
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

1-1-1990

The Convergence of Mildly Context-Sensitive Grammar The Convergence of Mildly Context-Sensitive Grammar

Formalisms Formalisms

Aravind K. Joshi
University of Pennsylvania, joshi@cis.upenn.edu

K. Vijay Shanker
University of Delaware

David Weir
Northwestern University

Follow this and additional works at: https://repository.upenn.edu/cis_reports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation

Aravind K. Joshi, K. Vijay Shanker, and David Weir, "The Convergence of Mildly Context-Sensitive Grammar

Formalisms", . January 1990.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-01.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/539
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F539&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_reports%2F539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/539
mailto:repository@pobox.upenn.edu

The Convergence of Mildly Context-Sensitive Grammar Formalisms The Convergence of Mildly Context-Sensitive Grammar Formalisms

Abstract Abstract
Investigations of classes of grammars that are nontransformational and at the same time highly
constrained are of interest both linguistically and mathematically. Context-free grammars (CFG) obviously
form such a class. CFGs are not adequate (both weakly and strongly) to characterize some aspects of
language structure. Thus how much more power beyond CFG is necessary to describe these phenomena
is an important question. Based on certain properties of tree adjoining grammars (TAG) an approximate
characterization of class of grammars, mildly context-sensitive grammars (MCSG), has been proposed
earlier. In this paper, we have described the relationship between several different grammar formalisms,
all of which belong to MCSG. In particular, we have shown that head grammars (HG), combinatory
categorial grammars (CCG), and linear indexed grammars (LIG) and TAG are all weakly equivalent. These
formalisms are all distinct from each other at least in the following aspects: (a) the formal objects and
operations in each formalism, (b) the domain of locality over which dependencies are specified, (c) the
degree to which recursion and the domain of dependencies are factored, and (d) the linguistic insights
that are captured in the formal objects and operations in each formalism. A deeper understanding of this
convergence is obtained by comparing these formalisms at the level of the derivation structures in each
formalism. We have described a formalism, the linear context-free rewriting system (LCFR), as a first
attempt to capture the closeness of the derivation structures of these formalisms. LCFRs thus make the
notion of MCSGs more precise. We have shown that LCFRs are equivalent to muticomponent tree
adjoining grammars (MCTAGs), and also briefly discussed some variants of TAGs, lexicalized TAGs,
feature structure based TAGs, and TAGs in which local domination and linear precedence are factored
TAG(LD/LP).

Disciplines Disciplines
Computer Sciences

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-01.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/539

https://repository.upenn.edu/cis_reports/539

The Convergence Of Mildly

Context-Sensitive
Grammar Formalisms

MS-CIS-90-01
LINC LAB 161

Aravind K. Joshi

K. Vijay Shanker
David Weir

Department of Computer and Information Science

School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

January 1990

Acknowledgements:
This research was supported in part by DARPA grant

N00014-85-K-0018, NSF grants MCS-8219196-CER,
IRI84-10413-A02, US Army grants DAA29-84-K-0061,

DAA29-84-9-0027 and Advanced Technology Center
(PA) grant #309.

THE CONVERGENCE OF MILDLY CONTEXT-SENSITIVE

GRAMMAR FORMALISMS*

Aravind K. ~ o s h i t K. vijay-Shankert David Weirs

November 29, 1989

'This paper is a revised version of a paper presented by the first author a t the conference on "The Processing

of Linguistic Structure" sponsored by the Systems Development Foundation held at Santa Cruz, CA, January 1987.

We want to thank Jean Gallier, Tony Kroch, Mitch Marcus, Remo Pareschi, Yves Schabes, Mark Steedman, Ramesh

Subrahmanyam, and Bonnie Webber for valuable discussion about several aspects of this paper. This work was

partially supported by NSF grant IRI84-10413 A02, US Army grant DAA6-29-84K-0061, and DARPA grant N0014-

85-KO01 8, and Advanced Technology Center (PA) grant #309.

+ ~ e ~ a r t m e n t of Computer and Information Science, Room 555, Moore School, University of Pennsylvania,

Philadelphia, PA 19104

$Department of Computer Science, University of Delaware, 103 Smith Hall, Newark, DE 19716

§Department of Electrical Engineering and Computer Science, The Technological Institut,e, Northwestern Univer-

sity, Evanston, IL 60208

1

Abs t r ac t

Investigations of classes of grammars that are nontransformational and at the same time

highly constrained are of interest both linguistically and mathematically. Context-free grammars

(CFG) obviously form such a class. CFGs are not adequate (both weakly and strongly) to

characterize some aspects of language structure. Thus how much more power beyond CFG is

necessary t o describe these phenomena is an important question. Based on certain properties of

tree adjoining grammars (TAG) an approximate characterization of class of grammars, mildly

context-sensitive grammars (MCSG), has been proposed earlier. In this paper, we have described

the relationship between several different grammar formalisms, all of which belong t o MCSG. In

particular, we have shown that head grammars (HG), combinatory categorial grammars (CCG),

and linear indexed grammars (LIG) and TAG are all weakly equivalent. These formalisms are all

distinct from each other at least in the following aspects: (a) the formal objects and operations

in each formalism, (b) the domain of locality over which dependencies are specified, (c) the

degree t o which recursion and the domain of dependencies are factored, and (d) the linguistic

insights that are captured in the formal objects and operations in each formalism. A deeper

understanding of this convergence is obtained by comparing these formalisms at the level of the

derivation structures in each formalism. We have described a formalism, the linear context-free

rewriting system (LCFR), as a first attempt to capture the closeness of the derivation structures

of these formalisms. LCFRs thus make the notion of MCSGs more precise. We have shown that

LCFRs are equivalent t o muticomponent tree adjoining grammars (MCTAGs), and also briefly

discussed some variants of TAGs, lexicalized TAGs, feature structure based TAGs, and TAGs

in which local domination and linear precedence are factored TAG(LD/LP).

1 INTRODUCTION

Since the late 19707s, there has been vigorous activity in constructing highly constrained gram-

matical systems by eliminating the transformational component either totally or ~ a r t i a l l ~ . This

was caused by the increasing recognition of the fact that the entire range of dependencies that the

transformational grammars in their various incarnations have tried to account for can be captured

satisfactorily by classes of grammars that are nontransformational, and at the same time are highly

in terms of the classes of grammars and languages they define. Peters and Ritchie

(1969) showed that context-sensitive grammars (CSG) if used for analysis (and not for generation),

thus providing more descriptive power than context-free grammars (CFG), have the same weak

generative capacity as CFG. This result was generalized by Joshi and Levy (1978) to Boolean

combinations of contextual predicates and domination predicates.

In the early 19807s, Gazdar (1982) proposed a grammatical formalism (which later became

the GPSG formalism, Gazdar, Klein, Pullum, and Sag (1985)) whose weak generative capacity is

the same as the CFG, but which is adequate to describe various syntactic phenomena previously

described in transformational terms. Gazdar was careful to note that his results did not mean that

syntactic phenomena which required formal power beyond CFG did not not exist, his claim was that,

as far as the range of phenomena known at that time, CFGs seemed to be quite adequate. In the late

19807s, some clear examples of natural language phenomena were discovered that required formal

power beyond CFG e.g., Shieber (1984) and Culy (1984), for an argument from weak generative

capacity, and Bresnan, Kaplan, Peters, and Zaenen (1983)) for an argument from strong generative

capacity. Hence, the question of how much power beyond CFG is necessary to describe these

phenomena became important.

An extension of CFG was proposed by Pollard (1984)) called Head Grammars (HG), which

introduced some wrapping operations beyond the concatenation operation in CFG. Some formal

properties of HG were investigated by Roach (1984). HGs like CFGs are string generating systems.

Joshi, Levy, and Takahashi (1975) introduced a grammatical formalism, called Tree Adjoining

Grammars (TAG), a tree generating system, and investigated some of their formal properties.

Joshi (1985) showed how TAGs factor recursion and the domain of dependencies in a novel way,

leading to 'localization' of dependencies, their long distance behavior following from the operation

of composition, called 'adjoining'. TAGs have more power than CFGs and this extra power is a

3

corollary of factorization of recursion and the domain of dependencies. This extra power appeared

to be adequate for the various phenomena requiring formal power more than CFG. The linguistic

significance of TAGs has been discussed in Joshi (1985), Kroch and Joshi (1985, 1986), Kroch

(1986), and Kroch and Santorini (1986). Based on the formal properties of TAGs, (Joshi (1985)),

proposed that the class of grammars that is necessary for describing natural languages might be

characterized as mildly context-sensitive grammars (MCSG, MCSL for the corresponding languages)

possessing at least the following properties: 1) context-free languages (CFL) are properly contained

in MCSL; 2) languages in MCSL can be parsed in polynomial time; 3) MCSGs capture only certain

kinds of dependencies, e.g., nested dependencies and certain limited kinds of crossing dependencies

(e.g., in the subordinate clause constructions in Dutch or some variations of them, but perhaps not

in the so-called MIX (or Bach) language, which consists of equal numbers of a's, b7s, and c7s in

any order 4) languages in MCSL have constant growth property, i.e., if the strings of a language

are arranged in increasing order of length then two consecutive lengths do not differ by arbitrarily

large amounts. In fact, any given length can be described as a linear combination of a finite set of

fixed lengths. This property is slightly weaker than the property of semilinearity. It is intended to

be an approximate characterization of the linguistic intuition that sentences of a natural language

are built from a finite set of clauses of bounded structure using certain simple linear operations.

The characterization of this intuition by the constant growth property is approximate because it

refers to the growth of strings and not to the growth of structures.

It should be noted that these properties do not precisely define MCSG but rather give only a

rough characterization, as the properties are only necessary conditions, and further some of the

properties are properties of structural descriptions rather than the languages, hence, difficult to

characterize precisely. This characterization of MCSG, obviously motivated by the formal properties

of TAGs, would have remained only as a remark if it were not for some subsequent developments.

