H3K9me3 is also associated with stable

repression of transposable elements (TEs), abundant nuclear

parasites that can propagate within host genomes causing DNA

damage and mutations in both Drosophila and vertebrate systems

(Karimi et al., 2011; Klenov et al., 2011; LeThomas et al., 2013;

Matsui et al., 2010; Mikkelsen et al., 2007; Pezic et al., 2014; Riddle

et al., 2011; Rowe et al., 2010; Rozhkov et al., 2013; Sienski et al.,

2012; Wang and Elgin, 2011). TE insertions scattered throughout

the genome are often marked by local H3K9me3 peaks in otherwise

euchromatic regions. Owing to this concentration at TEs, repetitive

regions and chromosomal ends, H3K9me3-marked constitutive

heterochromatin is best known for its role in chromosome

architecture and genome stability, as it is required for proper

chromosome segregation and to prevent unequal recombination

between repeats (Janssen et al., 2018). However, genome-wide

profiling of H3K9me3 in mammals and Drosophila have revealed

that this mark is also present outside of repeat-rich and gene-poor

regions, suggesting that it plays an important role in host gene

regulation, including the repression of developmentally restricted

genomic regions, thereby acting as a key regulator of cell fate.

In this Review, we discuss how the H3K9me3mark is established

and maintained and review the modes by which it functions to

regulate gene expression and cell identity in development, with an

emphasis on the murine and Drosophila systems. We also highlight

recent findings that have identified a conserved role for the SUMO
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pathway in H3K9me3 establishment. Finally, we discuss findings

suggesting that heterochromatin effectors are themselves regulated

by the H3K9me3 silencing mark they deposit, indicating a

homeostatic mechanism for heterochromatin maintenance.

Mechanisms of H3K9me3 establishment and maintenance

Readers, writers and erasers of H3K9 methylation

Factors involved in heterochromatin formation first emerged from

genetic screens for factors affecting position effect variegation

(PEV) in Drosophila – the phenomenon by which the relocation of

protein-coding genes that normally reside in euchromatin next to

heterochromatin leads to their variegated repression (reviewed by

Elgin and Reuter, 2013). These screens identified over 100 loci

encoding putative chromatin regulators, referred to as suppressors of

PEV [Su(var)] and enhancers of PEV [En(var)]. Many Su(var)

genes encode factors that are necessary for heterochromatin-induced

gene repression. Their molecular characterization identified proteins

that establish and maintain heterochromatin structure, including

writers and readers of the H3K9me3 mark (Fig. 1). The Su(var)3-9

gene family was found to be the first known H3K9-specific histone

methyltransferases (H3K9-HMTs) in human (Suv39h), Drosophila

[Su(var)3-9] and yeast (clr4) (Czermin et al., 2001; Nakayama et al.,

2001; Rea et al., 2000). Studies in metazoan systems identified two

other conserved families of H3K9-specific HMTs, including

SETDB1/ESET (dSetDB1/eggless in Drosophila) (Schultz et al.,

2002) and G9a/GLP (Tachibana et al., 2001). Despite similar

activities in vitro, H3K9-HMTs differ in vivo in their tissue

specificity, their genomic regions of activity, their bias towards a

specific methyltransferase activity (mono-, di- or tri-methylation)

and their dispensability. For example, the SUV39-family proteins

are typically associated with di- and tri-methylation of H3K9 at

centromeric and telomeric regions, whereas SETDB1 was first

identified as a HMT that primarily acts on euchromatic regions such

as TEs scattered throughout the genome (Aagaard et al., 1999;

Karimi et al., 2011; Peters et al., 2003; Rice et al., 2003; Schotta

et al., 2002; Schultz et al., 2002). In addition, SetDB1 acts at

telomeric heterochromatin in mouse embryonic stem cells (ESCs)

(Gauchier et al., 2019). In mammals, G9a-GLP predominantly

regulates H3K9 mono- and di-methylation, and is essential for

embryogenesis (Tachibana et al., 2001, 2002). Conversely, among

the three H3K9-specific HMTs in Drosophila – G9a, Su(var)3-9

and dSetDB1/Eggless – only the last is essential (Brower-Toland

et al., 2009). However, a comprehensive picture of the specificity

and functional redundancy of HMTs in different organisms has

not yet been established. The activity of H3K9-HMTs is

counterbalanced by erasers from the jumonji (JmjC) domain-

containing demethylase families, with the JMJD2/KDM4 family

displaying activity towards H3K9me2/me3 residues (as well as

methylated H3K36), and JMJD1/KDM3 proteins displaying

activity towards H3K9me2/1 (reviewed by Cloos et al., 2008;

Nottke et al., 2009).

Proteins from the highly conserved heterochromatin protein 1

(HP1/CBX/Swi6) family are H3K9me3 readers and central

effectors of heterochromatin formation from yeast to human. HP1

proteins consist of a N-terminal chromodomain (CD), which is

required for their specific interaction with methylated H3K9

(Bannister et al., 2001; Jacobs et al., 2001; Lachner et al., 2001),

a hinge region and a C-terminal chromoshadow domain (CSD). A

current model suggests that CSD domain-mediated dimerization of

two HP1 proteins bound to H3K9me3 residues on adjacent

nucleosomes brings these nucleosomes in closer proximity,

thereby causing chromatin condensation (Canzio et al., 2011;

Hiragami-Hamada et al., 2016; Machida et al., 2018). The CSD also

mediates HP1 interaction with additional proteins (Platero et al.,

2004), and may recruit other chromatin remodeling and modifying

complexes. Drosophila and mammalian genomes encode several

paralogs of the H3K9me3 reader HP1 family that exhibit distinct

localization patterns and post-translational modifications (Lomberk

et al., 2006a,b).

H3K9me3 reader and writer activities can be coupled. For

example, members of the SUV39/Clr4 family of H3K9-HMTs have

a conserved chromodomain that can mediate binding to H3K9me3,

implying direct binding of the mark by its own writer. The S.

pombe Clr4 CD binds H3K9me in vitro and is required for

maintaining a repressed state in vivo (Ragunathan et al., 2015;

Zhang et al., 2008). In Drosophila, Su(var)3-9 interacts directly

with the reader HP1, and the CD of Su(var)3-9 is required for its

proper localization to chromatin (Schotta et al., 2002; Zhang et al.,

2008). These and other examples of interactions or inter-

dependencies between histone mark writer and reader complexes

are thought to confer a feed-forward loop that ensures H3K9me3

maintenance and propagation (reviewed by Allshire and Madhani,

2018; Vermaak and Malik, 2009).

