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Abs t r ac t  

Investigations of classes of grammars that are nontransformational and at the same time 

highly constrained are of interest both linguistically and mathematically. Context-free grammars 

(CFG) obviously form such a class. CFGs are not adequate (both weakly and strongly) to  

characterize some aspects of language structure. Thus how much more power beyond CFG is 

necessary t o  describe these phenomena is an important question. Based on certain properties of 

tree adjoining grammars (TAG) an approximate characterization of class of grammars, mildly 

context-sensitive grammars (MCSG), has been proposed earlier. In this paper, we have described 

the relationship between several different grammar formalisms, all of which belong t o  MCSG. In 

particular, we have shown that head grammars (HG), combinatory categorial grammars (CCG), 

and linear indexed grammars (LIG) and TAG are all weakly equivalent. These formalisms are all 

distinct from each other at least in the following aspects: (a) the formal objects and operations 

in each formalism, (b) the domain of locality over which dependencies are specified, (c) the 

degree t o  which recursion and the domain of dependencies are factored, and (d) the linguistic 

insights that are captured in the formal objects and operations in each formalism. A deeper 

understanding of this convergence is obtained by comparing these formalisms at the level of the 

derivation structures in each formalism. We have described a formalism, the linear context-free 

rewriting system (LCFR), as a first attempt to capture the closeness of the derivation structures 

of these formalisms. LCFRs thus make the notion of MCSGs more precise. We have shown that 

LCFRs are equivalent t o  muticomponent tree adjoining grammars (MCTAGs), and also briefly 

discussed some variants of TAGs, lexicalized TAGs, feature structure based TAGs, and TAGs 

in which local domination and linear precedence are factored TAG(LD/LP). 



1 INTRODUCTION 

Since the late 19707s, there has been vigorous activity in constructing highly constrained gram- 

matical systems by eliminating the transformational component either totally or ~ a r t i a l l ~ .  This 

was caused by the increasing recognition of the fact that the entire range of dependencies that the 

transformational grammars in their various incarnations have tried to  account for can be captured 

satisfactorily by classes of grammars that are nontransformational, and at  the same time are highly 

in terms of the classes of grammars and languages they define. Peters and Ritchie 

(1969) showed that context-sensitive grammars (CSG) if used for analysis (and not for generation), 

thus providing more descriptive power than context-free grammars (CFG), have the same weak 

generative capacity as CFG. This result was generalized by Joshi and Levy (1978) to Boolean 

combinations of contextual predicates and domination predicates. 

In the early 19807s, Gazdar (1982) proposed a grammatical formalism (which later became 

the GPSG formalism, Gazdar, Klein, Pullum, and Sag (1985)) whose weak generative capacity is 

the same as the CFG, but which is adequate to  describe various syntactic phenomena previously 

described in transformational terms. Gazdar was careful to note that his results did not mean that 

syntactic phenomena which required formal power beyond CFG did not not exist, his claim was that,  

as far as the range of phenomena known at that time, CFGs seemed to be quite adequate. In the late 

19807s, some clear examples of natural language phenomena were discovered that required formal 

power beyond CFG e.g., Shieber (1984) and Culy (1984), for an argument from weak generative 

capacity, and Bresnan, Kaplan, Peters, and Zaenen (1983)) for an argument from strong generative 

capacity. Hence, the question of how much power beyond CFG is necessary to  describe these 

phenomena became important. 

An extension of CFG was proposed by Pollard (1984)) called Head Grammars (HG), which 

introduced some wrapping operations beyond the concatenation operation in CFG. Some formal 

properties of HG were investigated by Roach (1984). HGs like CFGs are string generating systems. 

Joshi, Levy, and Takahashi (1975) introduced a grammatical formalism, called Tree Adjoining 

Grammars (TAG), a tree generating system, and investigated some of their formal properties. 

Joshi (1985) showed how TAGs factor recursion and the domain of dependencies in a novel way, 

leading to  'localization' of dependencies, their long distance behavior following from the operation 

of composition, called 'adjoining'. TAGs have more power than CFGs and this extra power is a 
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corollary of factorization of recursion and the domain of dependencies. This extra power appeared 

to  be adequate for the various phenomena requiring formal power more than CFG. The linguistic 

significance of TAGs has been discussed in Joshi (1985), Kroch and Joshi (1985, 1986), Kroch 

(1986), and Kroch and Santorini (1986). Based on the formal properties of TAGs, (Joshi (1985)), 

proposed that the class of grammars that is necessary for describing natural languages might be 

characterized as mildly context-sensitive grammars (MCSG, MCSL for the corresponding languages) 

possessing at least the following properties: 1) context-free languages (CFL) are properly contained 

in MCSL; 2) languages in MCSL can be parsed in polynomial time; 3) MCSGs capture only certain 

kinds of dependencies, e.g., nested dependencies and certain limited kinds of crossing dependencies 

(e.g., in the subordinate clause constructions in Dutch or some variations of them, but perhaps not 

in the so-called MIX (or Bach) language, which consists of equal numbers of a's, b7s, and c7s in 

any order 4) languages in MCSL have constant growth property, i.e., if the strings of a language 

are arranged in increasing order of length then two consecutive lengths do not differ by arbitrarily 

large amounts. In fact, any given length can be described as a linear combination of a finite set of 

fixed lengths. This property is slightly weaker than the property of semilinearity. It is intended to  

be an approximate characterization of the linguistic intuition that sentences of a natural language 

are built from a finite set of clauses of bounded structure using certain simple linear operations. 

The characterization of this intuition by the constant growth property is approximate because it 

refers to the growth of strings and not to the growth of structures. 

It should be noted that these properties do not precisely define MCSG but rather give only a 

rough characterization, as the properties are only necessary conditions, and further some of the 

properties are properties of structural descriptions rather than the languages, hence, difficult to 

characterize precisely. This characterization of MCSG, obviously motivated by the formal properties 

of TAGs, would have remained only as a remark if it were not for some subsequent developments. 

In response to a talk by Geoffrey Pullum at COLING 84, Joshi pointed out that all the known 

formal properties of HGs appeared to be exactly the same as those of TAGs. Later, in 1986, it was 

shown that with a slight modification of HGs (which is necessary as the wrapping operations are 

undefined for null strings), HGs are equivalent to TAGs. (Vijay-Shanker, Weir, and Joshi (1986) 

and Weir, Vijay-Shanker and Joshi (1986)). 

Since then, two other formalisms were also shown to be equivalent to TAGs. These are Linear 



Indexed Grammars (LIG), (Gazdar (1985)) and Combinatorial Categorial Grammars (CCG), (as 

developed by Steedman in some of his recent papers (1987, 1988)). Thus four quite different 

formalisms have been shown to be equivalent and thus belong to MCSG. These formalisms are 

different from each other in the sense that the formal objects and operations they employ are quite 

distinct and they are motivated by attempts to  capture different aspects of language structure. 

Each of these formalisms have a domain of locality which is larger than that specifiable in a CFG. 

By a domain of locality we mean the elementary structures of a formalism over which dependencies 

such as agreement, subcategorization, filler-gap, etc. can be specified. However, it is not the 

case that each one of these formalisms extends the domain of locality to the same extent. TAGs 

extend the domain of locality far enough such that recursion is factored away from the domain of 

dependencies. 

When two formalisms based on apparently completely different ideas turn out to  be equivalent, 

there is a possibility that we are getting a handle on some fundamental properties of the objects 

that these formalisms were designed to  describe. When more than two distinct formalisms turn out 

to  be equivalent, the possibility is even greater. In fact, a deeper understanding of the relationships 

between these formalisms is obtained if we look at the derivation structures (related to structural 

descriptions) provided by each formalism. A first attempt to  capture the closeness of some of 

these formalisms at the level of derivation structures resulted in the Linear Context-Free Rewriting 

Systems (LCFR) described in Section 6. 

The plan for the rest of the paper is as follows. In Section 2, we have presented an introduction 

to TAGs including some simple examples. We have a little bit more detailed discussion of TAGs 

as the theory of TAGs has played a key role in our investigations of the relationships between 

different grammatical formalisms. In fact, most of the equivalences described in this paper have 

been established via TAGs. In this section, we have also described an extension of TAGs, called 

Multicomponent TAGs (MCTAG), first discussed in Joshi, Levy, and Takahashi (1975) and later 

precisely defined in Weir (1988). MCTAGs also belong to  MCSGs and are in fact equivalent to  

LCFRs, discussed in Section 6. 

In Section 3, we have briefly described Head Grammars (HG) and shown their equivalence to 

TAG. In Section 4, we shown the equivalence of Linear Indexed Grammars (LIG) t o  TAG, and in 

Section 5, the equivalence of Combinatory Categorial Grammars (CCG) and LIG and thereby, to 



TAG and HG. In Section 6, we have presented Linear Context-Free Rewriting Systems (LCFR) the 

motivation of which was discussed earlier. 

