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The Convergence of the Ben-Israel Iteration

for Nonlinear Least Squares Problems

By Paul T. Boggs

Abstract.   Ben-Israel [ 1 ] proposed a method for the solution of the nonlinear least

squares problem m'mx^j^\\F(x)\\2 where F:   D C R    —► R   .   This procedure takes the

form xk,x = xk — F'(xk)   F(xk) where F'(xk)    denotes the Moore-Penrose generalized

inverse of the Fre'chet derivative of F.  We give a general convergence theorem for the

method based on Lyapunov stability theory for ordinary difference equations.   In the

case where there is a connected set of solution points, it is often of interest to determine

the minimum norm least squares solution.   We show that the Ben-Israel iteration has no

predisposition toward the minimum norm solution, but that any limit point of the

sequence generated by the Ben-Israel iteration is a least squares solution.

I.  Introduction.   The use of least squares solutions to systems of equations is an

important and practical tool in many applications.  Given a function F:  D C R" —>

Rm where D is an open convex set, the nonlinear least squares problem is expressed as

rnmxeDIIZr(x)||, where  || ■ || here and henceforth denotes the l2 norm.  Equivalently, if

f¡ix) is the z'th component of F, then the problem can be stated as rnin^^^fjc), where

$ = &££Lj/?(x). If, as we shall assume, Zms continuously Fre'chet differentiable, then

the minimum occurs where

(1.1) V4>(X) = F'(x)TF(x) = 0.

In our discussion we shall always assume that there is at least one point in D satisfying

(1.1).
With this assumption, any minimization procedure could be applied in an attempt

to solve the problem. Several special purpose procedures, however, have been proposed

which perform quite well. For example, if F'(x) has full rank in an open neighborhood

of an isolated solution point, say x*, then the Gauss-Newton iteration

(1.2) xk+, = xk - tk(F'(xk)TF'(xk))-1F'(xk)TF(xk)

can be used. (Here tk denotes the steplength.) If F'(x) is not of full rank, then the

Levenberg-Marquardt [11] and [13] procedure is quite useful. This algorithm takes

the form

(1.3) xk + x=xk-tk(pl + F'(xk)TF'(xk)rlF'(xk)TF(xk),
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THE CONVERGENCE OF THE BEN-ISRAEL ITERATION 513

where p is a positive constant.  These algorithms have been studied extensively.  For

example, Brown and Dennis [4] have studied (1.2) and (1.3) in conjunction with finite-

difference approximations to the derivative and have proposed further modifications of

(1.3) to improve the performance. Also, Boggs and Dennis [3] obtain bounds on the

final errors obtained if more general approximations are used. Golub and Pereyra [8]

have proposed algorithms for nonlinear least squares problems whose variables separate.

The Ben-Israel iteration [1], with which we are primarily concerned, is designed

for the case when F'(x) does not have full rank.  We consider the following simple

derivation of the iteration which will be useful later.

Let x0 be a given point.  Then approximate F by a Taylor series through two

terms to get

(1.4) F(x)*F(x0) + F'(x0)(x-x0)

and obtain the minimum norm solution vector (x — x0) to the linear problem

mm\\F(x0) + F'(x0)(x-x0)\\2,

which is given by x - x0 = - F'(x0)+F(x0) where F'(x0)+ is the Moore-Penrose

generalized inverse.  (See Rao and Mitra [16] for a discussion of generalized inverses

and linear least squares problems.)  Thus the algorithm is given as

(1.5) xk + 1=xk-F'(xk)+F(xk).

Note that if F' has full rank, (1.5) reduces to the Gauss-Newton iteration (1.2).

Ben-Israel [1] gives numerical examples and a convergence result for this procedure,

but the conditions for the theorem are somewhat restrictive and unnatural.  In Boggs

and Dennis [3], an analysis, based on classical stability theory from ordinary differential

equations, is given; but here too the conditions given are somewhat restrictive.  In the

present work, we present very reasonable conditions on the function F which ensure

convergence.