Recruitment of H3K9-modifying complexes to target genomic regions

In order to ensure H3K9me3 deposition at appropriate targets and

avoid ectopic silencing, the recruitment of silencing effectors to

specific regions of the genome must be precisely regulated. H3K9-

HMTs and HP1 proteins cannot recognize specific sequences and

bind DNA directly, and therefore require additional factors for

their recruitment. Studies have identified two major modes of

H3K9-HMT recruitment to chromatin: through sequence-specific

DNA-binding proteins, and through small RNA guides

complementary to nascent transcripts (Fig. 2).

Most of our current knowledge of DNA-binding proteins

involved in silencing complex recruitment comes from

mammalian systems. Perhaps the best-characterized factors that

act in H3K9-HMT recruitment are members of the large vertebrate-

specific family of Krüppel-associated box (KRAB)-containing

SetDB1/ESET,SUV39h1/2, G9a* 

dSetDB1/Eggless, Su(var)3-9

Clr4S. pombe

D. melanogaster

H.sapiens/M.musculus

H3H4

H2A H2B

H1

HP1/

Swi6

H3K9me3 ‘reader’

H3K9me3 ‘writer’

JmjC-domain proteins

H3K9me3 ‘eraser’

H3K9me3

Fig. 1. Schematic of enzymatic machineries involved in H3K9me3

regulation. H3K9me3 (yellow star) is deposited by ‘writers’ and is recognized

by the chromodomain present in numerous ‘reader’ proteins, which include the

HP1 family of proteins. It is removed by ‘erasers’ from the JmjC-domain family

of demethylases. The table depicts species-specific H3K9me3 writers. *G9a

primarily acts as a H3K9 mono- and dimethylase, but can catalyze H3K9

trimethylation in vitro with slow kinetics (Collins et al., 2005).
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zinc-finger proteins (KRAB-ZFPs). The majority of KRAB-ZFPs

target sites are located within TEs, and specific KRAB-ZFPs have

been shown to induce SETDB1/H3K9me3-dependent silencing at

endogenous retrovirus (ERV) targets (Ecco et al., 2016; Imbeault

et al., 2017; Lupo et al., 2013; Wolf et al., 2015a,b). Biochemical

studies have demonstrated that the KRAB domain interacts with the

universal co-repressor KAP1/Trim28, which in turn recruits

SetDB1 (Friedman et al., 1996; Peng et al., 2000; Schultz et al.,

2002). The retinoblastoma (Rb) protein and MAX have also been

implicated in SUV39H1- and SetDB1-mediated silencing of

specific genes in mammals, respectively (Maeda et al., 2013;

Nielsen et al., 2001; Tatsumi et al., 2018). Studies in murine cell

lines have also identified several transcription factors that localize to

H3K9me3-rich pericentric satellites and are required for

heterochromatin integrity (Bulut-Karslioglu et al., 2012; Vassen

et al., 2006; Yamashita et al., 2007); however, a mechanistic link

with H3K9-HMT recruitment is not well established. Of note,

H3K9-related factors can interact with and share some targets with

other chromatin modifiers, such as DNA methylase1 and NuRD, in

various contexts, indicating complex context-dependent

interactions between different silencing pathways (e.g. Ivanov

et al., 2007; Lehnertz et al., 2003; Robertson et al., 2000; Schultz

et al., 2001; Tatsumi et al., 2018; Uchimura et al., 2006). In

Drosophila, DNA-binding proteins that recruit H3K9-HMTs

have not been identified to date, although several lines of

evidence (discussed below) point to their existence.

Small RNA-based targeting mechanisms for H3K9me3-induced

transcriptional silencing also occur and seem to function in

organisms from yeast to mammals. RNA interference (RNAi) is a

conserved mechanism of gene regulation in which short RNAs

(microRNAs, siRNAs or piRNAs) are loaded into proteins from the

Argonaute (Ago) family and guide them to complementary regions

at RNA targets with different regulatory outcomes. In the nucleus,

small RNA-associated Argonautes recognize complementary

regions in nascent RNAs and guide silencing effectors to induce

co-transcriptional repression and heterochromatin formation

(reviewed by Holoch and Moazed, 2015). The role of RNAi in

heterochromatin formation was first demonstrated in fission yeast,

where complexes containing Argonaute-bound small RNA guides

are required for H3K9me3 deposition at centromeric regions (Hall,

2002; Volpe et al., 2002). RNAi-directed mechanisms also have a

well-established role in heritable epigenetic silencing in C. elegans,

and analogous pathways have been described in plants and ciliates

(Ashe et al., 2012; Chalker et al., 2013; Zilberman et al., 2003). In

metazoans, a dedicated RNAi-based silencing pathway – the piRNA

pathway, which consists of proteins from the Piwi clade ofArgonautes

associated with short RNAs (piRNAs) – guides H3K9me3 deposition

at TE targets in the germline (LeThomas et al., 2013; Pezic et al.,

2014; Rozhkov et al., 2010; Sienski et al., 2012).

It is important to note that de novo deposition and maintenance of

H3K9me3 can be achieved by different pathways. Given reader/

writer coupling, once established, H3K9me3 could be maintained

independently of the initial inducer. In S. pombe, H3K9me is not

completely lost upon Argonaute deletion; furthermore, H3K9me at

a reporter locus can be maintained in the absence of the initial

inducer if demethylation is inhibited (Ragunathan et al., 2015).

Similarly, it has been proposed that, in Drosophila, embryonic

piRNAs may contribute to the initial establishment of H3K9me3

profiles in both somatic and germ cells, and that these H3K9me3

patterns are later maintained in a piRNA-independent manner

(Akkouche et al., 2017; Gu and Elgin, 2013).

