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Twenty years ago, the first description of a tristetraprolin (TTP) knockout mouse high-
lighted the fundamental role of TTP in the restraint of inflammation. Since then, work from
several groups has generated a detailed picture of the expression and function of TTP. It
is a sequence-specific RNA-binding protein that orchestrates the deadenylation and deg-
radation of several mRNAs encoding inflammatory mediators. It is very extensively post-
translationally modified, with more than 30 phosphorylations that are supported by at
least two independent lines of evidence. The phosphorylation of two particular residues,
serines 52 and 178 of mouse TTP (serines 60 and 186 of the human orthologue), has pro-
found effects on the expression, function and localisation of TTP. Here, we discuss the
control of TTP biology via its phosphorylation and dephosphorylation, with a particular
focus on recent advances and on questions that remain unanswered.

Introduction
Tristetraprolin (TTP) belongs to a small family of RNA-binding proteins, which has three members in
most mammalian species but four in the mouse and rat. Its name derives from three dispersed
stretches of four consecutive proline residues (Figure 1). Reflecting its independent discovery by
several laboratories, it has also been named as 12-O-tetradecanoyl phorbol 13 acetate-inducible
sequence 11a, G0/G1 switch gene 24, nuclear protein 475 and ZFP36 (zinc finger protein of 36 kDa).
The protein is now almost universally known as TTP, whereas the correct systematic name for the cor-
responding gene is Zfp36 in the mouse, ZFP36 in man. The biology of TTP is very well reviewed else-
where [1]. This review focuses on the role of phosphorylation and dephosphorylation of TTP in the
regulation of inflammatory responses, unresolved controversies and questions that remain to be
answered.
The first Zfp36 gene knockout revealed a fundamental role of TTP in the constraint of inflamma-

tion [1–3]. Mice lacking TTP developed a spontaneous and pervasive inflammatory syndrome, includ-
ing cachexia, dermatitis and erosive joint inflammation resembling rheumatoid arthritis (RA). Most
symptoms were ascribed to increased stability of tumour necrosis factor (Tnf ) mRNA and expression
of TNF protein. Consequently, much research on TTP has focussed on myeloid cells, which are the
principal sources of TNF in vivo. However, myeloid-specific disruption of the Zfp36 gene did not
reproduce the same pervasive syndrome. Mice lacking TTP in myeloid cells were healthy under
normal conditions, but developed excessive inflammatory responses to challenge with lipopolysacchar-
ide (LPS) [4,5]. These findings clearly establish that TTP functions in non-myeloid cells to inhibit
inflammation. Although activation-induced TTP expression can be detected in several different cell
types, relatively little is known about its function outside the myeloid lineage, other than in fibroblasts
[6–8]. TNF sustains inflammation in part via its actions on fibroblasts [9], an effect that is modulated
by fibroblast TTP [8,9a].
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TTP is a sequence-specific mRNA-binding protein with a preferred binding site consisting of the heptameric
sequence UAUUUAU [1]. The heptamer is a particular example of an element known as an adenylate/
uridylate-rich element or ARE. Binding of TTP to RNA substrates is mediated by a central zinc finger domain
(ZFD), in which two tandem zinc fingers each co-ordinate a single zinc ion via three cysteine and one histidine
residues. A crystal structure has been solved for the RNA heptamer in complex with the ZFD of the TTP
family member ZFP36L2 (ZFP36-like protein 2, otherwise known as butyrate response factor 2 or BRF-2) [10].
As the ZFD is highly conserved between the members of the family, it is highly likely that TTP recognises its
targets in the same manner. The UAUUUAU heptamer and closely related sequences are frequently found in
the 30-untranslated regions (30-UTRs) of mRNAs encoding cytokines, chemokines and other mediators of
inflammation, growth factors, regulators of apoptosis and the cell cycle. A growing number of such mRNAs
have been shown to be recognised and regulated by TTP [1]. However, in silico prediction of TTP targets
remains difficult. Transcriptome-wide identification of targets has been performed using two related methods
including PAR-CLIP (photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation) and

Figure 1. Sites of phosphorylation of TTP, and their conservation in other members of the ZFP36 family.

(A) Schematic of documented phosphorylations of TTP, based on data from PhosphositePlus [39]. Phosphorylations supported

by only one published source are omitted. There may be some bias in the coverage of TTP protein, due to the presence of

putative phosphorylation sites in very large or small tryptic fragments, which may be poorly detected. The influence of specific

phosphorylations on protein stability may also introduce bias, as discussed in the text. (B) Conservation and divergence of

phosphorylation sites in members of the ZFP36 family. TTP, ZFP36L1 and ZFP36L2 proteins are illustrated schematically.

Numbers above the N-terminal, zinc finger and C-terminal domains of ZFP36L1 and ZFP36L2 indicate % similarity with TTP

itself. Peptide sequences of specific regions are indicated, in each case in the order (from top to bottom) TTP, ZFP36L1 and

ZFP36L2. Co-ordinates of specific residues are indicated in the same order. Residues in bold are conserved between TTP and

other members of the family. Residues in red are known to be phosphorylated in vivo.

