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ABSTRACT

This research is designed to investigate how convective instability influences monthly mean precipitation in

Texas in the summertime and to examine the modulation of convective instability and precipitation by local

and regional forcings. Since drought results from the accumulated effects of deficient precipitation over time,

this study is expected to shed light on the physical and dynamical mechanisms of the initiation and mainte-

nance of serious droughts as well. The focus in Part I of this two-part study is on identification of the con-

trolling convective parameters and, in turn, the surface-based processes that cause variations in these

parameters. NCEP–NCAR reanalysis data and observed precipitation data, correlation analysis, multiple

linear regression analysis, and back-trajectory analysis are used to reveal the underlying dynamics of their

linkage and causality.

Monthly mean precipitation is modified mainly by convective inhibition (CIN) rather than by convective

available potential energy (CAPE) or by precipitable water. Excessive CIN is caused by surface dryness and

warming at 700 hPa, leading to precipitation deficits on a monthly time scale. While the dewpoint temper-

ature and thermodynamics at the surface are greatly affected by the soil moisture, the temperature at 700 hPa

was found to be statistically independent of the surface dewpoint temperature since the 700-hPa temperature

represents free-atmospheric processes. (These free-atmospheric processes are the focus of the companion

paper.) Finally, the strong correlations among precipitation, soil moisture, and CIN, as well as their un-

derlying physical processes, suggest that the tight linkage between precipitation and soil moisture is not only

due to the impacts of precipitation on soil moisture but also to the feedbacks of soil moisture on precipitation

by controlling CIN.

1. Introduction

Since Texas receives most of its annual average pre-

cipitation between April and September, and potential

evapotranspiration is high during that time, a summer-

time precipitation deficit in Texas may bring serious

agricultural impacts during the growing season. Due to

the strong interaction between land and atmosphere

through soil moisture in the south-central United States

(Koster et al. 2004), reduced precipitation over an initial

period may induce further precipitation deficits, making

Texas particularly vulnerable to drought. In Texas, the

state-wide warm season droughts of 1996 and 1998 pro-

duced widespread crop failure and $5 billion and $6 bil-

lion, respectively, were lost through agricultural damage

in each event (NCDC 2006). The more wide-ranging

drought in 1980 in the south-central and eastern United

States was associated with $20 billion in damages in ag-

riculture and related industries.

However, the skill levels of the statistical and dynam-

ical predictions of monthly and seasonal precipitation are

only marginal (e.g., Saha et al. 2006) and thus need to be

substantially improved. The forecast skill for summers

is smaller than that for winters, which is partially due

to the unclear linkage between tropical SST anomalies

and subtropical and extratropical climate variabilities in

summers. One of the difficulties in establishing the rela-

tionships between SST anomalies and summer precipi-

tation variations in the south-central United States is the

substantial influence of local processes and feedbacks

associated with soil moisture (Atlas et al. 1993; Helfand

and Schubert 1995).
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Many efforts have been made to determine the origins

and development processes of droughts in the Great

Plains (Trenberth et al. 1988; Trenberth and Branstator

1992; Lyon and Dole 1995; Trenberth and Cuillemot

1996; Sud et al. 2003). Most studies have focused on the

1988 drought in the Great Plains and found a significant

remote influence from anomalous sea surface temper-

atures (SSTs) in the tropical and extratropical Pacific

and a local influence from reduced soil moisture; the

1988 drought was initiated by the former through in-

duction of upper-level anticyclonic circulations and

maintained by the latter. This result was consistent with

the inferred causes of droughts in the south-central

United States in 1980 and 1998 (Namias 1982; Hong and

Kalnay 2002).

Convective precipitation such as occurs mainly over

tropical regions becomes the primary characteristic of

summertime rainfall in Texas (Clark 1960; Mintz 1984),

as the subtropical jet weakens and the polar jet migrates

to the north near the Canadian boarder. On monthly

and seasonal time scales, thermodynamic characteristics

seem to be crucial to the variability of tropical deep

convection (Firestone and Albrecht 1986; Kloesel and

Albrecht 1989; Fu et al. 1999; Biasutti et al. 2004;

Zveryaev and Allan 2005). Since the precipitation char-

acteristics of Texas in summertime are similar to those

in the tropics in that convective precipitation prevails,

these findings suggest that thermodynamic character-

istics and changes in convective instability would be

important to the variation of summer precipitation in

Texas. As Myoung and Nielsen-Gammon (2010a, here-

after MN10) discussed, an ‘‘ingredients based’’ approach

focused on key convective parameters isolates the direct

impacts of the environment upon convection. On a

monthly time scale, the overall convection and precipita-

tion may depend not just on the mean values of key

convective parameters but also on their variability within

a month, but it is still expected that the mean parameter

values should have a substantial influence on the monthly

mean convection.

Recently, MN10 examined the modulation of con-

vective instability on precipitation throughout the globe

at locations and during seasons where convective pre-

cipitation is dominant. Their simple correlation analysis

between the convective parameters [convective inhibi-

tion (CIN), convective available potential energy (CAPE),

and precipitable water (PW)] and National Centers

for Environmental Prediction–National Center for At-

mospheric Research (NCEP–NCAR) reanalysis pre-

cipitation revealed that the variability of monthly mean

precipitation is significantly controlled by the convective

parameters and the most important convective param-

eter varies by regions and seasons. CIN is strongly

correlated with precipitation over the summer conti-

nents in the Northern Hemisphere and Australia, while

PW and CAPE are strongly correlated with precipi-

tation over tropical oceans.

