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THE CONVERGENCE WITH VANISHING VISCOSITY OF
NONSTATIONARY NAVIER-STOKES

FLOW TO IDEAL FLOW IN R3
BY

H. S. G. SWANN

Abstract. It is shown here that a unique solution to the Navier-Stokes equations
exists in R3 for a small time interval independent of the viscosity and that the solu-
tions for varying viscosities converge uniformly to a function that is a solution to the
equations for ideal flow in R3. The existence of the solutions is shown by transforming
the Navier-Stokes equations to an equivalent system solvable by applying fixed point
methods with estimates derived from using semigroup theory.

Introduction. We wish to find a solution, local in time, to the Cauchy problem
for the Navier-Stokes equations for viscous incompressible flow in R3 and show
that the solutions of the Navier-Stokes equations for various viscosities converge,
as the viscosity goes to zero, to a function that is a solution to the Euler equations
for an ideal (inviscid) fluid.

The Navier-Stokes equations are

(E') 8v/8t + (v-grad)v-vAv = -gradP+B,       V-v = 0,

with constraints

lim   v(x, i) = 0   and   v(x, 0) = C(x),
1*1-» oo

where x = (xu x2, x3) is a point in R3; t is in some time interval [0, T]; the velociy
v(x, t) = (vx(x, t), v2(x, t), va(x, t)); the pressure is P(x,t); the force is B(x,t)
= (Bi(x, t), B2(x, t), B3(x, t)); and the constant v>0 is the viscosity (the coefficient
of kinematic viscosity).

The Euler equations for ideal flow differ from the Navier-Stokes equations (E')
only in that the viscosity term vAv does not occur in the Euler equations.

Uniqueness and existence of a solution to the Navier-Stokes equations in R3 has
been shown for both bounded and unbounded domains: in both cases existence
has been shown only for a sufficiently small time interval. The first results are those
of C. W. Oseen [11] and Jean Leray [8]. The time interval where the solution is
shown to exist must be small enough to satisfy a condition of form T^Kv, where K
is an appropriate constant and v is the viscosity. Thus the length of the time interval
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goes to zero (see [8, p. 223]) and will not allow us to consider the convergence of
these solutions to the solution for ideal flow as the viscosity v goes to zero. Later
techniques of solution share this problem (see [1, pp. 142, 173]). Existence and
uniqueness of a solution to the Euler equations for ideal flow, again for a
sufficiently small time interval, was shown in R? by Leon Lichtenstein [9, p. 422]
and on compact manifolds with boundary by Ebin and Marsden [15]. The
existence, global in time, of "weak solutions" to the Navier-Stokes system was
shown by Hopf [6], but satisfactory uniqueness results have not been found as
yet. O. A. Ladyzenskaja's recent book [1] provides an excellent survey of the various
methods used for the solution of the Navier-Stokes equations and calls attention
to the problem we consider in this paper [1, p. 6].

Convergence of viscous planar flow to ideal planar flow as the viscosity goes to
zero was shown independently by McGrath [10] and Golovkin [5] with no restric-
tion on the time interval of solution. Marsden has recently shown the existence for
a short time (independent of viscosity) of viscous flow and its convergence to ideal
flow on compact Riemannian manifolds without boundary using a technique
suggested by V. Arnol'd [16]. We use an approach similar to that of McGrath and
use techniques developed by Kato and Fujita [3], [4]. The result in this paper for
7?3 differs from that of McGrath (for planar flow) in that we can demonstrate the
existence of a unique classical solution to the Euler equations for ideal flow in Ra
by showing that the limit of solutions of the Navier-Stokes equations for various
viscosities exists as the viscosity goes to zero, for a small but nontrivial time interval,
and the limit function is a solution to the Euler equations for ideal flow. We call
attention to the paper of Judovic [7] where he shows that the solution to the Euler
equations for any domain in the plane is the limit of certain functions that are
solutions of equations similar to the Navier-Stokes equations, but with a different
form of boundary condition.

In §§I, II, and III we solve equations (E) derived by formally computing the curl
of the Navier-Stokes equations (E') :

(a)       ôw/ôt+ (v-grad) w — (vv-grad) v — vAw = VxB = b.
(E) (b)       w(x, 0) = V x C(x) = o(x).

(c) Vxv = w; V-v = 0.
(d) lim   ¡;(x, t) = 0.

lx|-»eo

In solving the auxiliary problem (E) we use the following version of the Schauder
fixed point theorem : Let 5 be a closed convex subset of a Banach space X and let
F be a continuous operator on 5 such that F(S) is contained in 5 and F(S) is a
relatively compact subset of X. Then there is a "fixed point" y in 5, i.e. F(y)=y.

In §1 we show that for any w in an appropriate class of functions there is a func-
tion v = Fx(w) that solves (E)(c) and (d).

In §11, for v = F1(w), we show that there is a solution, denoted F2(v), to equations
(E)(a) and (b) for any time interval.
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In §111 it is shown that the function F2(Ft(-)) maps a closed convex set of func-
tions in a Banach space continuously into itself and satisfies the conditions of the
Schauder fixed point theorem, provided we restrict ourselves to a sufficiently small
time interval which is, however, independent of the viscosity. The fixed point w is
then shown to give a classical solution to (E) and then (E').

In §IV we show that the solution (w, v) to (E) converges, with shrinking viscosity,
to functions that give rise to a function that is a solution to the Euler equations for
ideal flow.

The author is indebted to Professor Tosio Kato for his many helpful suggestions
and comments during the preparation of this paper.

0. Preliminary results and definitions. The following notational conventions
will be used:

/ g and h are scalar-valued functions over R3 or QT = R3x [0, T],
B, C, a, b, p, q, u, v, w are vector-valued functions over R3 or QT. For such func-

tions, say w, we define |w(x)|2 = 2f=i M*)!2-
Constants are denoted Kt and do not depend on the viscosity v. The symbol K

denotes a constant used during a proof and K may take different values during the
same proof.

For feL^R3), the Fourier transform off is

F(f)(x) = (2-u)-3'2 f   e-""f(z)dz
JR3

with the inverse Fourier transform of/denoted F~\f). By taking the limit-in-
mean, we can define the Fourier transform on L2(R3), and, if ( , )¿2 denotes the
inner product in Hubert space L2(R3), we have

11/112, = (/,/k = (F(f), F(f))L2
and

(/i,/2)i2 = (F(f), F(f2))L2.

For n ̂  0, the space //"is the completion of C0™ functions (infinitely differentiable
functions with compact support in R3) in the metric derived from norm

u/iu» = \\F(f)(z)(i+\z\2r2\\L2
which, for n an integer, is equivalent to the norm whose square is |[/||2 =
Z\eisn\\Dexf\\l2 where e = (e1,e2,e3); et are integers ^0; \e\=ex+e2 + e3 and
Dxf=(8/8x^(8/8x2)«*(8/8x3y*f

H„ is the subspace of //" of all vector functions u with Vw = 0.
All explicit D%f are in L2 and are understood as distribution derivatives. We note

that F(Dexf)(x) = (ix)eF(f)(x), where («)e=(w1)*-(ixa)*»(ötäM%
The following spaces will be used; h may be a vector-valued or scalar-valued

function.
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(i) CT = {h(x, t) \ h is continuous and bounded in QT} with norm ||«||Cr
= supu,i)eoT \h(x, 01-

(ii) C$ = {h(x, t) | Dexh(x, t)eCT for all e satisfying \e\ ̂ 8 and D%h is Holder-
continuous in x with exponent 8 — [S], uniformly for (x, t) e QTif |e| = [S]} where [8]
is the largest integral part of S ̂  0.

We use the norm whose square is

\H%  =    2    WMlr+    2    Hô(Dxh)2
where

77 (f)-        suo l/(*>0-/(*V)l
x,A1eS3;tE[0,r] lx —X   |

(iii) C(F, 77) = {«(x, i) | «( , i) € 77; the mapping «: [0, F] -^ 77 is continuous}
with norm ||«||C(T,íí) = supte[0jT]||«||ií where 77 is a Hubert space, usually 77" or
77?. For notational convenience, we drop the o when subscripting the norm.