1322 © 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

Biochemical Society Transactions (2016) 44 1321–1337
DOI: 10.1042/BST20160166

https://creativecommons.org/licenses/by/4.0


i-CLIP (individual nucleotide resolution cross-linking and immunoprecipitation) [11–13]. A user-friendly
website integrates PAR-CLIP and i-CLIP data sets, providing rapid visualisation of transcriptome-wide
TTP-binding sites, coupled with the analysis of differential mRNA expression in Zfp36−/− macrophages
(http://ttp-atlas.univie.ac.at/index.php). Particularly where high confidence hits are selected, these two methods
support the consensus heptamer as a preferred binding site for TTP in vivo. The absence of secondary structure
appears to be an important determinant of binding [12], consistent with the structure of the ZFD in complex
with an RNA substrate [10]. The presence of more than one consensus site also favours binding, perhaps
reflecting co-operative interactions between TTP molecules [1,14]. TTP interactions were enriched near to the
poly-(A) tail [11,13], possibly related to interactions between TTP and poly-(A)-binding proteins [15,16].
Like other members of its family, TTP is able to recruit several proteins or protein complexes that participate

in mRNA turnover [15,17,18]. These include deadenylases, which catalyse the shortening of the 30-poly-(A)
tail; decapping enzymes, which remove the 7-methylguanylate cap from the 50-end of mRNA and exonucleases
that catalyse the degradation of the mRNA body from either the 50-end or the 30-end. In most cases, an obligate
and rate-limiting step in the destruction of an mRNA is the removal of the poly-(A) tail [19]. Therefore, the
interactions between TTP and deadenylases are likely to be highly relevant. In a simplified outline, binding of
TTP to cognate sites in the 30-UTRs of target mRNAs is followed by recruitment of deadenylases and shorten-
ing of the poly-(A) tail. When the poly-(A) tail becomes too short to support high-affinity binding of
poly-(A)-binding proteins, destruction of the mRNA body is initiated by decapping of the 50-end and rapid
exonucleolytic degradation of the mRNA body. Hence, TTP target mRNAs tend to be abnormally stable in
Zfp36−/− cells that lack TTP and highly unstable in Zfp36aa/aa cells expressing a constitutively active form of
TTP known as TTP-AA, in which serines 52 and 178 (Ser-52 and Ser-178) are substituted by alanine residues
[20] (see below). Some investigators have found TTP to regulate the expression of target mRNAs principally at
the level of translation rather than mRNA stability [21–23]. More recently, TTP target mRNA abundance and
translation were systematically studied using iCLIP, RNASeq and ribosome footprinting (RiboSeq) in Zfp36−/−
macrophages reconstituted with GFP-TTP or GFP-TTP-AA [13]. This analysis suggested that TTP phosphoryl-
ation has greatest effects at the level of target mRNA stability. Relatively few transcripts were differentially
expressed at the level of translation without evident changes of mRNA abundance. The reasons for the discrep-
ancies between these observations are far from clear. It should be noted that similar controversy has sur-
rounded the mitogen-activated protein kinase (MAPK) p38 pathway, and whether its post-transcriptional
effects are chiefly at the level of mRNA stability or translation [24]. It may be relevant that the poly-(A) tail not
only protects mRNA against degradation, but also promotes efficient mRNA translation via interactions
between poly-(A)-binding proteins and 50-cap-binding proteins [25]. One hypothesis is that target mRNA
deadenylation may be uncoupled from degradation of the mRNA body under some conditions, or in a
transcript-specific manner, such that the principal effects of MAPK p38 and TTP are to modulate translation
rather than degradation. However, experimental evidence in support of this hypothesis is so far lacking.

TTP as a phosphoprotein
In denaturing polyacrylamide gel electrophoresis, TTP appears either as a broad smear or as a ladder of discrete
bands with apparent molecular mass between 40 and 55 kDa (the actual molecular mass of murine TTP being
33.6 kDa). Most or all of this variation in electrophoretic mobility is a consequence of phosphorylation, since
phosphatase treatment of cell lysates collapsed the multiple forms of TTP to one or two bands of high mobility
[26–29]. Conversely, in lysates from cells treated with phosphatase inhibitors, such as okadaic acid or calyculin
A, TTP migrates with an apparent molecular mass of up to 62 kDa [27,30,31]. Only a fraction of this change in
electrophoretic mobility can be attributed to the mere addition of mass. Even the phosphorylation of 30 resi-
dues of TTP would increase its mass by <3 kDa. However, it is evident that TTP can be very extensively
phosphorylated in vivo.
Information about sites of phosphorylation of TTP has emerged both from high-throughput phosphoproteo-

mic studies of tumour cells, macrophages and other cells [28,32–34] and from focussed experiments in which
epitope-tagged human or mouse TTP was stably expressed in HEK293 human kidney cells [35–37], mouse 3T3
fibroblasts, hamster kidney [38] or a mouse macrophage cell line [20]. This information is very helpfully sum-
marised on the PhosphositePlus web site (www.phosphosite.org) [39] and illustrated graphically in Figure 1. If
all of the documented phosphorylations are accepted at face value, TTP is in the top 0.1% of phosphorylated
proteins in the proteome in terms of the number of phosphorylations per unit mass. Making allowance for
species divergence and technical differences, such as proteolytic cleavage strategies, targeted and untargeted
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approaches, generate a quite consistent picture of TTP phosphorylation in different cellular contexts. For con-
sistency and clarity, we use murine TTP co-ordinates, even where the relevant experiments were performed
using human TTP. The corresponding human co-ordinates can be read from PhosphositePlus. Phosphorylation
of Ser-52 and Ser-178 is extremely well documented, although the former was not detected in focussed studies
of transfected HEK293 cells [35,37], perhaps for technical reasons. As discussed below, TTP protein is stabilised
via phosphorylation of Ser-52 and Ser-178. Therefore, TTP lacking these two phosphorylations may be low in
abundance and consequently under-represented in phosphoproteomic analyses. A serine-, threonine- and
proline-rich region N-terminal to the first zinc finger can be phosphorylated at Ser-80, Ser-82, Ser-85 and
Thr-87. Additional clusters of phosphorylation sites are found in the region of the second and third tetraprolin
motifs, and within the C-terminal domain of the protein. Mass spectrometric data indicate high stoichiometry
of phosphorylation within these regions [20,36] and our unpublished data. Both targeted and untargeted
approaches provide evidence for phosphorylation of Ser-316, very close to the C-terminus of TTP
[20,28,32,37]. Finally, there is some evidence for phosphorylation of Tyr-112, Tyr-150 and Tyr-277. The major-
ity of the sites discussed above are highly conserved between mammalian TTP orthologues, and several are also
present in other members of the TTP family [35] (Figure 1B, discussed below).