In response to a talk by Geoffrey Pullum at COLING 84, Joshi pointed out that all the known

formal properties of HGs appeared to be exactly the same as those of TAGs. Later, in 1986, it was

shown that with a slight modification of HGs (which is necessary as the wrapping operations are

undefined for null strings), HGs are equivalent to TAGs. (Vijay-Shanker, Weir, and Joshi (1986)

and Weir, Vijay-Shanker and Joshi (1986)).

Since then, two other formalisms were also shown to be equivalent to TAGs. These are Linear

Indexed Grammars (LIG), (Gazdar (1985)) and Combinatorial Categorial Grammars (CCG), (as

developed by Steedman in some of his recent papers (1987, 1988)). Thus four quite different

formalisms have been shown to be equivalent and thus belong to MCSG. These formalisms are

different from each other in the sense that the formal objects and operations they employ are quite

distinct and they are motivated by attempts to capture different aspects of language structure.

Each of these formalisms have a domain of locality which is larger than that specifiable in a CFG.

By a domain of locality we mean the elementary structures of a formalism over which dependencies

such as agreement, subcategorization, filler-gap, etc. can be specified. However, it is not the

case that each one of these formalisms extends the domain of locality to the same extent. TAGs

extend the domain of locality far enough such that recursion is factored away from the domain of

dependencies.

When two formalisms based on apparently completely different ideas turn out to be equivalent,

there is a possibility that we are getting a handle on some fundamental properties of the objects

that these formalisms were designed to describe. When more than two distinct formalisms turn out

to be equivalent, the possibility is even greater. In fact, a deeper understanding of the relationships

between these formalisms is obtained if we look at the derivation structures (related to structural

descriptions) provided by each formalism. A first attempt to capture the closeness of some of

these formalisms at the level of derivation structures resulted in the Linear Context-Free Rewriting

Systems (LCFR) described in Section 6.

The plan for the rest of the paper is as follows. In Section 2, we have presented an introduction

to TAGs including some simple examples. We have a little bit more detailed discussion of TAGs

as the theory of TAGs has played a key role in our investigations of the relationships between

different grammatical formalisms. In fact, most of the equivalences described in this paper have

been established via TAGs. In this section, we have also described an extension of TAGs, called

Multicomponent TAGs (MCTAG), first discussed in Joshi, Levy, and Takahashi (1975) and later

precisely defined in Weir (1988). MCTAGs also belong to MCSGs and are in fact equivalent to

LCFRs, discussed in Section 6.

In Section 3, we have briefly described Head Grammars (HG) and shown their equivalence to

TAG. In Section 4, we shown the equivalence of Linear Indexed Grammars (LIG) t o TAG, and in

Section 5, the equivalence of Combinatory Categorial Grammars (CCG) and LIG and thereby, to

TAG and HG. In Section 6, we have presented Linear Context-Free Rewriting Systems (LCFR) the

motivation of which was discussed earlier.

In Section 7, we have briefly presented Feature-Structure based TAGs (FTAGs), where adjunc-

tion becomes function application and unification. FTAGs, in general, are unconstrained; however,

if the feature-structures associated with each node in an elementary tree are bounded, then this

restricted FTAG (RFTAG) is equivalent to TAG. This restriction on feature-structures is similar

to that in GPSG. However, since TAGs have an extended domain of locality, RFTAGs (equivalent

to TAGs) are more powerful than GPSGs (equivalent to CFGs).

In Section 8, we consider a variant of TAGs, the lexicalized TAGs. Although adjoining can

simulate substitution, by adding the operation of substitution explicitly, we obtain lexicalized TAGs.

Such a lexicalization was implicit in TAGs in the sense that all the elementary trees need not be

explicitly stated. However, the framework of lexicalized TAGs brings this out explicitly. Lexicalized

TAGs are equivalent to TAGs. The relationship between TAGs and CCGs also becomes clear in

the framework of lexicalized TAGs.

Finally, in Section 9, we consider a generalization of TAGs, called TAG (LD/LP), which de-

couples (local) domination for linear precedence, and allows a treatment of complex word-order

patterns including those that exhibit long distance behavior similar to the filler-gap dependencies,

but different in the sense that 'movement' is not to a grammatically defined position. The languages

of TAGs are obviously contained in TAGs (LD/LP). It is not known yet whether the containment

is proper.

Figure 1 summarizes all these relationships. The nodes are labelled by the grammar formalisms.

The containments shown are, of course, with respect to the corresponding languages. Two for-

malisms outside of MCSG are also shown in the figure.

In this paper, we have presented our results informally, giving examples to illustrate the ideas in

the proofs. In a subsequent paper, we will present more technical details and some detailed proofs.

. IG

, LFG

MCTAG

A. - aB B properly contains A

A. p?. eB B contains A, proper containment not known

A. - eB A = B

[The containments are with respect to the languages].

CFG(GPSG): Context-free grammars (Generalized phrase structure grammars)

TAG: Tree adjoining grammars

HG: Head grammars

LIG: Linear indexed grammars

CCG: Combinatory categorial grammars

LCFR: Linear context-free rewriting systems

TAG(LD/LP): TAG (Local domination/Linear precedence)

IG: Indexed grammars

LFG: Lexical functional grammars

Figure 1: Mildly Context-Sensitive Grammar Formalisms (MCSG)

7

2 TREE ADJOINING GRAMMAR FORMALISM

A tree adjoining grammar (TAG) G = (1,A) where I and A are finite sets of elementary trees. The

trees in I will be called the initial trees and the trees in A, the auxiliary trees. A tree a is an initial

tree if it is of the form in (I):

a = s

"t terminals

That is, the root node of a is labelled S and the frontier nodes are all non-terminals. A tree /3

is an auxiliary tree if it is of the form in (2):

terminals terminals

That is, the root node of /3 is labelled X where X is a non-terminal and the frontier nodes are all

terminals except one which is labelled X, the same label as that of the root. The node labelled X

on the frontier will be called the foot node of /3. The internal nodes are non-terminals. The initial

and the auxiliary trees are not constrained in any manner other than as indicated above. The idea,

however, is that both the initial and auxiliary trees will be minimal in some sense. An initial tree

will correspond to a minimal sentential tree (i.e., without recursing on any non-terminal) and an

auxiliary tree, with root and foot node labelled X, will correspond to a minimal recursive structure

that must be brought into the derivation, if one recurses on X.

We will now define a composition operation called adjoining (or adjunction), which composes

an auxiliary tree P with a tree 7. Let y be a tree containing a node n bearing the label X and let

/5' be an auxiliary tree whose root node is also labelled X. (Note that /? must have, by definition,

a node (and only one such) labelled X on the frontier.) Then the adjunction of P to y at node n

will be the tree y' that results when the following operations are carried out: 1) The sub-tree of y

8

dominated by n, call it t , is excised; 2) The auxiliary tree P is attached at n and its root node is

identified with n; 3) The sub-tree t is attached to the foot node of ,Ll and the root node n of t is

identified with the foot node of P.

Figure 2 below illustrates this operation.

without
t

Figure 2: Adjunction

The intuition underlying the adjoining operation is a simple one but the operation is distinct

from other operations on trees that have been discussed in the literature. In particular, we want

to emphasize that adjoining is not a substitution operation in the usual sense.

Adjunction can, however, simulate substitution. A variant of TAG (called lexicalized TAG)

which uses adjunction and also substitution explicitly is discussed in Section 8. Lexicalized TAGs

are equivalent to TAGs. For the rest of the paper we will only consider adjunction as defined above.

The definition of adjunction allows more complex constraints to be placed on adjoining. Associ-

ated with each node is a selective adjoining (SA) constraint specifying the subset of auxiliary trees

which can be adjoined at this node. Trees can only be included in the SA constraint associated

with a particular node if their root and foot are labeled with the same nonterminal that labels the

node. A mechanism is provided for ensuring that adjunction is performed at a node. This is done

by associating an obligatory adjoining (OA) constraint with that node.

We should note that the SA and OA constraints are more than mere notational convenience,

9

since they increase the generative power of the formalism. If the SA constraint specifies an empty

subset of trees, then adjunction cannot be performed at this node-we call this constraint the null

adjoining (NA) constraint.

(Later in Section 7, we will describe a Feature Structure Based TAG (FTAG). In this framework,

adjoining becomes function application and unification, and the constraints described above are

implicit in the feature-structures and the success or failure of unification during composition. A

restricted version of FTAG, (RFTAG), described in Section 7, is equivalent to TAG. For the rest

of the paper, we will consider the constraints as describe above).

Let us now define two auxiliary notions, the tree set of a TAG grammar and the string language

of a TAG. Suppose G=(I,A) is a TAG with a finite set of initial trees, a finite set of auxiliary trees,

and the adjoining operation, as above. Then we define the tree set of a TAG G, T(G), to be the set

of all trees derived in G starting from initial trees in I. We further define the string language (or

language) of G to be the set of all terminal strings of the trees in T(G). The relationship between

TAGs, context-free grammars, and the corresponding string languages can then be summarized in

the following theorems Joshi, Levy, and Takahashi (1975), Joshi (1985): 1) For every context-free

grammar, GI, there is a TAG, G, which is both weakly and strongly equivalent to GI. In other

words, L(G) = (G') and T(G) = T(Gf); 2) There exists a non-empty set of TAG grammars GI

such that for every G E GI, L(G) is context-free but there is no CFG G' such that T(Gt) = T(G),

i.e., TAGs are capable of providing structural descriptions for context-free languages that are not

obtainable by a context-free grammar; 3) There exists a non-empty set of TAG grammars G2 such

that for every G E Gz, L(G) is strictly context sensitive; that is, there is no CFG grammar GI

such that L(G) = L(Gt), i.e., TAGs are strictly more powerful than CFGs; 4) There exist context-

sensitive languages for which there are no equivalent TAGs, i.e., TAGs are properly contained in

context-sensitive languages; 5) TAGs are semi-linear and hence have the constant growth property;

6) TAGs can capture only certain limited kinds of crossed dependencies. This follows from the

nature of the automaton that corresponds to a TAG, called an embedded push-down automaton

(EPDA), which is a generalization of the push-down automaton (PDA); 7) TAGs can be parsed in

polynomial time, in fact, with a time based I<n6, where n is the length of the string and K is a

constant depending on the grammar.