(iv) Cq={« s Ct I « has compact support in R3, uniformly in t e [0, F]}.
C¿° is dense in C(T, 77"). Where we consider t only in an interval [e, T] with e > 0,

we use analogous classes of functions C[£-T], C[de>r] and C([e, T], 77). Where / is
omitted or fixed, we use similarly defined classes of functions C, C and Cp.

( , )H denotes the inner product in a Hubert space 77. In any equation involving
an inner product, the subscript 77 will be used: subsequent inner products are
assumed to be of the same kind unless the notation is changed.

Lemma 0.1. Iffe C(T, 77") where « is an integer, we can assume fe Ct~2 + 6 for
any 8 with 0 g S <^ and there is a constant Kn¡0 depending only on n and 8 such that

\f\\cV* + i  =  ^n.dll/llwr.H")-
Proof. See [14, p. 221] for a proof for bounded domains. The proof for R3 by

use of Fourier transforms is somewhat easier.

Lemma 0.2. Let / andf2 be scalar functions over R3.
(i) 7// e C andf2 e L2, then //2 e L2 and

ll/i/lk ¿  ll/rU/lk-
(ii) 7// e H1 andf2 e 771, i«e«//2 e 7_2 and

ll/i/2|U2 ¿ IfiWifA*.
(iii) Iff, e C; D%heL2, \e\ = 1; lim|;c|.co/1(x) = 0, thenf.eL^, ¡fA^Wxl^

where ||V/||!2 = 2|e| = i ||^/i||I2, andiff2eH\ thenf1f2eL2 and

11/i/aL ^ IV/xIJ/,1^
(iv) IffeL6 and V/e 771, then f can be taken as a locally Holder-continuous

function with exponent 8<^. There is a constant K,(N, 8), depending on 8 and N,
such that, in any ball 77(0, A),

ll/UcW»» ̂  ^(N, 8)(||/L+||V/||Hi)
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where ||/||c4<b<o,w» 's defined as in space C6 over B(0, N) instead of R3; B(x,L)
= {yeR3 | \x-y\<L}.

Proof, (i) is immediate.
(ii) We can improve an inequality from [1, p. 12] to obtain, for all fe Co",

ll/IU»= II/Ih1- The result follows from a density argument applied to

(JVí/22¿x)2 =g jfîdxjfjdx ï lAIM/aßt.

(iii) From [1, p. 12] we get, with some improvements, ||/||l6^ ¡Y/1Il2 if/e C".
Working in space L2xL2x L2 of vector-valued functions whose components are in
L2 (denoted L2 here), we let D he the closure of {Vg | g e Co} in this space. Since
dft/dXi eL2, i=l, 2, 3, we can find unique we D,ueL2Q D such that Vft = u + w.
Since we D, there is a sequence {£(}<=C™ such that Vgt -*■ w in L2 as i —► oo. The
inequality above holds for g¡, so there is some g eLe such that g¡ -> g and we/)
is the distribution gradient of g. Thus, for/e C",

0 = («, V/)i2 = (V/-W, V/) = (/-g, A/).

So/— g must be harmonic in Zc3; but/ e C; liiri|,(|_>0O/1(x) = 0 and g eL6, which
can only occur if/ — g = 0, by standard results concerning harmonic functions. Thus

ll/lUa = \gIk â ¡ffk = Mi. = IVilir
Now, using Holder's inequality, we compute

II//2IIL ̂  (J/i6rfx)1,3(J(/2T2i/x)2'3

s. llv/lliJl/ll^l/llÊf ^ liv/iiijl/il^
using the inequality ||/2|U4á II/Ih1-

(iv) This result can easily be obtained by multiplying/by a function g e Co that
equals 1 on B(0, N), using Lemma 0.1 on fg, and the result

f       f2dxú K\\f\\2Lf¡       (K depends on N).
JBiO.N)

Lemma 0.3. If a set of functions S<^L2 has a uniform Holder constant M and
exponent S and if, for any e > 0, there is an NE such that

f \f\2dx < s   for all fe S,
JBa-B(0.Ne)

then for any e1, there is an NEi such that |x| > Nti implies that |/(x)| < e1 for allfe S.

Proof. Suppose that S has the properties postulated in the lemma and there is
some/ e S and xx e R3-B(0, N+1) with

\ft(xt)\ ^ L = (6e(3 + S)(3 + 28)(87r82)-1M3/T(2<s + 3).
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Then |/(x)| £7_-M|x-x1|í and

f \Á\2dx^f (L-Mlx-Xil")2^
JR3-B(.0,N) J BUlCLIM)116)

= 4tt\ (L2- 2LMr6 + M 2r2ô)r2 dr = 2e,

which contradicts the assumption that/ e 5. Hence |/(x)| -¿.L, a\\fe 5, all x £ R?
— 5(0, A+1) and the conclusion is immediate from this.

I. In §1 we show that if w e H2 then there is a unique v e C1 + 6 n Le such that
V xv = w and lim,*^.*, \v(x)\ =0. We use potential theory to construct v.

Lemma 1.1. For any scalar function fe Cà C\L2 we can define a linear operator

G(f)(x)=  f   (r-L-[-1L)fiy)dy.
G(f)   is   twice   continuously   differentiable,    AG(f)= -4-n-f  and   ||VG(/)||cá

Mll/llc+ll/lk).
Proof. For any x £ 7?3, we can choose z e R3 such that |z —x| < 1. Then

G(f)(x)= ¡   (\x-y\-1-\y\-i)f(y)dy
Jr3

=   f        + f        + fJbU,2)      Jb(0,1)      Jb3-B(z,2)-B(0,1)

= h+I2+h.
By potential theory arguments (see [2, p. 249]) Iy and 72 exist and are twice

continuously differentiable ;

1ÎL -  ( JL
oXj ~ JbSxj \x-y

By Schwarz inequality and | \y\ — \x— y\ |^|x|,

f(y) dy   for both I, and 72.

Jb3-b(z,2)-b(o,d \|x I     |x—y\l

= ll/IILW2 f3       \y\-2\x-y\-2dy ¿ A-ii/llijxi2.
Jr3-b-b

This is sufficient for 73 to exist; showing that it is sufficiently differentiable uses an
argument similar to the following reasoning concerning the desired inequality:

|VG(/)(x)| ^  f   \V(\x-y| -1)! |/(7)| dy
Jr3

= i3\^y\-2\f(y)\dy
Jr3

=  f3 l*->H-2|/(>0|4y+ll/l|c-47r Cdr
Jr3-b(x,d Jo

. =M|/IU2+||/||c).
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Finally, from potential theory (see [2, p. 249]), AG(f) = — 4-nfi

Lemma 1.2. Let w e C6 n H°. Then if G(w) = (G(w1), G(w2), G(w3)) (see Lemma
1.1),

(i) limM^ai\8G(w)ldxi\=0, and
(ii) V-G(w) = 0.

Proof, (i) The absolute value of a component of 8G(w)(x)/8xt is

A(Xi-yi)\x-y\~3)Wi(y) dy\ Ú  \    |x-j>|_2K(>0| dy.
I JB3 I JB3

Hence it suffices to show that/e C" n L2 implies

lim   f   wLf(y)dy = 0.
ijci-.oo jB3 \x—y\

Using  Lemma  0.3   with  S={f},  for  any  e>0  we  can  find   N  such   that
JB3-B(o.iv) l/l2 dx<e2 and |/(x)| <e if x e R3-B(0, N). Suppose |x| >N+1. Write

\\x-y\-2f(y)dy= f + [      =/!+/2)
JB3 JR3-B(0,N)      JB(.0,N)

MS     Í   3 +   fJ B   -B(0,AT)-B(x,l)      Jb(ä.I)

S(f |x-^|-*^)1/2(f /2^)1/2 + ü:   sup    \f(y)\ ^Ke,
\JB3-B(.x,l) I      \Jb3-B(0,W) / yeBix.iy

\h\2 = ll/IIL f     |x-j|-4^
Jb(o,n)

^   11/llfsOI-AO-1'2 f \x-y\^2dy
Jß   -B(x,l)

í K(\x\-N)-ll2\\f\\î2^0   as|x|-^oo.