In Section 7, we have briefly presented Feature-Structure based TAGs (FTAGs), where adjunc- 

tion becomes function application and unification. FTAGs, in general, are unconstrained; however, 

if the feature-structures associated with each node in an elementary tree are bounded, then this 

restricted FTAG (RFTAG) is equivalent to  TAG. This restriction on feature-structures is similar 

to that in GPSG. However, since TAGs have an extended domain of locality, RFTAGs (equivalent 

to  TAGs) are more powerful than GPSGs (equivalent to CFGs). 

In Section 8, we consider a variant of TAGs, the lexicalized TAGs. Although adjoining can 

simulate substitution, by adding the operation of substitution explicitly, we obtain lexicalized TAGs. 

Such a lexicalization was implicit in TAGs in the sense that all the elementary trees need not be 

explicitly stated. However, the framework of lexicalized TAGs brings this out explicitly. Lexicalized 

TAGs are equivalent to TAGs. The relationship between TAGs and CCGs also becomes clear in 

the framework of lexicalized TAGs. 

Finally, in Section 9, we consider a generalization of TAGs, called TAG (LD/LP), which de- 

couples (local) domination for linear precedence, and allows a treatment of complex word-order 

patterns including those that exhibit long distance behavior similar to the filler-gap dependencies, 

but different in the sense that 'movement' is not to a grammatically defined position. The languages 

of TAGs are obviously contained in TAGs (LD/LP). It is not known yet whether the containment 

is proper. 

Figure 1 summarizes all these relationships. The nodes are labelled by the grammar formalisms. 

The containments shown are, of course, with respect to the corresponding languages. Two for- 

malisms outside of MCSG are also shown in the figure. 

In this paper, we have presented our results informally, giving examples to illustrate the ideas in 

the proofs. In a subsequent paper, we will present more technical details and some detailed proofs. 



. IG 

, LFG 

MCTAG 

A. - aB B properly contains A 

A. p?. eB B contains A, proper containment not known 

A. - eB A = B  

[The containments are with respect to the languages]. 

CFG(GPSG): Context-free grammars (Generalized phrase structure grammars) 

TAG: Tree adjoining grammars 

HG: Head grammars 

LIG: Linear indexed grammars 

CCG: Combinatory categorial grammars 

LCFR: Linear context-free rewriting systems 

TAG(LD/LP): TAG (Local domination/Linear precedence) 

IG: Indexed grammars 

LFG: Lexical functional grammars 

Figure 1: Mildly Context-Sensitive Grammar Formalisms (MCSG) 
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2 TREE ADJOINING GRAMMAR FORMALISM 

A tree adjoining grammar (TAG) G = (1,A) where I and A are finite sets of elementary trees. The 

trees in I will be called the initial trees and the trees in A, the auxiliary trees. A tree a is an initial 

tree if it is of the form in (I): 

a =  s 

"t terminals 

That is, the root node of a is labelled S and the frontier nodes are all non-terminals. A tree /3 

is an auxiliary tree if it is of the form in (2): 

terminals terminals 

That is, the root node of /3 is labelled X where X is a non-terminal and the frontier nodes are all 

terminals except one which is labelled X, the same label as that of the root. The node labelled X 

on the frontier will be called the foot node of /3. The internal nodes are non-terminals. The initial 

and the auxiliary trees are not constrained in any manner other than as indicated above. The idea, 

however, is that both the initial and auxiliary trees will be minimal in some sense. An initial tree 

will correspond to a minimal sentential tree (i.e., without recursing on any non-terminal) and an 

auxiliary tree, with root and foot node labelled X, will correspond to a minimal recursive structure 

that must be brought into the derivation, if one recurses on X. 

We will now define a composition operation called adjoining (or adjunction), which composes 

an auxiliary tree P with a tree 7. Let y be a tree containing a node n bearing the label X and let 

/5' be an auxiliary tree whose root node is also labelled X. (Note that /? must have, by definition, 

a node (and only one such) labelled X on the frontier.) Then the adjunction of P to y at node n 

will be the tree y' that results when the following operations are carried out: 1) The sub-tree of y 
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dominated by n, call it t ,  is excised; 2) The auxiliary tree P is attached at n and its root node is 

identified with n; 3) The sub-tree t is attached to the foot node of ,Ll and the root node n of t is 

identified with the foot node of P. 

Figure 2 below illustrates this operation. 

without 
t 

Figure 2: Adjunction 

The intuition underlying the adjoining operation is a simple one but the operation is distinct 

from other operations on trees that have been discussed in the literature. In particular, we want 

to emphasize that adjoining is not a substitution operation in the usual sense. 

Adjunction can, however, simulate substitution. A variant of TAG (called lexicalized TAG) 

which uses adjunction and also substitution explicitly is discussed in Section 8. Lexicalized TAGs 

are equivalent to  TAGs. For the rest of the paper we will only consider adjunction as defined above. 

The definition of adjunction allows more complex constraints to be placed on adjoining. Associ- 

ated with each node is a selective adjoining (SA) constraint specifying the subset of auxiliary trees 

which can be adjoined at this node. Trees can only be included in the SA constraint associated 

with a particular node if their root and foot are labeled with the same nonterminal that labels the 

node. A mechanism is provided for ensuring that adjunction is performed at a node. This is done 

by associating an obligatory adjoining (OA) constraint with that node. 

We should note that the SA and OA constraints are more than mere notational convenience, 
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since they increase the generative power of the formalism. If the SA constraint specifies an empty 

subset of trees, then adjunction cannot be performed at this node-we call this constraint the null 

adjoining (NA) constraint. 

(Later in Section 7, we will describe a Feature Structure Based TAG (FTAG). In this framework, 

adjoining becomes function application and unification, and the constraints described above are 

implicit in the feature-structures and the success or failure of unification during composition. A 

restricted version of FTAG, (RFTAG), described in Section 7, is equivalent to  TAG. For the rest 

of the paper, we will consider the constraints as describe above). 

Let us now define two auxiliary notions, the tree set of a TAG grammar and the string language 

of a TAG. Suppose G=(I,A) is a TAG with a finite set of initial trees, a finite set of auxiliary trees, 

and the adjoining operation, as above. Then we define the tree set of a TAG G, T(G), to be the set 

of all trees derived in G starting from initial trees in I. We further define the string language (or 

language) of G to be the set of all terminal strings of the trees in T(G). The relationship between 

TAGs, context-free grammars, and the corresponding string languages can then be summarized in 

the following theorems Joshi, Levy, and Takahashi (1975), Joshi (1985): 1) For every context-free 

grammar, GI, there is a TAG, G, which is both weakly and strongly equivalent to GI. In other 

words, L(G) = (G') and T(G) = T(Gf); 2) There exists a non-empty set of TAG grammars GI 

such that for every G E GI, L(G) is context-free but there is no CFG G' such that T(Gt) = T(G), 

i.e., TAGs are capable of providing structural descriptions for context-free languages that are not 

obtainable by a context-free grammar; 3) There exists a non-empty set of TAG grammars G2 such 

that for every G E Gz, L(G) is strictly context sensitive; that is, there is no CFG grammar GI 

such that L(G) = L(Gt), i.e., TAGs are strictly more powerful than CFGs; 4) There exist context- 

sensitive languages for which there are no equivalent TAGs, i.e., TAGs are properly contained in 

context-sensitive languages; 5) TAGs are semi-linear and hence have the constant growth property; 

6) TAGs can capture only certain limited kinds of crossed dependencies. This follows from the 

nature of the automaton that corresponds to a TAG, called an embedded push-down automaton 

(EPDA), which is a generalization of the push-down automaton (PDA); 7) TAGs can be parsed in 

polynomial time, in fact, with a time based I<n6, where n is the length of the string and K is a 

constant depending on the grammar. 



2.1 Some examples of formal languages 

Example 2.1 Let G = (I, A)  be a TAG with local constraints where 

A: p =  S N A  

b S N A c  

There are no constraints in al. In P no auxiliary trees are adjoinable at  the root node and the 

foot node and for the center S node there are no constraints. 

Starting with a1 and adjoining ,8 to a1 at the root node we obtain 



Adjoining /3 to the center S node (the only node at which adjunction can occur) we have 

It is easy to see that G generates the string language 

Example 2.2 Let GI be a TAG similar to G in Example 2.1, except that in GI there 

are no constaints in /3. G1 generates 

L = {wecn/n 1 0, # a's in w = # b's in w = n, 

and for any proper initial string u 

of w, # a's in u 2 # b's in u.) 

