
The Conversation Calculus:
a Model of Service-Oriented Computation

Hugo T. Vieira, Luı́s Caires, and João C. Seco

CITI / Departamento de Informática, Universidade Nova de Lisboa, Portugal

We present a process-calculus model for expressing and analyzing service-based sys-
tems. Our approach addresses central features of the service-oriented computational
model such as distribution, process delegation, communication and context sensitive-
ness, and loose coupling. Distinguishing aspects of our model are the notion of conver-
sation context, the adoption of a context sensitive, message-passing-based communica-
tion, and of a simple yet expressive mechanism for handling exceptional behavior. We
instantiate our model by extending a fragment of the π-calculus, illustrate its expressive-
ness by means of many examples, and study its basic behavioral theory; in particular,
we establish that bisimilarity is a congruence.

1 Introduction

Web services have emerged mainly as a toolkit of technological and methodological
solutions for building open-ended collaborative software systems on the Internet. Many
concepts that are frequently put forward as distinctive of service-oriented computing,
namely, object-oriented distributed programming, long duration transactions and com-
pensations, separation of workflow from service instances, late binding and discovery
of functionalities, are certainly not new, at least when considered in isolation. What
is certainly new about services is that they are contributing to physically realize (on
the Internet) a global, interaction-based, loosely-coupled, model of computation. We
would like to better understand in what sense service orientation is to be seen as a new
paradigm to build and reason about distributed systems.

The main contributions of this work are the development of a process calculus for
service-oriented computing based on a novel notion of conversation context, and the
study of its basic behavioral theory. In particular, we establish that bisimilarity is a con-
gruence, thus asserting the proper status of the proposed constructions as operators at
the level of the behavioral semantics; we believe that such a result has not yet been
provided for other related service calculi. Our starting point is an attempt to isolate
and clarify essential characteristics of the service-oriented model, in order to propose a
motivation from “first principles” of a reduced set of general abstractions for express-
ing and analyzing service-based systems. We then instantiate our model by modularly
extending the static fragment of the π-calculus with conversation contexts, message-
passing communication primitives, and an exception handling mechanism.

1.1 Some Key Aspects of Service-Oriented Computing

We identify as key aspects of the service-oriented computational model: distribution,
process delegation, communication and context sensitiveness, and loose coupling.

2 Hugo T. Vieira, Luı́s Caires, and João C. Seco

Distribution The purpose of a service relationship is to allow the incorporation of cer-
tain activities in a given system, without having to engage local resources and capa-
bilities to support or implement such activities. By delegating activities to an external
service provider, which will perform them using its own remote resources and capabili-
ties, a computing system may concentrate on those tasks for which it may autonomously
provide convenient solutions. Thus, the notion of service makes particular sense when
the service provider and the service client are separate entities, with access to sepa-
rate sets of resources and capabilities. This understanding of the service relationship
between provider and client assumes an underlying distributed computational model,
where client and server are located at least in distinct (operating system) processes,
more frequently in distinct sites of a network.

Process Delegation versus Operation Invocation The primitive remote communica-
tion mechanism in distributed computing is message passing. On top of this basic mech-
anism, the only one really implementable, more sophisticated abstractions may be rep-
resented, namely remote procedure call (passing first-order data) and remote method
invocation (also passing remote object references). Along these lines, we see service
invocation as a still higher level mechanism, allowing the service client to delegate to a
remote server not just a single operation or task, but the execution of a whole interactive
activity (technically, a process). This emphasis on the remote delegation of interactive
processes is, in our view, a distinguishing feature of service-oriented computing, as
opposed to the remote delegation of individual operations.

Invocation of a service by a client results in the creation of a new service instance. A
service instance is composed by a pair of endpoints, one endpoint located in the server
site, where the service is defined, the other endpoint in the client site, where the request
for instantiation took place. From the viewpoint of each partner, the respective endpoint
acts as a local process, with potential direct access to local resources and capabilities.
Thus, we do not consider an endpoint to be a name, a port address, or channel, but
an interactive process. Dual endpoints work together in a tightly coordinated way, by
exchanging data and control information through a private communication tunnel.

Contexts and Context Sensitiveness A context is a space where computation and com-
munication happens. A context may have a spatial meaning, e.g., as a site in a distributed
system, but also a behavioral meaning, e.g., as a context of conversation between two
or more parties. In the latter situation, remote parties may well talk under the same
context of conversation, so that contexts of conversation need not be localized, but ac-
cessible at different points. Moreover, the same message may appear in two different
contexts, with different meanings – web services technology has introduced artifacts
such as “correlation” to determine the appropriate context for otherwise indistinguish-
able messages. Thus, the notion of context of conversation seems to be a convenient
abstraction mechanism to structure the interactions between several entities collaborat-
ing in a service-oriented system.

A context is also a natural abstraction to publish together closely related services.
Typically, services published by the same entity are expected to share common re-
sources; we notice that such sharing is common at several scales of granularity. Extreme
examples are: a “small” object, where the service definitions are the methods and the
shared context is the object internal state, and an ISP such as, e.g., Amazon, that pub-

The Conversation Calculus: a Model of Service-Oriented Computation 3

lishes many services for many different purposes; such services certainly share internal
resources in the Amazon context, such as databases, payment gateways, and so on.