TTP function is modulated by phosphorylation
MAPK p38 plays a central role in the expression of many mediators of inflammatory responses [40]. To a large
extent, it operates via the downstream kinase MAPK-activated protein kinase 2 (MK2), regulating target genes
at a post-transcriptional level, inhibiting deadenylation, increasing mRNA stability and/or increasing its transla-
tional efficiency [41]. Tight regulation of MAPK p38 signalling is critical to prevent ectopic, excessive or unpro-
voked inflammation. An important negative feedback mechanism involves dual-specificity phosphatase 1
(DUSP1, also known as MAPK phosphatase 1 or MKP-1) [42–44]. DUSP1 is normally expressed at very low
levels in resting cells. Pro-inflammatory stimuli increase its expression in an MAPK p38-dependent manner. It
then dephosphorylates and inactivates MAPK p38 (as well as other MAPKs), helping to bring about the ter-
mination of the inflammatory response [42,43]. Dusp1−/− mice are healthy under normal conditions, but their
dysregulated MAPK p38 responses to pro-inflammatory challenges are often fatal.
There is a considerable overlap between transcripts that are targeted by TTP and those that are post-

transcriptionally regulated by MAPK p38. The pivotal role of TTP in MAPK p38-mediated post-transcriptional
regulation of inflammatory responses was demonstrated by the failure of MAPK p38 inhibitors to decrease gene
expression, or to destabilise target mRNAs, in Zfp36−/− cells [45,46]. MK2 efficiently phosphorylated TTP in
vitro [26], and the major sites were subsequently identified as Ser-52, Ser-178 and Ser-316 [38]. A landmark
paper then demonstrated that the MK2-mediated phosphorylation of Ser-52 and Ser-178 impaired the
mRNA-destabilising activity of TTP [47]. This mRNA-stabilising effect was accompanied by an interaction of
phosphorylated TTP with 14-3-3 proteins. These are a family of abundant, dimeric adaptor proteins that specif-
ically recognise certain client phosphoproteins, helping to bring about changes in their structure, stability, func-
tion or subcellular localisation [48,49]. Phosphorylation of TTP and recruitment of 14-3-3 proteins could be
enhanced by the treatment of cells with the somewhat unspecific phosphatase inhibitor, okadaic acid [27]. The
identity of the cellular phosphatase or phosphatases responsible for the dephosphorylation of Ser-52 and Ser-178
is rather important. The best evidence to date implicates protein phosphatase 2A (PP2A), since siRNA-mediated
knockdown of a catalytic subunit of PP2A increased TTP phosphorylation, 14-3-3 protein recruitment, expres-
sion of TNF and of a TNF 30-UTR reporter mRNA [27]. The recruitment of 14-3-3 proteins is thought to antag-
onise PP2A-mediated dephosphorylation of TTP [27], with consequences that are discussed below.
Conflicting, although not mutually exclusive, mechanisms have been suggested to mediate the control of

mRNA stability via MK2-mediated phosphorylation of TTP. According to one school of thought, TTP com-
petes for RNA binding with HuR (human antigen R), a member of the embryonic lethal abnormal vision
family of RNA-binding proteins [50–53]. HuR is generally considered as an mRNA-stabilising factor [54] and
binds to RNA with specificity overlapping rather than identical with that of TTP. Phosphorylation of TTP is
proposed to decrease its affinity for RNA and favour its displacement by HuR [23,55]. However, there is dis-
agreement about the extent to which binding sites for TTP and HuR overlap [11,12]. High-resolution mapping
by PAR-CLIP suggested that instances of direct competition between the two RNA-binding proteins may be
rare [12]. Comparison of transcriptome-wide-binding sites of GFP-TTP and GFP-TTP-AA suggested that
phosphorylation may decrease the affinity and/or specificity with which TTP binds to RNA [13]. However, the
non-canonical TTP-binding sites described in that study were generally not found in another study using
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native rather than ectopically expressed TTP [12]. Tethered function assays provided evidence that MK2 modu-
lates TTP function by means other than the regulation of RNA binding. When TTP was fused to bacteriophage
coat protein MS2, it was able to direct the degradation of a reporter mRNA bearing MS2-binding sites.
Activation of MK2 blocked the degradation of the reporter mRNA in a manner dependent on intact Ser-52
and Ser-178 sites [31]. In electrophoretic mobility shift assays, antibodies against 14-3-3 proteins strongly
supershifted protein complexes with RNA probes containing the Tnf ARE [27 and our unpublished observa-
tions]. Since 14-3-3 proteins bind only weakly to unphosphorylated TTP, this observation implies that phos-
phorylated TTP can bind to an ARE with high affinity. More reductionist in vitro approaches using highly
purified recombinant TTP suggest that MK2-mediated phosphorylation of TTP has no impact on its affinity
for mRNA [56]. However, in vivo interactions with HuR, 14-3-3 and other unknown proteins may determine
whether or not TTP binding occurs.
Several independent groups have reported that mammalian TTP promotes deadenylation of target mRNA by

recruiting the carbon catabolite repressor protein 4-negative on TATA-less (CCR4–NOT) deadenylase complex,
a large (1 mDa) complex containing at least 10 subunits [31,56–59]. The Drosophila melanogaster orthologue
of TTP employs a similar mechanism to regulate the expression of anti-microbial products [60,61]. As the
MAPK p38 pathway regulates mRNA stability at the level of poly-(A) tail length [62,63], an obvious hypothesis
is that MK2-mediated phosphorylation of TTP impairs CCR4–NOT recruitment. TTP-dependent in vitro dead-
enylation and degradation of an ARE-containing reporter RNA were prevented by MK2-mediated phosphoryl-
ation of Ser-52 and Ser-178, which also inhibited the recruitment of the CCR4–NOT complex [56]. A 14-3-3
sequestering agent prevented the binding of 14-3-3 proteins to phosphorylated TTP, but did not destabilise the
reporter RNA. This suggests that MK2-mediated phosphorylation of TTP may impair deadenylase recruitment
directly rather than via binding of 14-3-3 proteins. However, another group also described inhibition of CCR4–
NOT recruitment via the phosphorylation of Ser-52 and Ser-178, and implicated 14-3-3 binding in this process
[31]. Two other groups described recruitment of CCR4–NOT1 via the C-terminal domain of TTP [57,58].
MK2-mediated phosphorylation of Ser-316 was shown to impair the interaction between TTP and CNOT1, a
scaffold protein of the CCR4–NOT1 complex, thereby inhibiting deadenylation and degradation of TTP target
transcripts [57,58]. These observations are not necessarily conflicting. As the CCR4–NOT1 complex is
extremely large, there is potential for multiple contacts with TTP, and redundant, 14-3-3-dependent or inde-
pendent mechanisms for regulation of the interaction by phosphorylation. Elucidation of the mechanisms and
modulation of TTPs interaction with CCR4–NOT1 is not a trivial undertaking.