The Ben-Israel iteration and other generalized inverse methods have been used in

practice to find least squares solutions.  Some of these, along with computationally

efficient modifications are discussed in Fletcher [6].  These methods are also sometimes

used as portions of other algorithms.   For example, Deuflhard [5] uses the Ben-Israel

method in conjunction with an algorithm for solving multiple shooting equations.  To

fully understand these methods it is important to know first the fundamental

characteristics of the underlying Ben-Israel iteration.  The purpose of this paper is to

supply such an analysis.

An important variation on the least squares problem arises when there is a

connected set of points which solve the least squares problem, i.e., which satisfy (1.1).

In this case, it is often of interest to find the minimum norm least squares solution.  (If

the set of points satisfying (1.1) is not connected, then the best we can hope for is a

local minimum norm solution.  Other procedures must then be used to find global

solutions; we do not consider this problem here.)  We investigate the application of the

Ben-Israel iteration in this case and show that any limit point generated by it is a least
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514 PAUL T. BOGGS

squares solution but not in general the minimum norm solution.

Our approach to this problem is to exploit the powerful Lyapunov stability theory

for ordinary difference equations.  In Boggs and Dennis [3], classical stability theory is

used to obtain results on the application of nonlinear iterations where approximations

are used.  This theory rests on being able to solve the linearized problem at an isolated

solution point x*.  The analysis breaks down if the linearized problem there is singular.

The Lyapunov theory is powerful enough to handle the problem of an isolated singular-

ity at an isolated solution point x* and is extended (in Section 2) to the case of a

connected set of solution points.  (Related definitions and results are also given in

Section 2.)

In Section 3 we apply the results of Section 2 to analyze the behavior of the Ben-

Israel iteration.

II.  Lyapunov Stability.   The second method of Lyapunov [12] has been widely

used for the study of the stability properties of systems of ordinary differential equa-

tions.  (See,e.g. Sánchez [17] for an introduction or Yoshizawa [18] for a more

complete account.)  This theory has been extended to systems of ordinary difference

equations and we refer to the paper of Ortega [14] for an account of the major

results and related bibliography.  (See also Hurt [10] and Hahn [9].)  Ortega also

nicely relates the concepts of stability and asymptotic stability to those of local con-

vergence and attractiveness.  The applications to date of this theory however, seem to

be rather limited, applying, for example, to the stability of certain methods (such

as Newton's method) under the influence of rounding errors.  We propose to make more

extensive use of the theory here and, as Ortega has done, to recommend the further

exploitation of this powerful technique in the analysis of iterative methods.

For completeness, we give the definitions and state the relevant results.   First, we

give the material for the differential equation,

(2.1) x =- G(x),      x(0) = x0

and then for the difference equation

(2.2) xk+x =xk- tkG(xk),      x0 given,

where G: D C R" —► R".   (Assume throughout the remainder of the paper that G is

a continuous function and that D is open and convex.) Clearly, (2.2) is just Euler's

method applied to (2.1).  We consider these forms since all iterative methods can be

expressed in the form (2.2) and, therefore, (2.1) can be viewed as the related differen-

tial equation. This is useful since it is often easier to work first with the differential

equation to obtain qualitative information on its behavior and then to use this informa-

tion to analyze the iterative method.  (Equation (2.1) is often referred to as the con-

tinuous analogue of (2.2). See Gavurin [7] and Boggs and Dennis [3] for further

discussion of this connection.)

We begin by establishing the terminology.

Definition 2.1.  A point jc* is
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THE CONVERGENCE OF THE BEN-ISRAEL ITERATION 515

(a) stable for (2.1) if for any e > 0 there is a 5 > 0 such that if \\x0 - x*\\ < 8,

then \\x(s) - x*\\ < e for s > 0, where x(s) is any solution to (2.1),

(b) stable for (2.2) if for any e > 0 there is a 8 > 0 such that if ||x0 -x*\\< 5, then

[\xk - x*\\ < e for k > 0, where {xk} is any solution to (2.2),

(c) asymptotically stable for (2.1) if it is stable for (2.1) and lim^^xis) = x*,

and

(d) asymptotically stable for (2.2) if it is stable for (2.2) and \imk^.<x,xk = x*.