The present study (Part I) and its companion study

(Myoung and Nielsen-Gammon 2010b, hereafter Part

II) investigate more closely the relationship between

convective instability and precipitation in the warm sea-

son in Texas. The most important parameter(s) for

precipitation variability will be determined using ob-

served precipitation data and calculated values of CIN

and CAPE rather than the reanalysis precipitation and

proxies for CIN and CAPE, as in MN10. Although we

will examine the variability of the monthly mean pre-

cipitation, our major motivation is to understand the

thermodynamic atmospheric structure associated with

precipitation deficits that may cause or enhance drought

in Texas during the summertime and the main goal of

this study is to elucidate the primary contributing factors

to the most important convective parameter(s). As noted

previously, since the life cycle and mechanistic charac-

teristics of the summer droughts in Texas are similar to

those over the Great Plains, it is expected that upper-level

anticyclonic circulation and reduced soil moisture may

play important roles in causing precipitation deficits as

well. However, unlike previous research, this study will

explore how these factors modulate the thermodynamic

characteristics and thereby affect drought. The local

surface-based processes and large-scale circulations re-

sponsible for the precipitation deficits and droughts will

be identified by statistical methods such as linear cor-

relation and regression analyses among the parameters

representing physical and dynamical properties or pro-

cesses. Part I investigates the thermodynamic structure

and related surface variables and processes, while Part II

will investigate the variables and processes in the free

troposphere. It will be shown that local and large-scale

processes influence precipitation and drought through

different mechanisms.

Section 2 outlines the data and methods used in

this study. Section 3 investigates the characteristics of

summertime Texas precipitation and the modulation of

precipitation by convective instability. Section 4 then

examines the most important parameters affecting con-

vective instability. The major results and conclusions of

this study are summarized in section 5.

2. Data and methods

The monthly precipitation data used in this study is

U.S. climate division data obtained from the National

Climatic Data Center (NCDC). While Texas is com-

posed of 10 climate divisions, monthly precipitation is

4462 J O U R N A L O F C L I M A T E VOLUME 23



strongly correlated among the different regions of Texas,

implying that mechanistic characteristics of precipitation

are fairly uniform across Texas. Thus, an area-weighted,

state-wide averaged precipitation was calculated and log-

transformed for each month and used as a primary

monthly mean precipitation (PRCP) dataset.

The data for analysis of the probability distribution

function (PDF) of Texas precipitation are from the U.S.–

Mexico daily precipitation analysis gridded at 0.258 3

0.258. This dataset is derived from NCDC daily Co-

operative Observer Program (COOP) stations, other

daily station data received by the Climate Prediction

Center (CPC), and daily accumulations from the hourly

precipitation dataset. Its monthly averaged precipitation

in Texas is highly correlated with PRCP.

The third dataset comes from the NCEP–NCAR re-

analysis (Kalnay et al. 1996) and is gridded at 2.58 3 2.58.

The NCEP Medium-Range Forecast spectral model and

the operational NCEP Spectral Statistical Interpolation

were used for the NCEP–NCAR assimilation. Datasets

include diagnostic variables like evaporation, soil mois-

ture, and sensible and latent heat fluxes that are gener-

ated by the model’s physical parameterizations, as well

as instantaneous variables like temperature, specific hu-

midity, geopotential height, and winds. The former are

less reliable than the latter because they are more in-

fluenced by the model parameterization. However, al-

though the surface heat fluxes, evaporation, and soil

moisture of the reanalysis on a daily time scale tend to be

under- or overestimated compared to the observations

(Brotzge 2004; Betts et al. 1996b) over the central and

midwestern United States, their monthly or seasonal

mean values are in good agreement with the observations

and other reanalyses (Betts et al. 1996b; Roads and Betts

2000; Brotzge 2004; Dirmeyer et al. 2004).

Monthly mean values computed from daily reanalysis

values and then averaged at the 11 grid points within

Texas are utilized in this study. The time domain for this

study includes the summer months from 1948 to 2003,

with an emphasis on July when disorganized convective

precipitation is most prevalent.

Among the various fields of the NCEP–NCAR re-

analysis data, Table 1 lists variables that may play an

important role in modulating convective instability and

associated precipitation. The variables include surface

and tropospheric variables. The tropospheric variable

called moisture flux divergence (MFD) is the vertically

integrated horizontal divergence of moisture flux, as

computed directly from winds and specific humidity

on the respective model pressure levels. MFD [$ � (qV)]

consists of an advection term, ADV (V � $q), and a di-

vergence term, DIV (q$ � V), where q is the specific

humidity and V is the horizontal wind.

To explore relationships between the convective in-

stability parameters and precipitation, CIN and CAPE

are computed using monthly mean vertical profiles of

temperature and dewpoint averaged across Texas. This

differs from the instantaneous values of thermodynamic

parameters, which are used in the reanalysis model’s

convective scheme (Grell 1993). The General Meteo-

rological Package (GEMPAK) is used to compute the

CIN, CAPE, lifted condensation level (LCL), and level

of free convection (LFC). For PW, monthly mean

precipitable water from the reanalysis is averaged over

Texas.