Loose Coupling A service-based computation usually consists in an collection of re-
mote partner service instances, in which functionality is to be delegated, some locally
implemented processes, and one or more control (or orchestration) processes. The flex-
ibility and openness of a service-based design, or at least an aimed feature, results from
a loose coupling between these various components. For instance, an orchestration de-
scribing a “business process”, should be specified in a quite independent way of the
particular subsidiary service instances used, paving the way for dynamic binding and
dynamic discovery of service providers. In the orchestration language WSBPEL [2],
loose coupling to external services is enforced to some extent by the separate decla-
ration of “partner links” and “partner roles” in processes. In the modeling language
SRML [11], the binding between service providers and clients is mediated by “wires”,
which describe plugging constraints between otherwise hard to match interfaces. These
are two instances of the same general principle.

To avoid tight coupling of services, the interface between a service instance (at
each of its several endpoints) and the context of instantiation should be mediated by
appropriate connecting processes, in order to hide and/or adapt the endpoint communi-
cation protocol (which is in some sense dependent of the particular implementation or
service provider chosen) to the abstract behavioral interface expected by the context of
instantiation. All computational entities cooperating in a service task should then be en-
capsulated (delimited inside a conversation context), and able to communicate between
themselves and the outer context only via some general message passing mechanism.

Communication Computations interacting in a context may offer essentially three
forms of communication capabilities. First, they may communicate within the context,
corresponding to regular internal computations in the context. Second, an endpoint must
be able to send messages to and receive messages from the other (dual) endpoint of the
context, reflecting interactions between the client and the server roles of a service in-
stance. Third, internally to a context it must be possible to send messages to and receive
messages from the enclosing context, thus allowing for a context to be seen as a regular
process by its peers at the upper level. Contexts as the one described may be nested at
many levels, corresponding to subsidiary service instances, processes, etc.

In the next Section, we present the conversation calculus, a process model crafted
to incorporate the several key aspects just discussed; we explain the various primitives
of the calculus, and define its syntax and operational semantics. In Section 3 we fur-
ther motivate our model and calculus by means of several examples. In Section 4 we
define the behavioral semantics and present related technical results. We compare our
approach with related work in Section 5 and conclude in Section 6.

2 The Conversation Calculus

In this section, we motivate and present in detail the primitives of our calculus. After
that, we present the syntax of our calculus, and formally define its operational seman-
tics, by means of a labeled transition system.

4 Hugo T. Vieira, Luı́s Caires, and João C. Seco

Context A key contribution of this paper is the notion of conversation context. A con-
versation context is a medium where related interactions can take place. A conversation
context can be distributed in many pieces, and processes inside any piece can seam-
lessly talk to any other piece of the same context. Each context has a unique name (cf.,
a URI), and is partitioned in two endpoints, which we will refer by “initiator” (J), or
“responder” (I). We use the endpoint access construct n J [P] to say that the process
P is placed at the initiator endpoint of context n, and the (dual) construct n I [P] to
say that the process P is placed at the responder endpoint of context n. Potentially, each
endpoint access will be placed at a different enclosing context. On the other hand, any
such endpoint access will necessarily be placed at a single enclosing context. The rela-
tionship between the enclosing context and such an endpoint may be seen as a call/callee
relationship, but where both entities may interact continuously.

Communication Communication between subsystems is realized by means of mes-
sage passing. Internal computation is related to communications between subsystems
inside a given context. First, we denote the output and the input of messages to/from
the current context by the constructs out � label(ṽ).P and in � label(x̃).P . In the
output case, the terms vi represent message arguments, values to be sent, as expected.
In the input case, the variables xi represent message parameters and are bound in P , as
expected. The direction symbol � (read “here”) says that the corresponding communi-
cation actions must interact in the current endpoint.

Second, we denote the output and the input of messages to/from the enclosing end-
point by the constructs out � label(ṽ).P and in � label(x̃).P . The direction symbol
� (read “up”) says that the corresponding communication actions must interact in the
(uniquely determined) enclosing endpoint.

Third, we denote the output and the input of messages to/from the dual endpoint by
the constructs out � label(ṽ).P and in � label(x̃).P The direction symbol � (read
“other”) says that the corresponding communication action must interact with the dual
endpoint, relative to the context where the out � or in � process is running.

Service Publication and Service Instantiation A context may publish one or more
service definitions. Service definitions are stateless entities, pretty much as function def-
initions in a functional programming language. A service definition may be expressed
by the construct def serviceName ⇒ ServiceBody where serviceName is the service
name, and ServiceBody is the process that is to be executed at the service endpoint
(responder) for each service instance, in other words the service body. In order to be
published, such a definition must be inserted into a context, e.g.,

serviceProvider I [def serviceName ⇒ ServiceBody | · · ·]
Such a published service may be instantiated by means of the construct

instance n ρ serviceName ⇐ ClientProtocol

where n ρ describes the context (n) and the endpoint role (ρ) where the service is pub-
lished. For instance, the service defined above may be instantiated by

instance serviceProvider I serviceName ⇐ ClientProtocol

The ClientProtocol describes the process that will run inside the initiator endpoint.
The outcome of a service instantiation is the creation of a new globally fresh context

The Conversation Calculus: a Model of Service-Oriented Computation 5

identity (a hidden name), and the creation of two dual endpoints of a context named
by this fresh identity. The responder endpoint will contain the ServiceBody process
and will be placed at the serviceProvider context. The initiator endpoint will contain
the ClientProtocol process and will be placed at the same context as the instance
expression that requested the service instantiation. The newly created endpoints appear
to their enclosing contexts as a local process, and may interact continuously by means
of � communication.

