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The Convergence Rate for Difference Approximations

to Mixed Initial Boundary Value Problems

By Bertil Gustafsson

Abstract. The convergence rate for difference approximations to mixed initial boundary

value problems for hyperbolic systems is treated.   Assuming that the approximation at the

boundary has one-order lower accuracy than at inner points, conditions are given such

that the overall accuracy of the solution is kept at the higher order.

1. Introduction. When dealing with difference approximations to mixed initial

boundary value problems, one often has trouble defining the difference operators near

the boundaries.  As an example, consider the equation bu/bt = bulbx, which is well

posed in L2(0, °°) for 0 < x < °°,  t > 0 without any boundary condition given at

x = 0. However, any difference approximation, that uses centered difference operators

for approximating bulbx, breaks down at x = 0 since no values are defined for x < 0.

One possibility is to use one-sided operators at the boundaries, another to per-

form some sort of extrapolation.  For various reasons, e.g., stability considerations, one

uses methods, which yield one-order lower accuracy than the one used at inner points.

The question then is if, despite this fact, the overall accuracy of the solution to the

difference approximation can be kept at the higher order.  In this paper, conditions are

given such that this is the case.

The theory used is the one developed in [1], and it is assumed that the reader is

familiar with that paper.

2. Definitions, Assumptions and Main Theorems. We consider a hyperbolic first-

order system of partial differential equations

(2.1a) bU(x, t)/bt = AbU{x, t)/bx + BU(x, t) + F(x, t),      0 < x < °°, t > 0,

where A is a diagonal matrix, and

A =

L0    AUJ

with A1 of order I x l,Al <0 and An of order (n - I) x (n - I), Au(0) > 0.  For

simplicity, we treat only the constant coefficient case; the technique used in [1] for the
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CONVERGENCE RATE FOR DIFFERENCE APPROXIMATIONS 397

stability proofs easily allows the treatment of variable coefficients.

Initial and boundary conditions are

(2.1b) u(x, 0) = t/(0)(x), 0 < x < °°,

(2-lc) Ul(0, t) = SUu(0, t) + Gif),      t > 0,

where Ul, Uu correspond to the partition of A and where S is a rectangular matrix.

Using the notation Vv(f) = V(xv, t), xv = vh, v = —r + \,—r + 2, • • •, the

difference scheme has the general form

(2-2a) ß_! Vv(f +k)= ¿ ßa Vv(f - ok) + kFv(t),      v=l,2,--;
a=0

where

Qo=  JlAiaE',      EVv(t)=Vv+1(t).
i-~r

Initial and boundary conditions are

(2.2b) Vv(ak) = Vl°\      a = 0, 1, • • -, s,  v = -r + 1,-r + 2, • • -,

(2.2c)        Vv(t + k) =   ¿ ^^(í - ok) + Gv(f),      v = -r + 1, -r + 2, • • -, 0,
er=-l

whe»S("> = S?=0C#>£>.

The same assumptions on the difference approximation are made as in [1]. In

particular, it is assumed that (2.2a), (2.2c) can be solved boundedly for V(f + k) [1,

Assumption 3.1].

We define difference operators in both the x- and r-directions by

D+xwv(t) = (wv+1(t)-wu(t)yh,

D+tWv(f) = (Wv(f + k)-Wv(t))/k.

With I • I denoting the Euclidian vector norm, we also define

\\W(t)\\2x=     ¿    \Wv(t)\2h,
v=-r+l

OO

HWll2f =  £ \\W(ok)\\2xk.
o=0

Sometimes, we will also use the notation 11011^ for functions <t>v(f) which are not pri-

marily defined for v < 0.  In those cases, the missing values are defined as zeros.

We now make

Assumption 2.1. The order of accuracy is m for (2.2a) and at least m - 1 for

(2.2b), (2.2c), and it is assumed that m > 1.