2.1 Some examples of formal languages

Example 2.1 Let G = (I, A) be a TAG with local constraints where

A: p = S N A

b S N A c

There are no constraints in al. In P no auxiliary trees are adjoinable at the root node and the

foot node and for the center S node there are no constraints.

Starting with a1 and adjoining ,8 to a1 at the root node we obtain

Adjoining /3 to the center S node (the only node at which adjunction can occur) we have

It is easy to see that G generates the string language

Example 2.2 Let GI be a TAG similar to G in Example 2.1, except that in GI there

are no constaints in /3. G1 generates

L = {wecn/n 1 0, # a's in w = # b's in w = n,

and for any proper initial string u

of w, # a's in u 2 # b's in u.)

This language is closely related to the context-sensitive language discussed in Higginbotham

(1984)' which can also be shown to be a TAG language.

Example 2.3 Let G = (I, A) be a TAG with local constraints where

G generates the language

L = {wewlw E {a, b)*)

Example 2.4 Let G' be a TAG which is the same as G in Example 2.3 but without

any local constraints. The corresponding language is

L = {wewt/w, w' E {a,b)*,w = w' = 2n,

a's in w = # a's in wt = # b's

in w = # b's in w' = n)

This language is related to the Swiss-German example in Shieber (1984).

Example 2.5 Let G = (I, A) be a TAG with local constraints where

G generates

L = {anbnecndn/n > 1)

Note that i t can be shown that languages

L1 = {anbncndnen/n 2 1)

and

L2 = { W W W / W E { a , b } *)

cannot be generated by TAGS either with or without local constraints (Joshi 1985). Other languages

such as L' = {an2 (n 2 1) also cannot be generated by TAG. This is because the strings of a TAG

have the constant growth property.

2.2 Derivation in a TAG

We will not describe formally the notion of derivation in a TAG, however we will give an informal

discussion which will make the notion of derivation in TAG precise enough for our purpose. Ad-

joining is an operation defined on an elementary tree, say y, an auxiliary tree, say ,fl, and a node

14

(i.e., an address) in y, say n . Thus, every instance of adjunction is of the form "P is adjoined to

y at n," and this adjunction is always and only subject to the local constraints associated with

n. Although we very often speak of adjoining a tree t o a node in a complex structure, we do so

only for convenience. Strictly speaking, adjoining is always at a node in an elementary tree; and,

therefore, it is more precise to talk about adjoining at an address in an elementary tree. More

than one auxiliary tree can be adjoined to an elementary tree as long as each tree is adjoined at

a distinct node. After these auxiliary trees are adjoined to the elementary tree, only nodes in the

auxiliary trees are available for further adjunction. This precision in the definition of adjunction

will be necessary when we define multicomponent adjunction in Section 2.3 below.

Now suppose that a is an initial tree and that PI, pz,. . . are auxiliary trees in a TAG, G. Then

the derivation structure corresponding to the generation of a particular string in L(G) might look

as follows:

al is an initial tree. p3, ,Ds and Plo are adjoined at nodes n1, 722, and n3 respectively in a l ,

where n l , n2, and n3 are all distinct nodes. pl and p3 are adjoined to ,D3 at nodes ml and mz

respectively. Again, ml and m;! are distinct. p6 has no further adjunctions but P8 is adjoined to

Plo at node pl. Note that the derivation structure D implicitly characterizes the 'surface' tree that

is generated by it. (See Section 7 for the relationship of TAG and the unification formalism). In

this way the derivation structure can be seen as the basic formal object constructed in the course

of sentence. Associated with it will be two mappings, one to a surface syntactic tree and the other

15

to a semantic interpretation, as below. (We are not concerned with semantic interpretation in this

paper).

surface tree - derivation structure --t semantic interpretation

In a CFG, the derivation structure is the same as the surface structure. In a TAG this is not

the case. Several of the formalisms that we have shown equivalent are comparable at the level of

the derivation structures. Based on this observation in Section 6, we have discussed a framework

called Linear Context-Free Rewriting System (LCFR) which captures the commonality at the level

of derivation structures.

2.3 Multicomponent Tree Adjoining Grammars (MCTAG)

In Joshi, Levy, Takahashi (1975) a version of the adjoining operation is introduced under which,

instead of a single auxiliary tree, a set of such trees is adjoined to a given elementary tree. We define

the adjunction of such a set as the simultaneous adjunction of each of its component trees to a

distinct node (address) in an elementary tree. This adjunction can, of course, take place only if the

local constraints associated with each affected node of the elementary tree are satisfied. Consider,

for example, the following grammar G = (I, A):

pi is an auxiliary set consisting of the two trees ,Bll and P12. Here is a sample derivation in G:

yl above, it should be clear, is obtained by the adjunction of the components ,Bll and p12 of the

auxiliary set P1 to yo at the nodes nl and n2 respectively. In the current example, the set has

two component trees and pz has only one component. If every auxiliary tree set of a TAG has only

one component, we have a TAG as defined earlier. It can be shown that the number of components

in the auxiliary sets does not make any difference to the generative capacity i.e., both the weak

and strong (with respect to tree sets generated and not, of course, with respect t o the derivation

structures) generative capacities of multicomponent TAG are the same as that for TAG where each

auxiliary set has exactly one component. On the other hand, derived auxiliary sets can be defined

by adjoining an auxiliary set, say PI, to another auxiliary set, say p2, as follows. Each component

of pl is adjoined to one (and exactly one) component of p2 and all adjunctions are a t distinct nodes.

Note that since it is not required that each component of P1 adjoins to the same component of P2,

one component may adjoin to one component and another component to a different component of

Pz, i.e., adjunctions of components are not to the same component (elementary tree) of Dl, but

they are all adjunctions to the same auxiliary set. Thus, locality of adjoining can be defined in

two ways: (1) by requiring that all components of an auxiliary set adjoin to the same elementary

tree, (2) by requiring that all components of an auxiliary set adjoin to the same auxiliary set, not

necessarily to the same elementary tree. The first type of locality does not add to the generative

capacity of the MCTAG. The second type of locality does add to the weak generative capacity of

the MCTAG; however, the resulting class of languages still falls within the class of "mildly context

sensitive" languages. With the second type of locality an MCTAG can be defined for the language

L' = {anbnJn 2 1) such that the a's all hang from one path from the root node S and the b's

all hang from another path from the root node. Such a structural description cannot be provided

by TAG where each auxiliary set has exactly one component (see also Joshi (1985)). For further

details of MCTAGs, see Weir (1988). Weir (1988) has also shown that MCTAGs (with the second

definition of locality) are equivalent to LCFRs (see Section 6).

2.4 Some Linguistic Examples:

Example 2.6 Starting with the initial tree yl = a 1 and then adjoining P6 at the

indicated node (marked by *) in crl, we obtain 72.

Y1 = a1 = P, =

n NP ri
n A

DET N V NP COMP 2, S

the girl saw DET N

I
a

I
bird

I
NPi
n

NP
[+whl I

i v A NP

I
met

I
N

I
Bill

............. NP "..I.. vp

fiqa ul~,,,l,,,I,,, A ,,**'

I"

1, NP St
'(

NP

............... /"\ m..,l,,

"1

DET N I\ COMp , S 'at,,,,saw i DET A N

I I /\ ""'1. .,..,,,

NP VP
'1..,

the IN(,

I
the

I
bird

I
"1

[+whl
I

I /\ '1'.

'1, e i v
NP "I~,,

'a, I I 't,, '\I,,

I,
' 8 , ' 1

met N
' ,
I! I

I) -
'la,, I'

",
P 6

Bill ,,If

,,I'

IN'

'1,
'11

"*,,, ,,,*" I'
."........... u............................. ,,.1.'

N

I
the

I
bird

Example 2.7 Starting with the initial tree yl = as and adjoining P1 at the indicated

node in as we obtain 7 2 .

rl =a,= st * OA (P ~ , P ~ p 4)

I

A
NP

I A
PRO TO VP

A
V NP

I
invite

I
N

I
Mary

PRO to invite Mary

P 1 = sv

I

A
NP

I
N A
I

V NP S' NA

John
/ I

penua&d N

John persuaded Bill S'

I
invite

I
N

John persuaded Bill PRO to invite Mary..

Since the initial tree a 6 is not a root sentence, it must undergo an adjunction at its root node, for

example, by the auxiliary tree P1 as shown above. Thus, for a6 we have specified a local constraint

OA(P1, Pa, P4) for the root node, indicating that a6 must undergo an adjunction at the root node

by an auxiliary tree PI.

Example 2.8 Starting with the initial tree yl = a8 and adjoining ,B4 to a8 at the

indicated node in as , we obtain 7 2 .

I A
PRO TO VP

AUX NP VP

I I I
John persuade N

I
invite

I
e.

Who PRO to invite did John persuade Bill S'

i N I
h

V NP NA

I I I :\ \ John pasuade N

I /,A,
"ill/ NP

~.~ VP

I A
PRO TO VP

I
invite

I
e .

Who did John persuade Bill PRO to invite.

Note that the link in yl is preserved in 7 2 ; it is stretched, resulting in a so-called unbounded

dependency. Also note that, as in previous examples, as is an initial tree that cannot serve as a root

21

sentence and the obligatory adjunction possibilities are as indicated. Again the local constraint (4)

at the foot node of ,Dq prevents further adjoining at this node in 7 2 .