Context Awareness A process running inside a given context is able to dynamically
access its identity, by means of the construct here(x).P . The variable x will be replaced
inside the process P by the name n of the current context. The computation will proceed
as P{x�n}. This primitive bears some similarity with the self or this of object-
oriented languages, even if it has a different semantics.

Exception Handling We introduce primitives to model exceptional behavior, in par-
ticular fault signaling, fault detection, and resource disposal. These aspects are or-
thogonal to the introduced communication mechanisms, but need to be tackled in any
model of service-oriented computation. The primitive to signal exceptional behavior
is throw.Exception . This construct throws an exception with continuation the process
Exception , and has the effect of forcing the termination of all other processes running in
all enclosing contexts, up to the point where a try−catch block is found (if any). The
continuation Exception will be activated when (and if) the exception is caught by such
an exception handler. The exception handler construct try P catch Handler actively
allows a process P to run until some exception is thrown inside P . At that moment, all
of P is terminated, and the Handler handler process, which is guarded by try−catch,
is activated, concurrently with the continuation Exception of the throw.Exception that
originated the exception, in the context of a given try− catch− block. By exploiting
the interaction potential of the Handler and Exception processes, one may represent
many adequate recovery and resource disposal protocols.

2.1 Syntax and Semantics of the Calculus

We may now formally introduce the syntax and semantics of the conversation calcu-
lus. We assume given an infinite set of names Λ, an infinite set of variables V , and an
infinite set of labels L. We abbreviate a1, . . . , ak by ã. We use dir for the communi-
cation directions, α for directed message labels, and ρ for the endpoint roles (ρ =J,
the initiator role, or ρ =I, the responder role). We denote by ρ the dual role of ρ, for
instance I = J. Notice that message and service identifiers (from L) are plain labels,
not subject to restriction or binding. The syntax of the calculus is defined in Fig. 1.

The static core of our language is derived from the π-calculus [19]. We thus have
stop for the inactive process, P | Q for the parallel composition, (new a)P for name
restriction, and !P for replication. Then we have context-oriented polyadic communica-
tion primitives: out α(ṽ).P for output and in α(x̃).P for input. In the communication
primitives, α denotes a pair of name and direction, as explained before. We then have the
context endpoint access construct n ρ [P], the context awareness primitive here(x).P ,
the service invocation and service definition primitives instance n ρ s ⇐ P and
def s ⇒ P , respectively. The primitives for exception handling are the try P catch Q

6 Hugo T. Vieira, Luı́s Caires, and João C. Seco

a, b, c, . . . ∈ Λ (Names)
x, y, z, . . . ∈ V (Variables)
n, v, . . . ∈ Λ ∪ V
l, s . . . ∈ L (Labels)
dir ::= � | � | � (Directions)
α ::= dir l
ρ ::= I | J (Endpoint Roles)

P, Q ::=
stop | n ρ [P]

| P | Q | here(x).P
| (new a)P | instance n ρ s ⇐ P
| out α(ṽ).P | def s ⇒ P
| in α(x̃).P | try P catch Q
| !P | throw.P

Fig. 1. The Conversation Calculus

and the throw.P . The distinguished occurrences of a, x̃, and x are binding occurrences
in (new a)P , in α(x̃).P , and here(x).P , respectively. The sets of free (fn(P)) and
bound (bn(P)) names and variables in a process P are defined as usual, and we implic-
itly identify α-equivalent processes.

We define the semantics of the conversation calculus using a labeled transition sys-
tem. We introduce transition labels λ. We use act to range over actions, defined as

act ::= τ | α(ã) | here | throw | def s

Then, a transition label λ is an expression as given by λ ::= c ρ act | act | (νa)λ.
In (νa)λ the distinguished occurrence of a is bound with scope λ (cf., the π-calculus
bound output and bound input actions). A transition label containing c ρ is said to be
located at c ρ (or just located), otherwise is said to be unlocated. We write (ν̃a) to
abbreviate a (possibly empty) sequence (νa1) . . . (νak).

We adopt a few conventions and notations. We note by λdir a transition label λdir

containing the direction dir (�,�, �). Then we denote by λdir ′
the label obtained by

replacing dir by dir ′ in λdir . Given an unlocated label λ, we represent by c ρ · λ the
label obtained by locating λ at c ρ , so that e.g., c ρ · (ν̃a)act = (ν̃a)c ρ act. We assert
loc(λ) if λ is not located and does not contain here.