To be more precise, this means that, for all sufficiently smooth solutions to (2.1),

we have for W = U - V:
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398 BERTIL GUSTAFSSON

ß_i Mf + k)= Zq0 w(t - ok) +hm + ldv(t),
o=0

(2'3a) v= 1,2, • ■ ■;  t = sk,(s + l)k,- ■ -,

(2.3b) Wv(ok) = hßev(ok),        v = -r + 1, -r + 2, • • •; a = 0,1, •• -, s,

»>„('+*)=   ¿  ^^(r-a^ + ̂ ÍO,

(2.3c)

y = -r + 1,-r + 2, • • -, 0; t = sk, (s + l)fc, ■ • -,

where d, e, /are bounded functions and ß > m.  (We always assume klh = const.)

As an example consider the equation bUlbt = bUlbx with initial condition

U(x, 0) = e(x) and the second-order leap-frog difference approximation Wv(t + k) =

(k/h)(Wv+l(t) - W^^t)) + Wv(t - k). With Wv(0) = e(xv), Wv(k) can be defined by

Wv(k) = (k/h)(Wv+l(0) - Wv(0)) + Wv(0) which is first-order accurate but locally of

second order, which means that ß = 2 in (2.3b).  As boundary condition we could use

W0(t + k)= W0(t) + qdh)(Wx(t) - WQ(t)) or WQ(t) = 2W1(t) - W2(t), which both

are of first-order accuracy according to our definition, i.e., (3 = 2 in (2.3c).

Let uv{f) be the solution of the discrete Cauchy problem, i.e., the difference

scheme (2.2a) with the initial condition (2.2b) defined for v = 0, ± 1, ±2, • • \  Then

we make

Assumption 2.2. The difference approximation is stable for the Cauchy problem,

i.e., if Fv(t) = 0, then there are constants K > 0, al >0 such that

(2.4) ¿   \uv(t)\2h<Keait ¿     ¿   \uv(ok)\2h.
P = — oo 0 = 0    y = —oo

Certain smoothness assumptions on d, e, f are required; these will be specified in

the theorems. We also need a certain compatibility between initial and boundary con-

ditions:

Assumption 2.3. The functions ev(t) and fv(t) are such that

(2.5)

fv(sk) - h-m (ev(sk + k) -   ¿  S^e^sk - oÀ <0(h),

pS-r + l,...,0.

Here, ev(sk + k) is defined by ß_, ev(sk + k) = I,sa=0Qae(sk - ok) + hm + 1dv(sk).

Connected with (2.2a, c), there is the resolvent equation

(2-6a) (ß-i - JÉ z-°-lQo\ »v=iv,      " - 1. 2, • • -,

(2.6b) Wv -   ¿  z-°~lS^Wl = gv,      v = -r + l,---,0,
o=—1
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CONVERGENCE RATE FOR DIFFERENCE APPROXIMATIONS 399

which can be rewritten in one-step form

w„+1 = Mwv + G„,      wv = (wp+p_,, • • -, wv_r)'.

After making the transformation^ = Tw as in Sections 8, 9, 10 of [1], the boundary

conditions can be written D\z)y\ + Dl\z)yly  = g + R(G), where yl is that part of y

which lies in /2(0, °°) for G = 0, Izl > 1. The properties of Det(D!(z)) for Izl > 1 are

crucial for the stability.

We can now state our first theorem:

Theorem 2.1. Assume that there is a constant K such that the solutions to (2.6)

fulfill

(2.7) E   i¿J2<a-   Z   V2

for all \z\with \z\> I, or, equivalently,

(2.8) Det(Dl(z)) * 0   for all   Izl with   \z\>\.

Then there are constants ct and a0, a„ > 0 such that

—-4"    £    ll^XHf2 +    7TT    He-ai^ll2 f
l+afcv=~+1 vt       \\ + otk ) *•*

I a - a0 /     o

+ û*\„=%+1

(2.9)

(JE y%i?

a=0

^TT^)11^11^110 +xe(afc)ll2J)

+ w<ratd\\lt\

for all a with a > max(a0, oij)   (pcl is defined by (2.4)).   Therefore, if the norms in

the right-hand side of (2.9) are bounded independently of h, the convergence rate is of

order m.   (The proof of Theorem 2.1 is given in the next section.)

It should be noted that, for the constant coefficient case treated here, the con-

stants a0, al can be taken zero if there is no lower-order term in (1.1).  However, the

results given here are valid even for variable coefficients since the main theorems used

from [1] are proved by the energy method (see also Sections 10, 11 of [2] where the

variable coefficient case is treated).