In the present study, linear correlation analysis is per-

formed among precipitation, convective instability pa-

rameters, surface variables, and tropospheric variables

to reveal the relationships among the variables. In addi-

tion, we use linear regression analysis to determine the

parameters or variables most relevant to precipitation.

The resulting Pearson correlation coefficients (r, hereaf-

ter) indicate the strength of a linear relationship between

the two fields. Assuming independent, normally distrib-

uted data, 60.34 is roughly the 99% confidence level for a

nonzero correlation for the July samples with N 2 2 5

54 degrees of freedom. The existence of this level of

statistical significance will be indicated by a star in the

figures that follow.

We will compare the magnitudes of correlation co-

efficients to determine, for example, which variables are

more or less correlated, or which pathways are more

important in controlling a variable. To test the null

hypothesis that two dependent correlations, rjk and rjh,

are equal, we use Williams’ (1959) T statistic (Steiger

1980):

TABLE 1. Frequently used acronyms and symbols.

Category

Acronym or

symbol Meaning

Surface SM Soil moisture

Surface SH Sensible heat flux

Surface LH Latent heat flux

Surface Td Surface dewpoint

Surface Ts Surface temperature

Surface DP Dewpoint depression

Surface ue Surface equivalent

potential temperature

Tropospheric ADV Advection term of the

moisture flux divergence

Tropospheric DIV Divergence term of

the moisture flux divergence

Tropospheric MFD Moisture flux divergence

Tropospheric OMG 500–850-hPa mean

vertical motion

Tropospheric Tlt Temperature at 700 hPa
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which has a t distribution with (N 2 3) degrees of free-

dom. In this case, N 5 56. We compute the first-order

partial correlation between j and k while controlling for

h(rjk.h) as (Chen and Popovich 2002)
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and test for significance as recommended by Chen and

Popovich (2002).

Although correlation analysis does not identify cau-

sality between the two variables, understanding the phy-

sical mechanisms between the two often allows us to

determine their possible causality. For example, a signifi-

cant positive correlation was found between temperature

and vertical motion at a given pressure level and location:

warmth is linked with descending motion. Because rela-

tively warm air tends to ascend due to buoyancy, down-

ward motion cannot be caused by the buoyancy of the

warm air. Instead, because downward motion causes

adiabatic warming, subsidence must be driving the posi-

tive correlation. Physical reasoning combined with cor-

relation analysis makes it possible to infer causality

between many of the correlated variables. This technique

is used in this study to find pathways causing a deficit

of convective precipitation. Great caution is needed in

inferring causation because some group of ‘‘third vari-

ables’’ can be causing variance in both variables as well.

3. Precipitation and convective instability
parameters

First, we investigate whether the monthly precipita-

tion is strongly controlled by the local convective in-

stability parameters that are known to govern convective

precipitation frequency and intensity on shorter time

scales. Monthly anomalies (departures from the 56-yr

monthly mean) of PRCP and convective instability pa-

rameters in July and August are plotted in Fig. 1 while

those only in July are exhibited in Fig. 2. Note that two

samples in August were omitted in Fig. 1 because these

months included days with no instability, making CAPE

and CIN undefined. Correlations are less tight in July and

August (Fig. 1) than in July only (Fig. 2). However, in

both cases PRCP is most strongly correlated with CIN,

moderately with PW, and least with CAPE. The corre-

lation of PRCP is statistically significant at the 99% level

only with CIN and PW.

The negative relationship between CIN and precipi-

tation is due to the influence of CIN on precipitation.

Since CIN is a measure of the amount of energy needed

to initiate convection, precipitation is suppressed when

CIN is relatively high, even if substantial CAPE exists.

Given particular initial values of CAPE, PW, and CIN,

on the other hand, convective activity and rainfall do not

necessarily decrease CIN (MN10). This allows PRCP to

be significantly correlated with CIN (r 5 20.68, p ,

0.0001 in July and August and r 5 20.75, p , 0.0001 in

July) and more loosely correlated with CAPE (r 5 0.02,

p 5 0.8 in July and August and r 5 0.33, p 5 0.015

in July). The smaller correlation between CAPE and

PRCP (T 5 6.0, p , 0.0001 in July and August and T 5

5.4, p , 0.0001 in July) is partially because the monthly

averaging process may reduce the relationship between

CAPE and subsequent precipitation as convective activ-

ity can destroy large CAPE (DeMott and Randall 2004).

For PW, on one hand, substantial moisture is a pre-

requisite for rainfall, causing a positive relationship. On

the other hand, precipitation reduces the liquid-phased

moisture that is transformed from water vapor in the

troposphere, which directly results in a decrease in PW.

However, the latter effect becomes less important than

the former effect once the positive feedback of the sub-

sequent wet soil enhances the PW through increased

surface evaporation. Consequently, precipitation on a

monthly time scale tends to be positively correlated with

PW (r 5 0.34, p 5 0.0003 in July and August and r 5 0.43,

p 5 0.001 in July), but not as large as with CIN (T 5 2.6,

p 5 0.011 in July and August and T 5 4.2, p , 0.0001 in

July).