TTP subcellular localisation is modulated by
phosphorylation
Like many RNA-binding proteins, TTP shuttles between the nucleus and the cytoplasm. Nuclear export is
mediated by CRM1 and dependent on a Leu-rich N-terminal region [64,65]. Both 14-3-3-dependent and
-independent mechanisms maintain TTP in the cytoplasm [66]. The description of TTP as an almost exclusively
cytoplasmic protein requires some qualification. At least in macrophages, TTP is likely to be phosphorylated at
Ser-52 and Ser-178 as soon as it is generated. Although low amounts of endogenous, nuclear TTP can be
detected [12], nuclear localisation has been most clearly demonstrated under somewhat artificial circumstances:
ectopic expression in the absence of MAPK p38 activity [30,67,68], acute inhibition of MAPK p38 at the peak of
TTP expression [30] or alanine substitution of Ser-52 and Ser-178 of endogenous TTP (ARC, in preparation).
Together, these observations suggest that MAPK p38-dependent phosphorylation of Ser-52 and Ser-178 contri-
butes to, but is not indispensible for, the localisation of TTP in the cytoplasm, at least in macrophages.
It remains unclear what biological function, if any, is served by TTP in the nucleus. A role in the regulation

of nuclear polyadenylation of ARE-containing mRNAs was described in one report [69]. Large numbers of
TTP-binding sites were identified by i-CLIP or PAR-CLIP in intronic RNA, and conventional RNA-IP con-
firmed binding of TTP to an excised intron, presumably in the nucleus [11,12]. The consequences of such
interactions are not known. TTP has also been proposed to function as a transcriptional corepressor of nuclear
hormone receptors or nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) [70–72].
Alternatively, TTP may impair NF-κB function by preventing nuclear translocation of the p65 subunit [73–75],
a phenomenon that would not necessarily require TTP to be present in the nucleus. Where non-canonical
actions of TTP are proposed, which do not involve its binding to RNA, it is important to rule out indirect
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effects. For example, TTP may regulate the expression of components of the NF-κB signalling pathway or the
expression of p65 itself [13].
Interruption of translation leads to the formation (or accretion) of granular cytoplasmic structures known as

stress granules (SGs) and processing bodies (P bodies). Detailed description of these structures is beyond the
scope of the present study, but reviewed extensively elsewhere [76–78]. SGs contain components of the transla-
tion machinery and are thought to be formed via aggregation of translationally stalled ribonucleoprotein com-
plexes. P bodies are crucial sites of mRNA turnover that contain many components of the cellular mRNA
degradation machinery, including the CCR4-NOT complex. The two discrete structures are dynamically linked
and sometimes in contact with one another. TTP has been implicated in the traffic of ARE-containing mRNAs
between P bodies and SGs, a process that may either determine or reflect decisions between mRNA storage,
destruction and re-initiation of translation [78,79]. MK2-mediated phosphorylation of Ser-52 and Ser-178 was
demonstrated to result in exclusion of TTP from SGs, accompanied by recruitment of 14-3-3 proteins and sta-
bilisation of target mRNAs [47]. One might predict that phosphorylation of Ser-52 and Ser-178 also prevents
localisation of TTP to P bodies, but to our knowledge this has not yet been demonstrated.

TTP protein stability is modulated by phosphorylation
TTP protein is also stabilised in response to phosphorylation of Ser-52 and Ser-178 [21,30,80]. The description
of TTP as a relatively stable protein [81] is therefore accurate under most circumstances, where TTP expression
is accompanied by (indeed, dependent on) MAPK p38 activation. Lacking two sites of MK2-mediated phos-
phorylation, TTP-AA is constitutively degraded by the proteasome and therefore expressed at low levels
[20,21,30]. If primary macrophages or RAW264.7 cells are stimulated with LPS for 2 h prior to the addition of
an MAPK p38 inhibitor, pre-existing TTP is rapidly degraded in a manner that requires the activity of both
phosphatase(s) and the proteasome [30].
In the majority of cases, targeting of proteins for destruction by the proteasome depends on the covalent

addition of polyubiquitin chains to lysine residues. Unexpectedly, ubiquitination of TTP could not be detected,
nor was TTP protected from proteasomal degradation by mutation of all five lysine residues [82]. These obser-
vations suggest an atypical mode of degradation of TTP protein. The only 3D structure of TTP protein solved
to date is for the highly conserved central zinc finger region [83], and secondary structure prediction pro-
grammes all fail to identify any stable structure in the N-terminal and C-terminal domains [82] ( JLED, unpub-
lished data). The unstructured nature of the majority of TTP protein is consistent with proteasomal
degradation via a default degradation pathway shared with other largely unstructured proteins [84]. A key ques-
tion is how the phosphorylation of Ser-52 and Ser-178 acts to stabilise TTP protein. Since a common feature of
14-3-3 proteins is that they impose secondary structure upon client phosphoproteins [48,49], an obvious
hypothesis is that 14-3-3-mediated imposition of stable structure allows TTP protein to escape
degradation-by-default. Gueydan and colleagues report that the addition of recombinant 14-3-3 proteins failed
to prevent degradation of purified TTP in vitro [82]. It would arguably be more relevant (though less easy) to
ask whether 14-3-3 proteins are necessary for the stabilisation of phosphorylated TTP.