3 Head Grammars - Head wrapping and tree adjoining

In this section, we will briefly describe head grammars (HG) (Pollard 1984), and relate them to

TAGS. For further details, see Weir, Vijay-Shanker, and Joshi, (1986); Vijay-Shanker, Weir, and

Joshi, (1986); Joshi, Vijay-Shanker, and Weir, (1986). HGs are not to be confused with Head

Driven Phrase Structure Grammars (HPSG) (Pollard 1985).

3.1 Head Grammars

Head Grammars are string rewriting systems like CFG's, but differ in that each string has a

distinguished symbol corresponding to the head of the string. These are therefore called headed

strings. The formalism allows not only concatenation of headed strings but also so-called head

wrapping operations which split a string on one side of the head and place another string between

the two sub-strings. When we wish to explicitly mention the head we use the notation w1'7iw2;

alternatively, we simply denote a headed string by 5. Productions in a HG are of the form

A t f (a l7 . . . ,a,) or A t a1 where: A is a nonterminal; a; is either a nonterminal or a headed

string; and f is either a concatenation or a head wrapping operation. Roach (1985) has shown that

there is a normal form for Head Grammars which uses only the following operations.

LC1 concatenates the two strings, the head of the resulting string comes from the first string.

Similarly LC2. LL1 inserts the second string into the first string to the right of the head of the

23

first string, i.e., the head of the first string is to the left. The head of the resultant string is the

head of the first string. Similarly, for LL2, LR1, and LR2.

Pollard's definition of headed strings includes the headed empty string 1. However the term

- -
f i(El, . . . , w;, . . . , w,) is undefined when Ti = x. This nonuniformity has led to difficulties in prov-

ing certain formal properties of HGs (Roach (1985)). This difficulty can be removed by formulating

HGs as follows.

Instead of headed strings, we will use so-called split strings. Unlike a headed string which has a

distinguished symbol, a split string has a distinguished position about which it may be split. There

are 3 operations on split strings: W , C1, and C2. The operations C1 and C2 correspond to the

operations LC1 and LC2 in HGs. They are defined as follows:

Since the split point is not a symbol (which can be split either to its left or right) but a

position between strings, separate left and right wrapping operations are not needed. The wrapping

operation, W, is defined as follows:

It can be shown that this reformulation is equivalent to HG. We will use this reformulation in

our further discussion.

3.2 Wrapping and Adjoining

The weak equivalence of HGs and TAGS is a consequence of the similarities between the operations

of wrapping and adjoining. It is the roles played by the split point and the foot node that underlies

this relationship. When a tree is used for adjunction, its foot node determines where the excised

subtree is reinserted. The strings in the frontier to the left and right of the foot node appear on

the left and right of the frontier of the excised subtree. As shown in the Figure 3 below, the foot

node can be thought of as a position in the frontier of a tree, determining how the string in the

frontier is split.

24

foot foot

foot

Figure 3: Wrapping and Adjoining

Adjoining in this case, corresponds to wrapping wltw around the split string vlyva. Thus, the

split point and the foot node perform the same role. The proofs showing the equivalence of TAGS

and HGs is based on this correspondence.

3.3 Inclusion of TAL in HL

We will briefly present a scheme for transforming a given TAG to an equivalent HG. We associate

with each auxiliary tree a set of productions such that each tree generated from this elementary

tree with frontier w1Xw2 has an associated derivation in the KG, using these productions, of the

split string wlywz. The use of this tree for adjunction at some node labelled X can be mimicked

with a single additional production which uses the wrapping operation.

For each elementary tree we return a sequence of productions capturing the structure of the tree

in the following way. We use nonterminals that are named by the nodes of elementary trees rather

than the labels of the nodes. For each node 7 in an elementary tree, we have two nonterminal X ,

and Y, allowing for the possibility that an adjunction occurs at 7; X, derives the strings appearing

on the frontier of trees derived from the subtree rooted at 7; Y, derives the concatenation of the

strings derived under each daughter of 7. If 7 has daughters 71,. . . , q k then we have the production:

where the node 7; dominates the foot node (by convention, we let i = 1 if 7 does not dominate the

25

foot node). Adjunction at q, is simulated by use of the following production:

where p is the root of some auxiliary tree which can be adjoined at q. If adjunction is optional at

q then we include the production:

x, -t Y,.

Notice that when q has an N A or OA constraint we omit the second or third of the above

productions, respectively.

We illustrate the construction with an example showing a single auxiliary tree and the corre-

sponding HG productions. In this example, p1, p2,. . . , pn are the root nodes of the trees that can

be adjoined at q2 in P.

HG productions corresponding to P:

3.4 Inclusion of HL in TAL

In this construction, we use elementary trees to simulate directly the use of productions in HG

to rewrite nonterminals. Generation of a derivation tree in string-rewriting systems involves the

substitution of nonterminal nodes, appearing in the frontier of the unfinished derivation tree, by

trees corresponding to productions for that nonterminal. From the point of view of the string

languages obtained, tree adjunction can be used to simulate substitution, as illustrated in the

following example.

Notice that although the node where adjoining occurs does not appear in the frontier of the

tree, the presence of the node labelled by the empty string does not effect the string language.

For each production in the HG we have an auxiliary tree. A production in an HG can use one of

the three operations: C1, C2, and W. Correspondingly we have three types of trees, shown below.

Drawing the analogy with string-rewriting systems: NA (null adjoining) constraints at each root

have the effect of ensuring that a nonterminal is rewritten only once; NA constraints a t the foot

node ensures that, like the nodes labelled by A, they do not contribute to the strings derived; OA

(obligatory adjoining) constraints are used to ensure that every nonterminal introduced is rewritten

at least once.

The two trees mimicking the concatenation operations differ only in the position of their foot

node. This node is positioned in order to satisfy the following requirement: for every derivation in

the HG there must be a derived tree in the TAG for the same string, in which the foot is positioned

at the split point.

The tree associated with the wrapping operation is quite different. The foot node appears

below the two nodes to be expanded because the wrapping operation of HGs corresponds to the

LL1 operation of HGs in which the head (split point) of the second argument becomes the new head

(split point). Placement of the nonterminal, which is to be wrapped, above the other nonterminal

achieves the desired effect as described earlier.

While straightforward, this construction does not capture the linguistic motivation underlying

TAGs. The auxiliary trees directly reflect the use of the concatenation and the wrapping operations.

Elementary tree for natural languages are constrained to capture meaningful linguistic structures.

In the TAGs generated in the above construction, the elementary trees are incomplete in this

respect: as reflected by the extensive use of the OA constraints. Since HGs do not explicitly give

minimal linguistic structures in the sense of TAG, it is not surprising that such a direct mapping

from HGs to TAGs does not recover this information.

3.5 Notational Differences between TAGS and HGs

TAGS and HGs are notationally very different, and this has a number of consequences that influence

the way in which the formalisms can be used to express various aspects of language structure. The

principal differences derive from the fact that TAGS are a tree-rewriting system unlike HGs which

manipulate strings or pairs of strings.

The elementary trees in a TAG, in order to be linguistically meaningful, must conform to

certain constraints that are not explicitly specified in the definition of the formalism. In particular,

each elementary tree must constitute a minimal linguistic structure elaborated up to preterminal

(terminal) symbols and containing a head and all its complements or a modifier. Initial trees

have essentially the structure of simple sentences; auxiliary trees correspond to minimal recursive

constructions and generally constitute structures that act as modifiers of the category appearing

at their root and foot nodes.

A hypothesis that underlies the linguistic intuitions of TAGS is that all dependencies are cap-

tured within elementary trees. This is based on the assumption that elementary trees are the

appropriate domain upon which to define dependencies, rather than, for example, productions in a

CFG. Since in string-rewriting systems, dependent lexical items can not always appear in the same

production, the formalism does not prevent the possibility that it may be necessary to perform

an unbounded amount of computation in order to check that two dependent lexical items agree

in certain features. However, since in TAGs dependencies are captured by bounded structures,

we expect that the complexity of this computation does not depend on the derivation. Features

such as agreement may be checked within the elementary trees (instantiated up to lexical items)

without need to percolate information up the derivation tree in an unbounded way. Some checking

is necessary between an elementary tree and an auxiliary tree adjoined to it at some node, but this

checking is still local and bounded. Similarly, elementary trees, being minimal linguistic structures,

capture all of the sub-categorization information.

TAGs have only one operation of composition, namely, adjoining. HGs have concatenation

and wrapping a variety of ways. Further, TAGs are differentiated from HGs due to the fact that

TAGs generate phrase-structure trees. As a result, the elementary trees must conform to certain

constraints such as left-to-right ordering and dominance relations. Unlike other string-rewriting

systems that use only the operation of concatenation, HGs do not associate a phrase-structure

tree with a derivation: wrapping, unlike concatenation, does not preserve the word order of its

arguments.

It is still possible to associate a phrase-structure with a derivation in HGs that indicates the

constituents and we use this structure when comparing the analyses made by the two systems.

These trees are not really phrase-structure trees but rather trees with annotations which indicate

how the constituents will be wrapped (or concatenated). It is thus a derivation structure, recording

the history of the derivation. With an example we now illustrate how a constituent analysis is

produced by a derivation in a HG, corresponding to John Mary saw swim as required in a Dutch

subordinating clause.

John saw N P VP

Mary swim

Although a TAG generates trees (phrase structure trees), these trees are not the derivation trees.

For a tree y generated in a TAG, G, there is a derivation structure associated with y. Because

TAG and HG are different systems, it is not possible to directly compare them with respect to

their "strong" generative capacities. (In Weir, Vijay-Shanker and Joshi, (1986), a few linguistic

examples have been discussed comparing the structural desciptions provided by HG and TAG). HG

and TAG are comparable at the level of the derivation structures they produce. This aspect will

be discussed in Section 6.

