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The Control of Natural Motion in Mechanical Systems

Abstract

This paper concerns a simple extension of Lord Kelvin's observation that energy decays in a dissipative
mechanical system. The global limit behavior ofsuch systems can be made essentially equivalent to that
of much simpler gradient systems by the introduction of a "navigationfunction” in the role of an artificial
field. This recourse to the mechanical system's natural motion helps transform the open-ended problem
of autonomous machine design into the more structured problem of finding an appropriate "cost function”
in the many situations that the goal may be encoded as a setpoint problem with configuration constraints.

This paper offers a unified exposition of some recent results [13, 12, 15] heretofore scattered throughout
a more mathematically oriented literature that strengthen our original suggestion [8, 9] concerning the
utility of controlling natural motion as a means of simultaneously encoding, planning and effecting tasks
in mechanical systems. The chief theoretical insight, Theorem 2, is a global global version of Lord Kelvin's
century old result on the dissipation of total energy. Establishing this extension yields a rather general
design principlethe notion of a navigation function-that seems to have useful application in a variety of
settings. Roughly speaking, it offers a checklist of criteria for achieving the strongest possible
convergence properties allowed on a configuration space by a smooth and bounded force/torque control
strategy. Some simple examples introduced here may aid the exposition of these ideas. A sequel [10] to
this paper illustrates how the ideas may be applied in more realistic settings.

This journal article is available at ScholarlyCommons: https://repository.upenn.edu/ese_papers/470
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can be made essentially equivalent to that of much simpler gradient systems by the
introduction of a “‘navigation function” in the role of an artificial field. This recourse

to the mechanical system’s natural motion helps transform the open-ended problem
of autonomous machine design into the more structured problem of finding an
appropriate “‘cost function”’ in the many situations that the goal may be encoded
as a setpoint problem with configuration constraints.

1 Introduction

This paper offers a unified exposition of some recent results
[13, 12, 15] heretofore scattered throughout a more mathe-
matically oriented literature that strengthen our original sug-
gestion [8, 9] concerning the utility of controlling natural
motion as a means of simultaneously encoding, planning and
effecting tasks in mechanical systems. The chief theoretical
insight, Theorem 2, is a global global version of Lord Kelvin’s
century old result on the dissipation of total energy. Estab-
lishing this extension yields a rather general design principle—
the notion of a navigation function—that seems to have useful
application in a variety of settings. Roughly speaking, it offers
a checklist of criteria for achieving the strongest possible con-
vergence properties allowed on a configuration space by a
smooth and bounded force/torque control strategy. Some sim-
ple examples introduced here may aid the exposition of these
ideas. A sequel [10] to this paper illustrates how the ideas may
be applied in more realistic settings.

By ‘“‘natural motion”’ is meant the unforced response of a
closed loop dynamical system resulting from the introduction
of a suitable feedback law to some dynamical ‘‘plant’’ with
inputs and outputs. Roughly speaking, the appeal to natural
motion attempts to place all of the ‘‘intelligence’’ required for
proper functioning in the analog computer comprised of the
plant’s intrinsic dynamics. In the case of a mechanical system—
a plant such as a robot or a satellite governed primarily by the
interchange of power between various sources of potential and
kinetic energy—the intrinsic analog computer is a set of double
integrators (one for each degree of freedom) that manifest
Newton’s Second Law. This motivating principle owes much
to fundamental work of Hogan [6], and the idea of a navigation
function in particular represents a refinement of Khatib’s orig-
inal work in artificial potential fields [7]. The utility of total
energy as a basis for controller design in mechanical systems
has been championed for some time by Arimoto [16].
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The class of tasks amenable to the methods introduced in
this paper includes merely setpoint problems—albeit reason-
ably complicated ones as the sequel [10] will hopefully dem-
onstrate. Thus, in its appearance here, this design philosophy
merely represents an extension to nonlinear mechanical systems
of the class of “PD controllers.”’ In a parallel program of
research [4, 3] we have begun to show how certain tasks re-
quiring periodic steady-state behavior may be amenable to
similar treatment. Of course, the design principle can no longer
be as simple as a navigation function in such cases. It remains
to be seen how general a class of tasks the natural control
point of view can address.