A working model and an experimental validation
The regulation of both TTP expression and function by the MAPK p38 pathway effectively couples the activa-
tion and resolution phases of an inflammatory response. A working model of this process is presented in
Figure 2. During the early phase of the response to a pro-inflammatory agonist, such as LPS, strong MAPK
p38 activity promotes the expression of TTP at the levels of transcription, mRNA stability, mRNA translation
and protein stability. Although direct experimental evidence is lacking, the TTP that accumulates under these
conditions is thought to be phosphorylated at Ser-52, Ser-178 and Ser-316, therefore inactive as an mRNA
destabiliser or translation suppressor. Efficient expression of inflammatory mediators is therefore possible. As
MAPK p38 activity declines, the balance between phosphorylation and dephosphorylation of these sites shifts
in favour of the latter. The accumulated pool of inert TTP then becomes active and can promote the off-phase
of the response, blocking further translation, promoting mRNA decay or both. This signal-dependent post-
transcriptional regulation of ARE-containing mRNAs contributes to the complex programme of temporally
tuned gene expression, in which the influence of TTP increases with time [4,12,14,20].
Illustrating the physiological significance of MAPK p38-mediated regulation of TTP function, we recently

used homologous recombination to generate a knockin mouse strain, in which Ser-52 and Ser-178 codons of
the endogenous Zfp36 locus were substituted by alanine codons [20]. We refer to the mutated locus as Zfp36aa
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and the altered protein product as TTP-AA. Homozygous Zfp36aa/aa mice proved healthy and fertile with no
evident phenotype under standard maintenance conditions. As mentioned above, TTP-AA was expressed
weakly (being constitutively degraded by the proteasome), but it constitutively destabilised target mRNAs and
strongly inhibited the expression of several inflammatory mediators. When challenged by intraperitoneal injec-
tion of LPS, Zfp36aa/aa mice were protected against the subsequent cytokine storm and organ damage, reflect-
ing dramatically reduced serum levels of many inflammatory cytokines. For example, in these experiments, the
expression of interleukin 6 (IL-6) was ∼200-fold lower in Zfp36aa/aa than in Zfp36+/+ mice (ARC, in prepar-
ation). In a highly robust experimental model of inflammatory arthritis, Zfp36aa/aa mice were completely pro-
tected, developing absolutely no symptoms of disease [9a]. They also demonstrated decreased pathogenic
responses in some experimental models of pulmonary inflammation (Phil Hansbro and Alaina Ammit,
personal communication). Other experimental models of inflammatory pathology remain to be tested.
We hypothesised that DUSP1 regulates inflammatory responses by modulating the phosphorylation state, and

hence the activity, of TTP. By combining Dusp1−/− and Zfp36aa/aa genotypes, it was demonstrated that
harmful, dysregulated inflammatory responses in the absence of DUSP1 were largely dependent on intact Ser-52
and Ser-178 residues of TTP [85]. Certain genes, for example, Tnf, Cxcl1 and Cxcl2, were regulated by DUSP1
exclusively via TTP phosphorylation. Their expression was strongly elevated in Dusp1−/− macrophages and
equally strongly diminished in Zfp36aa/aa macrophages. In double genetically modified macrophages, expression
of these genes remained low, indicating that dysregulated MAPK p38 signalling could enhance gene expression
only if TTP could be phosphorylated and inactivated. DUSP1 controlled many other genes in part via TTP and
in part via other mechanisms that have not been identified, but probably include effects on transcription. The

Figure 2. Schematic model of the regulation of TTP expression and function by the MAPK p38 signalling pathway.

The dynamic equilibrium between phosphorylation and dephosphorylation of TTP controls the switch between the on- and

off-phases of pro-inflammatory gene expression. Only Ser-52 and Ser-178 phosphorylations are indicated.
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regulation of TTP function by the two phosphatases, DUSP1 and PP2A, is illustrated schematically in Figure 2.
DUSP1 indirectly regulates the inactivation of TTP, whereas PP2A directly mediates the activation of TTP.
Several groups have reported that TTP is not only regulated by DUSP1, but also regulates the expression of

DUSP1 [13,86–91]. Interaction of TTP with the Dusp1 30-UTR was also confirmed in iCLIP and PAR-CLIP
studies [12,13]. This suggests the existence of a homeostatic feedback mechanism by which TTP may regulate
its own function. Elevated TTP activity would be predicted to decrease DUSP1 expression and enhance the
activity of MAPK p38, ultimately promoting TTP inactivation. Consistent with this concept, the kinetics of
MAPK p38 activation were altered in retrovirally transduced macrophages expressing GFP-TTP-AA [13]. In
contrast, no changes in MAPK p38 activation profile were observed in macrophages expressing TTP-AA from
the endogenous Zfp36 promoter [20]. Nevertheless, this putative homeostatic mechanism may be physiologic-
ally relevant and merits further investigation.
There is a great deal more that remains puzzling or unknown about the phosphorylation and dephosphoryla-

tion of TTP. The remainder of this review focuses on a few unanswered questions.