The results in Figs. 1 and 2 suggest that thermody-

namic characteristics and changes in convective insta-

bility are as relevant to the interannual variability of

summer precipitation in Texas as in the tropics. The

monthly mean precipitation in summertime in Texas is

modulated primarily by the amount of CIN rather than

by that of CAPE or PW, which is consistent with MN10.

A moderate correlation is found between CIN and

CAPE (r 5 20.59, p , 0.0001 in July and August and r 5

20.62, p , 0.0001 in July; scatterplots not shown). The

correlation between CIN and CAPE may be because

both are greatly influenced by the initial conditions of a

parcel. Nevertheless, precipitation is tightly correlated

with CIN and poorly with CAPE (Fig. 2). This implies

that there is another factor (or perhaps several factors)
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besides surface conditions controlling CIN but not CAPE,

and thereby exerting a strong influence on monthly pre-

cipitation. This will be discussed in Part II.

Meanwhile, the correlation between PRCP and CIN

in July (20.75) is stronger than in August (20.61). As-

suming independent samples, the z score (Fisher 1921)

indicates that the difference is not statistically significant

(z 5 1.31, p 5 0.19). As mentioned previously, mean

convective parameters could not be computed in 2 months

out of the 56 months in August. Thus, for better quality of

results, further analyses will focus on the month of July.

Variations in monthly mean precipitation can be

caused by modification in the frequency of rainfall events,

or in the intensity of rainfall per event, or by a combina-

tion of both on a daily time scale. The fact that CIN, the

most relevant convective instability parameter to July

precipitation, tends to be associated with the initiation

of convection (Mapes 2000) suggests that dry summer

months in Texas are due primarily to the reduced number

of rain days, or the reduced frequency of deep convec-

tion, rather than reduced precipitation intensity. To

test this hypothesis, the probability distribution func-

tion (PDF) of daily July precipitation in Texas was in-

vestigated with respect to the number of rain days and the

average precipitation intensity. A rain day is defined as

a day whose daily precipitation is greater than or equal to

1 mm. For each July, the number of rain days and pre-

cipitation intensity (e.g., averaged rain amount per rain

day) was calculated at each grid point in the daily U.S.–

Mexico precipitation data. The monthly values were then

averaged over all the grid points in Texas to obtain July

mean series for the number of rain days (RDs) and the

precipitation intensity (PI).

Figures 3a and 3b are scatterplots of precipitation with

RDx and PI. Both RDx (r 5 0.94, p , 0.0001) and PI (r 5

0.81, p , 0.0001) are significantly correlated with total

precipitation, and RDx and PI are also positively corre-

lated (r 5 0.70, p , 0.0001, scatterplot not shown). This

FIG. 1. Scatterplot between PRCP and (a) CIN, (b)

CAPE, and (c) PW. They are monthly anomalies in

July and August.
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feature implies that while less precipitation is correlated

with fewer rain days and reduced intensity, the total

precipitation is more strongly influenced by the former

in Texas in summertime (T 5 3.8, p 5 0.0004). While an

increase of CIN is associated with a decrease both in rain

days and intensity, stronger correlation (T 5 3.6, p 5

0.0007) of CIN with RDx (r 5 20.79, p , 0.0001) (Fig. 3c)

than with PI (r 5 20.55, p , 0.0001) (Fig. 3d) suggests

that larger CIN tends to reduce the number of rain days.

Combining the results of Fig. 3, Fig. 4a illustrates the

correlation coefficients of CIN with RDx, PI, and PRCP.

Similar illustrations are shown for CAPE and PW as

well in Figs. 4b and 4c, respectively. The strong corre-

lation of CIN with RDs (20.79), combined with the

strong correlation of RDs with PRCP, results in the high

negative correlation of CIN with PRCP (20.75). The

first-order partial correlation of CIN with PRCP while

controlling for RDs is near zero (r 5 20.03, p 5 0.80),

and the first-order partial correlation of CIN with PI

while controlling for RDs is also small (r 5 0.01, p 5

0.95), implying that CIN’s entire relationship with PRCP

is through RDs. For CAPE, although it is more tightly

connected to PI than to RDs, the magnitude of the cor-

relation to PI is substantially smaller than that of CIN with

PI (T 5 22.1, p 5 0.04; see Fig. 4b). PW does not seem to

affect RDx, PI, and PRCP as much as CIN does, either

(for RD, T 5 25.7, p , 0.0001; see Fig. 4c). When one

recalls that CIN is the energy needed to initiate convec-

tion, it seems plausible to conclude that CIN controls the

number of rain days and the number of rain days affects

the monthly precipitation.

4. Processes controlling convective inhibition

a. Parameterization of CIN

Fundamentally, CIN is determined by the surface tem-

perature and dewpoint and the vertical temperature dis-

tribution, ignoring the minor contribution to the CIN

variability of virtual temperature effects. Since the vertical

temperature distribution is continuous on a monthly time

scale, a reduction in the number of degrees of freedom is

necessary to facilitate further analysis. A successful pa-

rameterization of CIN in terms of two or three simple

variables will allow us to investigate the modulation of

CIN and precipitation by local land surface processes and

large-scale circulations through their effects on those two

or three variables.