An exponential growth (a0 > 0) can also occur for the half-strip problem 0 <

x < 1,  t> 0, even with constant coefficients.  Also, in this case, the results here are

valid, and a0 is not necessarily equal to ax.

With a slightly stronger smoothness requirement on d, e, f we are able to weak-

en the condition (2.8) and still find the convergence rate to be of order m:

Theorem 2.2. Assume that Det(Z>r(l)) i= 0, and that there is a constant K such

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



400 BERTIL GUSTAFSSON

that, for all z with Izl > 1, the solutions to (2.6) with gv = 0, v = 1, 2, •••, sarfs/y

(2.10) IIwII2<a-     lz'2        £    \g\2h.
(Izl-l)2*=^+i

Then, there are constants c2 and a0, a0 ~> 0 such that

a-ccn       ° /a-an\

(i^a«;y=-r+i !>=-»•+i\o=i y

+ frï (° - «.r1 [(fn£ + !) ( t Howi + Tsupfc um
(2.11)

+ a ' (a - ûj )

+ Z Hö+Xe(afc)ll2 + sup ll£»+xd(T)ll2
a=0 T>sk

Z (Hö+te(aÄ:)ll2 + ILD+x£>+íe(o*)ll2)
o=0

pJl£+^fd(T)ll2j|+ sup IIZ>+frf(T)ll2 + sup
T>sk T>

for all a with a > max(a0, at)  (a¡ again defined by (2.4)).   Under the assumption

that the norms in the right-hand side o/(2.11) are bounded independently of h, the

convergence rate is again of order m.  (The proof of Theorem 2.2 is given in the next

section.)

3. Proof of the Theorems.

Proof of Theorem 2.1. The functions ev(ok) in (2.3b) are extended in a smooth

way for v < —r such that they are zero for vh < — 1, say, and such that

(3.1a) £   \ev(ok)\2h < constlle(o*)ll

(3-lb) £   \D+xev(ok)\2h<comt\\D+xe(ok)\\2x,
jj= — oo

for a = 0,1, ■ • % s.

We define the Cauchy problem

(3.2a)     Q_lU„(t + k) = ¿ Qauv(t - ok) \

0=0 v = 0,±l,--,

(3.2b) uv(ak) = hmev(ok),      a = 0, 1, • • -, s)

and the corresponding one for the divided differences D+Xuv(t).  By Assumption 2.2,

IImÍ/JII^ and \\D+Xu(t)\\x can be estimated, and taking (3.1) into account, we obtain
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CONVERGENCE RATE FOR DIFFERENCE APPROXIMATION 401

\uv(t)\2 < conste 1 Th2m    Z (Hok)W2x + \\D+xe{ok)\\2x),
(3.3) "=o

^ = 0,±1,±2,

The function v=W~u satisfies

(3.4a)      Q_xvv(t + k) = t Qavv(t - ok) + hm + 1dv(t),      v = 1, 2, • • -,
o=0

(3.4b) vv(ok) = 0,      o = 0, 1, • • -, s; v = -r + \,-r + 2, • • -,

(3.4c) u„(r + k) =   Z S^VC - ok) + hmgM      v = -r + l,--;0,
o=-l

where

hmgv(t) s A"/V(f) + Wy(r + *) -   ¿ S^ii^f - a*).
a=-l

Taking (3.3) into account, we obtain from Theorem 5.1 in [1]

a - an       « / a - a0 \2

\ a - an I    o „ i
< const h2m 7—7;    Z   ii^'/Jj+r-V

¿  [lle(aÄ:)ll2 + IIZ)+;ce(aÄ:)ll2]) + \f**d\lit\.

Combining this inequality with
s

lle-afWll2 t < const h2m(a - aj"1 Z H°W.

and (3.3), we obtain (2.9), and the theorem is proved.