The role of SUMO in recruiting the silencing complex

Post-translational modification by SUMO (see Box 1) has been

recognized as a mechanism that functions in different silencing

pathways and model systems. For example, SUMO (smt3) and Swi6

SUMOylation have been shown to be required for heterochromatin

stability at the silent mating type loci in fission yeast (Shin et al.,

2005). SUMOylation is also implicated in several aspects of

heterochromatin formation in different genomic contexts in

mammals. Studies in murine cell lines have shown that

SUMOylation of HP1α regulates its de novo localization to

pericentric chromatin, with Suv39h1 acting as a SUMO E3 ligase

(Maison et al., 2011, 2016). SUMOylation of the core histone H4

induces HP1γ recruitment and local silencing in human cell lines

(Shiio and Eisenman, 2003). Notably, studies in both vertebrate and

invertebrate systems demonstrate that the SUMOmoiety can act as a

docking site for the recruitment of silencing effectors containing

SUMO-interacting motifs (SIMs). For example, SUMOylation of

the transcription factor Sp3 induces the recruitment of SetDB1 and

HP1 proteins, resulting in H3K9me3 deposition and silencing of

reporter genes in human cells (Stielow et al., 2008). SUMO is also

involved in KAP1/SetDB1-mediated silencing (Fig. 3A). SetDB1

contains SIMs, and autocatalytic SUMOylation of KAP1 mediates

the recruitment of SetDB1 to chromatin and enhances its

methyltransferase activity in human cells (Ivanov et al., 2007).

The conserved SetDB1 co-factor MCAF1/ATF7IP also localizes to

chromatin targets in a SUMO-dependent manner (Uchimura et al.,

2006). In line with their involvement in SetDB1 recruitment,

SUMO and SUMO-conjugating enzymes have emerged as factors

required for ERV repression in embryonic carcinomas and ESCs

(Fukuda et al., 2018; Yang et al., 2015). Finally, SUMO was found

to be enriched at H3K9me3-marked regions, including ERVs in

ESCs, and its depletion leads to global reduction of H3K9

A  DNA-binding proteins B  Non-coding RNAs/Argonautes

H3K9me3

Nascent RNA

Antisense guide
small RNA 

HP1

H3K9 HMT complex

ArgonauteH3K9 HMT complex

HP1

H3K9me3

Binding
motif 

DNA-binding
protein

Fig. 2. Modes of recruiting the H3K9me3

machinery to specific genomic targets. Target

specificity for recruitment of HMTs is either provided

by: (A) DNA-binding proteins with sequence-specific

DNA binding motifs; or (B) by small non-coding

RNAs associated with Argonaute proteins.
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methylation and ERV de-repression (Cossec et al., 2018). Together,

these studies indicate that SUMOylation is an important

modification for KRAB-KAP1-SetDB1-mediated ERV silencing.

Components of the SUMO pathway also emerged as factors

required for TE repression in a genome-wide screen in Drosophila

(Muerdter et al., 2013). Subsequent studies showed that the SUMO

E3 ligase Su(var)2-10 acts downstream of piRNA-Piwi complexes

to recruit the SetDB1 silencing complex, which deposits H3K9me3

at TE targets in the female germline (Fig. 3B, Ninova et al., 2019a

preprint). Furthermore, Su(var)2-10 is required for H3K9me3

deposition and for transcriptional repression at loci that are not

targeted by piRNAs, indicating that it can act downstream of

different guides (Ninova et al., 2019a preprint,b).

Collectively, these observations suggest that the SUMO pathway

is a highly conserved module acting in the recruitment of silencing

complexes in different genomic contexts and pathways (Fig. 3).

However, although the role of SUMO in silencing is now well

documented, with thousands of proteins being identified as

SUMOylation targets (Cubeñas-Potts and Matunis, 2013), only a

few specific substrates (such as KAP1 in mammals) are known in

the context of heterochromatin formation.

Diverse modes of gene regulation by H3K9me3

The establishment and maintenance of constitutive heterochromatin

is essential for genome stability (reviewed by Janssen et al., 2018).

Although H3K9 methylation is often studied in the context of

repetitive, gene-poor heterochromatic regions such as centromeres,

recent data from multiple model systems demonstrate that it also

affects the transcription of host genes. Genetic and biochemical

studies have identified several major modes by which H3K9me3

can affect the host transcriptome.

Heterochromatin and H3K9 methylation are typically associated

with gene silencing, as first evidenced by the phenomenon of PEV

(Elgin and Reuter, 2013). Loss of H3K9me3 following depletion of

silencing guides or effectors, such as H3K9-HMTs, KRAB-ZFP or

piRNA pathway components, is associated with transcriptional

upregulation of TE targets but also, in some cases, of host genes that

are normally decorated by this mark (e.g. Karimi et al., 2011;

Klenov et al., 2011; LeThomas et al., 2013; Matsui et al., 2010;

Rozhkov et al., 2013; Sienski et al., 2012; Smolko et al., 2018; Wolf

et al., 2015b). Furthermore, artificial recruitment of H3K9-HMTs,

such as SetDB1, or of other silencing factors to reporter loci in

euchromatin results in transcriptional silencing of the reporter gene

in both somatic and germ cells (Ayyanathan et al., 2003; Ivanov

et al., 2007; Li et al., 2003; Ninova et al., 2019a preprint; Schultz

et al., 2002; Sienski et al., 2015; Yu et al., 2015). However,

H3K9me3 is not always associated with silencing, especially if it is

excluded from the transcription start site (TSS). For example,

heterochromatin-residing yet active genes inDrosophila are usually

enriched in H3K9me3 across their bodies but not around the TSS

(Ninova et al., 2019b; Riddle et al., 2011). Studies in flies have

shown that some active genes that reside in constitutive

heterochromatin require this environment for their proper

expression, as they become silent if translocated to euchromatin

(Wakimoto et al., 1990; Yasuhara and Wakimoto, 2006). Loss of

H3K9me3 results in transcriptional downregulation of a significant

fraction of genes residing in constitutive heterochromatin and the

H3K9me3-rich chromosome 4 in various tissues, as well as of

genomic loci encoding piRNA precursors in the germline (Ninova

et al., 2019b; Rangan et al., 2011; Tzeng et al., 2007). These

findings suggest that, despite its common silencing function,

H3K9me3 enrichment over gene bodies outside of the TSS is not

only compatible with transcription but is even required for proper

expression of heterochromatic genes. In the case of piRNA

precursor loci in Drosophila germ cells, H3K9me3 acts as a

docking site for the so-called RDC complex and associated factors

necessary for piRNA biogenesis (Andersen et al., 2017;Mohn et al.,

2014). Whymany protein-coding genes residing in heterochromatin

require H3K9me3 for their expression is not understood.