These suffice to establish (i).
(ii) The result V(7(vv) = 0 follows from a conventional procedure involving

approximating |x-j|-1 in B(x, 2N) — B(x, 8/2) by a C0°° function fN,ô(\x—y\)
equal to |x—_y|_1 in B(x, N) — B(x, 8). Then, for fNti, V-w = 0 implies

2 ¿ jf»M*-y\)My) dy = -(vfN,Á\x-y\), w)Li = o.

Theorem 1.1. If w e H* (n ä 2) we can define a linear map Fx :

/i(w)(*) = i»"1 f   \x-y | ~3(x-y) x w(y) dy = (An)-1? x G(w)
JB3

with the following properties:
(a) Ft(w) eC1 + i n L6/or any S<-£ an<Z 8Ft(w)/8x e Hn,
(b) VxF1(w) = w,
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(c) V-F1(w) = 0,
(d) lim^i^« F1(h')(x) = 0.

Fx(w) is the unique vector with properties (a) through (d).
For a vector-valued function u = (uu u2, u3), let uix. = ôuJdXj, and u tX be the array

(uUx) and

\\u.À2=   2   l«uJ"-
i,J = l,2,3

The following inequalities hold:
0) 11^)11^ = A-.Mk,
(Ü)  l^iWIcáAalIHI«'.

(iii) \(Fxiw)) ,,!„". S |w|a->m-0, 1, 2,.. .,«.

Proof. Since w e 77", where «3:2, Lemma 0.1 shows that w e C6 for any S<£.
Hence Lemmas 1.1 and 1.2 are valid and Fx(w) exists. Using these lemmas,

V x F\(w) = V x ((4tt) -l V x G(w)) = (Air) ~\- AG(w) + V(V • G(w))) = w,

where AG(w) = (AG(w1), AG(w2), AG(n>3)). lim,^«, F1(w) = 0 by Lemma 1.2®.
To establish uniqueness: If v-y and v2 both have properties (a) through (d), then

Vx(v1 — v2) = 0 and V-(v1 — v2) = 0, so there is a potential function/with v1 — v2
= V/and 0 = V-(v1 — v2) = Af, i.e. fis harmonic. But v, and v2 are small near co, so

/ harmonic, can only be constant; hence v± = v2.
Fj is clearly linear; inequality (ii) follows easily from the inequality of Lemma 1.1

and Lemma 0.1.
To establish the remaining results,, we first show that, if v = Fy(w), then

v,x¡= -F-\\z\-2zlzxF(w)(z))),

where Fis the Fourier transform. Let u= — (Att)~1G(w). Then Ah=w and Vxw
= —v. Denote

-F-Xlzl-^ízxFíwXz)))

by pt ; note that p¡eHn. Then if o £ C0°°,

(Pi, Aq)L2 = (-\z\-2Zi(zxF(w)(z)), \z\2F(q)(z))

= -(F(w)(z),Zi(zxF(q)(z))) = (F(Au),F((Vxq)¡x))

= (AM, (V xo) iX) = (u, A(V xo) ,x) = -((V x u) iX„ Aq)

= iv ,Xi, Aq).

Hence v ,x¡—p¡ is harmonic; v tXl and p¡ are both continuous and bounded by
Lemmas 1.1 and 0.1. So v ,x¡=Pt + constant. Now p¡ e H2, so Lemma 0.1 implies
that Pi e C6 n L2 and Lemma 0.3 implies that pt is uniformly small outside a
sufficiently large ball in R3. Since v is also small uniformly for x large, the mean-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971]   THE CONVERGENCE OF NONSTATIONARY NAVIER-STOKES FLOW     381

value theorem implies that for at least some large x0, v ¡x(x0) is also small; hence
the "constant" must be 0 and v ,Xl=Pi- Thus (iii) follows:

\\v Jfr = 2\\F(u ,Xi)(z)(l + \z\2r2\\li
= |||z|-2(|z||zxF(h-)(z)|)(1 + |z|2)'-'2||12

Í \\F(w)(l + \z\2r'2\\2L2= ||wll".

Inequality (i) now can easily be derived using Lemma 0.2(iii); v = F1(w) e C1 + 6
since v §x e H2 and Lemma 0.1 holds.

II. In §11, for fixed v, we wish to find a solution to

(a)       8w/8t + (v ■ grad) w — (w- grad) v — vAw = b,

(h)       w(x, 0) = a(x).

Equations (E)(a) and (b) provide an example of more general parabolic equations
of form

(a)       dw/dt + (P(t) + A)w = b,
(h)       w(0) = a,

where A is selfadjoint and independent of time and P(t) is a time dependent linear
"perturbation of lower order." The following theorem provides a solution to
equations of form (Q). (/)(•) denotes the domain of operator.)

Theorem 2.1. Let A be a selfadjoint operator in a Hubert space H and suppose
that A^d>0. Let P(t) be a time-dependent linear operator with D(P(t))=>D(A6)for
some 8^0 and all t e [0, 71. Suppose that if we D(AÔ), then P(t)w e C(T, H) and

\\P(t)w\\ccT.H) ̂  ATH^wIIh       (A' is some constant).

(I) If a e D(A6) andb e C(T, H), then there is a generalized solution w(t) e C(T, H)
to (Q) which satisfies

f(a) w(t) = e~tAa+     e-«-»M (-P(s)w(s) + b(s)) ds
Jo

<r»n where e~tA is the semigroup generated by —A; and

(h) w(t) e D(Aà), t e [0, T], Aôw(t) e C(T, H) and

lim \\A\w(t)-a)\\H = 0.(J 0

(II) If ae D(Aa + u) for some p>0, b is Holder continuous in t as a C(T, H)
function, and P(t) also satisfies

\\P{tt)u-P(tM\H ^ K'\tt-hY\A*u\a
for some constants, A", p, > 0, and all u e D(A6), then w(t) is also a solution of(Q) in
the sense that dw/dt exists in C([e, T], H) for any e>0; w(t) e D(A) for r>0 and
(Q) is satisfied in H for all t >0.
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The following lemma is needed for the proof of Theorem 2.1; the dependence
of estimates on the positive constant v is crucial for later results.

Lemma 2.1. If A is a positive selfadjoint operator in Hubert space 77, A^d>0,
then —A is the generator of a contraction semigroup e'tA and

(i) e~tAe-sA = e-(t + s)A, t, s>0; Ae~tA=>e-tAA; |e""j|Sl.
(ii) e~tA -*■ I strongly as t -*■ 0.

(iii) e~tA maps 77 into D(A) (i>0).
(iv) d(e~tA)/dt= -Ae~tA exists (t>0).
(v) e~tAw £ C(T, H)for all w e 77.

(vi) IfaeH and b(s) is Holder-continuous as a C(T, 77) function, then

Ç e-u~Mbisw(t) = e~tAa+\  e-u~8Ub(s)ds

solves
(a) dw/dt+Aw=b,
(b) w(0) = a,

in the sense that w(t) e D(A), i>0 and dw/dt and Aw(t) exist and (a) is true in
C([e, T], H)for e>0 and lim(i0 ||w(¡)-a|U = 0.

(vii) 7/0^ 8 <1, \\A6u\\H^d6\\u\Hfor all ue D(A6).
(viii) \\Aôe-tA\\^r6(o/e)0.

(ix) ||(e-'l'4-l)^-')||^«ä((l-8)/e)1-'58-1.

(x) For any u e C(T, H),

I f Aôe-u~s)vAu(s) ds I    S r1_ Vd(8/e)4(l -S)-1!«!!^.«,.
II Jo \\H

(xi) If w(t) = \l e-('-s)vAu(s) ds, where u(s) e C(T, 77), then, for any 0^8< 1
and 0 < p< 1 - 8, A"w(t) e C(T, H) and

\\A%w(t + h)-w(t))\\Hèh"v-%(t/p.y-^+^ + (l-8)-^-»+^)\\u\\ca + Km.

Proof. The results (i) through (viii) are well known; for example, see [12, p.
231 ff] and [13].