FIG. 2. Scatterplot between PRCP and

(a) CIN, (b) CAPE, and (c) PW only in July.
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Here, we hypothesize that CIN is controlled by local

surface-based variables that represent surface-based

processes. To test this hypothesis, linear regression anal-

ysis on CIN with various combinations of independent

variables using surface temperature (Ts), surface dew-

point (Td), and temperature at 700 hPa (Tlt) is em-

ployed. While Ts and Td are the surface variables that

greatly modify the magnitude of CIN by definition, Tlt is

a suitable proxy for the free-tropospheric temperature

just below the LFC (MN10). The results of the regression

analysis are shown in Table 2. Among the univariate and

bivariate predictors, (Tlt 2 Td) produces the closest fit

to CIN while (Ts 2 Td) and the bivariate regressions

including (Ts 2 Td) provide reasonably good approxi-

mations of CIN. However, the moist static energy ap-

proximated by (Ts 1 Td) estimates CIN poorly. The

variable (Tlt 2 Td) represents the joint effects of warm-

ing (cooling) at 700 hPa and surface dryness (wetness). The

superior performance of the model employing (Tlt 2 Td)

over (Ts 2 Td) as an independent variable indicates that

CIN is controlled not only by surface-based variables (or

processes) but also by low-tropospheric temperature (or

processes).

Table 3 shows the correlations among CIN, Td, Ts,

Tlt, and the surface sensible heat flux (SH). Tlt is cor-

related with CIN less tightly than are Ts (T 5 24.8, p ,

0.0001) and Td (T 5 21.85, p 5 0.07). Nevertheless, the

superior performance of the model employing (Tlt 2 Td)

over (Ts 2 Td) as an independent variable emphasizes

the independent importance of Tlt in determining CIN.

The result that low-tropospheric temperatures, as well as

surface conditions, have a significant impact on monthly

convective instability and precipitation is consistent with

the model-based findings of Beljaars et al. (1996) for July

1993.

The answer to why Ts plays a secondary role in con-

trolling CIN compared to Tlt even though it is more

tightly correlated with CIN is found in the physical

FIG. 3. Scatterplots of the number of RDs and PI with (a),(b) precipitation without the natural log transform and

(c),(d) CIN.
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relationship between Ts and Tlt. The strong positive

correlation between Ts and Tlt (r 5 0.71, p , 0.0001)

indicates a hotter 700-hPa level as the surface warms.

Simultaneous warming at the surface and at 700 hPa can

be caused by 1) excessive heating of surface air so that

the top of the PBL reaches up to 700 hPa or 2) en-

trainment of extremely warm low-tropospheric air, or

air with similar thermodynamic characteristics to that at

700 hPa, into the ordinary PBL. Only possibility 2 is

consistent with the expectation that Tlt represents free-

atmospheric processes. If possibility 1 is true, then SH,

which helps determine PBL depth, would be linked with

temperature at 700 hPa but it would not affect temper-

ature above the top of the PBL in case 2. Yet Tlt and Ts

would be interrelated in both cases. Therefore, the key is

whether SH is linked with temperature above the top of

the PBL, represented by Tlt in this study.

The reanalysis dataset reveals that Tlt is weakly as-

sociated with SH (r 5 0.20, p 5 0.14) while the corre-

lations between Tlt and Ts (r 5 0.71, p , 0.0001) and

between Ts and SH (r 5 0.69, p , 0.0001) are relatively

strong, respectively (Table 3). This supports not only

the assumption that Tlt represents free-atmospheric

processes but also the hypothesis that the correlation

of Tlt with Ts is primarily due to the entrainment of

700-hPa air, or air with thermodynamic characteristics

similar to those at 700 hPa, into the ordinary PBL. The

result of linear regression analysis of Tlt and SH pre-

dicting Ts (Table 4) also shows that Tlt and SH, being

mutually independent, produce a much closer fit to Ts

than either of Tlt and SH alone does, so that both con-

tribute to Ts in a physical sense.

Going back to the original question, why Tlt rather

than Ts plays a critical role in determining CIN, we

found that the surface temperature, Ts, is affected by

both the temperature at 700 hPa (Tlt) through entrain-

ment and SH. SH is tightly linked with the surface latent

heat flux (LH) and Td through soil moisture, which will

be described below. Since Tlt is largely independent of

SH and Td, the variability of CIN is explained mostly by

Td and the rest is explained by Tlt rather than by Ts.

b. Local atmospheric variables controlling the key
parameters of CIN

Previously, it was shown that low-tropospheric warm-

ing as well as low surface specific humidity combine to

result in large values of CIN. This can reduce convection

and precipitation, leading to a deficit of summertime

rainfall in Texas. The regression model for PRCP in-

dicates that about 54% of the interannual variation in

precipitation is explained by (Tlt 2 Td). In this section,

we will investigate which local variables are tightly linked

with Td and what processes control them in terms of

modulating the convective instability, mainly through

CIN. Factors and pathways controlling Tlt that represents

free-tropospheric processes will be examined in Part II.