This language is closely related to the context-sensitive language discussed in Higginbotham 

(1984)' which can also be shown to be a TAG language. 



Example  2.3 Let G = (I, A) be a TAG with local constraints where 

G generates the language 

L = {wewlw E {a, b)*)  

Example  2.4 Let G' be a TAG which is the same as G in Example 2.3 but without 

any local constraints. The corresponding language is 

L = {wewt/w, w' E {a,b)*,w = w' = 2n, 

# a's in w = # a's in wt = # b's 

in w = # b's in w' = n) 

This language is related to the Swiss-German example in Shieber (1984). 



Example 2.5 Let G = (I, A) be a TAG with local constraints where 

G generates 

L = {anbnecndn/n > 1 )  

Note that i t  can be shown that languages 

L1 = {anbncndnen/n 2 1) 

and 

L2 = { W W W / W  E { a ,  b } * )  

cannot be generated by TAGS either with or without local constraints (Joshi 1985). Other languages 

such as L' = {an2 (n  2 1) also cannot be generated by TAG. This is because the strings of a TAG 

have the constant growth property. 

2.2 Derivation in a TAG 

We will not describe formally the notion of derivation in a TAG, however we will give an informal 

discussion which will make the notion of derivation in TAG precise enough for our purpose. Ad- 

joining is an operation defined on an elementary tree, say y, an auxiliary tree, say ,fl, and a node 
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(i.e., an address) in y,  say n .  Thus, every instance of adjunction is of the form "P is adjoined to  

y at n," and this adjunction is always and only subject to  the local constraints associated with 

n. Although we very often speak of adjoining a tree t o  a node in a complex structure, we do so 

only for convenience. Strictly speaking, adjoining is always at a node in an elementary tree; and, 

therefore, it is more precise to  talk about adjoining at an address in an elementary tree. More 

than one auxiliary tree can be adjoined to  an elementary tree as long as each tree is adjoined at 

a distinct node. After these auxiliary trees are adjoined to  the elementary tree, only nodes in the 

auxiliary trees are available for further adjunction. This precision in the definition of adjunction 

will be necessary when we define multicomponent adjunction in Section 2.3 below. 

Now suppose that a is an initial tree and that PI, pz,. . . are auxiliary trees in a TAG, G. Then 

the derivation structure corresponding to the generation of a particular string in L(G) might look 

as follows: 

al is an initial tree. p3, ,Ds and Plo are adjoined at nodes n1, 722, and n3 respectively in a l ,  

where n l ,  n2, and n3 are all distinct nodes. pl and p3 are adjoined to ,D3 at nodes ml and mz 

respectively. Again, ml  and m;! are distinct. p6 has no further adjunctions but P8 is adjoined to  

Plo at node pl.  Note that the derivation structure D implicitly characterizes the 'surface' tree that 

is generated by it. (See Section 7 for the relationship of TAG and the unification formalism). In 

this way the derivation structure can be seen as the basic formal object constructed in the course 

of sentence. Associated with it will be two mappings, one to a surface syntactic tree and the other 
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to a semantic interpretation, as below. (We are not concerned with semantic interpretation in this 

paper). 

surface tree - derivation structure --t semantic interpretation 

In a CFG, the derivation structure is the same as the surface structure. In a TAG this is not 

the case. Several of the formalisms that we have shown equivalent are comparable at the level of 

the derivation structures. Based on this observation in Section 6, we have discussed a framework 

called Linear Context-Free Rewriting System (LCFR) which captures the commonality at the level 

of derivation structures. 

2.3 Multicomponent Tree Adjoining Grammars (MCTAG) 

In Joshi, Levy, Takahashi (1975) a version of the adjoining operation is introduced under which, 

instead of a single auxiliary tree, a set of such trees is adjoined to a given elementary tree. We define 

the adjunction of such a set as the simultaneous adjunction of each of its component trees to a 

distinct node (address) in an elementary tree. This adjunction can, of course, take place only if the 

local constraints associated with each affected node of the elementary tree are satisfied. Consider, 

for example, the following grammar G = (I, A): 



pi is an auxiliary set consisting of the two trees ,Bll and P12. Here is a sample derivation in G: 

yl above, it should be clear, is obtained by the adjunction of the components ,Bll and p12 of the 

auxiliary set P1 to yo at the nodes nl  and n2 respectively. In the current example, the set has 

two component trees and pz has only one component. If every auxiliary tree set of a TAG has only 

one component, we have a TAG as defined earlier. It can be shown that the number of components 

in the auxiliary sets does not make any difference to  the generative capacity i.e., both the weak 

and strong (with respect to  tree sets generated and not, of course, with respect t o  the derivation 

structures) generative capacities of multicomponent TAG are the same as that for TAG where each 

auxiliary set has exactly one component. On the other hand, derived auxiliary sets can be defined 

by adjoining an auxiliary set, say PI, to  another auxiliary set, say p2, as follows. Each component 

of pl is adjoined to one (and exactly one) component of p2 and all adjunctions are a t  distinct nodes. 

Note that since it is not required that each component of P1 adjoins to  the same component of P2, 

one component may adjoin to  one component and another component to  a different component of 

Pz, i.e., adjunctions of components are not to the same component (elementary tree) of Dl, but 

they are all adjunctions to  the same auxiliary set. Thus, locality of adjoining can be defined in 

two ways: (1) by requiring that all components of an auxiliary set adjoin to  the same elementary 

tree, (2) by requiring that all components of an auxiliary set adjoin to  the same auxiliary set, not 

necessarily to the same elementary tree. The first type of locality does not add to  the generative 

capacity of the MCTAG. The second type of locality does add to  the weak generative capacity of 

the MCTAG; however, the resulting class of languages still falls within the class of "mildly context 



sensitive" languages. With the second type of locality an MCTAG can be defined for the language 

L' = {anbnJn 2 1) such that the a's all hang from one path from the root node S and the b's 

all hang from another path from the root node. Such a structural description cannot be provided 

by TAG where each auxiliary set has exactly one component (see also Joshi (1985)). For further 

details of MCTAGs, see Weir (1988). Weir (1988) has also shown that MCTAGs (with the second 

definition of locality) are equivalent to LCFRs (see Section 6). 

2.4 Some Linguistic Examples: 

Example 2.6 Starting with the initial tree yl = a 1  and then adjoining P6 at the 

indicated node (marked by *) in crl, we obtain 72. 

Y1 = a1 = P, = 
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Example 2.7 Starting with the initial tree yl = as and adjoining P1 at the indicated 

node in as we obtain 7 2 .  

rl =a,= st * OA ( P ~ , P ~  p 4 )  

I 

A 
NP 

I A 
PRO TO VP 

A 
V NP 

I 
invite 

I 
N 

I 
Mary 

PRO to invite Mary 

P 1  = sv 

I 

A 
NP 

I 
N A 
I 

V NP S' NA 

John 
/ I 

penua&d N 

John persuaded Bill S' 

I 
invite 

I 
N 

John persuaded Bill PRO to invite Mary.. 



Since the initial tree a 6  is not a root sentence, it must undergo an adjunction at its root node, for 

example, by the auxiliary tree P1 as shown above. Thus, for a6 we have specified a local constraint 

OA(P1, Pa, P4) for the root node, indicating that a6 must undergo an adjunction at the root node 

by an auxiliary tree PI. 

Example 2.8 Starting with the initial tree yl = a8 and adjoining ,B4 to a8 at the 

indicated node in as ,  we obtain 7 2 .  

I A 
PRO TO VP 

AUX NP VP 

I  I I  
John persuade N 

I 
invite 

I 
e. 

Who PRO to invite did John persuade Bill S' 

i N I 
h 

V NP NA 

I I I  :\ \ John pasuade N 

I /,A, 
"ill/ NP 

~.~ VP 

I A 
PRO TO VP 

I 
invite 

I 
e .  

Who did John persuade Bill PRO to invite. 

Note that the link in yl is preserved in 7 2 ;  it is stretched, resulting in a so-called unbounded 

dependency. Also note that, as in previous examples, as is an initial tree that cannot serve as a root 
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sentence and the obligatory adjunction possibilities are as indicated. Again the local constraint (4) 

at the foot node of ,Dq prevents further adjoining at this node in 7 2 .  



3 Head Grammars - Head wrapping and tree adjoining 

In this section, we will briefly describe head grammars (HG) (Pollard 1984), and relate them to 

TAGS. For further details, see Weir, Vijay-Shanker, and Joshi, (1986); Vijay-Shanker, Weir, and 

Joshi, (1986); Joshi, Vijay-Shanker, and Weir, (1986). HGs are not to be confused with Head 

Driven Phrase Structure Grammars (HPSG) (Pollard 1985). 