The set of transition labels is polarized and equipped with an injective involution λ

(such that λ = λ). The involution, used to define synchronizing (matching) transition
labels, is defined such that act 6= act′ for all act, act′, and

c ρ def s , c ρ def s c ρ � α , c ρ � α c ρ � α , c ρ � α

We define out(λ) as ã \ (̃b ∪ {c}), if λ = (ν̃b)c ρ α(ã) or λ = (ν̃b)α(ã). We use fn(λ)
and bn(λ) to denote (respectively) the free and bound names of a transition label.

In Figs. 2, 3 and 4 we present the labeled transition system for the calculus. The rules
presented in Fig. 2 closely follow the π-calculus labeled transition system (see [20]). In
(vii) the unlocated � label is excluded (to synchronize it must first get located in some
context). We omit the rule symmetric to (vi).

We briefly review the rules presented in Fig. 3: (i) service instantiation request;
(ii) service instantiation; (iii) after going through a context boundary, an � message
becomes �; (iv) an unlocated � message gets located at the context identity in which it
originates, analogously (v) for a � message and (vi) for service instantiation; (vii) a
here label matches the enclosing context; (viii) a here label reads the context identity;
(ix) a non-here located label transparently crosses the context boundary, likewise (x)

The Conversation Calculus: a Model of Service-Oriented Computation 7

out α(ṽ).P
α(ṽ)−→ P (i) in α(x̃).P

(ν̃n)α(ṽ)−→ P{x̃�ṽ} (ñ ⊆ ṽ) (ii)

P
λ−→ Q n 6∈ fn(λ)

(new n)P
λ−→ (new n)Q

(iii)
P

λ−→ Q n ∈ out(λ)

(new n)P
(νn)λ−→ Q

(iv)
P | !P

λ−→ Q

!P
λ−→ Q

(v)

P
λ−→ Q λ 6= throw

P | R
λ−→ Q | R

(vi)
P

(ν̃n)λ−→ P ′ Q
(ν̃n)λ−→ Q′ λ 6= � l(ã)

P | Q
τ−→ (new ñ)(P ′ | Q′)

(vii)

Fig. 2. Basic Operators

instance n ρ s ⇐ P
(νc)nρ def s−→ c J [P] (i) def s ⇒ P

(νc)def s−→ c I [P] (ii)

P
λ�
−→ Q

n ρ [P]
λ�
−→ n ρ [Q]

(iii)
P

λ�
−→ Q

n ρ [P]
nρ·λ�
−→ n ρ [Q]

(iv)
P

λ�
−→ Q

n ρ [P]
nρ·λ�
−→ n ρ [Q]

(v)

P
(νc)def s−→ Q

n ρ [P]
(νc)nρ def s−→ n ρ [Q]

(vi)
P

nρ here−→ Q

n ρ [P]
τ−→ n ρ [Q]

(vii) here(x).P
nρ here−→ P{x�n} (viii)

P
λ−→ Q loc(λ)

n ρ [P]
λ−→ n ρ [Q]

(ix)
P

τ−→ Q

n ρ [P]
τ−→ n ρ [Q]

(x)
P

(ν̃n)act−→ P ′ Q
(ν̃n)cρ act−→ Q′

P | Q
cρ here−→ (new ñ)(P ′ | Q′)

(xi)

Fig. 3. Service and Context Operators

throw.P
throw−→ P (i)

P
throw−→ R

P | Q
throw−→ R

(ii)
P

throw−→ R

n ρ [P]
throw−→ R

(iii)

P
λ−→ Q λ 6= throw

try P catch R
λ−→ try Q catch R

(iv)
P

throw−→ R

try P catch Q
τ−→ Q | R

(v)

Fig. 4. Exception Handling Operators

for a τ label; (xi) an unlocated label synchronizes with a part (the unlocated part) of a
located label, originating a here label, thus requiring the interaction to occur inside the
given context. We omit the rule symmetric to (xi).

As for the rules in Fig. 4: (i) signals an exception; (ii) and (iii) terminate enclosing
computations, (iv) a non-throw transition crosses the handler block, (v) an exception
is caught by the handler block. We omit the rule symmetric to (ii).

Notice that the presentation of the transition system is fully modular: the rules for
each operator are independent, so that one may easily consider several fragments of
the calculus (e.g., without exception handling primitives). The operational semantics of
closed systems, usually represented by a reduction relation, is here specified by τ−→.

8 Hugo T. Vieira, Luı́s Caires, and João C. Seco

3 Examples

In this section, we illustrate the expressiveness of our calculus through a sequence of
simple, yet illuminating examples. For the sake of commodity, we informally extend
the language with some auxiliary primitives, e.g., if−then−else, etc, and recursion
rec X.P (that may be represented using replication).

3.1 Reading a Remotely Generated Value

A provider antarctica provides a service temperature. Whenever invoked, such service
reads the current value of a sensor at the provider site, and sends it to the caller endpoint.

antarctica I [Sensor | def temperature ⇒ in � measure(x).out � value(x)]

By Sensor we denote some process running in the antarctica I [· · ·] context, and
that is able to send measure(t) messages inside that context, where t is the current
temperature. To use the service in “one shot”, a remote client may use the code

instance antarctica I temperature ⇐ in � value(x).out � temp(x)

The effect of this code would be to send a temp(t) message to the client context, where
t is the temperature as read at the antarctica site. A service delegation as the one just
shown resembles a plain remote method call in a distributed object system.