The idea of Lyapunov is to find a function which has certain properties on a solu-

tion curve of (2.1) which then forces x* to be stable or asymptotically stable. We

remark here that we will also need to include an assumption on G to ensure that a

solution exists.

Definition 2.2.   Let x(s) be any solution of (2.1).  Let x* G D be such that

G(x*) = 0.  Then a Lyapunov function for (2.1) at x* is a continuously differentiable

map V: D C R" —* R1 such that

(2.3) V(x)>0,      x*x*;      V(x*) = 0

and

(2.4) -?- V(x(s)) < 0,      0<s<
ds

Note that  dV(x(s))/ds = V'(x(s))Tx'(s) = - V(x(s))TG(x).

The major stability result is contained in the following theorem.

Theorem  2.3. Z-er V be a Lyapunov function for (2.1) at x*.  Then x* is stable.

If, in addition,

(2.5) -j- V(x(s)) < 0,      0 < s < co, x(s) $ x*,
ds

then x* is asymptotically stable.

The corresponding results for difference equations differ only in the condition

(2.4). We express the definition in terms of (2.2) in order to take into account the

steplength. This formulation is somewhat different than the usual formulation, but

will be useful in analyzing variable steplength algorithms.

Definition 2.4.   Let {xk} be a solution of (2.2).  Let x* G D be such that

G(x*) = 0.  Let / and t  be constants such that 0 <0 <7 < °°.  Then a Lyapunov

function for (2.2) at x* for steplengths tk G [£, t ] is a continuously differentiable map

V: D C R" —»• Rx such that (2.3) holds and

(2.6) V(x - tG(x)) < V(x)    for xGD and t G [r, 7].

We remark that t must of course always be chosen to ensure that x - tG(x) G D.

Theorem 2.5.  Z-er V be a Lyapunov function for (2.2) at x*.   Then x* is stable.

If, in addition

V(x - tG(x)) < V(x)   for xED, x # x* and t G [t_, 1 ],

then x* is asymptotically stable.
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516 PAUL T. BOGGS

We remark here that it is sometimes difficult to find an appropriate Lyapunov

function; but, as mentioned earlier, it is often easier to find a Lyapunov function for

the continuous analogue (2.1) and then use the same function for (2.2).  See Theorem

2.6.

As an example, consider steepest descent for minimizing a function/: D C R"

—► Rl.  The iteration has the form

(2.7) xk + x=xk-tkS/f(xk),

and the continuous analogue is

(2.8) x = - 7/(x).

Assume that / is continuously differentiable and that x* G D is the unique point such

that V/(x*) = 0.   Furthermore, suppose that f(x) > fix*) for all x G D and x =£ x*.

Then V(x) = f(x) -fix*) is a Lyapunov function for (2.8):   V{x) clearly satisfies

(2.3) and

-f Vixis)) = Vfixfi- V/(*)) = - IIV/(*)||2 < 0
ds

with equality only when x = x*.

Rather than show that F(x) = f{x) - f{x*) is also a Lyapunov function for

(2.7) we prove a general theorem which will be of use in Section 3.

Theorem 2.6. Let V be a Lyapunov function for (2.1) at x*. Assume V' is

Lipschitz continuous with constant K on D.  Suppose there is a constant c independent

of x such that V'(x)TG(x) > c\\G(x)\\2.   Then there are constants t_ and! such that

Vis a Lyapunov function for (2.2) at x* for steplengths t G [t_, t]. Furthermore,

1 < 2clK.

Proof.   We need only show that (2.6) is satisfied.  We have

V(xk + X) - V(xk) - V(xk - tkG(xk)) - V(xk)

= {V(xk - tkG(xk)) - V(xk) + tkV'(xk)TG(xk)}

+ [V(xk) - tkV'(xk)TGixk)] - V{xk).