3.1 Head Grammars 

Head Grammars are string rewriting systems like CFG's, but differ in that each string has a 

distinguished symbol corresponding to the head of the string. These are therefore called headed 

strings. The formalism allows not only concatenation of headed strings but also so-called head 

wrapping operations which split a string on one side of the head and place another string between 

the two sub-strings. When we wish to explicitly mention the head we use the notation w1'7iw2; 

alternatively, we simply denote a headed string by 5. Productions in a HG are of the form 

A t f ( a l7 . .  . ,a,) or A t a1 where: A is a nonterminal; a; is either a nonterminal or a headed 

string; and f is either a concatenation or a head wrapping operation. Roach (1985) has shown that 

there is a normal form for Head Grammars which uses only the following operations. 

LC1 concatenates the two strings, the head of the resulting string comes from the first string. 

Similarly LC2. LL1 inserts the second string into the first string to the right of the head of the 
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first string, i.e., the head of the first string is to  the left. The head of the resultant string is the 

head of the first string. Similarly, for LL2, LR1, and LR2. 

Pollard's definition of headed strings includes the headed empty string 1. However the term 

- - 
f i(El, . .  . , w;, . . . , w,) is undefined when Ti = x. This nonuniformity has led to difficulties in prov- 

ing certain formal properties of HGs (Roach (1985)). This difficulty can be removed by formulating 

HGs as follows. 

Instead of headed strings, we will use so-called split strings. Unlike a headed string which has a 

distinguished symbol, a split string has a distinguished position about which it may be split. There 

are 3 operations on split strings: W ,  C1, and C2. The operations C1  and C2 correspond to the 

operations LC1 and LC2 in HGs. They are defined as follows: 

Since the split point is not a symbol (which can be split either to its left or right) but a 

position between strings, separate left and right wrapping operations are not needed. The wrapping 

operation, W, is defined as follows: 

It can be shown that this reformulation is equivalent to  HG. We will use this reformulation in 

our further discussion. 

3.2 Wrapping and Adjoining 

The weak equivalence of HGs and TAGS is a consequence of the similarities between the operations 

of wrapping and adjoining. It  is the roles played by the split point and the foot node that underlies 

this relationship. When a tree is used for adjunction, its foot node determines where the excised 

subtree is reinserted. The strings in the frontier to the left and right of the foot node appear on 

the left and right of the frontier of the excised subtree. As shown in the Figure 3 below, the foot 

node can be thought of as a position in the frontier of a tree, determining how the string in the 

frontier is split. 
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foot foot 

foot 

Figure 3: Wrapping and Adjoining 

Adjoining in this case, corresponds to wrapping wltw around the split string vlyva. Thus, the 

split point and the foot node perform the same role. The proofs showing the equivalence of TAGS 

and HGs is based on this correspondence. 

3.3 Inclusion of TAL in HL 

We will briefly present a scheme for transforming a given TAG to  an equivalent HG. We associate 

with each auxiliary tree a set of productions such that each tree generated from this elementary 

tree with frontier w1Xw2 has an associated derivation in the KG, using these productions, of the 

split string wlywz. The use of this tree for adjunction at some node labelled X can be mimicked 

with a single additional production which uses the wrapping operation. 

For each elementary tree we return a sequence of productions capturing the structure of the tree 

in the following way. We use nonterminals that are named by the nodes of elementary trees rather 

than the labels of the nodes. For each node 7 in an elementary tree, we have two nonterminal X ,  

and Y, allowing for the possibility that an adjunction occurs at 7;  X, derives the strings appearing 

on the frontier of trees derived from the subtree rooted at 7;  Y, derives the concatenation of the 

strings derived under each daughter of 7. If 7 has daughters 71,. . . , q k  then we have the production: 

where the node 7; dominates the foot node (by convention, we let i = 1 if 7 does not dominate the 
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foot node). Adjunction at q, is simulated by use of the following production: 

where p is the root of some auxiliary tree which can be adjoined at q. If adjunction is optional at 

q then we include the production: 

x, -t Y,. 

Notice that when q has an N A  or OA constraint we omit the second or third of the above 

productions, respectively. 

We illustrate the construction with an example showing a single auxiliary tree and the corre- 

sponding HG productions. In this example, p1, p2,. . . , pn are the root nodes of the trees that can 

be adjoined at q2 in P. 

HG productions corresponding to P:  



3.4 Inclusion of HL in TAL 

In this construction, we use elementary trees to  simulate directly the use of productions in HG 

to rewrite nonterminals. Generation of a derivation tree in string-rewriting systems involves the 

substitution of nonterminal nodes, appearing in the frontier of the unfinished derivation tree, by 

trees corresponding to  productions for that nonterminal. From the point of view of the string 

languages obtained, tree adjunction can be used to  simulate substitution, as illustrated in the 

following example. 

Notice that although the node where adjoining occurs does not appear in the frontier of the 

tree, the presence of the node labelled by the empty string does not effect the string language. 



For each production in the HG we have an auxiliary tree. A production in an HG can use one of 

the three operations: C1, C2, and W. Correspondingly we have three types of trees, shown below. 

Drawing the analogy with string-rewriting systems: NA (null adjoining) constraints at each root 

have the effect of ensuring that a nonterminal is rewritten only once; NA constraints a t  the foot 

node ensures that, like the nodes labelled by A, they do not contribute to  the strings derived; OA 

(obligatory adjoining) constraints are used to ensure that every nonterminal introduced is rewritten 

at least once. 

The two trees mimicking the concatenation operations differ only in the position of their foot 

node. This node is positioned in order to  satisfy the following requirement: for every derivation in 

the HG there must be a derived tree in the TAG for the same string, in which the foot is positioned 

at the split point. 

The tree associated with the wrapping operation is quite different. The foot node appears 

below the two nodes to  be expanded because the wrapping operation of HGs corresponds to the 

LL1 operation of HGs in which the head (split point) of the second argument becomes the new head 

(split point). Placement of the nonterminal, which is to  be wrapped, above the other nonterminal 

achieves the desired effect as described earlier. 

While straightforward, this construction does not capture the linguistic motivation underlying 

TAGs. The auxiliary trees directly reflect the use of the concatenation and the wrapping operations. 

Elementary tree for natural languages are constrained to capture meaningful linguistic structures. 

In the TAGs generated in the above construction, the elementary trees are incomplete in this 



respect: as reflected by the extensive use of the OA constraints. Since HGs do not explicitly give 

minimal linguistic structures in the sense of TAG, it is not surprising that such a direct mapping 

from HGs to TAGs does not recover this information. 

3.5 Notational Differences between TAGS and HGs 

TAGS and HGs are notationally very different, and this has a number of consequences that influence 

the way in which the formalisms can be used to express various aspects of language structure. The 

principal differences derive from the fact that TAGS are a tree-rewriting system unlike HGs which 

manipulate strings or pairs of strings. 

The elementary trees in a TAG, in order to be linguistically meaningful, must conform to 

certain constraints that are not explicitly specified in the definition of the formalism. In particular, 

each elementary tree must constitute a minimal linguistic structure elaborated up to preterminal 

(terminal) symbols and containing a head and all its complements or a modifier. Initial trees 

have essentially the structure of simple sentences; auxiliary trees correspond to minimal recursive 

constructions and generally constitute structures that act as modifiers of the category appearing 

at their root and foot nodes. 

A hypothesis that underlies the linguistic intuitions of TAGS is that all dependencies are cap- 

tured within elementary trees. This is based on the assumption that elementary trees are the 

appropriate domain upon which to define dependencies, rather than, for example, productions in a 

CFG. Since in string-rewriting systems, dependent lexical items can not always appear in the same 

production, the formalism does not prevent the possibility that it may be necessary to perform 

an unbounded amount of computation in order to check that two dependent lexical items agree 

in certain features. However, since in TAGs dependencies are captured by bounded structures, 

we expect that the complexity of this computation does not depend on the derivation. Features 

such as agreement may be checked within the elementary trees (instantiated up to lexical items) 

without need to  percolate information up the derivation tree in an unbounded way. Some checking 

is necessary between an elementary tree and an auxiliary tree adjoined to it at some node, but this 

checking is still local and bounded. Similarly, elementary trees, being minimal linguistic structures, 

capture all of the sub-categorization information. 

TAGs have only one operation of composition, namely, adjoining. HGs have concatenation 



and wrapping a variety of ways. Further, TAGs are differentiated from HGs due to the fact that 

TAGs generate phrase-structure trees. As a result, the elementary trees must conform to certain 

constraints such as left-to-right ordering and dominance relations. Unlike other string-rewriting 

systems that use only the operation of concatenation, HGs do not associate a phrase-structure 

tree with a derivation: wrapping, unlike concatenation, does not preserve the word order of its 

arguments. 