4 Linear Indexed Grammars (LIG)

Indexed grammars (IG) were introduced by Aho (1968) as a generalization of CFG, and their

mathematical properties have been investigated extensively. The class of ILs (indexed languages)

is properly contained in the class of context-sensitive languages (CSL) and properly contains CFLs.

IGs were not introduced as grammatical formalisms for natural language; however, since IGs are

more powerful than CFGs and, as some recent investigations have shown, that some additional

power beyond that of CFGs is required, IGs have received some attention from linguists. Gazdar

(1985) has presented a discussion of the relevance of IGs to natural language. The class of ILs

as a whole is clearly larger than the class of so-called mildly context-sensitive languages (MCSL),

simply because ILs, in general, do not have the constant growth property, because not all ILs are

semi-linear. For example, L = {an2 In > 1)) L = {a2" In 2 1) are ILs, but not semi-linear.

IGs are defined as follows [We will adopt the notation used in Gazdar (1985) which is essentially

the same as in Hopcroft and Ullman (1979)l. Let A, B,C, . . . be the nonterminals; a , b,c, . . . the

terminals; W, Wl, W2,. . . strings of terminals and nonterminals; indices i, j, k, . . .; stacks of indices

[1, [..I, [i..] where [] denotes an empty sack, [..I a possibly empty stack, and [i..] a stack whose

topmost index is i . The productions are as follows:

W[..] is a short hand for, for example, A1[...I... An[...I i.e., W[..] stands for a righthand side in

which each nonterminal in W is [...I associated with it.

Rule 1 copies the stack on A to all the nonterminal daughters. It is assumed by convention that

no stacks are associated with the terminals. Rule 2 pushes an index i on the stack passed from A

to a unique nonterminal daughter. Rule 3 pops an index i and then copies stack on A t o all the

nonterminal daughters. Gazdar (1985) adds some additional rules, albeit redundantly. These are

Rule 4 copies the stack on A to exactly one nonterminal daughter. Rule 5 and 6 push and pop

an index on the stack of a designated daughter.

An IG which has only rules of the form 4 ,5 , and 6, will be called LIG, a linear indexed grammar.

It can be shown that LIGs and TAGS, and therefore HGs, are weakly equivalent. (Vijay-Shanker

1987). We will illustrate briefly the relationship between LIG and TAG by means of an example.

Let G be a LIG as follows

Let wl = abec. The derivation of w1 is

Let wz = aabbecc. The derivation of w2 is

(8)

Comparing (7) and (8), one can see that (n - 1) applications of (3), one applications of (4),

then n applications (5) allows us to add n a's, n b's and n c's in the right order.

Note that (7) is a minimal derivation in G. We now take (7) to be an elementary tree (initial

tree) say, a of a TAG G'

There is no need to keep the stacks around each one of the nonterminals appearing in specific

addresses in a. Thus we can have

If we now introduce an auxiliary tree, say P

(11) P =

which introduces one a , one b, and one c, in the right order, we can simulate the effect of applying

(3), (4), and (5) in LIG, assuming P is adjoined only to the node B which is the sibling of a. P

should not be adjoined to the node B which dominates e in a. Similarly in P, since /3 can be

adjoined to P itself, we want this adjoining to take place only for the interior B node P, and not

to root and foot nodes of p. We can achieve this by placing the null adjoining constraint a t the

appropriate nodes. Hence, the equivalent TAG, G' is

b BNA c

b B N A c

The operation of adjoining indirectly pairs the pushes and pops of indices in just the right way.

Also, this information is implicitly communicated from the root of an auxiliary tree to the foot of

the auxiliary along the spine of the auxiliary tree (i.e., the path from the root to the foot). This

corresponds roughly to the LIG constraint that the stack passes on from the left hand side of a rule

t o only a designated daughter.

The equivalence of LIG and TAG thus explains a conjecture of Bill Marsh (referred t o by

Gazdar (1985)) that the languages L1 = {anbncndnenln > 1) and L2 = {www(w E (0, I}*) cannot

be generated by LIG.

MCTAG, multicomponent TAGs, as described in Section 2 are more powerful than TAGs both

weakly and strongly. For example, MCTAGs can generate, for each k > 1, Lg = {a?, a;, . . . , agln >
3 5

1) and can also generate the double spined structural descriptions for L4 = {anbn)n 2 1) i.e.,

structural descriptions of the form

LIGs are inadequate for this purpose, because they do not permit branching stacks. MCTAGs

are capable of achieving some of the effects permitted by branching stacks, however, still maintaining

the constant growth property, thus they are more constrained. Whether there is any appropriate

extension of LIG that permits branching stacks without leading to full power of IG is not known at

present. Finding a subset of IG which is exactly or nearly equivalent to MCTAG is a challenging

open problem.

Note that although the equivalence of LIG and TAG has been established, there are some key

differences between them. If we consider the example described above, it is immediately clear that

the 'dependent' a , b, and c are always in the same elementary tree. This is only implicit in LIG.

The dependency can only be inferred by examining the state of the stacks at the various stages of

the derivation. This is due to the fact that TAGS factor recursion and dependency, while a string

rewriting system, of which LIG is an example, does not do so.

5 Combinatory Categorial Grammars

In this section, we examine Combinatory Categorial Grammars (CCGs), an extension of Classical

Categorial Grammars (Ajdukiewicz (1935)) developed by Steedman and his collaborators (Ades

and Steedman (1982), Steedman (1985, 87, 88)). Classical Categorial Grammars are known to be

weakly equivalent to CFGs (Bar-Hillel, Gaifman, and Shamir (1964)), and the main result in this

section is that under a certain definition, (which corresponds to Steedman7s recent work) CCGs

are weakly equivalent to TAGS, HGs, and LIGs. We show this by showing that Combinatory

Categorial Languages (CCLs) are included in Linear Indexed Languages (LILs), and that Tree

Adjoining Languages (TALs) are included in CCLs (Weir and Joshi (1988)).

On the basis of their weak equivalence with TAGS, and HGs, it appears that CCGs should be

classified as a mildly context-sensitive grammar formalism. The derivation tree sets traditionally

associated with CCGs have context-free path sets, and are similar to those of LIGs, and therefore

differ from those of LCFRSs. This does not, however, rule out the possibility that there may be

alternative ways of representing the derivation of CCGs that will allow for their classification as

LCFRSs.

The complexity of TAL recognition is O(n6) . Thus, a corollary of our result is that this is

also a property of CCLs. Although there has been previous work (Pareschi and Steedman (1987);

Wittenburg (1986)) on the parsing of CCGs, they have not suggested a specific upper bound on

recognition.

5.1 Definition of CCGs

Combinatory Categorial Grammar (CCG), as defined here, is the most recent version of a system

that has evolved in a number of papers by Steedman (1985, 87, 88). In this section we first define

CCGs, and then show that the class of string languages generated by C CGs is equal to the languages

generated by TAGS (and LIGs).

Definition 5.1 A C C G , G, is denoted by (VT,VN, S, f , R) where

VT is a finite set of terminals (lexical items),

VN is a finite set of nonterminals (atomic categories),

S is a distinguished member of VN,

37

f is a function that maps elements of VT U { E } to finite subsets of C(VN), the set of

categories1, where

VN C C(VN) and if c l ,c2 E C(V,) then (cl/c2) E C(VN) and (cl\c2) E

~ (V N) .

R is a finite set of combinatory rules.

There are four types of combinatory rules, which involve variables x, y, z over C(VN), and each

l i { \ , / } a

1. forward application:

2. backward application:

3. generalized forward composition for some n 2 1:

4. generalized backward composition for some n 2 1:

Restrictions can be associated with the use of the combinatory rule in R. These restrictions

take the form of constraints on the instantiations of variables in the rules. These can be constrained

in two ways.

1. The initial nonterminal of the category to which x is instantiated can be restricted.

2. The entire category to which y is instantiated can be restricted.

Derivations in a CCG involve the use of the combinatory rules in R. Let the derives relation

be defined as follows.

acp 5 Q C I C ~ P

if R contains a combinatory rule that has clc2 + c as an instance, and a and ,L? are (possibly empty)

strings of categories. The string languages, L(G), generated by a CCG, G, is defined as follows.

Although there is no type-raising rule, its effect can be achieved to a limited extent since f can

assign type-raised categories to lexical items. This is the scheme employed in Steedman's recent

work.

5.2 Weak Generative Capacity

In this section we show that CCGs are weakly equivalent to TAGS, HGs, and LIGs. We do this by

showing the inclusion of CCLs in LILs, and the inclusion of TALs in CCLs. We have already seen

that TAG and LIG are equivalent (and TAG and HG are equivalent. (Weir, Vijay-Shanker and

Joshi (1986). Thus, the two inclusions shown below imply the weak equivalence of all four systems

(TAG, HG, LIG, and CCG).

5.2.1 CCLs C LILs

We describe how to construct a LIG, G', from an arbitrary CCG, G such that G and G' are

equivalent. Let us assume that categories are written without parentheses, unless they are needed

to override the left associativity of the slashes.

A category c is minimally parenthesized if and only if one of the following holds.

c = A for A E VN

c = (A ~ I c ~ 12 . . . Inca), for n 2 1, where A E VN and each ci is minimally

parenthesized.

It will be useful to be able t o refer to the components of a category, c. We first define the

immediate components of c.

when c = A the immediate component is A,

when c = (Allcl l 2 . . . I,c,) the immediate components are A, cl , . . . , c,.

The components of a category c are its immediate components, as well as the components of its

immediate components. The immediate components are the categories arguments. Thus, c =

(Allcl(z . . . lnc,) is a category that takes has n arguments of category cl , . . . , c, t o give the t a rge t

category A.

Although in CCGs there is no bound on the number of categories that are derivable during a

derivation (categories resulting from the use of a combinatory rule), there is a bound on the number

of components that derivable categories may have. This would no longer hold if unrestricted type-

raising were allowed during a derivation.

Let the set Dc(G) be defined as follows.

c E Dc(G) if c is a component of c' where c' E f(a) for some a E VT U (6) .