3.2 Service Composition and Orchestration

Our next example, depicted in in Fig. 5, illustrates a familiar service composition and
orchestration scenario (inspired by a tutorial example on BPEL published in the Ora-
cle website [15]). Any instance of the travelApproval service is expected to receive
a TravelRequest message and return a clientCallBack message after finding a suit-
able flight. The implementation of the service relies on subsidiary services provided by
americanAirlines and deltaAirlines in order to identify the most favorable price.

Notice how the service instance interacts with service side resources in order to find
the travelClass associated to each employee, by means of the employeeTravelStatusRe-
quest and employeeTravelStatusResponse messages to and from the server context.

Notice also that the service endpoint is used to pass around control messages with
the requests and responses to and from the two airline services involved – flightReques-
tAA, flightRequestDA and flightResponseAA, flightResponseDA, respectively. These mes-
sage exchanges form a loosely-coupled interaction between the orchestration code and
the subsidiary service endpoints. There is thus a clear separation between the partner
service instances, that adapt the remote endpoint functionalities (or protocols) to the
particular roles performed by the instances in this local process, and the orchestration
script, that is a process communicating with the several instances via messages. In our
view, this separation captures the essence of BPEL’s partner links and partner roles,
introduced with the motivation of decoupling the description of the business process
(the workflow) from the identification and binding to the actual partners involved in the
particular service instances.

We discuss an interesting variation of the previous example. We would now like to
instantiate the flightAvailability services independently (e.g., at site setup time), in the

The Conversation Calculus: a Model of Service-Oriented Computation 9

def travelApproval ⇒ (
instance americanAirlines I flightAvailability ⇐ % Partner americanAirlines

in � flightRequestAA(flightData, travelClass).
out � flightDetails(flightData, travelClass).
in � flightTicketCallBack(response, price).
out � flightResponseAA(response, price)

|
instance deltaAirlines I flightAvailability ⇐ % Partner deltaAirlines

in � flightRequestDA(flightData, travelClass).
out � flightDetails(flightData, travelClass).
in � flightTicketCallBack(response, price).
out � flightResponseDA(response, price)

|
in � travelRequest(employee,flightData). % Orchestration
out � employeeTravelStatusRequest(employee).
in � employeeTravelStatusResponse(travelClass).(

out � flightRequestAA(flightData, travelClass) |
out � flightRequestDA(flightData, travelClass))

|
in � flightResponseAA(flightAA, priceAA).
in � flightResponseDA(flightDA, priceDA).
if (priceAA < priceDA) then

out � clientCallBack(flightAA)
else

out � clientCallBack(flightDA)
)

Fig. 5. The Travel Approval Service

service provider context, rather than creating new instances for each instantiation of the
travelApproval service. In other words, the service deltaAirlines I flightAvailability
and the service americanAirlines I flightAvailability will be used by the orchestra-
tion script in the same way as the employeeTravelStatus already was, by means of
loosely coupled message exchanges. We depict the solution in Fig. 6. Since many con-
current instantiations of the travelApproval service may be outstanding at any given
moment, the need arises to explicitly keep track of the messages relative to each in-
stance (establish a correlation mechanism, in web services terminology). Correlation is
achieved by passing the name of the current context (accessed by the here(context)
primitive) in the request messages to the services instantiated in the shared context (e.g.,
as in the message flightRequestAA(context , · · ·)), allowing the replies associated with
the requests to be placed directly in the corresponding contexts.

3.3 Orc

The Orc language [16] is frequently cited as an interesting general model of service
orchestration. This example is also relevant to our discussion because Orc also seems
to present a mechanism of process delegation, although in a more restricted sense than
we are introducing here. In fact, calling a site in Orc causes a persistent process to be

10 Hugo T. Vieira, Luı́s Caires, and João C. Seco

instance americanAirlines I flightAvailability ⇐
! in � flightRequestAA(r,flightData, travelClass).
out � flightDetails(flightData, travelClass).
in � flightTicketCallBack(response, price).
r I [out � flightResponseAA(response, price)]

|
instance deltaAirlines I flightAvailability ⇐

! in � flightRequestDA(r,flightData, travelClass).
out � flightDetails(flightData, travelClass).
in � flightTicketCallBack(response, price).
r I [out � flightResponseDA(response, price)]

|
! def travelApproval ⇒ (

in � travelRequest(employee,flightData).
here(context).
out � employeeTravelStatusRequest(context, employee).
in � employeeTravelStatusResponse(travelClass).(

out � flightRequestAA(context ,flightData, travelClass) |
out � flightRequestDA(context ,flightData, travelClass))

|
in � flightResponseAA(flightAA, priceAA).
in � flightResponseDA(flightDA, priceDA).
· · ·% respond to client as before)

Fig. 6. Correlating concurrent conversations.

spawned, consisting the observable behavior of such a process in streaming a sequence
of values to the caller context.