Are phosphorylation and dephosphorylation of TTP linked
to pathogenesis?
TTP protein was strongly expressed at sites of inflammation in cardiovascular disease and a mouse model
thereof, where it was suggested to play an anti-inflammatory role at both transcriptional and post-
transcriptional levels [75]. TTP was also abundant in the inflamed RA synovium, prompting the authors to ask
why it failed to down-regulate the expression of TNF and other inflammatory mediators [92]. Such observa-
tions might be re-interpreted in light of the coupled stabilisation and inactivation of TTP due to phosphoryl-
ation of Ser-52 and Ser-178. We hypothesise that TTP can accumulate in a phosphorylated and inactive form
at sites of prolonged inflammation, and that its inactivity contributes to the establishment of chronicity. In
support of this hypothesis, we found TTP to be co-localised with active MK2 in the cytoplasm of RA synovial
macrophages [9a]. Constitutive MAPK p38 activation in tumour-associated macrophages was accompanied by
accumulation of inactive TTP, contributing to overexpression of several inflammatory mediators [22]. However,
the phosphorylation state of Ser-52 and Ser-178 at inflammatory or oncogenic lesions has not yet been directly
demonstrated. Both we [20] and others [47] have generated phospho-specific antibodies against TTP, but so far
these have not proved amenable to approaches such as immunofluorescence. More sophisticated methods may
be required to determine whether TTP is phosphorylated and inactivated at sites of chronic inflammation.
TTP and other members of its family are putative tumour suppressors, whose expression is diminished or

absent from various cancers [53,93–98]. Inhibition of tumourigenesis may occur at several different levels; for
example, down-regulation of cell cycle regulators and proto-oncogenes, growth factors, inflammatory cytokines
and proteases that support tumour growth, vascularisation or metastasis. Phosphorylation and inactivation
rather than loss of TTP has also been implicated in tumour development [99]. Potent anti-proliferative effects
were ascribed to a mutant form of TTP, in which eight phospho-acceptor sites, including Ser-52 and Ser-178,
were substituted by non-phosphorylatable alanines [100]. It would be interesting to test responses of the
Zfp36aa/aa mouse in experimental models of tumourigenesis, particularly those in which TTP targets, such as
cyclooxygenase 2, have been implicated as pathogenic factors.

Why are Ser-52 and Ser-178 evolutionarily conserved?
As described above, Zfp36aa/aa mice were protected against excessive inflammatory responses in experimental
models of endotoxemia, RA and pulmonary inflammation. Moreover, their ability to mount protective immune
responses against a model pathogen was not significantly impaired [20]. Yet in the real world outside the
laboratory, the phosphorylation of TTP appears to be under strong selective pressure. The sequences surround-
ing serines 52 and 178 are highly conserved amongst mammals (Figure 3). Although there is predictably
greater sequence divergence in fish, amphibian and reptile TTP, the phospho-acceptor sites themselves are con-
served. They are predicted to be recognised and phosphorylated by MK2, although this remains to be experi-
mentally tested. The implication is that the control of TTP function via phosphorylation arose early during
vertebrate evolution and has been maintained by natural selection. In turn, this implies that Zfp36aa/aa mice
have some selective disadvantages that have not yet come to light under laboratory conditions. We speculate
that this relates to the innate immune response to pathogens more virulent than those tested so far, organisms
that generate the strongest possible selective pressure. Interestingly, a virulent strain of the intracellular
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pathogen Francisella tularensis promotes increased apoptosis of infected macrophages, accompanied by
increased stability of Il1b mRNA and secretion of IL-1β protein. This response was linked to sustained phos-
phorylation of serine 178 of TTP [34]. Bacillus anthracis has a more evasive strategy, using lethal toxin (Le-Tx)
to cleave MAPK kinases, silence MAPK signalling cascades and reduce innate immune responses. Le-Tx was
shown to favour the formation of P bodies and promote destabilisation of IL-8 mRNA in a TTP-dependent
manner [101]. These observations suggest that TTP and its phosphorylation sites are at the battlefront of an
evolutionary war between hosts and pathogens, finely balanced between excessive and insufficient innate
immune responses. It would be interesting to determine whether Zfp36aa/aa macrophages are more or less sus-
ceptible than wild-type macrophages to infection by these two pathogens.

What are the mediators and the consequences of other
phosphorylations of TTP?
Surprisingly, little is known about sites of phosphorylation of TTP other than Ser-52 and Ser-178. Several of
the sites are followed by proline residues and are candidates for phosphorylation by MAPKs or other proline-
directed kinases. Indeed, recombinant TTP was found to be efficiently phosphorylated by extracellular signal-

Figure 3. Conservation of phosphorylation sites Ser-52 and Ser-178.

(A) Plot of similarity of TTP protein sequences of 47 vertebrate species, of which 2 are amphibian, 2 reptilian, 3 bony fish and

the remainder mammals. The positions of residues corresponding to Ser-52 and Ser-178 are shown by vertical white bars.

ZFD, zinc finger domain. (B) Sequences surrounding putative MK2 phosphorylation sites in selected TTP orthologues. The

consensus is derived from the 47 vertebrate species mentioned above. Identical residues are indicated by dots. Xenopus laevis

is an amphibian; Alligator mississippiensis and Anolis carolinensis are reptiles; Gasterosteus aculeatus and Tetraodon

nigroviridis are fish. All other species are mammals.
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regulated kinase (ERK), cJun N-terminal kinase (JNK) or MAPK p38 in vitro [102,103]. We found that ERK
phosphorylated several sites of recombinant TTP in vitro, and that an inhibitor of the ERK pathway decreased
the phosphorylation of these sites in LPS-treated RAW264.7 cells without diminishing TTP protein levels
(ARC, unpublished). These observations may be significant because ERK is thought to exert post-
transcriptional effects via TTP [30,104,105]. Glycogen synthase kinase 3b, protein kinases A and Cμ also phos-
phorylated recombinant TTP in vitro, but sites were not identified [103]. Mediators of tyrosine phosphoryla-
tions have not been identified.
The electrophoretic mobility of TTP was strongly influenced by phosphorylation of serines 189, 210 and 220

[37]. As discussed above, such changes in mobility cannot be attributed to simple acquisition of mass. It is
thought that large, phosphorylation-dependent changes in electrophoretic mobility generally involve cis–
trans-isomerisation at proline residues adjacent to phospho-acceptor sites, which are catalysed by Pin1 (protein
interacting with never in mitosis 1) or other prolyl isomerases [106]. Although there is no obvious link
between electrophoretic mobility and cellular function, prolyl isomerisation can impose significant reorganisa-
tion of protein structure, affecting interaction with partner proteins, nucleic acids or other substrates. There is
therefore potential for these mobility-associated phosphorylations to impact TTP function. Pin1 modulates the
function of other RNA-binding proteins [107], but physical and functional interactions with TTP have not yet
been described. Finally, it is tempting to speculate that the addition of multiple phosphates adjacent to or
within the ZFD of TTP alters its affinity for RNA substrates.