H3K9me3 installment on host genes can occur either via direct

recruitment of the chromatin modifier to the gene (as discussed

earlier) or by indirect mechanisms. The best-studied indirect

mechanisms of HMT recruitment to host genes involves the

targeting of TEs in the gene proximity for H3K9me3-associated

silencing. It is well established that the H3K9me3 mark is deposited

at TE sequences both at heterochromatic loci and at TE insertions in

euchromatin. However, as H3K9me3 can spread in cis several

kilobases (Karimi et al., 2011; Mikkelsen et al., 2007; Pezic et al.,

2014; Rebollo et al., 2011), TE insertions in the vicinity of host

genes can induce their epigenetic silencing. Moreover, although

TEs are often viewed as ‘junk DNA’ or harmful elements, they are

also an important source of regulatory sequences and ncRNAs

(Chuong et al., 2017; Kapusta et al., 2013; Slotkin andMartienssen,

2007). Indeed, depending on the tissue, 6-30% of transcripts in

mouse and human cells initiate within TEs, and this phenomenon is

most widespread in embryonic tissues (Faulkner et al., 2009). TEs,

particularly the ERV1 family, contain many of the predicted binding

motifs for the core pluripotency factors OCT4/POU5F1 and Nanog

in mammals (Kunarso et al., 2010). In addition, many TE-KRAB-

Box 1. The SUMO pathway
SUMO (Small Ubiquitin-like Modifier) is a ∼10 kDa protein that acts as a

reversible covalent post-translational modifier. The SUMO conjugation

mechanism is highly conserved and resembles that of ubiquitin

conjugation. In brief, the SUMO E1 activation complex Aos1/Uba2

passes SUMO to the SUMO E2-conjugating enzyme Ubc9. Ubc9 then

catalyzes the transfer of SUMO to its substrate by forming an isopeptide

bond between the C-terminal glycine of SUMO and a lysine in the

substrate, typically within the consensus motif ΨKxD/E. SUMO E3

ligases are thought to facilitate this transfer and provide substrate

selectivity but, overall, this class of SUMO enzymes remains poorly

understood.

SUMO modification may lead to changes in protein stability or

conformation with different regulatory outcomes. SUMOylation is often

implicated in large protein assemblies, as the SUMO moiety provides a

binding surface for partners containing SUMO-interacting motifs (SIMs)

and can thereby promote protein-protein interactions. Interestingly,

while post-translational modifications typically involve a highly specific

interaction between a substrate and a modifying enzyme, with a single

event triggering a particular regulatory outcome, SUMOylation appears

to function in a different manner. Indeed, studies in yeast indicate that

collective SUMOylation of co-localized proteins, rather than individual

factors is functionally important to promote the assembly, stability and/or

activity of large protein complexes (Psakhye and Jentsch, 2012). Such is

the case of the homologous recombination pathway in yeast, where

multiple factors are collectively SUMOylated by the chromatin-bound

SUMO E3 ligase Siz2 upon recruitment to DNA (Psakhye and Jentsch,

2012). As many of these proteins also have SIMs, it has been proposed

that ubiquitous SUMOylation of co-localized proteins results in multiple

SUMO-SIM interactions that may stabilize protein complexes. Together,

the loose subtract selectivity of the SUMO-conjugation machinery, and

the high frequency of SUMOylation and SIMs, lead to a model wherein a

SUMO ligase induces a local ‘SUMO spray’ that promotes the formation

of large protein assemblies (Psakhye and Jentsch, 2012). Whether such

collective SUMOylation is involved in heterochromatin formation remains

to be determined.
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ZFP pairs are conserved despite the TEs being long inactive,

suggesting that some binding sites were co-opted as regulatory

elements of host genomes (Imbeault et al., 2017). Although not all

computationally predicted TE-derived regulatory regions are

functional, several elements were found to act as enhancers in

ESCs (Todd et al., 2019). Thus, the targeting of H3K9me3 to TE

sequences can alsomodulate the activity of some associated promoter

and/or enhancer elements with diverse regulatory outcomes on

proximal genes. The role of TE-related gene regulation has mostly

been investigated inmammals; however, evidence fromother systems

suggests that TE co-option in developmental processes is a common

phenomenon (Chuong et al., 2017).

Finally, recent advances in chromosome conformation capture

methods have revealed that, at least in mammals, H3K9me3 plays a

role in gene expression by maintaining the three-dimensional

organization of the genome by suppressing cryptic CTCF binding

sites (Jiang et al., 2017).

Gene regulation by H3K9me3 in development

The role of H3K9me3 in gene regulation in somatic tissues

In metazoans, gametogenesis and early embryogenesis are

accompanied by extensive epigenetic reprogramming during

which most chromatin marks, including H3K9me3, are erased to

grant totipotency to the zygote and are later re-established.

H3K9me3 re-establishment in somatic tissues is essential for

normal developmental progression in Drosophila and mammals.

Interestingly, loss of silencing effectors that primarily control

H3K9me3 deposition at constitutive heterochromatin leads to less

severe phenotypes than disruption of H3K9me3 deposition outside

constitutive heterochromatin. For example, mutant mice double null

for the two SUV39 paralogs, which primarily localize to centromeric

regions, display chromosomal instability and multiple defects, yet

some animals survive to adulthood (Peters et al., 2001). Conversely,

upon loss of SetDB1/ESET, which is primarily involved in

H3K9me3 deposition outside constitutive heterochromatin, the

inner cell mass of the pre-implantation embryo fails to form

properly, leading to pre-implantation lethality (Dodge et al., 2004).

Likewise, in Drosophila, Su(var)3-9 null mutants are viable and

fertile (Tschiersch et al., 1994), while SetDB1 loss-of-function

mutations are homozygous lethal (Seum et al., 2007). Loss of

several members of the HP1 family of H3K9me3 readers,

including the Drosophila Su(var)2-5/HP1a and the mouse Cbx1/

HP1β, also result in developmentally lethal phenotypes (Aucott

et al., 2008; Eissenberg et al., 1990; Eissenberg et al., 1992;

Kellum and Alberts, 1995), highlighting the essential role of

H3K9me3 in early development.

H3K9me3 in the early embryo and ESCs

Most current knowledge about the role of H3K9me3 in early

somatic development comes from studies in murine systems, which

have shown that gene silencing by H3K9me3 is particularly

important during pre-implantation embryonic development, ESC

self-renewal, cell differentiation and cell lineage commitment.