The use of total energy for control applications has been
rediscovered many times in the engineering community—for
example, consult the historical sketch in [11}. In contrast, the
extent to which global conclusions about the phase portrait of
a mechanical system may be drawn from analysis of the total
energy function appears not to have been addressed in the
previous literature. Although nonlinear dynamical systems give
rise to extremely complicated behavior in general, most en-
gineers understand intuitively that a ‘‘dissipative’” system is in
some sense very simple. Thus, the formal confirmation in the
present case, Theorem 2, should not seem very surprising.
Hopefully, the design principles embodied in the notion of a
navigation function which emerge from this theorem will jus-
tify the effort involved in its presentation.

2 Dissipative Mechanical Systems

This section introduces the setting for these ideas. A more
elaborate exposition is given in {12], and all of this work is
strongly influenced by the excellent text of Abraham and Mars-
den [1].

2.1 I, The Mechanical Control System. Given a config-
uration space, Q, the phase space, ®—the union of the vector
space of all infinitesimal motions permissible at each config-
uration—models all possible velocities a mechanical system
may experience. The wrench space, W—the union of the dual
vector space to the infinitesimal motions permissible at each
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configuration—models all possible forces to which a mechan-
ical system may be subjected.

We will narrow the scope of the presentation to consider a
mechanical control system, as determined by the ordered pair,
consisting of an n-dimensional configuration space and a gen-
eralized inertia tensor, M

LaA@Mm, &)

that gives rise to the second order vector field fr: ® X U —~R*>
derived from Lagrange’s equations [12, 1]

d . )
(E D, —Dq) g M(@)g=u.

Example 2.1.1. One Degree of Freedom Prismatic Ro-
bot. The configuration space is some closed real interval, say

Qp é [—e, 11. Its boundary consists of the endpoints, dQp =

{ —e, 1. The phase space arising from Qp is the closed vertical
strip in R?, ®p = [~¢, 1} x IR. Its boundary is formed by
the two vertical lines through the endpoints of the configu-
ration space

0®p=(—exR)U(I XIR).

An ideal actuator applies arbitrary and instantaneous forces,
u. Supposing that the robot has mass M, the mechanical control

system,
x y
[y] =fep((x2),u) = [M"u]’ @

is a double integrator.

Example 2.1.2. One Degree of Freedom Revolute Ro-
bot. If there are joint limits then this is the same situation
as in Example 2.1.1. Otherwise, the configuration space con-
sists of the planar rotations,

Qr=SO(2)4 {RelR***: R"R=1and IRl =1},

that can be Put into smooth one-to-one correspondence with
the circle, 8!, via R(f) = exp {6J} where J is the unit skew
symmetric matrix of IR?*2, There is evidently no boundary,
dQx = @, and the phase space is the cylinder, @z = s! x R.
An ideal actuator applies arbitrary and instantaneous torques,
u. Supposing that the robot has moment of inertia M, the
Lagrangian dynamics

R e
o _fER( 9"-’)1“): M_lu s ()

give rise to the same double integrator, fz, as in (2), with the
exception that the setting is a cylinder rather than a rectangle.

Thus, we limit our consideration of mechanical systems to
fully actuated holonomically constrained physical mechanisms
governed by Lagrangian dynamics. The absence of external
disturbance forces such as the gravitational potential presumes
the availability of a model permitting their exact cancellation
via the actuators. This, of course, excludes a great variety of
important situations.? The assumption of an ideal wrench
source—full actuation—excludes vehicles with controlled sur-
face angles, or indeed, any nonholonomically constrained
mechanism. It completely ignores the likely circumstance of
unactuated dynamics arising from transmissions or imperfect
actuators. Similarly, the restriction to tensorial inertia pre-
cludes consideration of many mechanisms that interact phys-
jcally with their environments such as underwater vehicles
whose effective inertia is governed by the surrounding fluid
and may vary with velocity. Assessing the extent to which these

>The author is indebted to one of the reviewers for helping clarify the physical
limitations imposed by this setup.
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ideas may apply to such situations falls beyond the scope of
this paper.

2.2 T, The Gradient ‘‘Planning” System. Consider the
class of twice differentiable real valued functions € C*[Q, RR]
on the configuration space, @, of the mechanical system, E.
The associated wrench or covector field, De, is related to the
gradient vector field, grade, via the inertia,

gradp AM™'Dep.