We present an encoding of Orc in Fig. 7. To simplify presentation, we introduce
anonymous contexts defined as [P] , (new n)(n I [P]) where n is not used in P . We
denote by JOKout the encoding of an Orc process O into a conversation calculus pro-
cess. The out parameter identifies the message label used to output the stream of values
generated by the Orc process. So, for instance, in the encoding of Orc’s sequential com-
position f � x � g each value produced by f (and hence emitted by JfKout1 in out1)
will replace x in a new copy of g. The anonymous context guarantees non interference,
being the values produced by g forwarded to the upper environment as values produced
by f � x � g.

The operational correspondence property between the encoding presented in Fig. 7
and the formal semantics presented in [16] is shown in the technical report [8], where
an encoding of a distributed object calculus [7] is also developed.

3.4 Exceptions

We illustrate a few usage idioms for our exception handling primitives in Fig. 8. In
Fig. 8 (a) and (b) we show how exceptions can be used to program conversation inter-
ruption. As shown in (a) any remote endpoint instance of the interruptible service may
be interrupted by the service protocol ServiceProto by dropping a stop() message inside

The Conversation Calculus: a Model of Service-Oriented Computation 11

Jn.S(x)Kout , instance n I S ⇐
(out � args(x).!in � result(x).out � out(x))

Jn.S(x) = eK , n I [! def S ⇒ (in � args(x).JeKout |
!in � out(x).out � result(x))]

Jf � x � gKout , [JfKout1 |
!in � out1(x).(JgKout2 | in � out2(x).out � out(x))]

Jf where x :∈ gKout , [(new x)(
JfKout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [out � val(y)]
catch 0)]

JxKout , x J [in � val(y).out � out(y)]

Jf | gKout , JfKout | JgKout
J0Kout , 0

Fig. 7. An embedding of Orc.

(a)

server I [
def interruptible ⇒

in � stop().out � stop().throw
| ServiceProto]

(b)

instance
server I interruptible ⇐

in � stop().throw
| ClientProto

(c)

rec Restart .
try

instance
server I interruptible ⇐ . . .

catch Restart

(d)

server I [
def timeBound ⇒

in � timeAllowed(delay).
wait(delay).throw
| ServiceProto]

Fig. 8. Exception handling

the endpoint context. Such a message causes the endpoint to send a stop() message to
the other (client side) endpoint, and then throwing an exception, which will cause abor-
tion of the service endpoint. On the other hand, the service invocation protocol, shown
in (b), will throw an exception at the client endpoint upon reception of stop(). Notice
that this behavior will possibly happen concurrently with ongoing interactions between
ServiceProto and ClientProto. In Fig. 8 (c) we show a pattern for a client that allows
for the recovery of a failure by repeatedly re-launching the service. In Fig. 8 (d) we
show a time-aware service definition. Any invocation of the TimeBound service will be
allocated no more than delay time units before being interrupted, where delay is a dy-
namic parameter value read from the current server side context (we assume a possible
extension of our sample language with a wait(t) primitive).

Somehow related to exceptional behavior is the notion of compensation (see [12]),
of particular relevance to service-oriented computing. In the technical report [8] we ex-
hibit an encoding into the conversation calculus of a core fragment of the Compensating
CSP calculus [6].

12 Hugo T. Vieira, Luı́s Caires, and João C. Seco

4 Behavioral Semantics

We define a compositional behavioral semantics of the conversation calculus by means
of strong bisimulation. The main technical result of this section is a proof that strong
bisimilarity is a congruence for all the primitives of our calculus. This further ensures
that our syntactically defined constructions induce properly defined behavioral opera-
tors at the semantic level. Detailed proofs may be found in the technical report [8].

Definition 4.1. A (strong) bisimulation is a symmetric binary relation R on processes
such that, for all processes P and Q, if PRQ, we have:

If P
λ−→ P ′ and bn(λ) ∩ fn(Q) = ∅ then there is Q′ such that Q

λ−→ Q′ and P ′RQ′.

We denote by ∼ (strong bisimilarity) the largest strong bisimulation.

Theorem 4.2. Strong bisimilarity is a congruence for all operators.

N.B. Here we consider for input prefix the universal instantiation congruence principle:
if P{x�n} ∼ Q{x�n} for all n then in α(x).P ∼ in α(x).Q (cf., [20] Theorem
2.2.8(2)). We may also prove several other behavioral equations of interest.

Proposition 4.3. The following equations hold up to strong bisimilarity.