It is well established that there is a complex interplay between

H3K9me and DNAmethylation in mammalian embryos (Allis and

Jenuwein, 2016; Cedar and Bergman, 2009). DNA methylation

provides a stable and mitotically heritable mode of silencing,

which is temporarily erased during gametogenesis and upon

fertilization, with re-methylation occurring at the time of

implantation (Reik et al., 2001; Smith et al., 2012; Wu et al.,

2016). During this time, H3K9me3 mediates gene and transposon

repression, and guides the re-establishment of DNA methylation

later on (Allis and Jenuwein, 2016; Cedar and Bergman, 2009). As

development progresses, pluripotency-associated genes are

silenced, while genes involved in alternative cell fates become

activated; these processes also involve H3K9me3. High-resolution

mapping of H3K9me3 in the mouse embryo by ChIP-seq has

revealed a finely regulated timing of H3K9me3 establishment at

different genomic elements (Wang et al., 2018). H3K9me3 is

present at some developmental genes and some long terminal

repeats (LTRs) in oocytes and zygotes, but is lost at the two-cell

stage. However, globally the two-cell stage is characterized by a

stark increase in H3K9me3, which initially accumulates

predominantly on LTRs (Wang et al., 2018). Depletion of
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Fig. 3. The SUMO pathway is involved in SetDB1-dependent H3K9me3 deposition downstream of different silencing pathways. (A) Model of KRAB-ZFP/

KAP1-mediated TE silencing in human cells. KRAB-ZFPs recognize specific TE sequences in DNA. The KRAB-ZFP co-repressor KAP1 is a SUMOE3 ligase that

undergoes autocatalytic SUMOylation (involving the SUMO E1 and E2 ligases). It then recruits the H3K9-specific HMT SetDB1 (via the interaction between

SUMO and the SUMO-interacting motif present in SetDB1), which in turn induces methylation of H3K9. Adapted from Ivanov et al. (2007). (B) Model of piRNA-

mediated TE silencing in the Drosophila female germline. piRNAs guide the Piwi complex to complementary nascent TE transcripts. The Piwi complex interacts

with the SUMO E3 ligase Su(var)2-10 (Sv210), which is auto-SUMOylated and may also induce the SUMOylation of additional chromatin factors. The SUMO

moiety then recruits the SetDB1/Wde (MCAF1 homolog) complex, which induces methylation of H3K9. Adapted from Ninova et al. (2019a preprint).
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SetDB1, KAP1/Trim28, Sumo2 and the histone chaperone Chaf1a

leads to H3K9me3 loss and upregulation of several LTRs. In

addition, many embryos arrest at the blastocyst stage upon

knockdown of these factors, highlighting their importance for

proper early development (Wang et al., 2018). As development

continues into the implantation stage, H3K9me3 also begins to

appear at host genes where different lineages acquire distinct

H3K9me3 signatures. Typically, in a specific cell type H3K9me3

is deposited at genes that are characteristic of alternative cell fates

(Wang et al., 2018). Thus, the H3K9me3 mark appears to suppress

lineage-inappropriate gene expression.

The role of SetDB1-mediated TE, and gene repression and cell

fate control is also apparent from studies in mouse ESCs. As in early

embryos, LTRs in ESCs are marked by H3K9me3. Depletion of

KAP1/Trim28, SetDB1/ESET and its co-factor MCAF1/ATF7IP,

the KRAB-ZFP Zfp809, Morc2a, Chaf1a/b, Sumo2 and SUMO

pathway enzymes leads to pervasive upregulation of multiple

(partially overlapping) ERV targets (Cossec et al., 2018; Fukuda

et al., 2018; Karimi et al., 2011; Martens et al., 2005; Matsui et al.,

2010; Mikkelsen et al., 2007; Rowe et al., 2010; Wolf and Goff,

2007; Yang et al., 2015). In addition, depletion of the H3K9me3

effectors SetDB1, KAP1 and several KRAB-ZFPs from ESCs leads

to de-repression of a subset of protein-coding genes (Ecco et al.,

2016; Karimi et al., 2011; Rowe et al., 2013; Wolf et al., 2015b).

Notably, a significant fraction of genes activated upon SetDB1 or

Trim28 depletion reside in proximity to TEs (mostly ERV and

LINEs), and many become transcribed from alternative TSSs

residing in concomitantly upregulated ERV regions, thereby

forming chimeric transcripts (Karimi et al., 2011; Rowe et al.,

2013). Furthermore, SetDB1 and H3K9me3 have been reported to

occupy promoter regions in ESCs and early embryos, suggesting

that they directly target specific host genes (Bilodeau et al., 2009;

Karimi et al., 2011;Wang et al., 2018; Yuan et al., 2009). Consistent

with a role for H3K9me3-dependent silencing in maintaining cell

fate, depletion of silencing factors from ESCs is generally

associated with loss of cell identity. For example, depletion of

KAP1/Trim28, Chaf1a, SUMO2/3 or the SUMO E2 ligase Ubc9

leads to conversion of the transcription profile of ESCs to a state

resembling that of the two-cell embryo, i.e. a two-cell (2C)-like

state, suggesting that these factors maintain the ESC state by

repressing 2C-specific genes, including the master regulator of the

2C state Dux (Cossec et al., 2018; Ishiuchi et al., 2015; Macfarlan

et al., 2012). Elimination of SetDB1 from ESCs also alters their fate,

with cells reported to either die or shift to trophoblast-like fate

(Bilodeau et al., 2009; Yeap et al., 2009; Yuan et al., 2009). A large

fraction of genes repressed by SetDB1/H3K9me3 are

developmental regulators (Bilodeau et al., 2009; Karimi et al.,

2011; Yuan et al., 2009). Notably, a subset of genes repressed by

SetDB1/H3K9me3 in ESCs also encode factors normally expressed

in testis and oocytes (Karimi et al., 2011). A recent study suggested

that SetDB1 can be directly guided to at least some germline-

specific genes in ESCs by the transcription factor MAX (Tatsumi

et al., 2018). Moreover, many genes associated with the germline

transcriptional program, such as P-granule components and meiosis

genes, are also occupied by SUMO in ESCs (Cossec et al., 2018).

Together, these data suggest that, in ESCs, H3K9me3-mediated

repression involving SetDB1 and SUMO also plays an important

role in maintaining cell identity by suppressing alternative fates.

Interestingly, some targets of SetDB1/H3K9me3 in ESCs are also

marked by H3K27me3 and DNA methylation, indicating several

layers of repression for certain genomic targets (Bilodeau et al.,

2009; Karimi et al., 2011).

H3K9me3 functions in lineage commitment and cell differentiation

Gene repression through SetDB1-dependent H3K9 methylation is

not restricted to ESCs and pre-gastrulation embryos. Despite a

prevailing model that TEs in adult somatic tissues of mammals are

silenced by DNA methylation, KRAB-ZFP/KAP1/SetDB1-

dependent transcriptional repression was reported to control

several cell type-specific subsets of ERVs in a range of adult

mouse cell types, including embryonic fibroblasts (MEFs), pre-

adipocytes, hepatocytes and B-lymphocytes (Collins et al., 2015;

Ecco et al., 2016; Fasching et al., 2015; Kato et al., 2018;Wolf et al.,

2015b).