Table 5 shows the relationships between Td and several

surface variables (SM, SH, LH, and Ts) and tropospheric

variables (ADV, DIV, MFD, and OMG). While Td has a

moderate (OMG) and weak (DIV, ADV, and MDF) re-

lationship with tropospheric variables, it is strongly cor-

related with the surface variables. The correlation of Td

FIG. 4. Schematic illustrating the correlation coefficients of

(a) CIN, (b) CAPE, and (c) PW with RD, PI, and PRCP.
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with the surface variables is caused primarily by modu-

lation of SM (Betts et al. 1996a).

There are three processes by which SM can affect Td

through changing the surface heat fluxes (Eltahir 1998).

With an ample supply of soil moisture and an associ-

ated low Bowen ratio, surface evaporation LH is en-

hanced, which accompanies an increase of Td (direct

effect through water budget balance). As SH decreases,

reduced mixing of surface air with dry low-tropospheric

air in the PBL keeps Td from dropping substantially (in-

direct effect through energy budget balance). Soil mois-

ture also maintains the greenness of plants, thereby

decreasing the albedo and increasing the fraction of ab-

sorbed solar radiation (indirect effect through radiation

balance). All three effects result in an increase in Td

when rainfall enhances SM, which is consistent with the

high correlation coefficients between Td and SH and be-

tween Td and LH given in Table 5. While observations of

soil moisture are limited spatially and temporally, Pal and

Eltahir (2001) found critical impacts by soil moisture on

the energy and water budgets using a regional climate

model.

In Table 6, the correlations between Ts with SM are

not as tight as those between Td and SM (T 5 21.31, p 5

0.20), which implies the likely existence of other im-

portant factors controlling the monthly mean surface

temperature, such as cloud effects and feedback (Stephens

and Webster 1981; Woodhouse and Overpeck 1998;

Bony et al. 2006), in addition to soil moisture. One of

these factors is the entrainment of free-atmospheric air

into the PBL, as discussed in the previous section: 80%

of the variation in Ts is explained by Tlt and SH. Here,

ue is least correlated with soil moisture, presumably due

to the opposing influences of Ts and Td associated with

SM on ue, so that it is poorly correlated with PRCP (r 5

0.21, p 5 0.14). Similar results were found by Findell and

Eltahir (1999), who examined physical pathways linking

soil moisture to subsequent rainfall in Illinois during the

summer. Our result using reanalysis data in Texas are

consistent with theirs using observational data from Il-

linois. (Hereafter, ‘‘surface variables’’ will refer to SH,

LH, Td, Ts, and DP, excluding ue.)

Since OMG does not influence Td directly, correla-

tions in Tables 5 and 6 suggest that surface processes

associated with soil moisture are the primary modula-

tors of Td. Tight relationships among the surface vari-

ables likely originate from the strong interactions between

the surface and the PBL through feedbacks between soil

moisture and precipitation (Betts et al. 1996a; Koster et al.

2004). The large direct correlation between PRCP and SM

(r 5 0.63, p , 0.0001) suggests nothing about the causality

between the two, but precipitation has an obvious direct

physical influence on soil moisture. In Table 6, the relation

among the surface variables with PRCP resembles that

with SM, but with smaller correlation coefficients (the

smallness being significant at the 99% level), except that

the correlation coefficient of Ts with PRCP is as large as

that with SM. These features indicate an important in-

fluence of rainfall on the surface variables through con-

trolling SM on a monthly time scale.

While we have discussed so far how rainfall influences

the surface variables through changing soil moisture

content on a monthly time scale, are these correlations

between precipitation and the surface variables entirely

TABLE 2. Results of linear regression analysis on CIN showing the adjusted coefficient of determination (Ra
2), coefficients of each

independent variable (b0, b1, and b2), multicollinearity (VIF), and p value. In the p value, boldface entries are statistically significant at the

99% level.

Independent Ra
2 b0 b1 b2 VIF p value

Ts 0.630 2982.4 46.7 N/A N/A ,0.0001

Td 0.580 1156.7 244.2 N/A N/A ,0.0001

Tlt 0.238 258.7 37.7 N/A N/A 0.0001
(Ts 2 Td) 0.847 33.6 31.5 N/A N/A ,0.0001

(Ts 1 Td) 20.180 281.3 0.9 N/A N/A 0.9051

(Tlt 2 Td) 0.951 774.2 48.5 N/A N/A ,0.0001

Ts, Td 0.845 250.2 33.4 229.8 1.23 ,0.0001/,0.0001

Td, Tlt 0.951 771.2 249.2 47.1 1.02 ,0.0001/,0.0001

(Ts 2 Td), Td 0.845 250.2 33.4 3.5 3.61 ,0.0001/0.5468

(Ts 2 Td), Tlt 0.884 2108.2 29.3 16.1 1.21 ,0.0001/0.0001
(Tlt 2 Td), Ts 0.951 840.3 50.5 22.8 3.24 ,0.0001/0.3691

TABLE 3. Correlations among CIN and surface variables for July

mean values. Values in boldface are significant at the 99% confi-

dence level.