(ix) (e-hA-\) = \h0(d/dt)e-tA dt = \h0-Ae-tA dt so

(e-hA-\)A-6 =  f -A1-
Jo

and the result follows from integrating inequality (viii).
(x) can be easily shown by integrating (viii) directly,

(xi) w(t+h) - w(t) = (e - h*A -1) p0 e - « - °»Au(s) ds+¡\+he ' «+» " s)vAu(s) ds so

\\A%w(t + h)-w(t))\\H

^ IKe-^-l)^-«! If Ai+ue-lt-s)vAu(s)dsl + I f '   A6e~{t + h'mAu(s) ds
IIJo II Jt

The result follows easily from the previous estimates.
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Proof of Theorem 2.1.
Part I. We solve the integral equation (Qx)(a) by an approximation technique,

with
rt

u0(t) = e~tAa+ [ e-{t~s)Ab(s) ds
Jo

and

un(t)= -I   e-°->AP(s)un-t(s)ds.fr<0-   -je^-^P{8}Un^(ß),

Now u0(t) exists in C(T, H) by Lemma 2.1(xi) (for 8 = 0) which also allows us to
assert that

Aôu0(t) = e'tAAäa + f A6e~u-s)Ab(s) ds
Jo

exists in C(T, H) and so, by the assumptions of the theorem, u0(t) e D(P(t)).
Assume that wn_i(i) and ^ä«n-i(0 exist in C(T, H) so that wn_i(r) e D(P(t)). We
note that for any w(t) e D(AÔ), t e [0, T],

(2.1)      \\P(h)w(tl)-P(t2)w(t2)\\H  S   |{i'(/l)-/,(/2)Míl)«H + ^M4(H<í1)-)Kí2))||«

from the properties assumed of P. Hence /'(i)Wn-i(O e C(T, H). Then, by Lemma
2.1(xi), un(t) and A6un(t) exist in C(T, H). The inequalities

Mä«olU,H, = |ií'«u'+^-V-.*>-ííH«fcio
and

MdM»|lc«.H)   ̂    í1-Ó(l-S)-1||/,í.n-1¡lc(í.H,

^^^(l-SJ-^MX-illca.H)
follow from Lemma 2.1(x) and the restrictions on P. Thus

2 M^IU.h) ̂  (|Míal«+í1-í(l-S)-íé|c«,w) 2 O^O-S)-1*)'
,1-a/-which converges if t satisfies r1_a(l — 8)~1K< 1. Note that this restriction on t is

independent of the initial data and ¿»(f). If T0 satisfies this restriction, then the
series (A6w)n='£?=0 A6u¡ converges in C(T0, H) and since í*"s||«(||fl-^ ||v4'5mí||í/, wn
— 2?=o ui will converge also to some function w e C(T0, H). Since A6 is closed,
lim,,..,* (Aôw)n = Aôw and hence w e D(P(t)), and

n

w(t) = u0(t)+ lim y Ui(t)
»->« ¡=1

= «o(0- i™  f e-«-s)AP(s) y Ui(s)ds
"-00  Jo j = o

= ií0(0- f e-«-»^^)^) ds.

Now w(T'o) e Z)^*) ; hence this process can be continued to another /-interval
[T0, 2T0] of the same length etc. since the requirement for convergence of the
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approximation is independent of the initial data. So w(t) satisfying the integral
equation exists for any interval [0, F] where b(t) and P(t) are defined. We note that

Aöw(t)-Aöa = (e~tA-l)Aöa+ f Aöe'il-S)A(-Pw + b)ds

and the proper convergence to the initial value follows from Lemma 2.1(ii) and (x).
Part II. To show the second part of the result, we need only show that P(s)w(s)

is Holder-continuous in s by Lemma 2.1(vi). Inequality (2.1) and the additional
assumptions on P reduce this to showing that A6w(s) is Holder-continuous. First

e-u+h)AAöa_e-SAAöa = i(e-*¿-i)A-»Xe~'AAi+''a)

and inequalities (viii) and (ix) of Lemma 2.1 show that A6e~sAa is Holder-continuous
if a e D(A6+ß), as is assumed.

Then Lemma 2.1(xi) establishes that

*(( e~u-sU(-P(s)w(s)+b(s)) ds\

is Holder-continuous in t also.
Let A' be the closure of (1 - A) on Hubert space 772; then D(A') = Hi. Now it is

clear that for sufficiently smooth q, V-(A'q) = A'(V-q) where A' is regarded as an
operator on both scalar- and vector-valued functions. Hence A = (A' restricted to
77!) is an operator in this subspace with domain 77*, and vA is the selfadjoint
operator in Hubert space H2 for use with Theorem 2.1 to show the existence of
solutions of equations (E).

Formally define

Pv,vit)w = (v-grad)w — (w-grad)v — vw.

Recalling that W-v = 0, for smooth u with V-h = 0,

V-P„_vm = V-((u-grad)w)-V((wgrad)i;)-vV-w

= ^¿^(-gradXV.^-A^g-^.gradXV.^ + O = 0.

Thus we can define Pv¡v(t) in H2. For use in Theorem 2.1 we need the following
estimates.

Note that, from Lemma 0.1, there is a constant K7 such that, for suitable o,
||o Jlc^K.Wq ..¡ai and Utfllc^lklla".

Lemma 2.2. IfveCT, Vv = 0, \imM^nv(x,t) = 0 uniformly in te\0, T] and
v iXe C(T, H2), then, for suitable constants Kit K5 and K6, if we D(A1I2) = H3,

' (i)  ||(i;-gradH|c<r.«»)í£*4Í> ,x\\c<t,h>>+\\v\\ct)\\A1I2w\\h1,
(ii) ||(w-grad)¡;||C(r,í/=,^A5||y ,x\\Cít.h2)\\w\\h2c,

(iii) \\(vgrad)w\\nT¡Hi)^K6(\\v ,x\\cít.h2)+ Mct)\\w\\h*-
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Proof. For appropriate p and q,

||(/>.grad)«7|U2 = ||(l-A)((/».grad)a)|L2

g ||(/».grad)tf||L2+|A((/»-grad)<7)||L2
and

A((/»-grad)çr) = (Ap-gvad)q + 2 2 (P ,Xig™d)q iXi + (pgrad)Aq.
i

Proof of (i).

\\(p.grad)q\\L2i \\p\\c\\q Jl2,

||A((/».grad)<7)||L2 ̂ K\\p J„*\\q ,XU + K\\p J\c\\q ,XU + \\p\\c\*q ,*\\l2,

= 2 h Jk ¿ fd + kl2)3!^)!2^ = WA'^qWh.
• .i J

,x\\H2

Lemma 0.2 gives \\p ,*||c^7b ,*IU2; ||<7 ,*1U»= II? .*b2 and IIA^ .*)lk-S llfl ,*IU2:
these inequalities combine to give (i).

Proof of (ii).

||(/».grad)a||L2 á \\p\\L2\\q Jc ^ K,\\p\\L2\\q JH^,

|| A((p-grad)q)\\h2 S K7\\Ap\\L2\\q ,x\\H* + K\\p\\Hz\\q ,x\\H* + K7\\p\\Hz\\q J&.

These combine to give (ii). Note that 2K7<K5.
Proof of (iii).

¡(/»•grad),?!2.! = ((/»■grad)fl,(l-A)((/».grad)?))i2

^ WpVcWi Jl + blick ,x\\L2(K\\¿ip\\Hl\\q ,x\\Hi+ I/» .,|c||«7||«>)
+ ((P ■ grad)ö, (p ■ grad) A?)i2.

Now, since V-u = 0 and /» has the role of y here, V-/» = 0 and

((/»•grad)fl, (/>-grad)A?)i2 = (Pñi ¡Xj, (pkAqt) ¡Xk)

= -ÜPÑi.x) .xk,Pk&qù
í K\\p\\2c\\q\\^ + K\\p ,x\\c\\q JUpÏcMh»-

The inequalities combine using Lemmas 0.1 and 0.2 to give (iii).