Proof of Theorem 2.2. As in the above proof, the Cauchy problem is first solved

with extended initial functions, but with the term hm + idv(f) added to the right-hand

side of (3.2a), where dv(t) is extended in the same way as ev(t). We then obtain for

a > ûj

(3.5) lle-ai«ll2>f < const h2m(a - a^"1 l ¿ lle(afc)ll2 + sup U(t)II2 ).
\o=0 T>sk I

We also get

l«„(í)l2 <consteaiV",l¿(lle(a*)^ + I1Z)+xe(aJt)ll^)
/o=0(3.6) l

+    sup    \\d(j)\\2x +    sup    \\D+xd(T)\\2x\-
sk<r<t sk<T<t )
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It now remains to estimate the solution vu(t) of the problem (3.4) without any

inhomogeneous term in (3.4a), but with gv(t) in (3.4c) defined by

hmgv(f) = hmfv(t) - \uv(t + k) -   Z ^.(r - ok)\,
(3.7) ( °=~l )

v = -r + l,--,0; t>sk.

We construct a function g"v(t) which, for every fixed k, is piecewise differentiable in t:

(3-8)   gv(t + 6k) = (1 - 6)gv(t) + 9gv(t + k),      t « sk, (s + l)k, • • -, 0 < 6 < 1.

viv(t) is defined, for all t > 0, as the solution of (3.4) with g = ~g in (3.4c). We make

the variable transformation wv(t) = e~atvv(t) for t > sk and define wv(f) — gvif) — 0

for r < sk.  From our smoothness assumptions, we know that gv(sk) = 0(h), and that

(3-9) \bgv(t)/bt\< const,      -°°<r<°°,

independently of Ä.  The Eqs. (3.4) are Fourier transformed, and with z = e(<*+ '")*,

¿„(co, a) = Fw„(r),    |„(co, a) = Ä»e-fa'fclEe-«<r+*>£(f),

Eqs. (2.6) are obtained. We need the following lemma:

Lemma. 3.1. Under the assumptions in Section 2, the function gv((¿, a) satisfies

\gv(co, a)\2 < K(a + Icol)"2    ( ¿ \e~atD+tfv(ok)\k )   + (a - c^)"1
(\a=i /

(3.10) ' I Z (Uö+fe(o*)ll2 + ll£>+xD+fe(o*)ll2)
|_a=0

SUp   IIZ>+f-û?(T)ll2   +   SUp  IIZ)+x/)+fC?(T)ll2    f,
T<sk r>sk Jj

where K is independent of h, dv(t), ev(t),fv(t).

Proof. Considering our Cauchy problem for z<„(r)-and uv(t + k), we can imme-

diately estimate \\D+tu(t)\\2 and \\D+xD+tu(t)\\x.  From our smoothness assumptions

and the definition of gv(t), we therefore get

\D+tgv(t)\2 < l0+f/„(r)l

(s-l
a j t

(3 n) + const eai } Z (WD+te(ok)\\2x + \\D+xD+te(ok)\\2x)

+    sup   IIZ>+íú?(t)II2 +    sup   \\D+xD+td(f
Sfc«T<f Sk<T<t

Using integration by parts, we obtain

h~m \gv(u, a)l < const (a + Icol)-1/^ \e-(a + t^t\\bgv(t)/bt\dt,

and the lemma follows from (3.8), (3.11).
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The matrix Dl(z) defined in Section 2 has, by assumption, the property

Det(Dl(l)) =£ 0, hence, by continuity, there is a constant 5 > 0 such that Det (D'(z)) ^

0 for IcofcK 5, z = e(0í+iíjj)k, k<ko,ko>0. The function g is now divided into

two parts:

l«l<8A_1,

ft,V

Í|„(co, a)    for

0 else,

f*2)(w, a) = £„(&}, a) -¿^(w, a).

Let w^, w*2* be the solutions to (2.6) with the right-hand side of (2.6c) replaced by

2il\ êi2\ respectively, and let e~atv^ be the discrete function corresponding to

F-1w    .  By using Theorems 4.1, 4.2 and 5.1 of [1], we then obtain in a straightfor-

ward manner

2
a-a0      o /a-an\2
-   Y    ll<Tafi/1>ll2 +    --1 lie""'«*1)!!2
1 +akvJ-r+ine     V"   *t + \l + akj "e     V    ■*.'

< const ̂~h2A    ¿    U-%1*
1 +ak

(3.12)
[v=-r+l

^i[S(M- 2 + Ho+;ce(aA:)ll2)

+ sup lld(/)ll2 + supllZ)+xd(r)ll2
f>îfc t>sk J)

and

(3.13)        (fr^T-) I«"*'»™!», < const*-1      / Z    &2)l2d«-

Since f,   ,   „  _, (a + la)l)_2dw < 0(h/a), we get from Lemma 3.1
\u>[>Sh   l

a - a.