CIN Td Ts Tlt SH

Td 20.77

Ts 0.80 20.43

Tlt 0.49 0.14 0.71
SH 0.80 20.85 0.69 0.20
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due to the responses of soil moisture to rainfall? Al-

though Koster et al. (2004) pointed out that the impacts

of SM on precipitation are much weaker than the other

direction of causality, the existence of an impact of soil

moisture on precipitation is suggested implicitly in the

correlation coefficients between PRCP, SM, and CIN

represented in Fig. 5. First, it is assumed that SM affects

CIN, causing the correlation coefficient of 20.85 ( p ,

.0001), which is supported by the fact that Td is the most

critical parameter for CIN. Then, if PRCP were to in-

fluence CIN through SM and the surface variables without

a feedback, the magnitude of the correlation coefficient of

PRCP with CIN (r 5 20.75, p , .0001) would be less than

that with SM (r 5 0.63, p , .0001), but it is instead sub-

stantially larger (T 5 2.3, p 5 0.025). Indeed, the first-

order partial correlation between PRCP and SM while

controlling for CIN is very small (r 5 0.01, p 5 0.94),

consistent with PRCP affecting SM over a period of sev-

eral months while SM affects PRCP through CIN on an

intramonth time scale. In summary, there seems to be a

direct connection between PRCP and CIN. CIN, in turn,

is greatly influenced by the surface thermodynamic char-

acteristics that are controlled by soil moisture and ante-

cedent precipitation.

Many studies, mostly model based, have investigated

the positive feedback of soil moisture on subsequent

rainfall (Rowntree and Bolton 1983; Mintz 1984; Oglesby

1991; Findell and Eltahir 1999; Pal and Eltahir 2001;

Koster et al. 2004; Guo et al. 2006; Zhang et al. 2008).

Since moisture availability is sensitive to not only surface

evaporation but also moisture flux divergence, the re-

sponse of precipitation to soil wetness varies by location

and season. Sud and Fennessy (1984) and Sud and Smith

(1985) found that over semiarid regions in their GCM

model, notably India, an increased convergence of mois-

ture produced by enhanced sensible heating in the

planetary boundary layer was sufficient to compensate

for the moisture deficit caused by the reduced evapora-

tion resulting from dry soil. However, important feed-

backs of soil moisture on maintaining warm season

droughts in the central United States have been exten-

sively documented in a number of studies (Namias 1982;

Lyon and Dole 1995; Trenberth and Cuillemot 1996;

Hong and Kalnay 2002; Sud et al. 2003; Schubert et al.

2004). In particular, Lyon and Dole (1995) found that de-

creasing trends in both precipitation and evaporation oc-

curred despite the fact that an anomalous positive moisture

flux convergence occurred over the drought region in the

later months of the 1988 drought. Likewise, we find that

the surface dewpoint is correlated much more strongly

with soil moisture than with moisture flux divergence, in-

dicating that a reduction in soil moisture plays a critical

role in maintaining warm season droughts in Texas.

Because moisture flux convergence is a secondary in-

fluence on monthly summertime precipitation in Texas,

no attempt has been made here to separately consider

individual processes contributing to moisture flux con-

vergence. Others have found that the nocturnal low-level

jet (LLJ) and associated moisture flux convergence, as

represented by the reanalysis data, tend to enhance deep

convection and precipitation in the Great Plains during

warm seasons (Higgins et al. 1997). The lack of impor-

tance of the moisture flux convergence in Texas may be

due to the fact that Texas is south of the climatological

nocturnal LLJ maximum, so an enhanced LLJ is associ-

ated with the competing effects of low-level divergence

and enhanced moisture transport.

CIN has not previously been identified as the primary

pathway by which soil moisture influences precipitation in

Texas or in any other region. Most studies of the possible

dependences of precipitation on soil moisture are model

based, and different models are inconsistent in their

representations of important parameterized processes

by which soil moisture affects convection (Dirmeyer et al.

2006; Mo et al. 2006). Rarely have such studies con-

sidered convective inhibition explicitly. Hong and Pan

(2000) noted that increased soil moisture simultaneously

increased CAPE and decreased CIN over the central

United States in summer, but did not attempt to assess

the relative importance of the two effects. Similarly,

Schär et al. (1999) found an increase in the level of free

TABLE 4. Adjusted coefficient of determination (Ra
2) of re-

gression models on Ts employing Tlt and SH as independent

variable(s).

Independent variable Ra
2

Tlt 0.489

SH 0.463

Tlt, SH 0.801

TABLE 5. Correlations between surface dewpoint temperature and various surface and tropospheric variables.

Surface variables Tropospheric variables

SM SH LH Ts ADV DIV MFD OMG

r 0.82 20.85 0.85 20.44 0.24 20.35 20.20 20.47

p value ,0.0001 ,0.0001 ,0.0001 0.0009 0.08 0.01 0.16 0.0004
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convection to be one of several effects of decreased soil

moisture favoring reduced precipitation over Europe in

summer. Collini et al. (2008) speculated that the effects of

decreased soil moisture on CIN were more important

than its effects on CAPE for reducing precipitation dur-

ing summer over southern Amazonia and the Brazilian

highlands. Other modeling studies have not looked at

CIN explicitly, but have instead focused on aspects such

as mixed-layer equivalent potential temperature (e.g., Pal

and Eltahir 2001). There have been few observational

studies, as noted by Guo et al. (2006) and Zhang et al.