How and where is the dephosphorylation of TTP
performed?
Even if PP2A is correctly identified as the phosphatase solely responsible for dephosphorylation of Ser-52 and
Ser-178, the matter does not rest there. PP2A functions as a heterotrimer between a structural subunit, a regu-
latory subunit and a catalytic subunit [108,109]. Catalytic and structural subunits can each be encoded by two
different genes. Regulatory subunits are encoded by at least 24 different genes, many of which give rise to dif-
ferent proteins due to alternative splicing or translation initiation. It is the B subunit that dictates the specificity
of the trimeric holoenzyme for phosphoprotein substrates. The activity of PP2A holoenzyme is negatively regu-
lated by a large family of inhibitors, some of which appear to have specificity for PP2A isoforms and are them-
selves regulated by phosphorylation. Even without taking into account post-translational modifications of PP2A
subunits, this system generates huge diversity, allowing PP2A to participate in the regulation of a broad range
of cellular functions. At this point, we do not know how PP2A is targeted to TTP, and which subunit(s) of
PP2A are involved in the interaction. We do not know where the dephosphorylation of TTP occurs, and
whether PP2A isoforms are present in SGs, P bodies or polysomes.

Therapeutic implications of the regulation of TTP by PP2A
and DUSP1
The MAPK p38 signalling pathway plays a fundamental role in the regulation of inflammatory responses and
was long considered as a promising target for novel anti-inflammatory drugs [40]. In fact, the first MAPK p38
inhibitors were discovered in a screen for compounds that inhibited macrophage expression of TNF [110].
However, clinical trials of several different classes of MAPK p38 inhibitors yielded disappointing results, includ-
ing anti-inflammatory effects that were not sustained [111]. The unanticipated negative results have almost put
a halt to this line of translational enterprise, although the underlying reasons are not clear [112]. In macro-
phages, prolonged inhibition of MAPK p38 prevented the expression of TTP protein [26] and failed to destabil-
ise TTP target mRNAs [46,113]. Therefore, the complex role of MAPK p38 in controlling both the expression
and the activity of TTP may help to explain why chronic inhibition of this pathway does not exert the expected
anti-inflammatory effects.
An intriguing question is whether PP2A might be therapeutically targeted to promote the dephosphorylation

and activation of TTP. Several compounds have been shown to promote PP2A function, usually by disrupting
interactions between the phosphatase and its inhibitory protein partners [108,109]. One such compound, a
sphingolipid known as AAL(s), exerted TTP-dependent anti-inflammatory effects in an airway epithelial cell
line [114,115]. AAL(s) and another PP2A agonist, the apolipoprotein E-derived peptide COG1410, exerted pro-
tective effects and prevented bone erosion in an experimental model of RA [9a]. In vitro, COG1410 decreased
the expression of TNF in Zfp36+/+ macrophages, but not in Zfp36aa/aa macrophages. It also increased the

1330 © 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

Biochemical Society Transactions (2016) 44 1321–1337
DOI: 10.1042/BST20160166

https://creativecommons.org/licenses/by/4.0


electophoretic mobility and decreased the expression of wild-type TTP protein, but had neither of these effects
on TTP-AA [9a]. These observations are consistent with COG1410 exerting anti-inflammatory effects by pro-
moting the dephosphorylation and increasing the activity of TTP. They constitute no more than proof of prin-
ciple for the concept of therapeutic targeting of PP2A in inflammation. Because of its multiple cellular
functions, indiscriminate activation of PP2A is a risky strategy. For this reason, it is important to understand
the physical and functional interaction between PP2A and TTP in greater detail. An added complication is that
elevated PP2A activity and a consequent increase in TTP function has been implicated in age-related impair-
ment of immunoglobulin class switching in B cells [116,117]. It is therefore possible that stimulation of PP2A
could have undesired effects on adaptive immunity.
Reflecting its central role in the regulation of innate immune responses, DUSP1 is targeted by many

endogenous immunoregulators as a means of promoting or suppressing inflammatory responses [42,118].
For example, glucocorticoids (GCs) exert anti-inflammatory effects in part by enhancing and prolonging the
expression of DUSP1, and thereby curtailing MAPK p38 activity [119–124]. GCs [125] and a variety of other
anti-inflammatory agonists have been reported to increase the expression of TTP. An emerging concept is that
anti-inflammatory agonists may exert their effects not only by increasing TTP expression, but also by targeting
DUSP1 to promote the activation of TTP [126]. Both Dusp1−/− and Zfp36aa/aa mouse strains will be useful
for further exploration of this concept.

Lessons from relatives of TTP
Two broadly expressed TTP family members are ZFP36L1 (otherwise known as butyrate response factor 1 or
BRF-1; TPA-inducible sequence 11B or TIS11B; B-cell early response gene of 36 kDa or Berg36) and ZFP36L2
(also known as BRF-2 or TIS11D). A fourth family member, ZFP36L3, appears to be expressed only in rodent
placenta and is not discussed here [127]. Similarity between TTP, ZFP36L1 and ZFP36L2 is highest (>70%)
within the zinc finger RNA-binding domains and drops to 10–24% outside of these domains (Figure 1B). Two
additional short stretches of high similarity are discussed below. The members of the ZFP36 family have very
similar RNA-binding specificities, and they recruit the same complexes of enzymes to regulate the degradation
and/or translation of their targets [17,18,128]. However, disruption of the murine Zfp36, Zfp36l1 or Zfp36l2 genes
has very different consequences. The pro-inflammatory effects of Zfp36 gene disruption have been discussed
above. Zfp36l1 gene disruption is embryonic lethal due to defects in placental function [129,130]. Zfp36l2 gene
disruption causes perinatal mortality associated with defective haematopoiesis [131]. Conditional knockouts have
demonstrated critical roles of ZFP36L1 and ZFP36L2 in the development of both B- and T-cell lineages
[132,133]. It is unclear how much overlap exists between functions and mRNA targets of ZFP36 family members.
To some extent, differences in the phenotypes of knockouts may be explained by different tissue-specific and
developmental patterns of expression or different kinetics of expression in response to cell stimulation [91].
However, there are circumstances in which two or more family members are present. For example, both TTP and
ZFP36L1 are expressed and phosphorylated in LPS-treated macrophages [28]. The pro- and anti-inflammatory
macrophage phenotypes arising from the absence of TTP or the expression of a constitutively active form are
striking. In contrast, there is little evidence that ZFP36L1 plays an important role in restraining macrophage
inflammatory responses [134]. The nature and extent of redundancy between these proteins is puzzling.
Another intriguing question is whether members of the ZFP36 family differ in their regulation by phosphor-