1 +afc

2

IIVV<2>IL

< const alh2m\    Z    (i^-°kD+tfv(ok)\k)
(i>=—r+ 1 \o=i /

:«-«i)"*f S (">+,«L<t=o

(3.14)
+ (a-air2| Z(^+feWll2 + IIZ)+;ci»+te(a/:)ll2)

+ sup \\D+td(T)\\2x + sup HZ)4
f>ifc f»îA:

Adding (3.5), (3.12), (3.14) now proves the theorem.
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4. A Numerical Example. Several examples have been tested which confirm the

results of Theorem 2.2, and we present one of them here.

Consider the wave equation written in the form

bUlbx,      U = \        ,      0 < x < 1,
L-i  oj Li/nJ

(4.1) bUlbt =

with boundary conditions

(4.2) U\Q,t)=U\\,t) = Q.

It is approximated by the leap-frog scheme

(4.3) Vv(t +k)= Vv(t - k) { h-(0-Vi(0).      a = k/h,

which is second-order accurate.

The boundary conditions are

Vl0(t) = VlN(t) = 0,

(4.4) \V0l(t) = 2V\l(t)-V2l(t),

Vl¿(t) = 2Vl¿_í(t)-V%_2(t).

The last two conditions are locally second-order accurate, i.e., ß = m = 2 in (2.3c).

By a transformation of variables:

yi = (K1 + VU)/y/2,

yu = iVu _ viy^      y = (yityiiyj

we obtain the scheme

(4.5) yv(t+k)=yv(t-k)-A \(yv+l(t)-yv^(t)).

For the right half-plane problem, the boundary conditions are

(4.6a) y\if) = y\\t),

(4.6b) yl0(t) + yl0\t) = 2(y\(t) + yl*(t)) - (y\(t) + y\\t)).

The general solution in /2(0, °°) to the resolvent equation is, for Izl > 1,

\       *ll

where x1 satisfies

(4.7a)

and where k2 satisfies

A2    k\

z2k = K +az(K2 - 1),        \K\< 1,
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(4.7b) Z2K = k - <xz(k2 - 1),       k\<\.

The boundary condition (4.6), with an inhomogenous term included, implies

(4.8a)

((Kl - 1)2A1 +(k2-1)2A2=^2>,

and the condition for a nontrivial solution is

(4.9) D(z) = («, - l)2 +(/c2-l)2=0.

Since «j = -k2, (4.9) means that k, = ±i.  These roots correspond to the z-values

z0 = ±ai±\/l - a2 , and the determinant condition Det(D(l)) j= 0 of Theorem 2.2

is therefore satisfied.

It is easily shown that, in a neighborhood of z0, there is a constant c > 0 such

that the determinant satisfies LD(z)l > c \z - z0\'/z.  (The Eqs. (4.7a, b) have double

roots at z = zQ.)  From (4.8), it then follows that

(4-10) IX, I2 + IX2I2 <1^17(^1>l2 + I42>l2),
iz    zQl

and we obtain

const

(lzl-1)2
WwL<^^-Jg0\2h

in a neighborhood of z = z0.

Since Det (D(z)) + 0 at all other points z with Izl > 1, the conditions of Theorem

2.2 are satisfied.

For the numerical experiment, the initial condition was

V[(0) = - sin(2WA0)

V]}(0) = 0 )

and Vv(k) was^obtained by the Lax-Wendroff one-step scheme.  The scheme was run

with a = 0.9 for TV = 100, 200, 500.  The following table shows the error

[- cos(27rf) sin(27rx)"|

sin (271?) cos(27rx)J

\\U(t)-V(t)\\x = \\ V(t)

at t = 0.45 and t = 0.9.

Table 4.1

t = 0.45 f = 0.90

N= 100 1.40 • 10"3 1.98 • 10"3

TV =200 3.52 • 10"4 4.96 • 10~4

N = 500      5.63 • 10~5       7.96 ■ 10"5
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It is clear that the convergence rate is of second order.
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