Theorem 2.2. For any [0, T] where b and v are defined, if ae H3, b e C(T, H2)
andv e CT, lim^i^,,, v(x, r) = 0 uniformly in t e [0, T], v <xe C(T, H2), V-¡; = 0 then

(2.2)       w(t) = e~UAa+\  e~a-s)vA(-(v-grad) w + (w-grad) v + vw + b) ds

has a solution w(t) e C(T, H2) with All2w(t) e C(T, H2) also and

lim \\All2w(t)-All2a\\H* = 0.
i|0 "

Proof. The inequalities for Pv>v and the continuity required by Theorem 2.1
follow from Lemma 2.2, the linearity of expressions like (t»grad) w in both v and
w, and the properties assumed of v. Clearly D(A112)^ D(PV>v). Hence Theorem 2.1(1)
gives the existence of solutions w e C(T, H2) of (2.2) with the proper requirements.
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III. For ueC(T,H2), we can form Fx(u) = v satisfying the requirements of
Theorem 1.1 and construct w(t), the solution of Theorem 2.2 to

(2.2)       w(t) = e~tvAa + |   e-it-s)vA(-(vgrad)w + (wgrad)r + vw + b) ds

which we call F2(v) = F2(F1(u)). We wish to establish that the mapping
F2(F1( )) : u->w maps a closed convex set 5 of a Banach space continuously into a
relatively compact subset of 5 and use Schauder's fixed point theorem to find
a solution to (E)(a), (b), (c) and (d). The most important estimate giving t-
independence of the viscosity v comes from the following lemma.

Lemma 3.1. 7« any Hilbert space 77, ;/ A is a positive self adjoint operator,
q(t) e C(T, 77), a e 77 and

then

w(t) = e~UAa+ f r(|-s"Vs) ds

IwOHft'i \\a\\2H + 2J\q(s),w(s))Hds.

Proof. Suppose that q(s) is Holder-continuous in s. Then, from Lemma 2.1(vi),
dw/dt exists in C([e, T], 77), e>0; we D(A) (t>0) and dw/dt + vAw=q(t) in 77;
w(t) —> a strongly in 77 as / -> 0. So

(dw/dt, w)H + v(Aw, w)H = (q(t), w(t))H.

Now v(Aw, w)JÍ = v||/41/2H'||2íS:0, so integrating the inequality gives

i(\\w(t)\\2H-\\a\\2H) = \\[js Mi ds Ú £ (q(s), w(s))H ds.

By approximating strongly continuous q(s) by Holder-continuous functions, we
can easily obtain the result for q(s) e C(T, 77).

Lemma 3.2. Ifwe C(T, H3), then there is a constant Ke such that

|((i;-grad)w, wV| ¡g Ka\\v ,x\\h2\\w\\2h2-

Proof. If w e Co, then, since VV=0,

((t;-grad)w, w)H* = ((1 - A)(i;-grad)H>, (1 - A)h-)L2

= ((vgrad)w, w)-((^-grad)H', Aw)-(A(vgrad)w, (\-A)w)

= 2 J V-(|w|V)ox-(—(vjWí), Aw¡j-((Ai;-grad)w, (l-A)w)

1+ 2 ^V-(\Aw\2v)dx-(^(vAwi),w^

_~(dVj    B2Wj     ,       ..    \
\BxK dXjdxK ■'/
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Now

\ \?-(\w\2v)dx = 0 = i h-(\Aw\2v)dx

and

so four terms of the expression drop out, and we have

\((vgrad)w,w)H*\ S ||(Al).grad)w||i2||(l-A)w|i2

8vj    82wt+ K •Il0-A)HU2
ta8xK 8xj 8xK\

á (K\\v ,x\\H*\\w\\H* + K\\v AcWHh^WHh*-
The result follows from a density argument for w e C(T, H3) and the inequality

IK*M*7lk,*IU2-
Lemma 3.3. Let K9 = K5 + Ke. Suppose that a e H3 and be C(T, H2). Choose T

such that
4T(v + K9(2\\a\\2H* + K9-1\\b\U,H*))112) < 1

and with T so restricted, let

M2 = 2H|2í3 + tf9-l||¿»||C(r,iíV

Define S={weC(T, H2) \ \\w\\CiT,H^M}.    Then   F^F^S^S.

Proof. By Theorem 1.1, if u e S, then Fx(u) exists. Since u e C(T, H2), F^u) e CT
and (Ft(u)) tX e C(T, H2) by inequalities (ii) and (iii) of Theorem 1.1. Lemma 0.3
and a study of Lemma 1.2 shows that lim^i^oo F1(u) = 0 uniformly in t; hence we
can apply Theorem 2.2 to obtain w(t) = F^F^u)) satisfying (2.2) with w e C(T, H3).
By Lemmas 2.2, 3.1 and 3.2

||w(f)||i/2 â 1101112 + 2     ( — (v-grad)w + (w-grad)v + vw + b,w)H2ds

á ||a||2í2 + 2í||w||e<t,H-«)((í:5 + ^8)||i',x||co,H2) + >') + 2r||é||c(t.jía)||M'||ca>H2).

Now r^Tand \\v ,x\\ca,Hz>= \\Fi(u) ,x\\cu.h')= \\u\\m¡H^M; hence

2t((K5 + KB)\\v ,x\\Cit,H^ + v) ^ 2T(K9M+v) < \

and we can rearrange the inequality to

iMIc«.«» ¿ l|a|!2í2 + 2r||¿»||c(í,íí:2)||w||c((,íi2)

á \\a\\212 + (2KBM)-1\\b\\cu,H^\\w\\cU.H^

This quadratic expression in ¡wie«.«2) can hold only if

Iklccr.H2, áK||¿||c(r.W^9M)-1 + ((^9M)-2||¿»||§(r,H2) + 8||<3||2í2)1'2)
= M   which establishes that F2(Ft(S)) <= S.
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Lemma 3.4. 5={w e C(T, H2) \ \\w\\c(TtH2}?¿M}isaclosedconvexsetinC(T,L2).

Proof. Convexity is immediate. Suppose wn—>w in C(T,L2) as «->co with
wn e 5. Then w e C(T, L2), F(w) exists and

(f        (1 + |z|2)2|F(hO|2ozV'2 í (\+N2)\\F(wn)~F(w)\\L2+\\F(wn)\\H2 ^ E + M

for « sufficiently large. This is true for any A; so w e C(T, H2) and ||w||cer,H2>á-^»
Also (w, V/)L2 = limn_o, (w„, V/) = 0 for smooth/since w„ e 5. Hence we S.

Lemma 3.5. F2(Fy( )): S —> S is continuous in the C(T, L2) topology.

Proof. Suppose uneS¡ and un-^u0eS in C(T,L2). Let vi = F1(ui), W( = F2(t;j)
= F2(F1(ui)), ;' = 0, 1,2,.... We wish to use Lemma 3.1 with Hubert space L2; thus
formally we must deal with the closure A1 of 1 — A regarded as an operator on 7_2.
However, if o £ H2^L2, then A1q = Aq, e~tAlq = e~tAq etc., so we can use our pre-
vious notation without difficulty. Now

Wiit) = e~UAa +     e-<f~s)v'4(-(îvgrad)wi + (MVgrad)(;i + i'wi + è)o5'

so by using Lemma 3.1   on the representation of w¡ — w0 and the fact that
((tVgrad)(w¡-Wo), w¡-wa)L2 = 0, we obtain

\\Wi(t)-w0(t)\\l2^ 2     (-((Vi-v0)-grad)w0 + ((Wi-w0)-grad)Vi
Jo

+ (w0-grad)(Vi-v0), Wí-w0)L2 + v\\wí-w0\\12) ds.

The following inequalities hold by Lemmas 0.2, 2.2 and Theorem 1.1 :

II(fa-v0)■ grad)w0||C(r>L2) ¿ K\\vUx-v0tX||c<r,L2,||w0tX\\„t.h1),

\\((Wi-w0)-grad)Vi\\C(T¡L2) ^ \\vUx\\Ct- IK-w0||C(r>l2),

||Ovo-gradXut-i>o)||c(r,L..) ^ \\w0\\cT- \\Vi,x-Vo,x\\c(T.L2),

\\Vi,x~V0,x\\c{T,L2)   =   ||Mt —"ollcCT.L^-

IKJcr  ^  K7\\Vi,x\\C(T,H2)  ^  ^7||"t||c(r,Ha>  ^  KiM S  K9M.