ylation. Although there are no published phosphoproteomic studies focussing on ZFP36L1 or ZFP36L2, some
information on their phosphorylation can be obtained from high-throughput studies. As a rule, phosphoryla-
tions of TTP seem not to be shared by its relatives. In some cases, the sites themselves are not conserved. For
example, the extensively phosphorylated, proline-rich domain between residues 80 and 90 of TTP is absent
from ZFP36L1 and ZFP36L2. In other cases, potential phosphorylation sites are conserved but adjacent residues
may not favour their phosphorylation. An example is serine 220, which is followed by a proline residue in TTP.
In ZFP36L1 or ZFP36L2, the equivalent serine residue is followed by alanine or serine, which will preclude
phosphorylation by proline-directed kinases. The sequence surrounding Ser-52 is not well conserved in
ZFP36L1 and ZFP36L2 (Figure 1B). On the other hand, certain prominent phosphorylations appear to be spe-
cific to ZFP36L1 and ZFP36L2. These are at Ser-54 and Ser-92 of ZFP36L1 and at Ser-57 and Ser-127 of
ZFP36L2. The phospho-acceptor sites and/or surrounding residues are not conserved in TTP (Figure 1B).
There are two protein regions in which both amino acid sequence and phosphorylation are conserved between
TTP and its relatives. The first is centred around Ser-178 (Figure 1B). There is good evidence of phosphoryl-
ation of the corresponding residues Ser-203 in ZFP36L1 and Ser-263 in ZFP36L2. The second conserved
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phosphorylation domain is at the C-terminus (Figure 1B). ZFP36L1 can be phosphorylated at Ser-334 and
Ser-336, ZFP36L2 at Ser-480 and Ser-482, which correspond to Ser-316 and Ser-318 of TTP.
The phosphorylation of ZFP36L1 at Ser-92 and Ser-203 promotes recruitment of 14-3-3 proteins and regu-

lates both ZFP36L1 protein stability and mRNA-destabilising activity [135–137]. This is remarkably similar to
the regulation of TTP stability and function via the phosphorylation of Ser-52 and Ser-178. However, while
Ser-203 of ZFP36L1 corresponds to Ser-178 of TTP, Ser-92 does not correspond to Ser-52 (Figure 1B). We
speculate that evolutionary acquisition of novel phospho-acceptor sites has allowed the proteins to diverge in
terms of the exact location of the sites used, while retaining the same basic mechanism of regulation by phos-
phorylation. While one study implicated MK2 in the phosphorylation of ZFP36L1 at Ser-92 and Ser-203 [136],
others implicated the kinase Akt, downstream of phosphatidylinositol 3-kinase (PI3K) [135,137,138]. The fact
that these two distinct kinases may phosphorylate the same residues in ZFP36L1 is unsurprising, given that
their substrate specificities overlap. It is likely that MK2 and/or Akt regulate the function of ZFP36L2, although
to our knowledge this has not been demonstrated. Another intriguing question is whether the expression and
function of TTP may also be regulated by PI3K-Akt.
MK2-mediated phosphorylation of Ser-316 and Ser-318 in the C-terminus of TTP is thought to stabilise

TTP targets by impairing the recruitment of CCR4–NOT [58]. The C-terminal domain has been strongly con-
served throughout the duplication and evolution of the ZFP36 family, and is clearly recognisable even in oyster
and lamprey orthologues [139]. Regulation of function via phosphorylation of the C-terminus may therefore
have been a property of the ancestral ZFP36 protein. In the cases of ZFP36L1 and ZFP36L2, phosphorylation
can be mediated by p90 ribosomal S6 kinase, which is downstream of ERK [140]. The emerging picture of the
relationship between kinases and ZFP36 family members appears increasingly complex, as individual
phospho-acceptor sites may be targeted by more than one kinase pathway, and more than one family member
may be subjected to phosphorylation in a given cell type.

Conclusion
TTP plays a vital role in orchestrating the finely tuned, temporally precise responses of macrophages to
pro-inflammatory stimuli. Work from several laboratories has contributed to a detailed understanding of
certain elements of TTP function. It has been demonstrated, using cell transfections, in vitro assays and genet-
ically modified mouse strains, that the MAPK p38 pathway mediates the phosphorylation of key residues of
TTP to modulate both its expression and its function. This constitutes an elegant system for linking the initi-
ation of an inflammatory response to its resolution. Stronger or more prolonged activation of MAPK p38 will
generate a more robust induction of inflammatory mediators, but it will also generate a larger pool of dormant
TTP, which is then ready to promote the destruction of inflammatory mRNAs as soon as MAPK p38 activity
declines. While we may admire the elegance of the biology, we need to remember quite how much remains
unknown about TTP. For example, most of the above discussion has centred on just two sites of phosphoryl-
ation of TTP. We do not yet understand the influences of other signalling pathways via the same sites or the
importance of the phosphorylation of ortholgous sites on other members of the TTP family. Most importantly,
there are at least 28 additional sites of TTP phosphorylation about which we know next to nothing.
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