By the Lipschitz condition and by Ortega and Rheinboldt [15, Theorem 3, 2.12] the

term in braces is bounded by Y¡Ktk\\G{xk)\\2. Therefore,

Hxk+i) - V{xk) < - tkV'{xk)TGixk) + KKt2k \\Gixk)\\2

<[-tkc + iAKt2]\\Gixk)\\2,

which is < 0 if tkc > xhKt\.  Choose7 < 2c/ZC and t_ such that 0 <£ <7 < 2c\K;

and therefore, for t G [t_, 7] the result follows.

Returning to the steepest descent example, we see that G(x) = V/(x) and

V'ix)TGix) = \\G{x)\\2 so that c = 1. Thus, the steplengths are restricted to be in the

interval [t, 2/K].  This is a generalization of a result obtained in Boggs and Dennis
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[3], but note that here the result depends on the choice of V.

In the introduction, we outlined the minimum norm least squares problem which

we now state formally as

(2.9) minx7*,

(2.10) subject to F'(x)TF(x) = 0.

LetZ = {x: F'(x)TF(x) = 0} be a connected set. Z is the feasible region for the non-

linear program (2.9)—(2.10) and we are interested in the "stability" of the set Z, i.e.,

we desire that if x0 is chosen close enough to Z, then the sequence generated by (2.2)

should also remain close to Z.  We first extend our definitions and then obtain the

desired result. We shall use the standard definition of the distance from a point to a

set; namely, if Y is any connected set then

distOc, Y) = m{{\\x-y\\:ye Y}.

Definition 2.7.  A connected set Y is

(a) stable for (2.2) if for any e > 0 there is a S > 0 such that if dist(jc0, Y)

< 6, then dist(xrfe, Y) < e for all k > 0, where {xk} is a solution to (2.2),

(b) asymptotically stable for (2.2) if it is stable for (2.2) and limfc_>00dist(xk, Y)

= 0.

Definition 2.8.  Let {xk} be a solution of (2.2).  Let Z be a connected set such

that G(x) = 0 for all x G Z.  Let t_ and 7 be constants such that 0 < t_ < 7 < °°.

Then a Lyapunov function for (2.2) ozz Z for steplengths tk G [t_, 7] is a continuous-

ly differentiable map V: D C R" —> R} such that

(2.11) V(x) > 0    for all x G D - Z,       V(x) = 0    for all x G Z,

and

(2.12) V(x - tG(x)) < V(x)    for all x G D and t G [¿, 7 ].

The proof of the next theorem follows closely that given in Ortega [14] for

the proof of Theorem 2.5.

Theorem 2.9.  Let Z C D, t_ and 7 be as in Definition 2.8.  Let V be a

Lyapunov function for (2.2) on Z.  Assume that V satisfies the condition: for every

e > 0 there is a 8 > 0 such that V(x) > e if dist(x, Z)> 8. Assume that G satisfies

the condition: for every e > 0 there is a 8 > 0 such that if distfx, Z) < 5, then

||G(x)|| < e.   Then Z is stable for (2.2). Furthermore, if

(2.13) V(x - tG(x)) < V(x)   for all x G D, x $ Z and t G [ f, 7],

then Z is asymptotically stable for (2.2).

Proof.  Choose r such that {x: dist(x, Z) < r} C D.  By the hypothesis on G,

we can find an rx < r satisfying dist(xfe + 1, Z) < r when dist(xk, Z) < rx.  Then,

choose any r¡ < rx and y G (0, r¡) in such a way that for any x satisfying dist(x, Z)

< y it follows that
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V(x) < i//(r?) s inf {V(y): r? < dist(>, Z) < r} > 0.

Now suppose that there is an x0 such that dist(x0, Z) < y but for some fc,

dist(xfc+ j, Z) > Tj.  Assume that this is the first such k.  Then distfx,-, Z) < r? < rx,

i = 1, . . . , k.  Therefore, it follows that dist(jcfc + 1, Z) < r and V(xk+X) is well

defined. Furthermore, V(xk + X)> i//(tî). But,by (2.12)

K(*fe+1) < n*fc) <      < v(x0) < Un),

which is a contradiction; and hence, stability is proved.