It is still possible to associate a phrase-structure with a derivation in HGs that indicates the 

constituents and we use this structure when comparing the analyses made by the two systems. 

These trees are not really phrase-structure trees but rather trees with annotations which indicate 

how the constituents will be wrapped (or concatenated). It  is thus a derivation structure, recording 

the history of the derivation. With an example we now illustrate how a constituent analysis is 

produced by a derivation in a HG, corresponding to John Mary saw swim as required in a Dutch 

subordinating clause. 

John  saw N P  VP 

Mary swim 

Although a TAG generates trees (phrase structure trees), these trees are not the derivation trees. 

For a tree y generated in a TAG, G, there is a derivation structure associated with y. Because 

TAG and HG are different systems, it is not possible to directly compare them with respect to 

their "strong" generative capacities. (In Weir, Vijay-Shanker and Joshi, (1986), a few linguistic 

examples have been discussed comparing the structural desciptions provided by HG and TAG). HG 



and TAG are comparable at the level of the derivation structures they produce. This aspect will 

be discussed in Section 6. 



4 Linear Indexed Grammars (LIG) 

Indexed grammars (IG) were introduced by Aho (1968) as a generalization of CFG, and their 

mathematical properties have been investigated extensively. The class of ILs (indexed languages) 

is properly contained in the class of context-sensitive languages (CSL) and properly contains CFLs. 

IGs were not introduced as grammatical formalisms for natural language; however, since IGs are 

more powerful than CFGs and, as some recent investigations have shown, that some additional 

power beyond that of CFGs is required, IGs have received some attention from linguists. Gazdar 

(1985) has presented a discussion of the relevance of IGs to  natural language. The class of ILs 

as a whole is clearly larger than the class of so-called mildly context-sensitive languages (MCSL), 

simply because ILs, in general, do not have the constant growth property, because not all ILs are 

semi-linear. For example, L = {an2 In > 1)) L = {a2" In 2 1) are ILs, but not semi-linear. 

IGs are defined as follows [We will adopt the notation used in Gazdar (1985) which is essentially 

the same as in Hopcroft and Ullman (1979)l. Let A, B,C,  . . . be the nonterminals; a ,  b,c,  . . . the 

terminals; W, Wl, W2,. . . strings of terminals and nonterminals; indices i, j, k, . . .; stacks of indices 

[ 1, [..I, [i..] where [ ] denotes an empty sack, [..I a possibly empty stack, and [i..] a stack whose 

topmost index is i .  The productions are as follows: 

W[..] is a short hand for, for example, A1[ ...I... An[ ...I i.e., W[..] stands for a righthand side in 

which each nonterminal in W is [...I associated with it. 

Rule 1 copies the stack on A to all the nonterminal daughters. It is assumed by convention that 

no stacks are associated with the terminals. Rule 2 pushes an index i on the stack passed from A 

to a unique nonterminal daughter. Rule 3 pops an index i and then copies stack on A t o  all the 

nonterminal daughters. Gazdar (1985) adds some additional rules, albeit redundantly. These are 



Rule 4 copies the stack on A to exactly one nonterminal daughter. Rule 5 and 6 push and pop 

an index on the stack of a designated daughter. 

An IG which has only rules of the form 4 ,5 ,  and 6, will be called LIG, a linear indexed grammar. 

It can be shown that  LIGs and TAGS, and therefore HGs, are weakly equivalent. (Vijay-Shanker 

1987). We will illustrate briefly the relationship between LIG and TAG by means of an example. 

Let G be a LIG as follows 

Let wl = abec. The derivation of w1 is 



Let wz = aabbecc. The derivation of w2 is 

(8) 

Comparing (7) and (8), one can see that ( n  - 1) applications of (3), one applications of (4), 

then n applications (5) allows us to add n a's, n b's and n c's in the right order. 

Note that (7) is a minimal derivation in G. We now take (7) to be an elementary tree (initial 

tree) say, a of a TAG G' 

There is no need to  keep the stacks around each one of the nonterminals appearing in specific 

addresses in a. Thus we can have 



If we now introduce an auxiliary tree, say P 

(11) P = 

which introduces one a ,  one b, and one c, in the right order, we can simulate the effect of applying 

(3), (4), and (5) in LIG, assuming P is adjoined only to  the node B which is the sibling of a. P 

should not be adjoined to  the node B which dominates e in a. Similarly in P, since /3 can be 

adjoined to  P itself, we want this adjoining to take place only for the interior B node P, and not 

to  root and foot nodes of p.  We can achieve this by placing the null adjoining constraint a t  the 

appropriate nodes. Hence, the equivalent TAG, G' is 

b BNA c 

b B N A c  

The operation of adjoining indirectly pairs the pushes and pops of indices in just the right way. 

Also, this information is implicitly communicated from the root of an auxiliary tree to the foot of 

the auxiliary along the spine of the auxiliary tree (i.e., the path from the root to  the foot). This 

corresponds roughly to  the LIG constraint that the stack passes on from the left hand side of a rule 

t o  only a designated daughter. 

The equivalence of LIG and TAG thus explains a conjecture of Bill Marsh (referred t o  by 

Gazdar (1985)) that the languages L1 = {anbncndnenln > 1) and L2 = {www(w E (0, I}*) cannot 

be generated by LIG. 

MCTAG, multicomponent TAGs, as described in Section 2 are more powerful than TAGs both 

weakly and strongly. For example, MCTAGs can generate, for each k > 1, Lg = {a?, a;, . . . , agln > 
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1) and can also generate the double spined structural descriptions for L4 = {anbn)n 2 1) i.e., 

structural descriptions of the form 

LIGs are inadequate for this purpose, because they do not permit branching stacks. MCTAGs 

are capable of achieving some of the effects permitted by branching stacks, however, still maintaining 

the constant growth property, thus they are more constrained. Whether there is any appropriate 

extension of LIG that permits branching stacks without leading to full power of IG is not known at  

present. Finding a subset of IG which is exactly or nearly equivalent to  MCTAG is a challenging 

open problem. 

Note that although the equivalence of LIG and TAG has been established, there are some key 

differences between them. If we consider the example described above, it is immediately clear that 

the 'dependent' a ,  b,  and c are always in the same elementary tree. This is only implicit in LIG. 

The dependency can only be inferred by examining the state of the stacks at the various stages of 

the derivation. This is due to  the fact that TAGS factor recursion and dependency, while a string 

rewriting system, of which LIG is an example, does not do so. 



5 Combinatory Categorial Grammars 

In this section, we examine Combinatory Categorial Grammars (CCGs), an extension of Classical 

Categorial Grammars (Ajdukiewicz (1935)) developed by Steedman and his collaborators (Ades 

and Steedman (1982), Steedman (1985, 87, 88)). Classical Categorial Grammars are known to  be 

weakly equivalent to CFGs (Bar-Hillel, Gaifman, and Shamir (1964)), and the main result in this 

section is that under a certain definition, (which corresponds to  Steedman7s recent work) CCGs 

are weakly equivalent to TAGS, HGs, and LIGs. We show this by showing that Combinatory 

Categorial Languages (CCLs) are included in Linear Indexed Languages (LILs), and that Tree 

Adjoining Languages (TALs) are included in CCLs (Weir and Joshi (1988)). 

On the basis of their weak equivalence with TAGS, and HGs, it appears that CCGs should be 

classified as a mildly context-sensitive grammar formalism. The derivation tree sets traditionally 

associated with CCGs have context-free path sets, and are similar to  those of LIGs, and therefore 

differ from those of LCFRSs. This does not, however, rule out the possibility that there may be 

alternative ways of representing the derivation of CCGs that will allow for their classification as 

LCFRSs. 

The complexity of TAL recognition is O(n6) .  Thus, a corollary of our result is that this is 

also a property of CCLs. Although there has been previous work (Pareschi and Steedman (1987); 

Wittenburg (1986)) on the parsing of CCGs, they have not suggested a specific upper bound on 

recognition. 

5.1 Definition of CCGs  

Combinatory Categorial Grammar (CCG), as defined here, is the most recent version of a system 

that has evolved in a number of papers by Steedman (1985, 87, 88). In this section we first define 

CCGs, and then show that the class of string languages generated by C CGs is equal to  the languages 

generated by TAGS (and LIGs). 

Definition 5.1 A C C G ,  G, is denoted by (VT,VN, S, f ,  R) where 

VT is a finite set of terminals (lexical items), 

VN is a finite set of nonterminals (atomic categories), 

S is a distinguished member of VN, 
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f is a function that maps elements of VT U { E }  to finite subsets of C(VN), the set of 

categories1, where 

VN C C(VN) and if c l ,c2  E C(V,)  then (cl/c2) E C(VN) and (cl\c2) E 

~ ( V N ) .  