Multiple examples highlight a role for H3K9me3 in cell type-

specific gene regulation. High resolution analysis of

heterochromatin formation in murine cells from different germ

layers, and from hepatic and pancreatic lineages revealed that the

number of H3K9me3-marked regions in different lineages increases

from early developmental stages until gastrulation, although

H3K9me3 is subsequently removed as cells progress into specific

lineages (Nicetto et al., 2019). Transient deployment of H3K9me3

in germ layer cells is required to repress genes associated with

mature cell function, and failure to properly establish this mark leads

to expression of lineage-inappropriate genes later on (Nicetto et al.,

2019). Silencing by SUV39H1-dependent H3K9me3 and HP1α

deposition was shown to be involved in lineage commitment of Th2

lymphocytes by repressing Th1-specific loci (Allan et al., 2012),

and in adipogenesis by restricting the expression of master

regulatory genes until differentiation is required (Matsumura

et al., 2015). H3K9me3-mediated regulation of host genes and

TEs by SetDB1 has also been implicated in transcriptome regulation

and normal cell fate switches during murine neurogenesis and

oligodendrocyte differentiation (Jiang et al., 2017; Liu et al., 2015;

Tan et al., 2012). Notably, SetDB1-repressed genes in neuronal

tissue are enriched in factors characteristic for other lineages, and

particularly in germline-specific genes (Tan et al., 2012). Germline

genes are also targets of SetDB1- and SUMO-mediated repression

in ESCs (as mentioned above), pointing to a ubiquitous role of this

pathway in suppressing germ cell fate. Finally, Hi-C analysis of

SetDB1-depleted postnatal mouse forebrain neurons revealed

alterations in chromosomal conformation resulting from CTCF

binding to cryptic sites normally occupied by H3K9 and DNA

methylation (Jiang et al., 2017).

The H3K9me3 mark has also been found to impede cell re-

programming (Becker et al., 2016). Studies in human embryonic

fibroblasts, for example, identified over 200 H3K9me3-enriched

genomic regions, with an average size of 2.2 Mb, that are refractory

to binding of the pioneer transcription factors Oct4, Sox2, Klf4 and

Myc (OKSM), thereby impeding re-programming to pluripotency

(Soufi et al., 2012). Knockdown of the HMTs SUV39H1 and

SetDB1, the histone chaperone CAF1 subunits Chaf1a and Chaf1b,

Cbx3/HP1γ, Sumo2 and SUMO pathway components, or

overexpression of the Jmjd2c demethylase, improve OKSM

binding and reprogramming of fibroblasts to induced pluripotent

cells in human or murine systems (Borkent et al., 2016; Cheloufi

et al., 2015; Chen et al., 2013; Cossec et al., 2018; Onder et al.,

2012; Soufi et al., 2012; Sridharan et al., 2013). Similar

‘reprogramming-resistant regions’ (RRRs) marked by H3K9me3

impede epigenetic reprogramming upon somatic cell nuclear

transfer, with overexpression of the H3K9 demethylase Kdm4d or

simultaneous depletion of the two SUV39 paralogs partially

releasing this impediment (Matoba et al., 2014). Notably, a

detailed study of the role of SUMO in the reprogramming of

MEFs to pluripotency revealed that, in this context, SUMO is
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required to maintain the activity of fibroblast-specific enhancers

(Cossec et al., 2018). This function is in stark contrast to the role of

SUMO in ESCs, where it suppresses RRRs and the 2C-like

transcriptome, highlighting a context-dependent function of protein

SUMOylation (Cossec et al., 2018).

The role of H3K9me3 in somatic tissues in fruit flies is less well

understood. dSetDB1/Eggless is the only essential HMT in D.

melanogaster. dSetDB1 appears to be responsible for initial

deposition of H3K9me3 and HP1 at many regions in the early

embryo (Seller et al., 2019), and dSetDB1 mutations are associated

with a wide variety of developmental defects and lethality (Brower-

Toland et al., 2009; Stabell et al., 2006; Tzeng et al., 2007). As

SetDB1-dependent H3K9me3 is present at multiple genomic loci,

including nearly the entire chromosome 4 (which contains 79 genes

and is enriched in repeats), the severe phenotypes of SetDB1 loss-

of-function mutations are likely due to pleiotropic effects. Factors

that recruit SetDB1 to its genomic targets in fly somatic tissues have

yet to be established. In Drosophila, mutations in RNAi factors,

including Piwi, affect PEV and H3K9me3 in somatic tissues not

known to have an active piRNA pathway (Gu and Elgin, 2013; Pal-

Bhadra et al., 2004). As piRNA/Piwi are maternally loaded into the

egg (but not zygotically expressed outside of the gonads), an

attractive model is that maternal piRNA/Piwi complexes guide

initial heterochromatin establishment in the early embryo, which is

later maintained piRNA independently. There are also some

H3K9me3-marked genes in regions that do not have local TEs

and cannot be targeted by piRNA, pointing to the existence of

piRNA-independent targeting mechanisms (Ninova et al., 2019b).

DNA-binding proteins that recruit SetDB1 analogous to the

vertebrate-specific KRAB-ZFP family have not been identified.

H3K9me3 and gene silencing in germ cells

Germline specification, gonad development and gametogenesis are

highly orchestrated processes associated with extensive epigenetic

re-programming. As germ cells carry the genetic material to be

transmitted to offspring, they must also be well protected from

damaging TE activity. Chromatin modification by H3K9me3 plays

an essential role in germ cell development and fertility in both

vertebrate and invertebrate animals. Most current understanding of

transcriptional repression by H3K9me3 in germ cells comes from

studies in the male germline of mice, and in the female germline of

Drosophila.

In mice, a population of epiblast cells in the post-implantation

embryo forms primordial germ cells (PGCs): the precursors of

oocytes and spermatozoa. SetDB1 depletion at early stages of

development (prior to E6.5 by Sox2Cre cKO and at E9.5 by

TnapCre cKO) was shown to repress PGC formation and lead to

gonadal hypotrophy in adults (Liu et al., 2014; Mochizuki et al.,

2018). During PGC-like cell induction, SetDB1 was suggested to

directly repress several transcription factors involved in mesoderm

cell fate, thereby maintaining proper cell identity (Mochizuki et al.,

2018). In E13.5 PGCs, SetDB1 was shown to control H3K9me3

levels and repress a subset of retrotransposons from the ERV and

LINE1 classes, as well as a number of host genes (Liu et al., 2014).