Thus, a gradient system (which in this paper will always mean
the dynamics of the negative gradient vector field) is deter-
mined by the triple consisting of a configuration space, an
inertia tensor, and a scalar valued function,

T A(Q.M,p). @

One calls ¢ a Morse function if its hessian (matrix of second
derivatives) is non-singular at every critical point [5]. A vector
field is transverse to a surface if it is never tangent [S]: in this
paper “‘transverse’’ will specifically mean ‘‘pointing away from
the interior on the boundary surface.”” Morse functions with
transverse gradients give rise to systems, I', whose trajectories
have very simple behavior which may be summarized as follows
[12, Proposition 2.1]: () trajetories originating in remain
there for all future time; (if) every trajectory approaches an
extremum of ¢ in steady state; (ii) there is a dense open set
§ < Q from which all trajectories tend asymptotically toward
the local minima of ¢.

So easily characterized a positive limit set is most unusual
in the dynamical systems literature and we will take the attri-
butes of T" described above as a model for desired asymptotic
behavior of some the closed loop mechanical system. Note that
application of the wrench, De, as an input to the mechanical
system, results in a “‘lift” of the gradient vector field over the
phase space. The gradient system, T, thus achieves the char-
acter of a “planning’’ system whose limit behavior we wish to
carry over automatically to the eventual physical dynamics
through the controller.

Example 2.2.1. Ty, A Hook’s Law Gradient Sys-
tem. Consider the end-point task of moving from anywhere
in the configuration space of Example 2.1.1 to a desired po-
sition, g; = 0. Any Hook’s Law spring potential, ¢g A 172

K.g%, (where Ky>0) will result in a valid gradient system. In
particular, adopting the inertia of Example 2.1.1, the gradient
system, T'y = (Qp,M,¢p) associated with this setup is

g=—grades=-M"'K\g.

Clearly, gradey is transverse since graden(1)>0 and
gradgsd —€) <0. Moreover, ¢ always has a positive definite
hessian, Dpy = K;>0. Thus, we are guaranteed that all
solutions of Ty tend to some extremum of ¢y (a minimum)
on Qp, hence, every solution of T'y tends to g, as desired.

Example 2.2.2. An Induced Gradient System.® Suppose
in Example 2.1.2 that a gripper frame origin, g(6) = R(6) 1,
has been established, and that it is desired to move the gripper
to coincide with the workspace goal location, w, = ] = R©)
[l]. A two degree of freedom Hook’s Law potential, ¢z =
172w — wal” [w — w,4], may be composed with the ‘‘kinematic
map,’’ g, to obtain an induced potential,

78 0r(g(6))

1
=5 [1, OlR(6) —R()]” [R(®) - RO)] ]

3This somewhat ungainly derivation of o7 is undertaken as a means of mo-
tivating both the satellite tracking section and the induced kinematics section
of the sequel paper [10].
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1

S {(27-R()" R(0)—R(O)" R®)) [1, 0] [o])

=1—tr ([R®T 1,0} [}]} =1—cos 6.

The reader may readily verify that ¢ varies smoothly between
0 (attained when R = R(0)) and 2 (attained when R is 180 deg
away from R(0)), taking intermediate values at all other points.
Adopting the inertia of Example 2.1.2, the gradient system,
I'r = (Qr,M,¢7) associated with this setup is

0 = —gradgr=—M""'sin 8

The critical points of ¢roccurat @ = nw,n = ..., —1,0, 1,
... Its hessian is unity at § = 2nwand —1atf = 2n + Dm.
All trajectories of I'r tend to the minima of ¢ corresponding
to the rotation R(0) except the (unstable) equilibrium solutions
at its maxima corresponding to the rotation 180° degrees away
from R(0).

2.3 A, The Dissipative Mechanical System. The chief ob-
ject of study in this paper, the dissipative mechanical system,
A, arises from superimposing a dissipative term, d(p), with the
property pid(p;,p2) < 0, upon the wrench associated with ¢.

udd(q,)+[Del"(g), &)
A dissipative mechanical system,
AA(Q,M,p, d), 6)
is defined by the vector field,
fap) B fe(p,d + Dy). )

Example 2.3.1 Ipr, A Hook-Rayleigh Dissipative Sys-
tem. Consider a Rayleigh damping law, dr(q,q) & —Kagq,
where K;>0. Applying this to T'y; of Example 2.2.1 yields a
““Hook-Rayleigh’’ dissipative mechanical system, Apr =
(Q.P’Mstst)s given by

. 0 1
D=Jay (D)= [

}p.
-K -K;

Interpreting the total mechanical energy as a Lyapunov func-
tion yields:

Theorem 1 (Lord Kelvin (1886) [17, §345)). If g is a local
minimum of ¢ in Q, then (g, 0) is a stable equilibrium state
of the dissipative mechanical system, A (6), in ®.