R is a finite set of combinatory rules. 

There are four types of combinatory rules, which involve variables x,  y, z over C(VN), and each 

l i  { \ , / } a  

1. forward application: 

2. backward application: 

3. generalized forward composition for some n 2 1: 

4. generalized backward composition for some n 2 1: 

Restrictions can be associated with the use of the combinatory rule in R. These restrictions 

take the form of constraints on the instantiations of variables in the rules. These can be constrained 

in two ways. 

1. The initial nonterminal of the category to  which x is instantiated can be restricted. 

2. The entire category to which y is instantiated can be restricted. 

Derivations in a CCG involve the use of the combinatory rules in R. Let the derives relation 

be defined as follows. 

acp 5 Q C I C ~ P  



if R contains a combinatory rule that has clc2 + c as an instance, and a and ,L? are (possibly empty) 

strings of categories. The string languages, L(G), generated by a CCG, G, is defined as follows. 

Although there is no type-raising rule, its effect can be achieved to a limited extent since f can 

assign type-raised categories to lexical items. This is the scheme employed in Steedman's recent 

work. 

5.2 Weak Generative Capacity 

In this section we show that CCGs are weakly equivalent to TAGS, HGs, and LIGs. We do this by 

showing the inclusion of CCLs in LILs, and the inclusion of TALs in CCLs. We have already seen 

that TAG and LIG are equivalent (and TAG and HG are equivalent. (Weir, Vijay-Shanker and 

Joshi (1986). Thus, the two inclusions shown below imply the weak equivalence of all four systems 

(TAG, HG, LIG, and CCG). 

5.2.1 CCLs C LILs 

We describe how to construct a LIG, G', from an arbitrary CCG, G such that G and G' are 

equivalent. Let us assume that categories are written without parentheses, unless they are needed 

to  override the left associativity of the slashes. 

A category c is minimally parenthesized if and only if one of the following holds. 

c = A for A E VN 

c = ( A ~ I c ~  12 . . . Inca), for n 2 1, where A E VN and each ci is minimally 

parenthesized. 

It will be useful to  be able t o  refer to  the components of a category, c. We first define the 

immediate components of c. 

when c = A the immediate component is A, 

when c = (Allcl l 2  . . . I,c,) the immediate components are A, cl , . . . , c,. 



The components of a category c are its immediate components, as well as the components of its 

immediate components. The immediate components are the categories arguments. Thus, c = 

(Allcl(z . . . lnc,) is a category that takes has n arguments of category cl ,  . . . , c, t o  give the t a rge t  

category A. 

Although in CCGs there is no bound on the number of categories that are derivable during a 

derivation (categories resulting from the use of a combinatory rule), there is a bound on the number 

of components that derivable categories may have. This would no longer hold if unrestricted type- 

raising were allowed during a derivation. 

Let the set Dc(G) be defined as follows. 

c E Dc(G) if c is a component of c' where c' E f(a) for some a E VT U ( 6 ) .  

Clearly for any CCG, G, Dc(G) is a finite set. DC(G) contains the set of all derivable components, 

i.e., for every category c that can appear in a sentential form of a derivation in some CCG, G, each 

component of c is in Dc(G). This can be shown, since, for each combinatory rule, if it holds of 

the categories on the left of the rule then it will hold of the category on the right. The number 

of derivable categories is unbounded because they can have an unbounded number of immediate 

components. 

Each of the combinatory rules in a CCG can be viewed as a statement about how a pair of 

categories can be combined. For the sake of this discussion, let us name the members of the pair 

according to  their role in the rule. 

The first of the pair in forward rules and the second of the pair in backward rules will 

be named the p r imary  category. The second of the pair in forward rules and the first 

of the pair in backward rules will be named the secondary category. 

As a result of the form that combinatory rules can take in a CCG, they have the following prop- 

erty. When a combinatory rule is used, there is a bound on the number of immediate components 

that the secondary categories of that rule may have. Thus, because immediate constituents must 

belong to  DC(G) (a finite set), there is a bound on the number of categories that can fill the role 

of secondary categories in the use of a combinatory rule. Thus, there is a bound on the number of 

instantiations of the variables y and z; in the combinatory rules in Section 5.1. The only variable 

that can be instantiated to an unbounded number of categories is x. Thus, by enumerating each 
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of the finite number of variable bindings for y and each zi, the number of combinatory rules in R 

(while remaining finite) can be increased in such a way that only x is needed. Notice that x will 

appears only once on each side of the rules (i.e., they are linear). 

We are now in a position to  describe how to represent each of the combinatory rules by a 

production in the linear indexed grammars LIG, G' (see Section 4). In the combinatory rules, 

categories can be viewed as stacks since symbols need only be added and removed from the right. 

The secondary category of each rule will be a ground category: either A, or (Allc1I2.. . Incn), for 

some n 2 1. These can be represented in a LIG as A[] or A[llcl 1 2 .  . . lncn], respectively. The 

primary category in a combinatory rule will be unspecified except for the identity of its left and 

rightmost immediate components. If its leftmost component is a nonterminal, A, and its rightmost 

component is a member of Dc(G), c, this can be represented in a LIG by A[.  . c]. 

In addition to mapping combinatory rules onto productions we must include productions in G' 

for the mappings from lexical items. 

If A E f (a) where a E VT U {E) then A[] -+ a E P 

If (Allcllz.. . \ n ~ n )  E f (a) where a E VT U (6) then A [ ( I c I ( ~ .  .. Incn] + a E P 

We now illustrate this construction by giving a LIG from a CCG that generates the language 

Example 5.1 Let a CCG be defined as follows, where we have omitted unnecessary 

parenthesis. 

A E f ( a )  B E f ( b )  C E f ( c )  D E f ( d )  

The following combinatory rules are permitted. 

Forward application involving x ly  and y either when x begins with S1 and y is C, 

or when x begins with S and y is S1 or D.  

Backward application involving y and x\y when x begins with S and y is A or B. 

Forward composition involving xly and y\z1/z2/z3\z4 when x begins with S and 

y is S1. 
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The productions of the LIG that would be constructed from this CCG are as follows. 

The first 7 rules result from the definition o f f .  [In the notation for stacks below, the top 

of the stack appears to  the right. In Section 4, in the notation for stacks, the top of the 

stack appears to the left. We have changed the notation from Section 4 for convenience 

because the "top" of a category in CCGs is on the right also.] 

for allX1, ..., X4 E VN 

5.2.2 TALs C CCLs 

We will just give the main idea of the construction of a CCG, G' from a TAG, G, such that G and 

G' are equivalent. It is important to appreciate that the order in which categories are combined is 

crucial in a CCG derivation, since the same categories combined in different orders give different 

strings. 

Each of the auxiliary trees will result in certain assigments of categories by f to a terminal or 

the empty string. Each occurence of adjunction will be mimicked by the use of a combinatory rule. 

Adjunction into nodes to the right (left) of the foot node (which corresponds to concatenation) 

will be simulated by backward (forward) application. Adjunction into nodes dominating the foot 

node of a tree (which corresponds to wrapping) will be simulated in the CCG by composition. It 

is necessary that we ensure that the subsidiary category in every occurence of composition has just 

been introduced into the derivation by an assignment of f (see Figure 4). This will correspond to 

the adjunction of an auxiliary tree that has not had any trees adjoined into it. It can be shown 

that composition is guaranteed only in this context. 



Figure 4: Context of composition 

Forward and backward application are restricted to cases where the secondary category is some 

Xu, and the left immediate component of the primary category is some Ya. 

Forward and backward composition are restricted to cases where the secondary category has the 

form ((XC11~1)12~2), or (XCI1cl), and the left immediate component of the primary category 

is some Ya. 

An effect of the restrictions on the use of combinatory rules is that only categories that can fill 

the secondary role during composition are categories assigned to terminals by f .  Notice that the 

combinatory rules of G' depend only on the terminal and nonterminal alphabet of the TAG, and 

are independent of the elementary trees. 

The construction depends on a particular normal form for TAGS. We will omit all the details 

here. The tree in Figure 5 is encoded by the category 



Figure 5: Tree encoding A\AY/A?/A$\A: 

Example 5.2 Figure 6 shows an example of a TAG for the language L2 = { anbn 1 n > 
0) with crossing dependencies. 

Figure 6: TAG for L2 



We give the CCG that would be produced according to this construction. 