Hence using Schwarz' inequality

Iki-M'ollccr.La) ̂  2T(K9M+v)\\Wi-Wo\\2.lT,L2)
+ ||Wi-H'o||c(T,i2)2F(A||w0,x||c(r>iii)+||wo||cT)||Wi-Wo||c(r,L2)-

Since AT(K9M+v)<l, we easily obtain \\wi — w0\\OiTtLay^K\\ut — u0\\ciT,L2> and the
mapping is therefore continuous.

To show that F2(Fi(S)) is relatively compact in C(T, L2) we first show that it is
an equicontinuous set of functions and then, with a somewhat intricate argument,
show that the functions are uniformly small near infinity and thus we can use the
Arzela-Ascoli theorem for compactness.
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Lemma 3.6. For any w e F2(FX(S)),
(i) K/+A)-H<r)|^(A/vT*Aio,
(ii) Wwd+Ki-w^U^h^Ktt,

where K10 and K1X are independent ofv and depend only on M.

Proof. If we F2(Ft(S)), then, for some ue S, w = F2(F1(u)) = F2(v) and

w(t) = e~Ma+ |  e-a-s}vA(-(v-grad)w) ds+ \   e ~ u ~ s)vA((w ■ grad)v + vw + b) ds
Jo Jo

= wKO + wX^ + w3^).
w\t + h)-w\t) = (e-hvA-l)A~ll2e"tvAAll2a, so

||w1(í + /¡)-h'1(OI|h1 ^ IkV + ^-wXOlU2 â K(hv)ll2\\All2a\\H2
by Lemma 2.1(ix). Lemma 2.1(xi) applied to w3(t) (with 8=0) gives

\\w3(t+h)-w3(t)\\Hi ^ \\w3(t+h)-w3(t)\\H*

^ A'n1'2(||e||c(T>íí2) + v||w||C(r,H2)+ IMIcrr.H»)!» ,x\\cT)

^ Khll2(\\b\\c(T,H^ + vM+K3M2).

Now A~ll2w2(t) = -JÓ e-<i-s)v'M-1/2(t;-grad)H> ds, so by Lemma 2.1(xi) with 8=4,
P=\, we get

||M»2(i + n)-H-2(0|U2 = \\All2(A-ll2w2(t + h)-A-ll2w2(t))\\„*

^ h1'iy-1'2K\\A-ll2(vgrad)w\\H2

= n1'^-1/2/s:-||(t;-grad)w||Hi

¿ h^v-^K-KeM^l+Ks)   by Lemma 2.2(iii).
This establishes (i).

Lemma 2.1 will hold for 1 —A as an operator on H1, and the result (ii) for
||w2(í + n) —iv2(i)||Hi independent of v follows immediately from Lemma 2.1(xi)
applied with 8 = 0 to H1.

Lemma 3.7. F2(FX(S)) is an equicontinuous set offunctions for fixed v>0.

Proof. S is uniformly Holder-continuous in x with exponent 8, S < \ by Lemma
0.1. F2(FX(S)) is uniformly Holder-continuous in t with exponent \ by Lemmas 0.1
and 3.6.

Lemma 3.8. For any e>0, there is an Ne such that if w e F2(Fx(S)) then
r

sup \w(t)|2 dx < e2.
te[0,T] Jb3-BI.0,Ns)

Ne is independent ofv>0.
Proof. To obtain the result independent of v, we wish to use Lemma 3.1. To this

end, we note that if w(t) = e~tvAa+P0 e~u-s)vAq(s) ds with q e C(T, H2) then, for
any C °° scalar function /(x) bounded through its 4th derivatives,

(3.1) w(t)f= e~tvAaf+ f e-u-s)vA(qf-vwAf-2v(Vf-grad)w)ds.
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To establish this: if q is Holder-continuous, then dw/dt + vAw=q; hence, since
A=l — A, d(wf)/dt + vA(wf)=qf—vwAf—2v(yf-grad)w and the integral repre-
sentation df wf follows from semigroup theory. If o is only in C(T, H2), we can
approximate o with Holder-continuous functions and still obtain the integral
equation representation for wf. Then let/(F) e C°°(0, oo); 0 ¿/(r) ^ 1 ; f(r) = 0,
O^rál;/(/•)=1, 2^r<co; and use A(x)=/(|x|/A) in the representation (3.1)
with q = ( — (vgrad)w + (wgrad)v + vw + b) together with Lemma 3.1 applied
H=L2. Inequalities in Lemmas 0.2, 2.2, and Theorem 1.1, together with the
restriction AT(KaM+v)< 1 eventually yield an inequality of the form

||/»HIc<t,.2> â K\\fNa\\L2 + K\\fNb\\clT,L2) + K/N
where the third constant depends on M. Now

sup \w(t)\2dx ^ |/nHIc<3\£.2) ̂   sup \w(t)\2dx
telO.n  Jr3-B{0,2N) telO.T] Jrs-B(0,N)

and similar inequalities for ||/no||L2 and \\fNb\\C(T¡L2) establish the result.

Lemma 3.9. F^F^S)) is relatively compact in the topology C(T, L2) for fixed
v>0.

Proof. Since, by Lemma 3.7, F2(Fi(S)) is equicontinuous, for any sequence {w¡}
by the Arzela-Ascoli theorem we can choose a subsequence that converges uni-
formly in [0, F] x 77(0, 1), a further subsequence that converges in [0, F] x 77(0, 2)
and so forth; thus we can find a "diagonal" sequence {wj} that converges pointwise
in [0, F] x 7?3 = QT and uniformly in any [0, F] x 77(0, A) to some continuous w.
Then

|N0lk(B(0,*»   ̂     ||W(0-M'J.(0IU2<B(0.N))+|H'X0||12   ̂    S + M
if/is large, for any A, gives wit) e L2. Similar reasoning with Lemma 3.6 shows that
wit) £ CiT, L2). Finally

\\Wiit)-WÍt)\\t2   ̂    ||wi(/)-H'(/)||l2(B(o,TO + 2(||)4;(0||l2(B3-B(0.»))+ IkWII/V-BCO.W»)
^ e

for A large and /ä/0 also large, uniformly in te [0, F], by Lemma 3.8, and this
gives convergence in CiT, L2).

Theorem 3.1. IfCeC; lim W_M C(x) = 0; VC=0; a=VxCeH3 + 6; B is a
continuous function on QT; B x e CiT, H2) ;b=V x Bis continuous in t asa CiT, H2)
function and T satisfies

4F(v + A-9(2||o||fi2 + 7:9:1||f;||c(r.W1'2) < 1,

then there exist unique functions w, v, and P (F is unique up to an arbitrary function
of t) such that

(a) dw/dt+ iv-grad)w — (wgrad)i; — vAw = b,
(F, (b) wix, 0) = o(x),
W (c) Vxv = w; V-v = 0,

(d)   lim  y(x, /) = 0   uniformly in t e [0, F],
|X|->oo
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and
(a) 8v/8t+(v-grad)v — vAv= —gradP+B,

(   } (b) v(x, 0) = C(x),
with   w e C(T, H3) n C2 + »([e,T]xR3) n Cl + »;   8w/8t e C([e, T]xR3)   and
veC3+»([e, T]xR3) n C| + "; v ,xeC([e, T], H*) n C(T, H3);8v/8teC1 + "([e, TxR3)
andP ¡xe C1+U([e, T] x R3) for any e>0 and0<p<\.

(E)(a) and (ß})(a) are satisfied in the classical sense ;

K0-C||c2+»;        \\w(t)-a\\ci + »   and    ||h>(0-<-IIh3

all-+0 as t^ 0.