3 Controlling the Global Steady State Properties of
Dissipative Mechanical Systems

Theorem 1 reveals certain analogies between the local state
behavior of A in ®@ and that of T in Q. We must now address
the extent to which this correspondence may be made global.

3.1 Problems With the Global Extension. There are two
technical obstacles to extending Lord Kelvin’s observation. As
it turns out, neither of these will have serious practical impli-
cations, but both must be addressed in order to refine the
criteria to be placed upon ¢.

3.1.1 Finite Escape. Although Theorem 1 precludes un-
bounded trajectories, finite escape might still occur across the
boundary of the phase space. Appealing to intuition, consider
a mass rolling around on a terrain under the influence of the
earth’s gravitational potential and viscous friction due to air
drag. Tranversality simply implies that the terrain slopes away
from any forbidden region (the boundary of configuration
space). Yet a mass traveling with sufficient kinetic energy could
roll uphill and crash through the boundary.

Example 2.1.1. (continued). Although grad ¢4, from Ex-
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ample 2.2.1, is directed toward the interior of Qp, on the
boundary, its *‘lift’’ in fa,, of Example 2.3.1 is directed away
from the interior of ®@p on the upper half of the line through
the point [1, 0] and the lower half of the line through [—¢,0].
Consequently, it may be observed that the trajectory of fa,,
through every initial condition in a neighborhood of these open
half line segments must escape from ®p in finite time.

It is intuitively clear and may be readily proven in complete
generality [12, Lemma 3.1} that solutions of any dissipative
mechanical system originating on a boundary point of the
configuration space (i.e., actually touching an obstacle) will
have finite escape (i.e., crash into the obstacle) if their non-
zero initial velocity vector points in the wrong direction. How-
ever, the situation is much worse in general.

Example 2.1.1. (continued). If 84 /Kj—-4K, < 0, then

the system is underdamped. Now all solutions of Agyy origi-
nating at zero velocity from any configuration in the subin-
terval of Qp,

eexp {Kydr)l=g=l,

will escape from ®p in finite time-—they will crash into the left
hand boundary at the configuration g= —e.

Thus, while initial conditions of the gradient system, g,
remain within Qp for all time and eventually reach g, solutions
of Ay originating well within the interior of the configuration
space may nevertheless crash into a configuration space ob-
stacle even if they start with zero initial velocity!

Transversality was sufficient to avoid finite escape in the
planning system, T', but, quite apparently, more is required to
achieve the same property in A.

3.1.2 Spurious Equilibria. Theorem 1, like any local re-
sult, applies to some neighborhood of (gy,0) which we may
take to be a ball. In fact, a rather general result in dynamical
systems theory dictates that the global domain of attraction
(that is, the set of initial conditions whose trajectories asymp-
totically approach the stable equilibrium state) be topologically
equivalent to a ball [2]. But since our configuration spaces will
almost never be topologically equivalent to a ball (Example
2.1.1 represents the rare positive case), this implies that global
asymptotic stability is impossible in general.

Example 2.1.2. (continued). It is immediately clear that
no gradient system on SO(2), can have a globally asymptoti-
cally stable equilibrium state. For every continuous function
on a compact set attains both a minimum and a maximum on
that set. Thus, I'r, with one stable and one unstable equilibrium
state (considered as rotation matrices rather than angles) pos-
sesses the strongest possible convergence properties that any
smooth dynamical system on SO(2) may have. In fact, this is
good enough from any practical point of view since the max-
imum is the only initial condition whose trajectory fails to
converge as desired, and the probability of starting exactly on
that configuration is zero.

The properties of gradient systems reviewed in Section 2.2
imply that the absence of global asymptotic stability presents
no real problem in general since the initial conditions whose
trajectories do not converge to a minimum form a closed and
nowhere dense set in Q. In practice, this means that we will
never encounter a trajectory of I' that does not converge to a
minimum. Under what conditions might the same be said of
A?

3.2 Resolving the Problems.

3.2.1 Admissible Functions Preclude Finite Escape. Let
b denote the lowest value ¢ attains on the configuration space
boundary (if there is no boundary, then take b= + o). It is
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intutitively clear and can be readily demonstrated [12, Prop-
osition 3.2] that the ‘‘lowest boundary total energy set,”

. 1. .
8,4 (9,9)€0: 5 @"™Mq +(@)<b},

is positive invariant under A—that is trajectories originating
in &, never leave it. The contrary would incur a net increase
in total energy. &, is in some sense the largest subset of ® that
can be bounded entirely by a total energy surface and thus be
invariant. Taking any larger value, b’ > b, gives rise to a set,
&,,, whose boundary includes some of d® from which finite
escape is unavoidable as seen in Section 3.1.1. Unfortunately,
&,, in general, is too small, since it will not include many
perfectly valid configurations.