The CCGs produced according the construction given here have the property that parenthesis 

are redundant. It can be shown in general that the use of parenthesis in CCGs does not increase 

the generative power of the formalism. Parenthesis-free CGs differ from CCGs (Friedman, Dai, 

and Wang (1986), Friedman and Venkatesan (1986). It can be shown that parenthesis-free CGs 

generate languages not generable by CCGs (Weir (1988)). 

For further details of this construction and a discussion of derivation trees, see (Weir (1988)). 



6 Linear Context-Free Rewriting Systems (LCFR) 

So far we have discussed a number of formalisms and shown equivalences among them. All these sys- 

tems share certain properties which make them members of the so-called "mildly context-sensitive" 

grammar formalisms. All these systems involve some type of context-free rewriting. Vijay-Shanker, 

Weir and Joshi (1987) and Weir (1988) have described a system, called linear context-free rewriting 

system (LCFR) which attempts to capture the common properties shared by these formalisms. 

6.1 G e n e r a l i z e d  C o n t e x t - F r e e  Grammars 

We define Generalized Context-Free Grammars (GCFGs), first discussed, though with a somewhat 

different notation, by Pollard (1984). 

Definition 6.1 A GCFG G is written as G = (V, S, F, P), where 

V is a finite set of variables 

S is a distinguished member of V 

F is a finite set of function symbols 

P is a finite set of productions of the form 

where n 2 0, f E F, and A, A1,. . . ,A, E V. 

The set of terms (trees), T(G) derived from a GCFG, G is the set of all t such that S t 
G 

where the derives relation is defined as follows. 

a A f () if A -i f () is a production. 

a A f (t l ,  .. . , t,) if A + f (A1,. . . , A,) is a production, and Ai $+ t; for 1 < i 5 n. 
G 

Notice that in GCFGs, rewriting choices during the derivation are independent of context. 

GCFG will generate a set of trees that can be interpreted as derivation tree in various grammar 

formalisms. Based on GCFG, we can now define aformalism called Linear Context-Free Rewrit- 

ing Systems,  (LCFR), which captures the common properties shared by the formalisms discussed 

earlier. By giving an interpretation for each of the functions in F, each term (tree) in T(G) can 

be seen as encoding the derivation of some derived structure. It can be shown that context-free 
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grammars (CFG), head grammars (HG), tree adjoining grammars (TAG), and multicomponent 

tree adjoining grammars (MCTAG) are examples of LCFRS.~  

In each of the LCFRSs that we have given, the functions (combining strings, trees, or sequences 

of strings and trees) share certain constrained properties. It is difficult to completely characterize 

the entire class of such functions that will be so constrained because we are considering formalisms 

with arbitrary structures. Instead, we will give two restrictions on the functions. We would like 

these restrictions to ensure that the functions do not "copy", "erase", or "restructure" unbounded 

components of their arguments. The result of composing any two structures should be a structure 

whose "size" is the sum of its constituents plus some constant. Every intermediate structure that 

a grammar derives contributes some terminals t o  the string that is yielded by the structure that is 

finally derived. However, the symbols in the yield of an intermediate structure do not necessarily 

form a continuous substring of the final string. In general, though, we can write the yield of an 

intermediate structure as a finite sequence of substrings of the final string. The composition oper- 

ations are "size" preserving. Thus, with respect to  the yield of the structures being manipulated, 

the composition operations do no more than reorder their arguments and insert a bounded number 

of additional terminals. It can be shown that LCFRs are semi-linear (and hence obey the constant 

growth property) and are parsable in polynomial time. For further details, see (Vijay-Shanker, 

Weir, and Joshi (1987) and Weir (1988)). Weir (1988) has also shown that languages generated by 

MCTAGs are equal to  the languages generated by LCFRs. 

Recently Kasami, Seki, and Fuji (1988) have studied a system called multiple context-free 

grammars, which is the same as LCFRs. They have obtained some additional properties of the 

classes of languages generated by their system, in particular, they have shown that the "non-erasing" 

property does not change the power. 



7 Feature Structure Based TAG (FTAG) and Restricted FTAG 

(RFTAG) 

7.1 Feature Structure Based Tree Adjoining Grammars (FTAG) 

The linguistic theory underlying TAGS is centered around the factorization of recursion and local- 

ization of dependencies into the elementary trees. The "dependent" items usually belong to the 

same elementary tree3. Thus, for example, the predicate and its arguments will be in the same tree, 

as will the filler and the gap. Our main goal in embedding TAGS in an unificational framework is to 

capture this localization of dependencies. Therefore, we would like to  associate feature structures 

with the elementary trees (rather than break these trees into a CFG-like rule based systems, and 

then use some mechanism to  ensure only the trees produced by the TAG itself are generated4). 

In the feature structures associated with the elementary trees, we can state the constraints among 

the dependent nodes directly. Hence, in an initial tree corresponding to a simple sentence, we can 

state that the main verb and the subject NP (which are part of the same initial tree) share the 

agreement feature. 

In unification grammars, a feature structure is associated with a node in a derivation tree in 

order to describe that node and its relation to features of other nodes in the derivation tree. In a 

TAG, any node in an elementary tree is related to the other nodes in that tree in two ways. Feature 

structures written in FTAG using the standard matrix notation, describing a node, 7,  can be made 

on the basis of: 

1. the relation of q to its supertree, i.e., the view of the node from the top. Let us call this 

feature structure t,. 

2. the relation to  its descendants, i.e., the view from below. This feature structure is called b,. 

Note that both the t ,  and b, feature structures are associated with the node q. In a derivation tree 

of a CFG based unification system we associate one feature structure with a node (the unification 

of these two structures) since both the statements, t and b, together hold for the node, and no 

further nodes are introduced between the node's supertree and subtree. This property is not true 

in a TAG. On adjunction, at a node there is no longer a single node; rather an auxiliary tree 

replaces the node. We believe that this approach of associating two statements with a node in the 
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foot A -b foot 

Figure 7: Feature structures and adjunction 

auxiliary tree is consistent with the spirit of TAGS. A node with OA constraints c~nnot  be viewed 

as a single node and must be considered as something that has to be replaced by an auxiliary tree. 

t, and b,  place restrictions on the auxiliary tree that must be adjoined 77. Note that if the node 

does not have OA constraint then we should expect t, and b, to be compatible (i.e., unifiable). For 

example, in the final sentential tree, this node will be viewed as a single entity. 

Thus, in general, with every internal node, 7, at which adjunction can take place we associate 

two structures, t ,  and b,. With each terminal node, we would associate only one structure5. 

Let us now consider the case when adjoining takes place as shown in Figure 7. The notation 

we use is to write alongside each node, the t and b statements, with the t statement written above 

the b statement. Let us say that t,oot,b,oot and tfoot,b~oot are the t and b statements of the root and 
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foot nodes of the auxiliary tree used for adjunction at the node 7. Based on what t and b stand for, 

it is obvious that on adjunction the statements t ,  and tTOot hold of the node corresponding to  the 

root of the auxiliary tree. Similarly, the statements b, and bfoot hold of the node corresponding to  

the foot of the auxiliary tree. Thus, on adjunction, we unify t ,  with trOot, and b, with bfoot.  In fact, 

this adjunction is permissible only if troot and t ,  are compatible as are bfoo, and b,. At the end of 

a derivation, the tree generated must not have any nodes with O A  constraints. We check that by 

unifying the t and b feature structures of every node. More details of the definition of FTAG may 

be found in (Vijay-Shanker (1987) and Joshi and Vijay-Shanker (1988)). 

7.2 Restricted FTAG 

FTAGs as defined above are not constrained just as CFG-based unification grammars are not con- 

strained. However, if we restrict the feature structures associated with each node of an elementary 

tree t o  be bounded then RFTAGs can be shown to be equivalent to  TAGs (Vijay-Shanker (1987)). 

This restriction is the same as in GPSG; however, because of the larger domain of locality of TAGs 

and the operation of adjoining, RFTAGs are more powerful than GPSGs. 



8 Lexicalized TAG 

We call a grammar 'lexicalized' if it consists of (a) a finite set of structures associated with each 

lexical item, which is intended to be the 'head' of these structures, and (b) an operation or operations 

for composing these structures. The finite set of structures define the domain of locality over which 

constraints are specified, and these are local with respect to their 'heads.' It can be shown that, 

in general, a context-free grammar (CFG) cannot be lexicalized. Even if a CFG can be lexicalized 

it is not always the case that we can guarantee that the lexical item associated with a structure 

is the linguistically appropriate 'head.' Both these results hold even if the domain of locality is 

extended to trees. This is so because CFG has substitution as the only operation. If, however, 

we add adjoining as an operation, along with substitution, then we can appropriately lexicalize 

a CFG (see Abeille, Schabes, and Joshi (1988) for further details about lexicalized grammars, in 

particular, lexicalized TAGs). 