Clearly for any CCG, G, Dc(G) is a finite set. DC(G) contains the set of all derivable components,

i.e., for every category c that can appear in a sentential form of a derivation in some CCG, G, each

component of c is in Dc(G). This can be shown, since, for each combinatory rule, if it holds of

the categories on the left of the rule then it will hold of the category on the right. The number

of derivable categories is unbounded because they can have an unbounded number of immediate

components.

Each of the combinatory rules in a CCG can be viewed as a statement about how a pair of

categories can be combined. For the sake of this discussion, let us name the members of the pair

according to their role in the rule.

The first of the pair in forward rules and the second of the pair in backward rules will

be named the p r imary category. The second of the pair in forward rules and the first

of the pair in backward rules will be named the secondary category.

As a result of the form that combinatory rules can take in a CCG, they have the following prop-

erty. When a combinatory rule is used, there is a bound on the number of immediate components

that the secondary categories of that rule may have. Thus, because immediate constituents must

belong to DC(G) (a finite set), there is a bound on the number of categories that can fill the role

of secondary categories in the use of a combinatory rule. Thus, there is a bound on the number of

instantiations of the variables y and z; in the combinatory rules in Section 5.1. The only variable

that can be instantiated to an unbounded number of categories is x. Thus, by enumerating each

40

of the finite number of variable bindings for y and each zi, the number of combinatory rules in R

(while remaining finite) can be increased in such a way that only x is needed. Notice that x will

appears only once on each side of the rules (i.e., they are linear).

We are now in a position to describe how to represent each of the combinatory rules by a

production in the linear indexed grammars LIG, G' (see Section 4). In the combinatory rules,

categories can be viewed as stacks since symbols need only be added and removed from the right.

The secondary category of each rule will be a ground category: either A, or (Allc1I2.. . Incn), for

some n 2 1. These can be represented in a LIG as A[] or A[llcl 1 2 . . . lncn], respectively. The

primary category in a combinatory rule will be unspecified except for the identity of its left and

rightmost immediate components. If its leftmost component is a nonterminal, A, and its rightmost

component is a member of Dc(G), c, this can be represented in a LIG by A[. . c].

In addition to mapping combinatory rules onto productions we must include productions in G'

for the mappings from lexical items.

If A E f (a) where a E VT U {E) then A[] -+ a E P

If (Allcllz.. . \ n ~ n) E f (a) where a E VT U (6) then A [(I c I (~ . .. Incn] + a E P

We now illustrate this construction by giving a LIG from a CCG that generates the language

Example 5.1 Let a CCG be defined as follows, where we have omitted unnecessary

parenthesis.

A E f (a) B E f (b) C E f (c) D E f (d)

The following combinatory rules are permitted.

Forward application involving x ly and y either when x begins with S1 and y is C,

or when x begins with S and y is S1 or D.

Backward application involving y and x\y when x begins with S and y is A or B.

Forward composition involving xly and y\z1/z2/z3\z4 when x begins with S and

y is S1.

41

The productions of the LIG that would be constructed from this CCG are as follows.

The first 7 rules result from the definition o f f . [In the notation for stacks below, the top

of the stack appears to the right. In Section 4, in the notation for stacks, the top of the

stack appears to the left. We have changed the notation from Section 4 for convenience

because the "top" of a category in CCGs is on the right also.]

for allX1, ..., X4 E VN

5.2.2 TALs C CCLs

We will just give the main idea of the construction of a CCG, G' from a TAG, G, such that G and

G' are equivalent. It is important to appreciate that the order in which categories are combined is

crucial in a CCG derivation, since the same categories combined in different orders give different

strings.

Each of the auxiliary trees will result in certain assigments of categories by f to a terminal or

the empty string. Each occurence of adjunction will be mimicked by the use of a combinatory rule.

Adjunction into nodes to the right (left) of the foot node (which corresponds to concatenation)

will be simulated by backward (forward) application. Adjunction into nodes dominating the foot

node of a tree (which corresponds to wrapping) will be simulated in the CCG by composition. It

is necessary that we ensure that the subsidiary category in every occurence of composition has just

been introduced into the derivation by an assignment of f (see Figure 4). This will correspond to

the adjunction of an auxiliary tree that has not had any trees adjoined into it. It can be shown

that composition is guaranteed only in this context.

Figure 4: Context of composition

Forward and backward application are restricted to cases where the secondary category is some

Xu, and the left immediate component of the primary category is some Ya.

Forward and backward composition are restricted to cases where the secondary category has the

form ((XC11~1)12~2), or (XCI1cl), and the left immediate component of the primary category

is some Ya.

An effect of the restrictions on the use of combinatory rules is that only categories that can fill

the secondary role during composition are categories assigned to terminals by f . Notice that the

combinatory rules of G' depend only on the terminal and nonterminal alphabet of the TAG, and

are independent of the elementary trees.

The construction depends on a particular normal form for TAGS. We will omit all the details

here. The tree in Figure 5 is encoded by the category

Figure 5: Tree encoding A\AY/A?/A$\A:

Example 5.2 Figure 6 shows an example of a TAG for the language L2 = { anbn 1 n >
0) with crossing dependencies.

Figure 6: TAG for L2

We give the CCG that would be produced according to this construction.

The CCGs produced according the construction given here have the property that parenthesis

are redundant. It can be shown in general that the use of parenthesis in CCGs does not increase

the generative power of the formalism. Parenthesis-free CGs differ from CCGs (Friedman, Dai,

and Wang (1986), Friedman and Venkatesan (1986). It can be shown that parenthesis-free CGs

generate languages not generable by CCGs (Weir (1988)).

For further details of this construction and a discussion of derivation trees, see (Weir (1988)).

6 Linear Context-Free Rewriting Systems (LCFR)

So far we have discussed a number of formalisms and shown equivalences among them. All these sys-

tems share certain properties which make them members of the so-called "mildly context-sensitive"

grammar formalisms. All these systems involve some type of context-free rewriting. Vijay-Shanker,

Weir and Joshi (1987) and Weir (1988) have described a system, called linear context-free rewriting

system (LCFR) which attempts to capture the common properties shared by these formalisms.

6.1 G e n e r a l i z e d C o n t e x t - F r e e Grammars

We define Generalized Context-Free Grammars (GCFGs), first discussed, though with a somewhat

different notation, by Pollard (1984).

Definition 6.1 A GCFG G is written as G = (V, S, F, P), where

V is a finite set of variables

S is a distinguished member of V

F is a finite set of function symbols

P is a finite set of productions of the form

where n 2 0, f E F, and A, A1,. . . ,A, E V.

The set of terms (trees), T(G) derived from a GCFG, G is the set of all t such that S t
G

where the derives relation is defined as follows.

a A f () if A -i f () is a production.

a A f (t l , .. . , t,) if A + f (A1,. . . , A,) is a production, and Ai $+ t; for 1 < i 5 n.
G

Notice that in GCFGs, rewriting choices during the derivation are independent of context.

GCFG will generate a set of trees that can be interpreted as derivation tree in various grammar

formalisms. Based on GCFG, we can now define aformalism called Linear Context-Free Rewrit-

ing Systems, (LCFR), which captures the common properties shared by the formalisms discussed

earlier. By giving an interpretation for each of the functions in F, each term (tree) in T(G) can

be seen as encoding the derivation of some derived structure. It can be shown that context-free

46

grammars (CFG), head grammars (HG), tree adjoining grammars (TAG), and multicomponent

tree adjoining grammars (MCTAG) are examples of LCFRS.~

In each of the LCFRSs that we have given, the functions (combining strings, trees, or sequences

of strings and trees) share certain constrained properties. It is difficult to completely characterize

the entire class of such functions that will be so constrained because we are considering formalisms

with arbitrary structures. Instead, we will give two restrictions on the functions. We would like

these restrictions to ensure that the functions do not "copy", "erase", or "restructure" unbounded

components of their arguments. The result of composing any two structures should be a structure

whose "size" is the sum of its constituents plus some constant. Every intermediate structure that

a grammar derives contributes some terminals t o the string that is yielded by the structure that is

finally derived. However, the symbols in the yield of an intermediate structure do not necessarily

form a continuous substring of the final string. In general, though, we can write the yield of an

intermediate structure as a finite sequence of substrings of the final string. The composition oper-

ations are "size" preserving. Thus, with respect to the yield of the structures being manipulated,

the composition operations do no more than reorder their arguments and insert a bounded number

of additional terminals. It can be shown that LCFRs are semi-linear (and hence obey the constant

growth property) and are parsable in polynomial time. For further details, see (Vijay-Shanker,

Weir, and Joshi (1987) and Weir (1988)). Weir (1988) has also shown that languages generated by

MCTAGs are equal to the languages generated by LCFRs.

Recently Kasami, Seki, and Fuji (1988) have studied a system called multiple context-free

grammars, which is the same as LCFRs. They have obtained some additional properties of the

classes of languages generated by their system, in particular, they have shown that the "non-erasing"

property does not change the power.

7 Feature Structure Based TAG (FTAG) and Restricted FTAG

(RFTAG)

7.1 Feature Structure Based Tree Adjoining Grammars (FTAG)

The linguistic theory underlying TAGS is centered around the factorization of recursion and local-

ization of dependencies into the elementary trees. The "dependent" items usually belong to the

same elementary tree3. Thus, for example, the predicate and its arguments will be in the same tree,

as will the filler and the gap. Our main goal in embedding TAGS in an unificational framework is to

capture this localization of dependencies. Therefore, we would like to associate feature structures

with the elementary trees (rather than break these trees into a CFG-like rule based systems, and

then use some mechanism to ensure only the trees produced by the TAG itself are generated4).

In the feature structures associated with the elementary trees, we can state the constraints among

the dependent nodes directly. Hence, in an initial tree corresponding to a simple sentence, we can

state that the main verb and the subject NP (which are part of the same initial tree) share the

agreement feature.