Proof. First we prove the results for equations (E).
By the preceding lemmas of §111, Schauder's fixed point theorem can be applied

to find some w such that w = F2(F1(w)). Lett; = Fx(w). Theorem 2.2 gives we C(T, H3)
and lim,_0 ||w(i) — a|U3 = 0. (E)(c) and (d) are satisfied by Theorem 1.1. To show
that (a) is satisfied (Theorem 2.2 gives only the integral equation (2.2)) we must
establish the necessary inequality for Pv¡v to use part (II) of Theorem 2.1. For this
we must show that if u e H3 = D(A112) and v = Fx(w), then there are some constants
K and p > 0 such that

II ((v(h) ■ grad)w - (u • gradM?,)) - ((y(i2) • grad)« - (u ■ grad)v(t2)) \\ H*
í A-l^-í^M1'2^.

First

IKWO-^-gradH^ ú KAjv ,x(h)~v M¿U+Uh)-<t¿\c)\AV*u\&
and

KwgradXKO-i^))!^ ^ K5\\v ¡x(h)-v tX(t2)\\H*\\u\\H*

by Lemma 2.2. Theorem 1.1 gives

\Hh)-v(t2)\\c = 11^(^0-w(í2))||c Ú K3\\w(tx)-w(t2)\\H*
and

\\v ,Áh)-v ¡x(t2)\\H* = ¡(FtiwiQ-wiQ)) .An* ^ \\w(h)-w(t2)IIH2-
But w is Holder-continuous in / by Lemma 3.6. Hence (a) is satisfied as in Theorem
2.1(11) and the smoothness of v and w is given by Lemma 0.1 applied with Theorems
1.1 and 2.1; thus the solution is classical.

For equations (E1), we need to establish the differentiability of v with respect to
t. We have established that 8w/8t e C([e, T]; H2). Hence we can form v\t)
^F^Sw/dt) for any r>0. Then, using the linearity of Fx and Theorem 1.1, y1(i)
= 8v/8t and v\t) tX = (dv/dt) >x e C([s, T], H2) by the following reasoning:

\\(v(t+At)-v(t))/At-v(t)\\c

= Ullto)FtMt+to)-w(t))-F¿ewldt)lc
á K3\\(l/At)(w(t + At)-w(t))-dw/8t\\H2^0   as Ar-^0.
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Similarly v\t) ¡x = i8v/dt) ¡x. The smoothness of v then follows from results for (E).
Thus if dv/dt + ivgrad)v — vAv-B = u, (E)(a) gives Vxw = 0 for t>0 and
u tX £ C([e, T}\ H2), which, by Lemma 0.1 gives u e C1 **([«, F] x 7Î3). Thus there
is a function P, unique to a function of t, such that w= V(—P) and

F,*EC1 + "([e, F]x/?3).

Now C = F1id), so

IKO-Clo = || FiWO-o)||c ̂ AslKO-all^
and

IK*(0-a,*l|c1+" â A:3iM||w(0-a|U3

implies by the result for (E) that ||y(0—C||c2+" ->-0 as r-»-0.
We must establish uniqueness. Suppose that (w1, y1) and (w2, t>2) are both solu-

tions of (E). Then

w\t) = e~tvAa+ i e-it-s)vA(-(vi-grad)wi + (wi-grad)vi + vwi + b)ds.
Jo

Applying Lemma 3.1 with H=L2to the integral representation of w1^) — w2(t) and
recalling that ((v1 ■ grad)(n'1 — w2), w1 — w2)L2 = Q, we obtain the inequality

IK(0-w2(0l|f2 = 2 f \\w\s)-w2is)\\L2\\Hv\s)-v2is))-grad)w2is)\\L2ds
Jo

+ 2 f ||w1 - w2U^CIKw1 ■ gradXi;1 -»a)H^
Jo

+ ll(fa1-w2)-gradX2||L2+v||w1-iv2||L2)fl'j.

The uniqueness statement of Theorem 1.1 gives vi = F1(wi). Hence Lemma 0.2(iii)
provides

||((z7-(;2)-gradK||L2 â K\\v\x-v2x\\L2\\w2\\H* S K\\wi-w2\\L2\w2\\H*.

Similar inequalities concerning the remaining terms yield an inequality of form
||w1(0-M,2(0l|22^A'Ji0 \\w\s)-w2is)\\2ds which can only hold if wx = w2; hence
v1 = Fiw1) = F(w2) = v2 also.

(E1) will have a unique solution also, since if (n, P) solves (E1) then (V x v, v)
solves (E).

IV. In §111 we established the existence, for any viscosity v>0, of a solution
(uv, Fv) to the Navier-Stokes equations. In §IV we show that fv converges, as the
viscosity v goes to zero, to a function v that gives the solution to the Euler equations
for the flow of an ideal fluid in 7?3.

The Euler equations are

dv/dt + iv-grad)v = -grad P + B,
(4.1) V-v = 0   with constraints

lim  vix, t) = 0   and    u(x, 0) = C(x).
1*1-. 00
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By formally computing the curl of equation (4.1), we obtain the system

(i) dv/dt + (v grad)w — (w ■ grad)v = WxB = b,
(ii) Kx, 0) = V x C(x) = a(x),
(iii) Vxp = w; V-i) = 0,
(iv) lim  v(x, t) = 0.

|X|-»co

Assume for this section that 0<v^vo, Tsatisfies

(4.3) 4T(v0 + K9(2\\a\\2H* + Ka-1\\b\\CÎT,H*))112) < 1

and M2 = 2||ß|||i2 + A'9"1||Z»|C(rjH2) where a=VxC and 6=V xB. Use these restric-
tions and functions to obtain the results of §111 for various viscosities v.

Lemma 4.1. If(wv, vv) is the solution o/(E) with viscosity v^v0 of Theorem 3.1,
then there is a function w e C(T, H2) ; \\w\\ C(t.h2) = M sucn that ifv = Fx(w), then

(i) \\wv-w\\C(T,L2)^TMv,

(ii)  \\vv-v\Ur,L6)^TMK2V,

(iii)  \\v\x-v J\c(T,L2)^TMv.

Proof. Let (w\ v') be solutions of (E) with viscosities v¡ of Theorem 3.1. Using
the notation A = 1 — A, Theorem 3.1 gives

d(wi-w')/dt + viA(wi-w3) = /»

(4.4) = (vj-vl)(Awi-wi) + vj(wi-wj) + ((wi-wi)-grad)vi

+ (w' ■ grad)(f ' — if) + ((v' — v') ■ grad)H>' + (v' ■ grad)(wJ' — iv').

The initial value of wi — w' = a — a = 0, so we can use Lemma 3.1 with Hubert space
L2 and the result ((vj ■ grad)(w> — wl), w' — wi)L2 = 0 to obtain

W-^ldtM ^ 2t\vJ-vt\QAw'lcaM+\\w%it,^+2t(Vi+¡vii4c)\\^-^\\cttM
+ 2t(\\w%t-\\v\x-viJ\cv¡L2)+\\((v'-v')-grad)wi\\catL2)).

Now (see proof of Lemma 3.2)

\\((vi-vi)-grad)wi\\miL2) ^ K3\\v\x-v\x\\Citj.2)\\w\x\\C{ttH^
and

\\vi.x-Vt,A<Xt.la> =   II^i(^-W'),*Ilc<t,L2) è   ||H'i-H'J'||c(í,L2).
So

llw'-w'llc^) ^ 4tM\vj-vi\+2t(Vj + (2K7 + K8)M)\\wi-wi\\CVtL2),

since both w' and w' are bounded in C(t, H2) by M. Then

(4.5) \W-w%ít,l2) Ú %TM\Vi-Vj\

follows from 2r(v; + (2A'7 + A'8)M)^2r(v0 + A'9M)<Jk Both w' and w1' eS where

S = {weC(T,H2)\ Hcct.h*)¿ M)
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which is closed in CiT, L2) by Lemma 3.4; hence we S and v = Fxiw) exist and the
inequalities follow from Theorem 1.1 and (4.5).