Now assume (2.13) holds and let x be any limit point of {xk}. Let k¡ be a

sequence of indices such that xk. —► x as i —► °° and suppose that x $Z. Then,

r(x) = V(x - tG(x))l V(x) is well defined and continuous in an open neighborhood of

x.  By (2.13), r(x) < 1.  Thus, for a G (r(x), 1) there is a y > 0 such that r(x) < a,

when ||x - ill < y.  Thus, for k¡ sufficiently large,

V(xk¡+X) < aV(xk¡) < a2 Vixk¡_x) <        < «'F^).

Therefore, F(xfc.) —>■ 0 as z —>■ °°; and therefore, x G Z which completes the proof.

We complete this section by stating the analogous result to Theorem 2.6.  The

proof is the same; and hence, the details are omitted.

Theorem 2.10. Let V be a Lyapunov function for (2.1) ozz the set Y and

assume that V' is Lipschitz continuous with constant K on D.   Let c be a constant

independent of x such that V'(x)TG(x) > c\\G(x)\\2.  Then, there exist constants t_

and t so that V is also a Lyapunov function for (2.2) ozz the set Y when tk G [ t_, t ],

k > 0. Furthermore, 7 < 2c/K.

III.   The Ben-Israel Iteration.   In developing the analysis for the Ben-Israel

iteration, we first examine the continuous analogue and then make use of Theorems

2.6 and 2.10.  For convenience, we restate the method and the continuous analogue

as

(3.1) xk + x=xk-tkF'(xk)+F(xk)

and

(3.2) x = - F'(x)+F(x),

where F:  D C Rn -+ Rm.

Lemma 3.1. Let F be continuously Frèchet differentiable on the open convex

set D.  Assume F' has constant rank r < min(m, n) on D.   Let x* be the unique point

in D satisfying F'(x*)TF(x*) = 0 and assume that \\F(x)\\ > \\F(x*)\\ for all x G D,

x + x*.   Then,

(3.3) V(x) = MF(x)\\2 -VA\F(x*)\\2

is a Lyapunov function for (3.2) at x*.

Proof.   Clearly V(x) > 0 for x # x* and V(x*) = 0.  The condition that F' has

constant rank ensures that F'(x)+ is continuous on D (see Golub and Pereyra [8]),
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which implies that (3.2) has a solution.  Now for x(s) any solution to (3.2),

£vixis)) = - [F'(x)TF(x)]TF'(x)+F(x) = - F(x)TF'(x)F'(x)+F(x).

First note that F'(x)F'(x)+ is the orthogonal projector on the column space of F'(x)

and, thus, is positive semidefinite.  Therefore, dV(x(s))/ds < 0.

Now since F'(x)TF(x) # 0 for x ¥= x*, it follows that F(x) $ Nuü(F'(x)T).  But

Null(F'(;t)r) = (Range F'(x)T)1, and so F(x) J. F'(x)F'(x)+F(x); and the proof is

complete.

We may now prove the major Ben-Israel convergence theorem.

Theorem 3.2. Assume the conditions of Lemma 3.1 and that F'(x)TF(x) is

Lipschitz continuous with constant K on D.   Then, there are constants t_ and t and

a compact set D0 C D such that x* G DQ and the sequence generated by (3.1) from

any x0 G D0 with tk G [t_, t ] converges to x*.

Proof.   We need to show that

V'(x)TF'(x)+F(x) > c\\F'(x)+F(x)\\2

for a constant c independent of x where V is given by (3.3).  We have that V'(x) =

F'(x)TF(x); and hence,

V'(x)TF'(x)+F(x) = FT(x)F'(x)F'(x)+F(x)

= [F'(x)+F(x)] TF'(x)TF'(x)[F'(x)+F(x)].

From the proof of Lemma 3.1, we know that V'(x)TF'(x)+F(x) > 0 for all x =£ x*.

Therefore, F'(x)+F(x) is not in the null space of F'(x)TF'(x) for x =£ x*; and we

may conclude that V'(x)TF'(x)+F(x) > X^HF'OO+FCc)!!2, where \x(x) is the

smallest nonzero eigenvalue of F'(x)TF'(x). Now for some compact set D0 C D, •\x(x)

will be uniformly bounded away from zero by a number, say X, for all x G D0. There-

fore, by Theorem 2.6, V is also a Lyapunov function for (3.1) for 0 <t_ <7 < IhjK.