TAGs are 'naturally7 lexicalized because of their extended domain of locality and the operation 

of adjoining. In a lexicalized TAG we allow substitution in addition to adjunction. Adjoining 

can simulate substitution, however in a lexicalized TAG, we allow substitutions explicitly. The 

definitions of elementary trees are as before except that at the frontiers we can have nodes which 

are substitution nodes, in the sense that we have to substitute elementary or derived structures 

at  the substitution nodes. Adjoining is defined as before. In the example below, the substitution 

nodes are marked by L. 



Example: 

NF' 

boy: n 
DET N 

I 

DET 

the: I 
the 

saw: 

saw 

who: 

I 
who 

younF A 
ADJ N 

I 
ymng 

1 
saw 

n 
~4 A 

V NF' 

I 
saw 

I 
e 

It can be shown that lexicalized TAGS are equivalent to TAGS. An Earley-type parser has been 

described in (Schabes and Joshi (1988)). For further details about lexicalized TAGS, see (Abeille, 

Schabes, and Joshi (1988)). 



9 TAGS-Local Dominance and Linear Precedence: TAG(LD/LP) 

The extended domain of locality of TAGS has implications for how domination and precedence 

can be factored. We will now take the elementary trees of TAG as elementary structures (initial 

and auxiliary) specifying only domination structures over which linear precedences can be defined. 

In fact, from now on we will define an elementary structure (ES) as consisting of the domination 

structure plus a set of linear precedences. Thus, a below is the domination structure of an ES. 

N P I  V P 2  

The addresses for nodes serve to identify the nodes. They are not to be taken as defining the 

tree ordering. They are just labels for the nodes. 

Let LP," be a set of linear precedence statements associated with a! 

where x < y (x precedes y) if x and y are nondominating nodes (i.e., x does not dominate y and y 

does not dominates x) and if x dominates 21 and y dominates 22, then zl < 22. 

Note that LP? corresponds exactly to the standard tree ordering. Given LP?, (1) is the only 

terminal string that is possible with the ES (a, LP?), where a! is the domination structure and 

LP? is the linear precedence statement. 

NPIVNPz 

Suppose that instead of LP;, we have 



First note that in 1 < 2.1, 2.1 is not a sister of 1. We can define precedences between nonsisters 

because the precedences are defined over a ,  the domain of locality. 

Once again, the only terminal string that is possible with the ES ( a ,  LP,") is 

NPlVNP2 P I  

but there is an important difference between ( a ,  LP?) and ( a ,  LPF) which will become clear when 

we examine what happens when an auxiliary tree is adjoined to a .  Before we discuss this point, 

let us consider 

i.e., there are no precedence constraints. In this case, we will get all six possible orderings 

Let us return to ( a ,  LPT) and ( a ,  LP?). As we have seen before, both ES give the same terminal 

string. Now let us consider an ES which is an auxiliary structure ,B (analogus to an auxiliary tree) 

with an associated L P ,  L P P .  

When ,B is adjoined to a at the VP node in a. We have 

When ,B is adjoined to a at the VP node in a ,  we have 



We have put indices on NP and V for easy identification. N P l ,  V l ,  NP2 belongs to a and 

V2 belong to  P. If we have LPF associated with a and LPP with P ,  after adjoining the LPs are 

updated in the obvious manner. 

The resulting LP for y is 

Thus y with LPY gives the terminal string 

Instead of LP?, if we associate LP? with a then after adjoining ,f3 to a as before, the updated 

LPs are 

The resulting LP for y is 

1 < 2.2.1 

= [ 2.1 < 2.2 j 
2.2.1 < 2.2.2 

Thus (y, LP?) gives the terminal strings 



(4) is the same as (3), but in (5) NPl has 'moved' past V2. If we adjoin ,O once more to y at the 

node VP at 2, then with LP? associated with a, we will get 

N PlV3V2Vl N P2 

and with LPT associated with a ,  we will get 

V3V2 N PI Vl N P2 

Let us consider another LP for a, say LPF 

Then we have the following terminal strings for a (among others) 

NPlNP2V (I1) 

It can be easily seen that given LPF associated with a and L P ~  associated P as before, after two 

adjoining with PI, we will get 



and, of course, several others. In (13), (14)) and (15), NP2, the complement of Vl in a has 'moved7 

past Vl, V2, and V3 respectively. 

The elementary structures (ES) with their domination structure and the LP statements factor 

the constituency (domination) relationships from the linear order. The complex patterns arise due 

to  the nature of the LP and the operation of adjoining. The main point here is that both the con- 

stituency relationships (including the filler-gap relationship) and the linear precedence relationship 

are defined on the elementary structures. Adjoining preserves these relationships. We have already 

seen in Section 2 how the constituency relationships are preserved by adjoining. Now we have seen 

how the linear precedence relationships are preserved by adjoining. Thus we have a uniform treat- 

ment of these two kinds of dependencies; however, the crucial difference between these two kinds 

of dependencies clearly shows up in our framework. In Joshi (1987), we have shown how TAG 

(LD/LP) can be used to  several word order variations in Finnish, first described by Karttunen 

(1986). 

The idea of factoring constituency (domination) relationships and linear order is basically similar 

to  the ID/LP format of GPSG. However, there are important differences. First the domain of 

locality is the elementary structure (and not the rewrite rules or local trees), secondly we have 

defined the LP for each elementary structure. Of course, a compact description of LP over a set of 

elementary structures can be easily defined, but when it is compiled out it will be in the form we 

have stated it here. We will call a TAG in which the (local) domination relationships and linear 

precedence relationships are factored out, a TAG in the LD/LP representation, or a TAG(LD/LP). 

In order to  give further insight into the degree of word order variation possible in TAG(LD/LP), 

we will give an example. 



Let G = (1,A) be a TAG(LD/LP) where 

If G were a regular TAG, i.e., cr and P were trees, then clearly the language generated by G, L(G) 

is (as we have seen in Section 2) 

L(G) = {anbncn(n >_ 1) 

However, G is a TAG(LD/LP). It is clear that the only string that corresponds to cr is 

abc 

If we adjoin p to  a at the node 2 in cr, we get 

Y = 
S 0 

[We have indexed a's, b's, and c's for convenience.] 

The updated LP" and L P ~  are 



1 1 < 2.2.2.1 
LP* = I 

Hence, 

Thus some of the possible strings corresponding to y are: 



There are 20 strings in all. Each string contains 2 a's, 2 b's, and 2 c's. The corresponding 

a's, b's, and c's appear in the order a ,  b,c. This example shows that the elements of an auxiliary 

structure can 'scatter' in a fairly complex manner over the elements of the elementary structure 

to  which it is adjoined, the complexity arising out of the specifications for LP and the adjoining 

operation itself. 

If in the TAG(LD/LP) above both LPa and L P P  are empty i.e., there are no LP statements, 

then the language generated by G is the so-called MIX language (or Bach language), which consists 

of strings of equal number of a's, b's, and c's in any order. MIX can be regarded as the extreme 

case of free word order. It is not known yet whether TAG, HG, CCG and LIG can generate MIX. 

This has turned out to be a very difficult problem. In fact, it is not even known whether an IG can 

generate MIX. 

9.1 Language of TAG (LD/LP): 

It is clear the languages of standard TAG (i.e., when the elementary structures are trees with 

the standard tree ordering) are contained in the class of languages of TAG(LD/LP). Whether 

the containment is proper or not is not known at present. Languages of TAG(LD/LP) continue to 

satisfy the constant growth property, hence cannot generate languages of the form L = {an2 ( n  2 1)) 

L = {a2"ln >_ 1)) etc. 



Chapter Notes 

1. Note that f can assign categories to the empty string, E ,  though, to our knowledge, this 

feature has not been employed in the linguistic applications of CCG. 

2. Weir (1988) has examined derivation trees associated with CCGs. The derivation trees tra- 

ditionally associated with CCGs differ from those of LCFRs, this does not preclude the 

possibility that there may be an alternative way of representing derivations. Weir (1988) 

gives a normal form for CCGs which allows their being classified as LCFRs. 

3. It is sometimes possible for "dependent" items to belong to an elementary tree and the 

immediate auxiliary tree that is adjoined in it. 

4. Such a scheme would be an alternate way of embedding TAGs in an unificational frame- 

work. However, i t  does not capture the linguistic intuitions underlying TAGs, and loses the 

attractive feature of localizing dependencies. 

5. It is possible to allow adjunctions at nodes corresponding to pre-lexical items. For example, 

we may wish to  obtain verb-clusters by adjunctions at nodes which are labelled as verbs. In 

such a case, we will have to  associate two feature structures with pre-lexical nodes too. 
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