1. n I [P] | n I [Q] ∼ n I [P | Q].
2. m I [n I [o I [P]]] ∼ n I [o I [P]].
3. n I [out � m(ṽ).R] ∼ out � m(ṽ).n I [R].
4. m I [n I [out � l(ṽ).P]] ∼ n I [out � l(ṽ).m I [n I [P]]].
5. m I [n I [out � l(ṽ).P]] ∼ n I [out � l(ṽ).m I [n I [P]]].
6. m I [n I [def s ⇒ P]] ∼ n I [def s ⇒ P]
7. m I [n I [instance nρ s ⇐ P]] ∼ n I [instance nρ s ⇐ P]

For instance, Proposition 4.3(2) captures the local character of message-based com-
munication in our model. The behavioral identities stated in Proposition 4.3 allow us
to prove an perhaps surprising normal form property, that contributes to illuminate the
spatial structure of conversation calculus systems. A guarded process is a process of the
form out α(ṽ).P or in α(x̃).P , here(x).P , instance n ρ s ⇐ P , or def s ⇒ P .
We use G to range over parallel compositions of guarded processes. We then have the
following

Proposition 4.4. Let P be a process in the finite exception-free fragment. Then there
exist sets of guarded processes G̃, G̃′, G̃′′, sets of names ã, b̃, c̃, d̃, and roles ρ̃, ρ̃′, ρ̃′′

such that

P ∼ (new ã)(G1 | . . . | Gt | b1 ρ1 [G′
1] | . . . | bj ρj

[
G′

j

]
| c1 ρ′

1 [d1 ρ′′
1 [G′′

1]] | . . . | ck ρ′
k [dk ρ′′

k [G′′
k]])

and where the sequences biρi and ciρ
′
idiρ

′′
i are all pairwise distinct.

The Conversation Calculus: a Model of Service-Oriented Computation 13

Intuitively, Proposition 4.4 states that any process (of the finite exception-free fragment
of the calculus) is behaviorally equivalent to a process where the maximum nesting of
contexts is two. The restriction to finite (replication-free) and exception-free processes
is sensible, if one just wants to focus on the communication topology.

We may interpret the normal form existence result as follows. A system is com-
posed by several conversation contexts. The set of upward (�) communication paths of
a system may be seen as a graph, where the nodes are processes and contexts, and arcs
connect processes to their call-ancestor contexts. As each such arc is uniquely defined
by its two terminal nodes, so is the communication structure of an arbitrary process
defined (up to bisimilarity) by a system where the (syntactic) nesting of contexts is of
at most depth two (see [8]). Intuitively, the structure suggested here represents the join-
subconversation relation of concurrently ongoing conversations. Then, the normal form
of Proposition 4.4 is analogous to a flattened representation of such a graph.

5 Related work

Various calculi have been recently proposed with the aim to capture aspects of service-
oriented computation. At the root of each one, one finds different motivations and
methodological approaches. Some intend to model artifacts of the web services technol-
ogy, in order to develop applied verification techniques (e.g., COWS [18], SOCK [13]),
others were introduced in order to demonstrate analysis techniques (e.g., [7, 9]), yet
others have the goal of isolating primitives for formalizing and programming service-
oriented applications (SCC [3], SSCC [17], CaSPiS [4]) just to refer a few.

The inspiration for the work presented here was motivated by previous develop-
ments around SCC [3], a process calculus designed to model service-oriented com-
puting introduced within the Sensoria Project [1]. Our proposal inherits from [14] and
SCC the presence of client-server session establishment primitives. However, we end
up following a fresh approach, based on the notion of conversation context, and on a
simple and flexible message-passing communication. Our development of the concept
of conversation context was initially motivated by the concept of session (see [14]). We
see conversation contexts as being more general than sessions, in the same sense that
coroutining may be seen as a generalization of the stricter procedure (stack-oriented)
call discipline. Moreover, the fact that in our model endpoint accesses may appear as
arbitrary interacting processes to their enclosing contexts makes them quite different
from the more familiar data streaming session endpoints.

Our up (�) communication primitive was introduced with the aim of expressing
the interaction between nested conversation contexts, in particular, between service in-
stances endpoints and their callers, with loose-coupling in mind. Similar primitives have
been already introduced in ambient calculi, namely Seal [10], Boxed Ambients [5] and
Box π [21]. Our computation model is very different from those models (which are
targeted at modeling migration and mobility), as witnessed by Proposition 4.4. Hence,
even if formally related to some primitives introduced in [5, 10], at least when their reac-
tion rules are considered in isolation, our communication primitives have very different
consequences at the semantic level (for example, two � messages can synchronize, just
as long as they originate in subcontexts of the same context).

14 Hugo T. Vieira, Luı́s Caires, and João C. Seco

Primitives to deal with exceptional behavior (for example, closing sessions) are
present in several service calculi. Perhaps surprisingly, our exception mechanism, al-
though clearly based on the classical construct for functional languages, does not seem
to have been much explored in process calculi; we believe that it allows us to express
many interesting exceptional behavior situations.

We have demonstrated that our approach is expressive enough to capture Orc’s com-
position operators; we expect that similar results may be established for calculi with
related constructs, such as streams and pipelines [17, 4], at least in the absence of types.

6 Concluding Remarks

We have presented a model for service-oriented computation, building on the identifica-
tion of some general aspects of service-based systems. We have instantiated our model
by proposing the conversation calculus, which incorporates abstractions of the several
aspects involved by means of carefully chosen programming language primitives. We
have focused our presentation on a detailed justification of the concepts involved, on
examples that illustrate the expressiveness of our model, and on the semantic theory for
our calculus, based on a standard strong bisimilarity. Our examples demonstrate how
our calculus may express many service-oriented idioms in a rather natural way. The be-
havioral semantics allowed us to prove several interesting behavioral identities. Some of
these identities suggested a normal form result that clarifies the spatial communication
topology of conversation calculus systems.