We now apply Theorem 2.5 to complete the proof.

It has been pointed out by Professor J. J. More' that the above proof could also

be used to show that the Ben-Israel directions are gradient related in the sense of

Ortega and Rheinboldt [15].  This connection has been further investigated and is

reported in Boggs [2].

Theorem 3.3.  Let F be continuously differentiable and F'(x)TF(x) be Lipschitz

continuous on the open convex set D.  Let F' have constant rank r < min(z?z, zz) ozz

D.  Let D D Z = {x:  F'(x)TF(x) = 0} be bounded.   Then there are constants t_ and

t and a compact set D0 C D such that Z C D0 and any limit point of the sequence

generated by (3.1) from any x0 G D0 using steplengths tk G [t, 7] is a member of Z.

Proof.   Let

Vix) = K[\\Fix)\\2 - \\Fix*)\\2],

where x* is the minimum norm solution.  Since F\x)TF{x) = 0 on Z, it follows that

||F(x)|| is constant on Z.  Thus, V satisfies (2.11).  The satisfaction of (2.12) follows
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exactly as in the proof of Lemma 3.1; and hence, by Theorem 2.10, V{x) is a Lyapunov

function for (3.2) on the set Z.  The boundedness of Z implies the uniformity con-

ditions on V and G; and hence, the result follows by an application of Theorem 2.9.

It is of interest to know when a steplength of one may be used.  This question

has been considered by Brown and Dennis [4] and Boggs and Dennis [3] for the

Gauss-Newton method, but no results were obtained for the Ben-Israel iteration.  From

Theorems 2.6 and 2.10 we know that t < 2c/K and from the choice of V~ix), it

follows that c = 1 and K may be taken as the largest eigenvalue of iF'ix)TF{x))'

evaluated at x*.  Thus, if this eigenvalue is < 2, the steplengths may eventually be

taken to be 1.  This is exactly the same condition obtained in [3] and [4] for the

Gauss-Newton method.

In order to determine the behavior of the Ben-Israel iteration, we consider its

application to the following linear least squares problem: minx||Ax: — b\\, where

0'

0

\0     0.

a =£ 0, and b is arbitrary.  Clearly, the rank of A is one and the minimum norm

solution is given by A + b which is

/1/a     0     0\

V 0       0     0/ Ja

However, application of the Ben-Israel iteration from the initial guess x0 = (}) yields

*-w^-»>-(;)-r>ei)-C\*)-
The next iteration shows that jc1 is a fixed point and is a solution to the problem in

the sense that AT{Axx - b) = 0.  Note that for x0 = {u, v)T, the Ben-Israel iteration

will always produce xx = {bx\a, v)T for any values of u and v.  Thus, even in the

linear case, the Ben-Israel iteration does not produce the minimum norm solution

unless the initial vector is properly chosen on the correct manifold.  In the nonlinear

case, the manifold is also nonlinear; and it is, therefore, even harder to choose a

correct x0.

We propose a modification to the Ben-Israel iteration which, at least in the

linear case, always converges to the minimum norm solution.   Recalling the derivation

given in Section 1, we see that the Ben-Israel iteration produces the minimum norm

correction vector, x - x0 to the linearized problem.  We propose to actually obtain

the minimum norm solution to the linearized problem.   That is, we write the linearized

problem as

mm\\F'ix0)x + [F'(x0) - F'(x0)x0] ||2

and obtain the minimum norm solution
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x = -F'ix0)+[Fix0)-F'ixQ)x0]

so that in general our algorithm is

(3.4) xk + x = F'ixkyF'ixk)xk - F'ixk)+F{xk).

In the linear case, we have the problem min^llA* - b\\ for given A and b.  Let

x0 be any initial approximation.  Then, from (3.4) we have

xx =A+Ax0 -A+iAx0 -b) = A+b,

so that the minimum norm solution is always obtained.  The application of (3.4) in

the nonlinear case is currently being investigated.
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