As in other systems, many genes deregulated upon SetDB1 loss are

not directly marked by H3K9me3 but reside in the proximity of or

initiate their transcription from within TEs (Liu et al., 2014). The

factors that guide H3K9 methylation by SetDB1 in early PGCs are

not known. Metazoan germline cells typically possess an active

piRNA pathway. However, Miwi2, the only nuclear Piwi protein

in mice, is not expressed until E14.5-15.5 (Aravin et al., 2008),

thus H3K9me3 deposition before this stage is likely piRNA

independent. It is possible that, as in other tissues, TEs in early germ

cells are repressed by KRAB-ZFPs, but this hypothesis needs to be

addressed.

In addition to functioning in PGCs and testis, SetDB1 has been

shown to regulate the expression of host genes, several TEs and

associated chimeric transcripts in mouse oocytes (Eymery et al.,

2016; Kim et al., 2016). While mammalian oocytes express Piwi

proteins and piRNAs, the mechanisms of H3K9me3 establishment

at different genomic targets in this system has not been

comprehensively characterized.

In Drosophila, H3K9me3-mediated silencing is best understood

in the ovary. Of the two main H3K9 HMTs that induce

trimethylation in Drosophila, SetDB1/Eggless is required

throughout the entire course of oogenesis, from germ cell

differentiation to egg maturation, as well as for the somatic

follicular cells that support the ovary, while Su(var)3-9 is not

essential for fertility (Clough et al., 2007; Clough et al., 2014).

Functionally, SetDB1/Eggless acts at multiple levels, including the

control of TE expression by the piRNA pathway and repression of

lineage-specific genes. Unlike Su(var)3-9 (Sienski et al., 2015),

SetDB1 is involved in piRNA-dependent TE repression not only by

being part of the piRNA-mediated transcriptional silencing

pathways but also by regulating piRNA production. In D.

melanogaster, primary piRNAs are generated from discrete

genomic loci termed piRNA clusters (Brennecke et al., 2007).

Most piRNA clusters in germ cells are characterized by a unique

epigenetic landscape consisting of H3K9me3, the germline-specific

HP1 variant Rhino/HP1d (aDrosophila-specific HP1 homolog) and

several other factors that are required for their transcription and

piRNA production (Andersen et al., 2017; Chen et al., 2016; Mohn

et al., 2014; Rangan et al., 2011). In the nucleus, piRNA-loaded

Piwi proteins recognize nascent transcripts of active TEs and induce

local H3K9 trimethylation and co-transactional silencing (Klenov

et al., 2011; LeThomas et al., 2013; Rozhkov et al., 2013; Sienski

et al., 2012). SetDB1/Eggless depletion leads to H3K9me3 loss

from TE targets and loss of piRNAs (Rangan et al., 2011). While

loss of H3K9me3 at TE targets is probably partly due to loss of

piRNA guides, several lines of evidence show that SetDB1 is also

directly involved in H3K9me3 deposition downstream of the

piRNA/Piwi complex. Piwi is not known to interact with any

HMTs. However, two of Piwi’s interacting partners, Panoramix

(Panx)/Silencio and the SUMO E3 ligase Su(var)2-10, induce

H3K9me3 deposition when recruited to chromatin in a process that

is dependent on SetDB1 and its conserved co-factor Wde (ATF7IP/

MCAF1 in mammals) (Ninova et al., 2019a preprint; Sienski et al.,

2015; Yu et al., 2015). Furthermore, SetDB1/Wde recruitment

requires SUMO and the SUMO E3 ligase activity of Su(var)2-10

(Ninova et al., 2019a preprint). Collectively, these findings lead to a

model in which Su(var)2-10 interacts with Piwi/Arx/Panx and acts

to induce SUMO-dependent recruitment of Wde/SetDB1, which in

turn deposits H3K9me3 at piRNA targets (Ninova et al., 2019a

preprint) (Fig. 3B).

As in mammalian systems, epigenetic silencing of TEs affects the

host transcriptome of Drosophila germ cells. For example,

H3K9me3 loss is associated with activation of cryptic promoters

within TE sequences, the appearance of chimeric or truncated

transcripts and mis-regulation of canonical gene isoforms (Ninova

et al., 2019b). Finally, even though the piRNA pathway is the only

known mode of H3K9me3 deposition in Drosophila ovaries, a

recent ChIP-seq study revealed a number of discrete H3K9me3

peaks at euchromatic genes that are conserved, show no evidence of

TE insertions or targeting by piRNAs, and do not lose H3K9me3
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upon Piwi depletion, i.e. are likely piRNA-independent (Ninova

et al., 2019b). About 20% of these H3K9me3-marked genes

become upregulated upon knockdown of the SUMO ligase

Su(var)2-10, suggesting that they are regulated in a SUMO-

dependent manner and possibly through SetDB1. Notably, this set

primarily includes genes characteristic of other tissues such as the

testis or the central nervous system (Ninova et al., 2019b). It was

recently demonstrated that the H3K9me3 effectors SetDB1, Wde

and HP1a are required to confer transcriptional repression of male

germline fate in the ovary (Smolko et al., 2018). Among other

targets, SetDB1/Wde-dependent H3K9me3 suppresses the male-

specific isoform of the master regulator of sex identity phf7 (Smolko

et al., 2018). Thus, in addition to its role in constitutive

heterochromatin and TE repression, epigenetic regulation by

H3K9me3 in the female germline appears to grant tissue-specific

gene repression to secure female germ cell identity (Ninova et al.,

2019b; Smolko et al., 2018). The presence of discrete and TE-

independent H3K9me3 peaks in otherwise euchromatic regions in

female germ cells suggests the existence of a piRNA-independent

mode of SetDB1 recruitment, and a regulatory mechanism that

restricts H3K9me3 spreading in this genomic context.

Interestingly, a recent study in Drosophila showed a role for the

conserved factor L(3)mbt in lineage-inappropriate gene repression

in the female germline and soma (Coux et al., 2018). The

mammalian L3MBTL2 homolog (involved in PRC1.6) is also

required for the repression of germline-specific genes in mouse

ESCs (Maeda et al., 2013; Stielow et al., 2018; Tatsumi et al., 2018).

In the future, it would be worthwhile comparing targets of SetDB1/

H3K9me3 and other silencing complexes, and investigating any

potential cooperation between them.