Conversation contexts are natural subjects for typing disciplines, in terms of the
message interchange patterns that may happen at their borders. We expect types speci-
fying various properties of interfaces, service contracts, endpoint session protocols, se-
curity policies, resource usage, and service level agreements, to be in general assigned
to context boundaries. One of the most interesting challenges to be addressed by type
systems for the conversation calculus is then to discipline the delegation of conversation
contexts according to quite strict usage disciplines, allowing for the static verification of
systems where several (not just two) partners join and leave dynamically a conversation
in a coordinated way.

Acknowledgments We thank our colleagues of the Sensoria Project for many discus-
sions about programming language concepts and core calculi for service based comput-
ing. We also acknowledge the anonymous referees for their detailed and useful com-
ments and suggestions.

References

1. IP Sensoria Project, website: http://www.sensoria-ist.eu/.
2. A. Alves and et al. Web Services Business Process Execution Language Version 2.0. Tech-

nical report, OASIS, 2006.
3. M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Monta-

nari, A. Ravara, D. Sangiorgi, V. Vasconcelos, and G. Zavattaro. SCC: a Service Centered
Calculus. In Proceedings of WS-FM 2006, 3rd International Workshop on Web Services and
Formal Methods, Lecture Notes in Computer Science. Springer-Verlag, 2006.

The Conversation Calculus: a Model of Service-Oriented Computation 15

4. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. A Service Oriented Process Calculus
with Sessioning and Pipelining. Technical report, 2007. Draft.

5. M. Bugliesi, G. Castagna, and S. Crafa. Access Control for Mobile Agents: The Calculus of
Boxed Ambients. ACM Transactions on Programming Languages and Systems, 26(1):57–
124, 2004.

6. M. J. Butler, C. A. R. Hoare, and C. Ferreira. A Trace Semantics for Long-Running Trans-
actions. In A. E. Abdallah, C. B. Jones, and J. W. Sanders, editors, 25 Years Communicating
Sequential Processes, volume 3525 of Lecture Notes in Computer Science, pages 133–150.
Springer, 2004.

7. L. Caires. Spatial-Behavioral Types for Distributed Services and Resources. In U. Montanari
and D. Sanella, editors, Proceedings of the Second International Symposium on Trustworthy
Global Computing, Lecture Notes in Computer Science. Springer-Verlag, 2006.

8. L. Caires, H. T. Vieira, and J. C. Seco. A Model of Service Oriented Computation. TR-
DI/FCT/UNL 6/07, Universidade Nova de Lisboa, 2007.

9. M. Carbone, K. Honda, and N. Yoshida. Structured Global Programming for Communication
Behavior. In R. De Nicola, editor, Proceedings of 16th European Symposium on Program-
ming (ESOP’07), Lecture Notes in Computer Science. Springer, 2007.

10. G. Castagna, J. Vitek, and F. Z. Nardelli. The Seal Calculus. Information and Computation,
201(1):1–54, 2005.

11. J. L. Fiadeiro, A. Lopes, and L. Bocchi. A Formal Approach to Service Component Archi-
tecture. In M. Bravetti, M. N., and G. Zavattaro, editors, Web Services and Formal Methods,
Third International Workshop, 2006, volume 4184 of Lecture Notes in Computer Science,
pages 193–213. Springer-Verlag, 2006.

12. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann, 1993.

13. C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. SOCK: A Calculus for Service
Oriented Computing. In M. Bravetti, M. N., and G. Zavattaro, editors, Proceedings of the
4th International Conference on Service-Oriented Computing (ICSOC 2006), volume 4294
of Lecture Notes in Computer Science, pages 327–338. Springer-Verlag, 2006.

14. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Discipline for
Structured Communication-Based Programming. In C. Hankin, editor, ESOP’98, 7th Euro-
pean Symposium on Programming,ETAPS’98, volume 1381 of Lecture Notes in Computer
Science, pages 122–138. Springer, 1998.

15. M. B. Juric. A Hands-on Introduction to BPEL, 2006. Oracle (white paper).
16. D. Kitchin, W. R. Cook, and J. Misra. A Language for Task Orchestration and Its Semantic

Properties. In C. Baier and H. Hermanns, editors, CONCUR 2006 - Concurrency Theory,
17th International Conference, volume 4137 of Lecture Notes in Computer Science, pages
477–491. Springer-Verlag, 2006.

17. I. Lanese, V. T. Vasconcelos, F. Martins, and A. Ravara. Disciplining Orchestration and
Conversation in Service-Oriented Computing. In 5th International Conference on Software
Engineering and Formal Methods, pages 305–314. IEEE Computer Society Press, 2007.

18. A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web Services.
In R. De Nicola, editor, Proc. of 16th European Symposium on Programming (ESOP’07),
Lecture Notes in Computer Science. Springer, 2007.

19. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Part I + II. Information
and Computation, 100(1):1–77, 1992.

20. D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cambridge
University Press, 2001.

21. P. Sewell and J. Vitek. Secure Composition of Untrusted Code: Box π, Wrappers, and
Causality. Journal of Computer Security, 11(2):135–188, 2003.