Theorem 4.1. IfCeC,limlx^mCix) = 0,V-C=0,a=VxCeH3 + 0andBisa
continuous function such that B xe CiT, H2) and o= V x 77 is Holder-continuous in
t as a CiT, H2) function, T satisfies

4F(v0 + Ä'9(2||VxC|2i2 + Ä'9-1||Vx77||c(r,Ji2))^) < i

then there are unique functions w, v andP (F is unique up to an arbitrary function oft)
in [0, F] such that

(i)    dw/dt+ (v-grad)w — (w-grad)v = b
(ii)    w(x, 0) = a(x),

(4.2) (iii)    VxD= w; V-v = 0,

(iv)     lim  t;(x, i) = 0   uniformly in t e [0, F],
|x|-a>

and
(i)    dv/dt+ (v-grad)v = -gradF + fi,

(4'° 00   v(x,0) = C(x),

with weC(T,H2); dw/dt e C(T, 771); veCè + u; v _xe C(T, H2); dv/dt eCu
(locally in x e R3 uniformly in te[0, F]); dv/dt e C(T,L6); dv Jdt e C(T, H1);
a(grad P)/dt e C(T, 771) for p,<i.

\\w(t)-a\\ni; ||t;(0-C||c; ||i;(/)-C||L6 and \\v ,xit)-C >jeJHi a//go to zero oí

7/(yv, Fv) w the solution to the Navier-Stokes flow of Theorem 3.1 with v < vQ, then
limv^0 11^-^11^ = 0; ||î;v-!;|C(T,L6)^8FMA'1vo«î7 lj^v,^ — ̂ ,*||C(r>L2)á8FMv.

Proof. We first show that (vv, v) of Lemma 4.1 is a "weak solution" of (4.2)(i).
Now

|| iwv ■ grad>v - (w • grad)y || C(r>i,2)

= ||((M'v-M')-gradK||C(r.ta)+||(w-grad)(»''-»)||0<r.La)
(4.6)

^ ||wv-w||c(rjI,2)||¡;v,x||CT+||vv||CT||í;vi;c-t) ,x\\c(t,l2)

-^0   as v -» 0

by Lemma 4.1 and the uniform (in v) boundedness of ||fvt*||cT (wv e 5 for all
v>0). Forpix)eC0x,

Hvv ■ grad)wv - iv ■ grad)w, p\2 = (((î;v - v) ■ grad)wv, p)Li + ((t> • grad)(n>v - w), p)w

\\iiv*-v)-grad)w*\\L2 Ú K\\v\x-v,x\\L2\w*\\H*-+0   asv-^0

uniformly in t by Lemmas 0.2(iii) and 4.1.

|((y-grad)(wv-w),/Ol2| = |(0fa(wv-w))/0Xy,/OiJ
= livjiW-wldp/dx^J
í ^l»||Cr-||wv-w|Lb.,|L9-»-0   uniformly in te[0,T].
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Hence

(4.7) ((»» • grad)wv, p)w -> ((» • grad)w, p\2   as v -> 0.

From Theorem 3.1, 3wv/3f = 6 + (H>v-grad)t>v-(yv-grad)H>v + vAM>v so, for p e Co,

[ (b + (wv-grad)vv-(vv-grad)w\p)L2ds + v f (Aw\ p\2 ds
(4.8) Jo Jo

=   Jo^(H^/OL2*  =  K(0-tf,/>)L2.

Inequalities (4.6), (4.7), |(Awv, p)h2\ ̂  ||wv||ii2||/»||C) and Lemma 4.1 then give

(4.9) (w(t) - a, p)h2 = j  (b + (w- grad)t» - (v ■ grad)w, p)L¡¡ ds.

Let q(t) = b + (w-grad)v-(v-grad)weC(T, H1). If k(0 = u + JW(j) ds, then m(í)
and du/dt=q(t) e C(T, Z/1) and ¡«(O-alU1 -»■ 0. Hence

f(w(0-a,/»)L2 =  I   (q,p\2ds = (w(0 - a, /»)i2,

which can only occur if u = w, which establishes (4.2)(i) and (ii). (4.2)(iii) is true
since v = F1(w). lim^i^a, v(x, i) = 0 uniformly in te [0, T] follows from Lemmas
0.3, 3.8 and a study of the proof of Lemma 1.2(i).

To show differentiability in t of v, let qh(t) = (q(t + h)—q(t))/h for any function q.
Then by the results of Theorem 1.1 and the linearity of Fu

\\(v .x)hl(t)-(v ,x\2(t)\\^ ^  11^(0-^(01^.

Since dw/dt exists in C(T, H1), 8(v tX)jdt will exist in H1 for any t e [0, T}: strong
continuity in t follows from a similar inequality and the strong continuity of
dw/dt. Parallel reasoning and inequality (i) of Theorem 1.1 shows that dv/dt exists
in C(T, Le). Lemma 0.2(iv) then gives dv/dt e C\[0, T] x B(0, N)), X <■£, for any N.
Thus we can write (4.2)(i) as Vx^ = 0, where q = dv/dt + (v-grad)v — Be CK
(locally). Define P(x, t)= —¡rq(x, t) da where V is any smooth path from 0 to x.
If q is sufficiently smooth, the condition V xq = 0 guarantees that P(x, t) is defined
independent of choice of path Y; by use of mollifier theory we can construct smooth
approximations to qeCx (locally) preserving the property Vx^ = 0 and easily
obtain this result for q only in CA (locally). Then

dv/dt + (v ■ grad)u = - grad P + B

and the statements concerning the smoothness of v follow from the results for
system (4.2).

The properties postulated for C give C=F1(V x C), so

K0-C||L6 = llF.OvXO-F^VxOk Ú K2\\w(t)-VxC\\L2-+0   asr->0.
Similar reasoning and Theorem 1.1 gives

|0.«(O-C.«|a>.S W0-VxC||Hi->0   asi-^0.
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Lemma 0.7(iv) then gives \\v(t)—C\\cwlOtNn-^-0 as r->0; vit) is uniformly (in /)
small near oo ; C is small near oo ; hence || vit) — C \ c —> 0 as t->0.

To show uniqueness: If (w1, v1) and iw2, v2) are both solutions of (4.2), then
vf = F(w') by the uniqueness statement of Theorem 1.1. Also

idiw1-w2)/dt,w1-w2)L2

= Hiw1 — w2) ■ grad)i7, w1 — w2)Lz + ((w2 • grad)^1 — v2) + ((v2 — v1) ■ grad)^1

+ iv2 ■ grad)(w2 - w1), w1 — w2)L2.

Since w1(0) — w2(0)=o-o = 0 and iv2■ grad (w2 — w1), w1 — w2)h2 = 0 we can use
estimates similar to those of the uniqueness proof of Theorem 3.1 to obtain an
inequality of form || w\t) — w2(t) \2 á K j0 \\ w1is) — w2(s) ||2 ds, which can only occur
if w1 = w2; hence v1 = F1(w1) = F-¡(w2) = v2 also, (v, P) is a unique solution of (4.1)
since (V x v, v) is a unique solution of (4.2).

Lemma 4.1 gives the convergence of vv to v except for the result ||¡;v — v\\Ct -> 0
as v-i-0. We prove this by contradiction. Suppose, for some e>0, there is a
sequence of v¡ with associated vt=vv> such that |p1— v\\CT>e. Let w¡ = F2(Vi);
wt e F^F^S)), hence Lemma 3.8, Lemma 0.3 and Lemma 1.2 show that v¡ is small
near oo uniformly in t and independent of v. Hence |fa — v\CT>e occurs only within
some ball 77(0, A); i.e., \\Vi-v\Cw,nxBw,m)>E- Lemma O.l(iv), Mcövte)
á^211 wi||c(t,¿2) = K2M and ||(ut) ,x\C{t,Hh = B show that {v¡} are equicontinuous in
x e 77(0, A). The same inequality can be used with Lemma 3.6(h) to establish that
{Vi} are equicontinuous in t (independent of v). Hence there exists, by the Arzela-
Ascoli theorem, a subsequence {v¡} and v' e C([0, F] x 77(0, A)) such that
\\vj —v ||c([o,t]xb(o,n» —> 0 asy^co; hence \\Vj — v \\cao,T:,Lemo,Nm~^0 as y—> oo
also. But Vj -> v in C(T, Le), which implies that v = v' and contradicts the assump-
tion that I v¡ - v||C([0>rj x B(0¡N)) > e. Thus ||vv - v\\Ct -> 0 as v -> 0.
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