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THE CONVERGENCE ALMOST EVERIV^SRE
OF LEGENDRE  SERIES

HARRY pollard

Abstract. It is proved that the Legendre series of p." Lv

function converges almost everywhere, provided 4/3</»<oo.

The result fails if 1 ;S/><4/3.

It is a classical theorem of Marcel Riesz [1] that the Fourier feries of an

V function converges to it in the/>th mean, provided that/? exceeds 1. A

similar result is true for Legendre series, provided that 4/3<f<4 [2], but

not otherwise [3].

Recently, R A. Hunt [4], extending the wi,rk of Carleson, h?s shown

that if/e V\p> 1, then its Fourier series com erges p.p. By combining his

theorem with standard equiconvergence theorems we can pro^e the first

part of the following result.

Theorem. Iff e L"for some pin the range 4/3</><oo, then its Legendre

series converges p.p. The result fails if 1 :i/><4/3.

It is interesting to contrast the range 4/3</><oo with the range 4/3<

p<4 of mean convergence.

The second part of the theorem follows fron: the fact that the Legendre

series of (1— x) 3l* diverges everywhere [5, p. 249]. Incidentally, I do not

know what happens if />=4/3; analogy with the Fourier case suggests

failure of the result there.

We turn to the first part of the theorem, and assume that 4/3</>_^2.

This is clearly no handicap, for if/e V for some/7 greater than 2 it also

belongs to I?. Because/e Lv for some/j greater than 4/3, it follows from

Holder's inequality that

(1) I'd - xTm \f(x)\ dx < 00.
J-i

This enables us to invoke an equiconvergence theorem of Szegö [5, p. 239]

which says this: let sn(x) denote the partial sums of the Legendre series of
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f(x), and let Sn(6) denote the partial sums of the cosine series of

(2) g(0) = (sin ö)1/2/(cos 0),       0 = 0 < 77.

Then, under condition (1),

(3) lim [s„(cos 0) - (sin 0)"1/2 S„(0)] = 0,       0 < 0 < it.
71-»CO

We shall show shortly that g(0) e L"(0, n) for some q greater than 1. Then,

according to Hunt's theorem [4],

limS„(0) = g(0)   p.p.
n-* ?i

From this and (3) we conclude  that  lim„^a ^(cos 0)=/(cos 0) p.p.

This establishes the theorem.

It remains to show that g(0), defined by (2), belongs to L" for some q

greater than 1. Writing w=cos 0, this means that we are to show that

(4) 1(1 - u2)" \f(u)\" du < oo

where ß—q\A— 1/2. We shall choose

(5) q = (\¡2)(4 + p)¡(4-p).

Because 4/3</;:S"2 it is easy to verify that l<q<p. Now let x—pjq, a' =

pl(p-q). According to Holder's inequality the integral in (4) is bounded by

(I .u-f du)    j j   |f(«)|"d«)
u i /    w-i )

We are done if pa'> — 1, i.e. if

(6) (l!2-qi4)(pj{p-q)) < I.

To prove (6) start with /?>4/3. According to (5) this fact can be written

q(4—p)<.2p. Divide by 4/> to obtain successively

«/(l//)  - 1/4) < 1/2,        1/2 - q\4 < 1 - qlp - (p - q)jp,

from which (6) follows.

Similar results can be obtained for Jacobi series using the general form of

Szegö's equiconvergence theorem [5, p. 239] and his counterexamples

[5, p. 249]. Corresponding results for 1 aguerre and Herrnite series are

given in [6].
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