Example 2.3.1.
for Anr is

(continued). The total energy function

1 1

n=> Kipl+3 pi.
The bounded energy set for energy level = 1 is a truncated
ellipse just touching (1, 0) and tangent to the vertical line 1 X
IR comprising the right hand boundary of ®p. This ellipse is
truncated on the left hand side of the plane by the a line segment
contained in the left-hand boundary, —e x IR. Thus &, is
bounded only partially by a total energy surface. Trajectories
originating in this set, cannot escape through the ellipsoidal
portion of the boundary but, as we have seen, certainly can
escape through the left hand truncating line. On the other hand,
¢y takes its lowest value, b, on dQp, at —¢, thatis b = 1/2
€K, = ¢p(—e€). Thus, &,, the largest subset of ®p completely
enclosed by a total energy surface, is positive invariant. But
no configurations beyond g= + ¢ are included in this “‘safe’’
set.

We can surely design potential functions ¢ that explode to
an infinite height on the boundaries of the configuration space
and thus leave @ invariant.* The obvious objection is that grad
¢ must also explode in magnitude as one approaches the bound-
aries of @ and our feedback control law, (5) could never be
achieved by a physically realizable actuator with hard torque
bounds. The requirement that ¢ be bounded and smooth seems
a very important practical constraint. Smoothness (continuity
of at least the second derivatives) affords a reliance on standard
analytical tools from the theoretical point of view, and avoids
‘““chattering’’ and other unrealistic demands on actuators from
the practical point of view. For example, smooth functions on
a compact set (in this case, &;) are bounded—thus the input
function in (5) is guaranteed to be bounded.

The notion of admissibility reconciles the smoothness con-
straints with the imperative of incorporating all legal config-
urations within the ‘‘safe’’ set. Requiring ¢ to take the same
““lowest”’ value, b, on all boundary points includes all of dQ
x 0-—that is, all boundary configurations at zero velocity—
in &,. Requiring ¢ to take strictly lower values than & in the
interior of @ includes each level surface of ¢ together with
sufficiently small velocities in &, as well. We will follow Hirsch
[5], and say that a smooth Morse function on Q is admissible
if it achieves its maximal value uniformly on dQ and nowhere
else.

Example 3.2.1. An Admissible Potential. The boundary
of Qp in Example 2.1.1 may be represented as the zero level
set of two appropriately chosen scalar valued functions, say

Bu(@)Alg+el’ Br(@llg—11%

*In point of fact, this is exactly the method proposed by almost all previous
proponents of “‘artificial potential fields.”” A notable exception is provided by
Newman and Hogan [14] who obtained bounded solutions by recourse to dis-
continuous (‘‘logical’’) gradients that we seek to avoid.
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Retaining the Hook’s law potential from Example 2.2.1 that
properly encodes the desired destination, consider the new cost
function,

oy H
A= .
on+B1Br

It attains its lowest value (zero) on the good configuration,
gy, and its highest value (one) on the bad configurations, 3Q.

3.2.2 Morse Functions Assure Convergence. Section
3.1.1 demonstrated that the conditions on ¢ which preclude
finite escape behavior in I' are not sufficient to do so in A. In
contrast, once finite escape behavior has been ruled out, the
condition which guarantees convergence in I' is readily seen
work equal effectively in A. The equilibrium states of A are
exactly the critical points of ¢ at zero velocity, and they con-
stitute the entire positive limit set of &, under f, [12, Propo-
sition 3.3]. Moreover, their local stability properties are
inherited directly from those of I'—a minimum of ¢ corre-
sponds to an asymptotically stable equilibrium state of f4;
maxima and saddles correspond to unstable equilibrium states
[12, Lemmas 3.4, 3.5]. Finally, if ¢ is a Morse function, then
fx has analogous nondegeneracy properties admitting the con-
clusion all initial conditions, apart from a closed and nowhere
dense subset of &, have trajectories that approach an equilib-
rium state corresponding to a minimum [12, Proposition 3.6].
Thus questions of global convergence of A on &% are reduced
to questions of global convergence of I' on Q.