(2008). Of these, it seems that only a single case study

analysis has considered the interaction between soil

moisture and CIN. Taylor et al. (2003) found that the

effects of soil moisture on CIN on 28 August 2000 were

the key factor controlling the presence or absence of

moist convection during the following 2 days along a

transect of the West African Sahel.

To summarize, high correlations among SM and most

surface variables in Table 6 emphasize the strong land–

atmosphere interaction in Texas in summertime. As pre-

viously shown, precipitation affects soil moisture, and the

latter plays an important role in controlling the surface

variables and CIN by acting like a reservoir of water. By

modulating the surface variables (especially Td) and

CIN, it is likely that soil moisture in turn feeds back on

precipitation through an increase of Td and a decrease

of CIN. These interactions result in strong links of

precipitation with CIN as well as with soil moisture.

5. Summary and conclusions

Texas experiences warm season drought often, but

predictability on monthly to seasonal time scales is very

low. This study examined the modulation by convective

instability of summertime precipitation in Texas and the

important processes controlling convective instability.

These processes were found to be typical features of

droughts in the central United States, and they act by

changing the thermodynamic structure and convective

instability of the atmosphere. In particular, this study

revealed how land–atmosphere feedbacks directly affect

convective instability and its associated precipitation on

a monthly time scale. The role of tropospheric processes

will be explored in Part II.

It was found that monthly mean precipitation is mod-

ified mainly by CIN rather than by CAPE or by pre-

cipitable water. This is because, despite large CAPE and

moisture availability, convection is inhibited when CIN

is large since CIN is a measure of the amount of energy

needed to initiate convection. While dry (wet) months are

caused by both fewer (more) rain days and lower (higher)

intensity, CIN rather than CAPE or PW predominantly

controls both the number of rain days and the intensity.

Stronger correlation of CIN with the number of rain days

(20.79) than with intensity (20.55) suggests that CIN

modifies the number of rain days and the number of rain

days affects the monthly precipitation.

Linear regression analysis revealed that warming at

700 hPa (high Tlt) and surface dryness (low Td) com-

bine to result in large CIN, leading to a precipitation

deficit on monthly time scales. This is a novel finding,

because most previous drought studies have emphasized

only low relative humidity (large dewpoint depression) at

the surface as causing a reduction in rainfall. The surface

temperature, Ts, is tightly correlated with CIN and pre-

cipitation and is affected by both the free-atmospheric

temperature at 700 hPa (Tlt) through entrainment and by

the surface sensible heat flux. Therefore, the variability of

CIN is explained mostly by Td and the rest is explained by

Tlt, rather than by Ts. The statistical independence of Tlt

from Td suggests that different processes contribute to

warming at 700 hPa and to surface dryness, resulting in

large CIN values in dry months.

The strong correlations among the precipitation, sur-

face variables, and soil moisture imply that the ther-

modynamic surface variables such as Td are closely

connected with precipitation processes. Note that the

relation of the surface variables with PRCP resembles

that with SM, with smaller correlation coefficients. This

feature suggests that precipitation influences the surface

variables through changing soil moisture. However, this

study also suggests that the tight linkage between pre-

cipitation and soil moisture is not only due to the im-

pacts of precipitation on soil moisture but is also due to

the feedbacks of soil moisture on precipitation.

FIG. 5. Schematic diagram representing correlation coefficients

between PRCP, SM, and CIN.

TABLE 6. Correlations between surface variables and July mean

precipitation and soil moisture. All boldface values are significant

at the 99% level.

Td SH LH Ts DP ue

SM 0.82 20.94 0.91 20.72 20.91 0.58

PRCP 0.49 20.56 0.47 20.75 20.73 0.21
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This study emphasizes the important role of soil mois-

ture in determining the precipitation deficit. One may

expect that wetter soil tends to increase the moist static

energy in the PBL and then increase the CAPE and

rainfall (Pal and Eltahir 2001). However, it was found

in this study that soil moisture affects rainfall through

modulating the surface dewpoint and CIN rather than

CAPE or PW. Although this study focused on the con-

vective precipitation processes in Texas, the impacts of

soil moisture prevail not only in the south-central United

States (Koster et al. 2004) but also in the northern Great

Plains and Midwest and in other locations around the

world (Atlas et al. 1993; Lyon and Dole 1995; Trenberth

and Cuillemot 1996; Pal and Eltahir 2001; Sud et al. 2003;

Guo et al. 2006; Zhang et al. 2008). Pal and Eltahir

(2001) reported that an asymmetry exists in the soil

moisture–precipitation feedback in the midwestern

United States, which is stronger in the case of drier soil

moisture rather than that of wetter soil moisture. The

strong feedbacks between precipitation and soil may

make these regions vulnerable to warm season droughts.

Therefore, the assimilation of unbiased observations of

soil moisture and precise representations of soil moisture–

rainfall feedbacks in models are necessary to enhance our

prediction of the warm season precipitation deficit and

drought in the south-central and midwestern United States.

Because soil moisture is a feedback mechanism, it

does not initiate droughts. Other mechanisms capable of

initiating drought in Texas will be considered in Part II.
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