In unification grammars, a feature structure is associated with a node in a derivation tree in

order to describe that node and its relation to features of other nodes in the derivation tree. In a

TAG, any node in an elementary tree is related to the other nodes in that tree in two ways. Feature

structures written in FTAG using the standard matrix notation, describing a node, 7, can be made

on the basis of:

1. the relation of q to its supertree, i.e., the view of the node from the top. Let us call this

feature structure t,.

2. the relation to its descendants, i.e., the view from below. This feature structure is called b,.

Note that both the t , and b, feature structures are associated with the node q. In a derivation tree

of a CFG based unification system we associate one feature structure with a node (the unification

of these two structures) since both the statements, t and b, together hold for the node, and no

further nodes are introduced between the node's supertree and subtree. This property is not true

in a TAG. On adjunction, at a node there is no longer a single node; rather an auxiliary tree

replaces the node. We believe that this approach of associating two statements with a node in the

48

,t mot
-

root

foot A -b foot

Figure 7: Feature structures and adjunction

auxiliary tree is consistent with the spirit of TAGS. A node with OA constraints c~nnot be viewed

as a single node and must be considered as something that has to be replaced by an auxiliary tree.

t, and b, place restrictions on the auxiliary tree that must be adjoined 77. Note that if the node

does not have OA constraint then we should expect t, and b, to be compatible (i.e., unifiable). For

example, in the final sentential tree, this node will be viewed as a single entity.

Thus, in general, with every internal node, 7, at which adjunction can take place we associate

two structures, t , and b,. With each terminal node, we would associate only one structure5.

Let us now consider the case when adjoining takes place as shown in Figure 7. The notation

we use is to write alongside each node, the t and b statements, with the t statement written above

the b statement. Let us say that t,oot,b,oot and tfoot,b~oot are the t and b statements of the root and

49

foot nodes of the auxiliary tree used for adjunction at the node 7. Based on what t and b stand for,

it is obvious that on adjunction the statements t , and tTOot hold of the node corresponding to the

root of the auxiliary tree. Similarly, the statements b, and bfoot hold of the node corresponding to

the foot of the auxiliary tree. Thus, on adjunction, we unify t , with trOot, and b, with bfoot. In fact,

this adjunction is permissible only if troot and t , are compatible as are bfoo, and b,. At the end of

a derivation, the tree generated must not have any nodes with O A constraints. We check that by

unifying the t and b feature structures of every node. More details of the definition of FTAG may

be found in (Vijay-Shanker (1987) and Joshi and Vijay-Shanker (1988)).

7.2 Restricted FTAG

FTAGs as defined above are not constrained just as CFG-based unification grammars are not con-

strained. However, if we restrict the feature structures associated with each node of an elementary

tree t o be bounded then RFTAGs can be shown to be equivalent to TAGs (Vijay-Shanker (1987)).

This restriction is the same as in GPSG; however, because of the larger domain of locality of TAGs

and the operation of adjoining, RFTAGs are more powerful than GPSGs.

8 Lexicalized TAG

We call a grammar 'lexicalized' if it consists of (a) a finite set of structures associated with each

lexical item, which is intended to be the 'head' of these structures, and (b) an operation or operations

for composing these structures. The finite set of structures define the domain of locality over which

constraints are specified, and these are local with respect to their 'heads.' It can be shown that,

in general, a context-free grammar (CFG) cannot be lexicalized. Even if a CFG can be lexicalized

it is not always the case that we can guarantee that the lexical item associated with a structure

is the linguistically appropriate 'head.' Both these results hold even if the domain of locality is

extended to trees. This is so because CFG has substitution as the only operation. If, however,

we add adjoining as an operation, along with substitution, then we can appropriately lexicalize

a CFG (see Abeille, Schabes, and Joshi (1988) for further details about lexicalized grammars, in

particular, lexicalized TAGs).

TAGs are 'naturally7 lexicalized because of their extended domain of locality and the operation

of adjoining. In a lexicalized TAG we allow substitution in addition to adjunction. Adjoining

can simulate substitution, however in a lexicalized TAG, we allow substitutions explicitly. The

definitions of elementary trees are as before except that at the frontiers we can have nodes which

are substitution nodes, in the sense that we have to substitute elementary or derived structures

at the substitution nodes. Adjoining is defined as before. In the example below, the substitution

nodes are marked by L.

Example:

NF'

boy: n
DET N

I

DET

the: I
the

saw:

saw

who:

I
who

younF A
ADJ N

I
ymng

1
saw

n
~4 A

V NF'

I
saw

I
e

It can be shown that lexicalized TAGS are equivalent to TAGS. An Earley-type parser has been

described in (Schabes and Joshi (1988)). For further details about lexicalized TAGS, see (Abeille,

Schabes, and Joshi (1988)).

9 TAGS-Local Dominance and Linear Precedence: TAG(LD/LP)

The extended domain of locality of TAGS has implications for how domination and precedence

can be factored. We will now take the elementary trees of TAG as elementary structures (initial

and auxiliary) specifying only domination structures over which linear precedences can be defined.

In fact, from now on we will define an elementary structure (ES) as consisting of the domination

structure plus a set of linear precedences. Thus, a below is the domination structure of an ES.

N P I V P 2

The addresses for nodes serve to identify the nodes. They are not to be taken as defining the

tree ordering. They are just labels for the nodes.

Let LP," be a set of linear precedence statements associated with a!

where x < y (x precedes y) if x and y are nondominating nodes (i.e., x does not dominate y and y

does not dominates x) and if x dominates 21 and y dominates 22, then zl < 22.

Note that LP? corresponds exactly to the standard tree ordering. Given LP?, (1) is the only

terminal string that is possible with the ES (a, LP?), where a! is the domination structure and

LP? is the linear precedence statement.

NPIVNPz

Suppose that instead of LP;, we have

First note that in 1 < 2.1, 2.1 is not a sister of 1. We can define precedences between nonsisters

because the precedences are defined over a , the domain of locality.

Once again, the only terminal string that is possible with the ES (a , LP,") is

NPlVNP2 P I

but there is an important difference between (a , LP?) and (a , LPF) which will become clear when

we examine what happens when an auxiliary tree is adjoined to a . Before we discuss this point,

let us consider

i.e., there are no precedence constraints. In this case, we will get all six possible orderings

Let us return to (a , LPT) and (a , LP?). As we have seen before, both ES give the same terminal

string. Now let us consider an ES which is an auxiliary structure ,B (analogus to an auxiliary tree)

with an associated L P , L P P .

When ,B is adjoined to a at the VP node in a. We have

When ,B is adjoined to a at the VP node in a , we have

We have put indices on NP and V for easy identification. N P l , V l , NP2 belongs to a and

V2 belong to P. If we have LPF associated with a and LPP with P , after adjoining the LPs are

updated in the obvious manner.

The resulting LP for y is

Thus y with LPY gives the terminal string

Instead of LP?, if we associate LP? with a then after adjoining ,f3 to a as before, the updated

LPs are

The resulting LP for y is

1 < 2.2.1

= [2.1 < 2.2 j
2.2.1 < 2.2.2

Thus (y, LP?) gives the terminal strings

(4) is the same as (3), but in (5) NPl has 'moved' past V2. If we adjoin ,O once more to y at the

node VP at 2, then with LP? associated with a, we will get

N PlV3V2Vl N P2

and with LPT associated with a , we will get

V3V2 N PI Vl N P2

Let us consider another LP for a, say LPF

Then we have the following terminal strings for a (among others)

NPlNP2V (I1)

It can be easily seen that given LPF associated with a and L P ~ associated P as before, after two

adjoining with PI, we will get

and, of course, several others. In (13), (14)) and (15), NP2, the complement of Vl in a has 'moved7

past Vl, V2, and V3 respectively.

The elementary structures (ES) with their domination structure and the LP statements factor

the constituency (domination) relationships from the linear order. The complex patterns arise due

to the nature of the LP and the operation of adjoining. The main point here is that both the con-

stituency relationships (including the filler-gap relationship) and the linear precedence relationship

are defined on the elementary structures. Adjoining preserves these relationships. We have already

seen in Section 2 how the constituency relationships are preserved by adjoining. Now we have seen

how the linear precedence relationships are preserved by adjoining. Thus we have a uniform treat-

ment of these two kinds of dependencies; however, the crucial difference between these two kinds

of dependencies clearly shows up in our framework. In Joshi (1987), we have shown how TAG

(LD/LP) can be used to several word order variations in Finnish, first described by Karttunen

(1986).

The idea of factoring constituency (domination) relationships and linear order is basically similar

to the ID/LP format of GPSG. However, there are important differences. First the domain of

locality is the elementary structure (and not the rewrite rules or local trees), secondly we have

defined the LP for each elementary structure. Of course, a compact description of LP over a set of

elementary structures can be easily defined, but when it is compiled out it will be in the form we

have stated it here. We will call a TAG in which the (local) domination relationships and linear

precedence relationships are factored out, a TAG in the LD/LP representation, or a TAG(LD/LP).

In order to give further insight into the degree of word order variation possible in TAG(LD/LP),

we will give an example.

Let G = (1,A) be a TAG(LD/LP) where

If G were a regular TAG, i.e., cr and P were trees, then clearly the language generated by G, L(G)

is (as we have seen in Section 2)

L(G) = {anbncn(n >_ 1)

However, G is a TAG(LD/LP). It is clear that the only string that corresponds to cr is

abc

If we adjoin p to a at the node 2 in cr, we get

Y =
S 0

[We have indexed a's, b's, and c's for convenience.]

The updated LP" and L P ~ are

1 1 < 2.2.2.1
LP* = I

Hence,

Thus some of the possible strings corresponding to y are:

There are 20 strings in all. Each string contains 2 a's, 2 b's, and 2 c's. The corresponding

a's, b's, and c's appear in the order a , b,c. This example shows that the elements of an auxiliary

structure can 'scatter' in a fairly complex manner over the elements of the elementary structure

to which it is adjoined, the complexity arising out of the specifications for LP and the adjoining

operation itself.