4 Conclusion: Navigation Functions Effect a Global
Plan and Its Control

Say that ¢, a twice differentiable function of @ taking values
in the unit interval is a navigation function if it: (i) is a Morse
function; (/i) is admissible, taking the value zero at some dis-
tinguished interior point, go € @, and the value unity on the
boundary, 3Q (or at some finite number of interior maxima
if there is no boundary); (iif) has a unique minimum at go. The
following summary of the reasoning above shows that A has
global steady state behavior on &, analogous to the global
steady state behavior of T on Q. Namely, at every configuration
there may be found sufficiently small velocities from which
initial conditions the trajectory of f, will never intersect an
obstacle and will tend asymptotically toward the distinguished

point, (g,0).

Theorem 2 ([12]). Let A be a dissipative mechanical system
(6), and suppose that ¢ is a navigation function on Q. Then
(i) almost every initial condition whose total energy is less
than unity has a trajectory which asymtotically approaches the
minimum of ¢ (at zero velocity) and (ii) for all valid con-
figurations there can be found a velocity such that the resulting
point in ® has total energy less than unity.

4.1 Theoretical Remarks. Will there be situations where
in fact no navigation function can be devised? In a recent
paper [13] we have been able to answer this question quite
unequivocally: we show that smooth navigation functions exist
on any smooth manifold for any desired interior point, gg.
Thus, the examples Example 4.1.1 and Example 4.1.2 are not
anomalous simple cases but represent the situation in general.

Example 4.1.1. A Navigation Function for SO(2). It is
clear that 1/2 o7 in Example 2.2.2 is a navigation function.
Thus, almost all trajectories of A7R = (Qr.M,e7dr) approach
the desired orientation, R.

Example 4.1.2. A Navigation Function for the Interval
[—e 1]. It can be shown [13] that ¢, in Example 3.2.1 has
a single minimum at 0. Since it is clearly a Morse function, it
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now follows that almost all trajectories of AR = (Qp,M,0.4,dr)
approach this desired configuration.

How hard is it to actually construct navigation functions?
The sequel [10] will present more useful extensions of the
special examples, ¢rand ¢4, above. While there are no general
constructive results presently available, the invariance of the
navigation properties under change of coordinates provides a
useful hint of how to extend solutions in simple cases to obtain
navigation functions in more complex settings [15].

4.2 Practical Remarks. It seems worth sketching how to
obtain feedback controllers, (5), that respect torque limits from
a navigation function, ¢. Suppose that the actuators are ca-
pable of delivering torques whose magnitude does not exceed
the bound U< . Let G denote the least upper bound of lgrad
&l over Q. Assume for the sake of concreteness that a Rayleigh
dissipative field Example 2.3.1 will be used and denote its
(induced operator) norm K. Let the inverse inertia tensor,
M~'(g), have an (induced operator) norm that is bounded by
the constant 1/M, over all the configuration space. Now take
in (5) the wrench associated with ¢ = cp, where c is a constant
scalar ‘“‘gain’’ to be determined as follows. Assuming all initial
conditions are chosen within & it follows that all trajectories
have total energy less than ¢, hence, lgl?<c/M,, thus we
require that U>cG + K(c/Mp)*, guaranteed by

<(K2+4MOGU)“2—K
- ZGM01/2

This represents a very conservative strategy, of course, and
it would be useful to develop more theoretical insight into the
nature of the transient response of A.

Now suppose that no contact with the configuration space
boundaries is required. In particular, suppose we require that
the clearance from the boundary be greater than some distance
which it has been ascertained holds at all configurations, g,
with the property ¢(g) < o< 1. Then choosing a ‘speed limit,”’
xo—the maximal allowable initial kinetic energy—such that ¢
= ko/(1 — @) satisfies the previous inequality guarantees that
all trajectories originating in &, will remain the specified dis-
tance away from the boundaries and will not require excessive
torques to do so. If contact with the boundaries is required
then choose k, = 0 and repeat the same argument.

4.3 Programmatic Remarks. Presumably, one important
attribute of an ‘‘intelligent machine’’ is its autonomy—the

*It should be understood in this discussion that &, ax_ld all further references
to total energy involve the scalar function 1/2 G ™M(g)q + #(q).
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ability to perform a task successfully without intervention from
some higher level supervisor. Having once encoded a goal in
terms of the steady state behavior of some dynamical system,
areasonable measure of the machine’s autonomy is the relative
size in state space of initial conditions that result in the desired
steady state. From this point of view, the navigation function
represents a design principle that bestows the most autonomy
possible upon a mechanical system commanded to perform a
task that can be encoded as a setpoint problem in the face of
configuration constraints.
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