Negative feedback regulation of H3K9me3 and

heterochromatin effectors

In addition to developmental genes, several factors involved in

heterochromatin formation and maintenance are themselves marked

by H3K9me3. For example, genes encoding KRAB-ZFPs in mouse

and human (often organized in tandem arrays) are enriched in

H3K9me3, KAP1 and SetDB1 (Fig. 4A) (Frietze et al., 2010;

O’Geen et al., 2007), as well as SUV39H1 and Cbx1/HP1β in

various cell lines (Vogel et al., 2006). Moreover, at least two

KRAB-ZFPs (ZNF274 and ZNF75D) are enriched at genomic ZFP

clusters in human cells (Frietze et al., 2010; Imbeault et al., 2017). It

has been proposed that KRAB-ZFPs auto-regulate through KAP1/

SetDB1 (O’Geen et al., 2007). However, as KRAB-ZFPs are

typically not silenced and H3K9me3 accumulates at the 3′UTR, it is

unclear whether this mark causes transcriptional regulation or serves

another function, e.g. preventing deletion due to unequal

recombination between repetitive ZFP sequences (Vogel et al.,

2006). Why KRAB-ZFPs deposit H3K9me3 at their own genes

remains to be determined.

A case of negative-feedback transcriptional regulation of

heterochromatin effectors through H3K9me3 was recently found

in the female germline ofD. melanogaster. In the fly ovary, the gene

encoding the SetDB1 co-factor Wde has a prominent H3K9me3

peak near its TSS, and H3K9me3 deposition andwde expression are

regulated by SetDB1, Su(var)2-10, SUMO and its own protein

product (Fig. 4B) (Ninova et al., 2019b). Similar H3K9me3 peaks

are present at several other known or predicted components of

heterochromatin formation in D. melanogaster, and are conserved

in the distantly relatedD. virilis. These findings indicate that cellular

levels of H3K9methylation may be regulated through a homeostatic

mechanism that involves Wde and perhaps additional factors acting

as sensors for H3K9me3 levels. Strikingly, the human Wde

homolog ATF7IP is also enriched in H3K9me3 in several human

cell lines (ENCODE data). A negative-feedback mechanism

regulating H3K9me3 levels was also identified in fission yeast; in

this context, H3K9me3 accumulates at the locus encoding the single

H3K9-HMT clr4, when cells experience excessive heterochromatin

spreading (Fig. 4C) (Wang et al., 2015). H3K9me3 accumulation at

clr4 leads to its repression and reduces Clr4 protein levels, thereby

restricting heterochromatin spreading (Wang et al., 2015). Negative

feedback is a common mechanism for providing homeostatic

regulation in biological circuits, and it appears that this system has

been used in the regulation of heterochromatin effectors and H3K9

methylation in yeast, flies and potentially in mammals. In the future,

it will be important to address the precise architecture of gene

regulatory networks involved in heterochromatin formation.

Conclusions

The role of H3K9me3 in genome regulation and silencing of selfish

genetic elements is well established. However, despite its central

role in genome stability, neither the molecular mechanism of H3K9-

HMT targeting and recruitment, nor the breadth of its targets and

functional roles are fully understood.

Although different general modes of H3K9-HMT recruitment to

genomic targets – through sequence-specific DNA-binding proteins

and small RNAs – have been identified, our understanding of cell-

and genomic context-dependent targeting mechanisms is far from

complete. We still lack a comprehensive picture of the factors that

guide H3K9-HMTs to targets such as satellite repeats or protein-
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Fig. 4. Auto-regulation of factors involved in H3K9me3 deposition in different systems. (A) Model of KRAB-ZFP gene autoregulation in human

cells. KRAB-ZFP genes themselves are marked by H3K9me3 deposited by KRAB-ZFP-mediated recruitment of the H3K9-HMT SetDB1. Adapted from

O’Geen et al. (2007). (B) Model of auto-regulation of the SetDB1 co-factor Wde in Drosophila germ cells. The wde gene is repressed through H3K9me3

accumulation that is dependent on the SetDB1/Wde complex, which thereby limits its own expression. Adapted from Ninova et al. (2019b). (C) Model

of the negative feedback of Clr4 regulation and heterochromatin assembly in fission yeast. Genome-wide H3K9me3 is controlled by modulating the

expression of the HMT Clr4 via accumulation of the repressive H3K9me3 mark on the clr4 gene region. Adapted from Wang et al. (2015).
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coding genes that lack proximal TEs. In fact, inDrosophila, the only

known mechanism of H3K9me3 targeting is piRNA-dependent

SetDB1 recruitment to TEs in the germline. What guides H3K9me3

to TE-independent loci, including to numerous developmentally

regulated genes, both in the germline and in somatic cells that lack a

functional piRNA pathway, requires further study.

How H3K9-HMTs are recruited upon target recognition is also

not well understood. Recent findings point towards protein

SUMOylation as a conserved mode of recruiting the SetDB1

silencing complex to chromatin, which seems to be used by different

upstream target recognition pathways, such as piRNAs and KRAB-

ZFP. However, SUMO is reported to occupy distinct chromatin

types in different cell lines and is also implicated in gene activation

(e.g. Cossec et al., 2018). Thus, it is likely that the role of SUMO

modification is highly context dependent, and future work is

required to dissect the precise molecular logic of SUMO-dependent

silencing effector recruitment.

Our understanding of the functional role of H3K9me3 as a

strong transcriptional silencer also merits further investigation

because, at least in some cases, H3K9me3 is permissive to – or

even required for – transcription. Given that active

heterochromatic genes have H3K9me3 on their bodies but not

their TSSs, it is tempting to speculate that H3K9me3 is repressive

only at promoter regions, while being compatible with, or even

promoting, transcription on gene bodies. Elucidating how the

same histone mark can lead to different functional outcomes will

improve our understanding of the role of histone modifications in

epigenetic regulation.

Finally, it is clear that the regulation of heterochromatin

homeostasis is essential to maintain appropriate gene expression

patterns while keeping TEs in check. H3K9me3-associated

heterochromatin can self-maintain and spread, presumably thanks

to coupling of H3K9me3 reader and writer complexes.

Heterochromatin spreading is thought to be limited by the dose of

silencing factors (Elgin and Reuter, 2013), but how this is controlled

to ensure proper silencing is not known. The recently proposed

auto-regulation of heterochromatin through a negative-feedback

mechanism is thus an exciting new direction for future studies of

heterochromatin maintenance and H3K9me3 function.
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