If in the TAG(LD/LP) above both LPa and L P P are empty i.e., there are no LP statements,

then the language generated by G is the so-called MIX language (or Bach language), which consists

of strings of equal number of a's, b's, and c's in any order. MIX can be regarded as the extreme

case of free word order. It is not known yet whether TAG, HG, CCG and LIG can generate MIX.

This has turned out to be a very difficult problem. In fact, it is not even known whether an IG can

generate MIX.

9.1 Language of TAG (LD/LP):

It is clear the languages of standard TAG (i.e., when the elementary structures are trees with

the standard tree ordering) are contained in the class of languages of TAG(LD/LP). Whether

the containment is proper or not is not known at present. Languages of TAG(LD/LP) continue to

satisfy the constant growth property, hence cannot generate languages of the form L = {an2 (n 2 1))

L = {a2"ln >_ 1)) etc.

Chapter Notes

1. Note that f can assign categories to the empty string, E , though, to our knowledge, this

feature has not been employed in the linguistic applications of CCG.

2. Weir (1988) has examined derivation trees associated with CCGs. The derivation trees tra-

ditionally associated with CCGs differ from those of LCFRs, this does not preclude the

possibility that there may be an alternative way of representing derivations. Weir (1988)

gives a normal form for CCGs which allows their being classified as LCFRs.

3. It is sometimes possible for "dependent" items to belong to an elementary tree and the

immediate auxiliary tree that is adjoined in it.

4. Such a scheme would be an alternate way of embedding TAGs in an unificational frame-

work. However, i t does not capture the linguistic intuitions underlying TAGs, and loses the

attractive feature of localizing dependencies.

5. It is possible to allow adjunctions at nodes corresponding to pre-lexical items. For example,

we may wish to obtain verb-clusters by adjunctions at nodes which are labelled as verbs. In

such a case, we will have to associate two feature structures with pre-lexical nodes too.

References

[I] A.E. Ades and M.J. Steedman. On the order of words. Linguistics and Philosophy, 3:517-558,

1982.

[2] K. Ajdukiewicz. Die syntaktische konnexitatat. Studia Philosophica, 1:l-27, 1935. English

translation in: Polish logic 1920-1939, ed. by Storrs McCall, 207-231. Oxford University Press.

[3] Y. Bar-Hillel, C. Gaifman, and E. Shamir. On categorial and phrase structure grammars. In

Language and Information, Addison-Wesley, Reading, MA, 1964.

[4] R. Berwick and A. Weinberg. The Grammatical Basis of Linguistic Performance. MIT Press,

Cambridge, MA, 1984.

[5] J.W. Bresnan, R.M. Kaplan, P.S. Peters, and A. Zaenen. Cross-serial dependencies in Dutch.

Linguistic Inquiry, 13:613-635, 1982.

[6] C. Culy. The complexity of the vocabulary of banibara. Linguistics and Philosophy, 8:345-351,

1985.

[7] J . Friedman, D. Dai, and W. Wang. The weak generative capacity of parenthesis-free categorial

grammars. In llth Intern. Conf. on Comput. Ling., 1986.

[8] J . Friedman and R. Venkatesan. Categorial and Non-Categorial languages. In 24th meeting

Assoc. Comput. Ling., 1986.

[9] G. Gazdar. Applicability of Indexed Grammars to Natural Languages. Technical Report CSLI-

85-34, Center for Study of Language and Information, 1985.

[lo] G. Gazdar. Phrase structure grammars. In P. Jacobson and G. Pullum, editors, The Nature

of Syntactic Recognition, D. Reidel, Dordrecht, Holland, 1982.

[ll] G. Gazdar, E. Klein, G.K. Pullum, and I.A. Sag. Generalized Phrase Structure Grammars.

Blackwell Publishing, Oxford, 1985. Also published by Harvard University Press, Cambridge,

MA.

[12] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computa-

tion. Addison- Wesley, 1979.

62

[13] A.K. Joshi. How much context-sensitivity is necessary for characterizing structural descriptions

- Tree Adjoining Grammars. In D. Dowty, L. Karttunen, and A. Zwicky, editors, Natural

Language Processing - Theoretical, Computational and Psychological Perspective, Cambridge

University Press, New York, NY, 1985. Originally presented in May 1983 at the Workshop on

Natural Language Parsing a t the Ohio State University.

[14] A.K. Joshi. An introduction to tree adjoining grammars. In A. Manaster-Ramer, editor,

Mathematics of Language, John Benjamins, Amsterdam, 1987.

[15] A.K. Joshi. Word-order variation in natural language generation. In Proceedings of the Annual

Conference of the American Association for Artificial Intelligence (AAAI-87), Seattle, July

1987. (To appear also in A I Journal, 1988).

[I61 A.K. Joshi, L.S. Levy, and M. Takahashi. Tree adjunct grammars. Journal Computer Systems

Science, 10(1), 1975.

[17] T . Kasami, H. Seki, and M. Fujii. Generalized context-free grammars, multiple context-free

grammars and head grammars. Technical Report, Dept. Information and Computer Science,

Osaka University, Osaka, Japan, 1988.

[18] A.S. Kroch. Asymmetries in long distance extraction in a tag grammar. In M. Baltin and A. S.

Kroch, editors, New Conceptions of Phrase Structure, University of Chicago, Press, Chicago,

IL, 1986.

[19] A.S. Kroch. Subjacency in a tree adjoining grammar. In A. Manaster-Ramer, editor, Mathe-

matics of Language, John Benjamins, Amsterdam, 1987.

[20] A.S. Kroch and A.K. Joshi. Analyzing extraposition in a tree adjoining grammar. In G. Huck

and A. Ojeda, editors, Syntax and Semantics: Discontinuous Constituents, Academic Press,

New York, NY, 1986.

1211 A.S. Kroch and A.K. Joshi. Linguistic Relevance of Tree Adjoining Grammars. Technical

Report MS-CIS-85-18, Department of Computer and Information Science, University of Penn-

sylvania, Philadelphia, 1985. (To appear also in Linguistics and Philosophy).

[22] A.S. Kroch and B. Santorini. The derived constituent structure of West Germanic verb-raising

construction. In R. Freiden, editor, Proceedings of the Princeton Workshop on Grammar, MIT

Press, 1988. To appear.

[23] R. Pareschi and M.J. Steedman. A lazy way to chart-parse with categorial grammars. In 25th

meeting Assoc. Comput. Ling., 1987.

[24] C. Pollard. Generalized Phrase Structure Grammars, Head Grammars and Natural Language.

PhD thesis, Stanford University, 1984.

[25] C. Pollard. Lecture notes on head-driven phrase-structure grammar. 1985. Center for the

Study of Language and Information, Stanford University, Stanford, CA.

[26] G.K. Pullum. Free word order and phrase structure rules. In J. Pustejovsky and eds. P. Sells,

editors, Proceedings of NELS 12, Amherst, MA, 1982.

[27] K. Roach. Formal properties of head grammars. In A. Manaster-Ramer, editor, Mathematics

of Language, John Benjamins, Amsterdam, 1987.

[28] W.C. Rounds. LFP: A logic for linguistic descriptions and an analysis of its complexity. To

appear in Comput. Ling.

[29] Y. Schabes, A. Abeille, and A.K. Joshi. Parsing strategies with 'lexicalized' grammars: ap-

plications to tree adjoining grammars. In 1 2 ~ ~ International Conference on Comput. Ling.,

1988.

[30] Y. Schabes and A.K. Joshi. An Earley-type parsing algorithm for tree adjoining grammars.

In 26th meeting Assoc. Comput. Ling., 1988.

[31] S.M. Shieber. Evidence against the context-freeness of natural language. Linguistics and

Philosophy, 8:333-343, 1985.

[32] M. Steedman. Combinatory grammars and parasitic gaps. Natural Language and Linguistic

Theory, 1987.

[33] M. J. Steedman. Dependency and coordination in the grammar of Dutch and English. Lan-

guage, 61:523-568, 1985.

64

[34] S. Steedman. Combinators and grammars. In R. Oehrle, E. Bach, and D. Wheeler, editors,

Categorial Grammars and Natural Language Structures, Foris, Dordrecht, 1986.

[35] K . Vijay-Shanker. A Study of Tree Ad3oining Grammars. PhD thesis, University of Pennsyl-

vania, Philadelphia, PA, 1987.

[36] K. Vijay-Shanker and A.K. Joshi. Some computational properties of tree adjoining grammars.

In 23'd meeting Assoc. Comput. Ling., pages 82-93, 1985.

[37] K . Vijay-Shanker, D. J. Weir, and A.K. Joshi. Characterizing structural descriptions produced

by various grammatical formalisms. In 25th meeting Assoc. Comput. Ling., 1987.

[38] K. Vijay-Shanker, D.J. Weir, and A.K. Joshi. Tree adjoining and head wrapping. In llth

International Conference on Comput. Ling., 1986.

[39] D.J. Weir and A.K. Joshi. Combinatory categorial grammars: Generative power and relation-

ship to linear context-free rewriting systems. In 26th meeting Assoc. Cornput. Ling., 1988.

[40] D.J. Weir, K . Vijay-Shanker, and A.K. Joshi. The relationship between tree adjoining gram-

mars and head grammars. In 24th meeting Assoc. Comput. Ling., 1986.

[41] K.B. Wittenburg. Natural language parsing with combinatory categorial grammar in a graph-

unification based formalism. 1986. D.Phi1. Dissertation, University of Texas a t Austin.

	The Convergence of Mildly Context-Sensitive Grammar Formalisms
	Recommended Citation

	The Convergence of Mildly Context-Sensitive Grammar Formalisms
	Abstract
	Disciplines
	Comments

	tmp.1187797035.pdf.OITcV

