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The converse of the Hélder inequality and its generalizations
by

JANUSZ MATKOWSKI (Bielsko-Biala)

Abstract. Let (2, X, 1) be a measure ipace with two sets 4, B € X such that 0 <
u(4) < 1 < pu(B) < oo and suppose that ¢ and ¢ are arbitrary bijections of [0, c0) such
that ¢(0) = 14{0} = 0. The main result says that if

fmyduﬁqb"l(fqbomdu)w"l(fwomd‘u>
2 n

2

for all p-integrable noennegative step functions , y then ¢ and ¥ must be conjugate power
functions.

If the measure space ({2, I7, 1) has one of the following properties:

(a) u(A) <1 for every A € T of finite measure; .

(b) (A) > 1 for every 4 € I of positive measure,
then there exist some broad classes of nonpower bijections ¢ and 1 such that the above
inequality holds true.

A general inequality which contains integral Holder and Minkowski inequalities as
very special cases is also given.

Introduction. Let (2, X, 4) be a measure space. Denote by § =
S(£2, X, p) the linear space of all u-integrable step functions = : 2 — R
and by 8. the set of all z € § such that z : 2 — Ry where R = [0, 00).
One can easily verify that for every bijective function ¢ : Ry — R, such
that $(0) = 0 the functional py4 : 84 ~+ Ry given by the formula

(1) polz) = qS"l( f qgomd,u) (z € Sy)
p]

is well defined. In a recent paper [8] the author proved the following converse
of Minkowski’s inequality.
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179 J. Matkowski

Suppose that there are two sets A, B € X such that
(2) 0 < u(d) <1< pu(B)<co.
If ¢ is continuous ot 0 and
po(z+y) Sps(x) +Ppy) (2,9 €84)

then there is a p > 1 such that ¢(t) = S(L)tP for allt = 0. Moreover, if the
last inegquality is reversed, then ¢(t) = ¢(1)t¥, t = 0, for some p,0 <p < 1.

It was also shown that assumption (2) is essential.

It seems to be quite natural to ask whether a similar result can be proved
for Holder’s inequality. More precisely, suppose that ¢ and ¢ are bijections
of Ry such that #(0) = +(0) = 0 and condition (2} is satisfied. Does then
the inequality

(3) J zydu < py(2)py(v)
n?

(z,y € 8y)

imply that ¢ and ¢ are necessarily conjugate power functions?

The main purpose of this paper is to show that the answer is affirma-
tive. This seems to be a little unexpected because the bijections ¢ and ¢ are
assumed to be unrelated at all. [t turns out that assumption (2) can be re-
placed by the following: the functions ¢ and @ are multiplicotively conjugate,
i.e. there exists a constant ¢ > 0 such that

¢t TI(t) =t

Actually, our Theorem 1 extends the relevant result from the book by
G. H. Hardy, J. E. Littlewocd and G. Pdélya [3], p. 82 (¢f. also R. Cooper
1] where rather strong regularity conditions are assumed).

We also prove that the existence of two sets A, B € X satisfying (2) is
essential. Namely, we indicate some broad classes of nonpower functions ¢
and 1 satisfying (3) if this assumption fails to hold.

A suitable theory for the inequality (3) reversed is also given.

At the end of this paper we present a general integral inequality contain-
ing Holder's and Minkowski's inequalities ag very special cases and supplying
us with “cne-line” proofs of them.

(t>0).

1. Auxiliary results. A crucial part in the proof of the main result is
played by

LeMMA 1. Let a and b be real numbers such that

0 <min{a, b} <l<a+b.
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If a function f : (0, 00) — R, satisfies the inequality
af(s) +bf(t) < flas+bt) (s, >0),
then f(t) = f(1)t (¢ > 0).

Remark 1. Lemma 1, recently proved in [10], gives an affirmative an-
swer to a problem posed in [7] where a weaker result has been proved.

Concerning the reversed inequality we quote the following
LeMMA 2 ([7]). Let a,b be real numbers such that
0 <minfae,b} <1l <a+b.

Ifg function f : Ry — Ry is bounded in a neighbourhood of 0, £(0) = 0
an

flas+bt) <af(s)+bf(t)
then f(t) = f(1)t (t = 0).

We also need the following result on a system of two functional equations.

LEMMA 3 ([6])- Let a, b, , 3 be positive real and suppose thaiy : (0, 00) —
(0,00) is continuous at least at one point and satisfies the system of func-
tional equations

{s,£ 2 0),

vat) = oy(t), y(bt) =pB(t) (t>0).
Ifa#1 and %g—g is irrational then there exists an r € R such that v(t) =
v(1)&" for all t > 0.

The next lemma is a consequence of a result of Kuhn [5].

LEMMA 4. Let D be o convex subset of a linear space, o € (0, 1) and
F:D-R If

Flaz +(1—-a)y) <aF(z)+ (1 -a)F(y) (z,ye D),
then F is Jensen conver, i.e.
F F
F(m;y)ﬁ (:L')—;- (y) ($,’y€D).

Remark 2. The proof of Kuhn’s result, based on an abstract Hahn-
Banach theorem, is rather complicated. Therefore it is worth mentioning
that Z. Daréczy and Z. Péles [2] found a very simple proof of Lemma 4.
Namely, they observed that it immediately follows from the identity

m;y:a(am;‘y +(1-—a)y)+(1-—a)(am+(1__a)m+y).

2

For a measure space (12, X,u) denote by L*(£2, £, i) the linear space
of all y-integrable functions z : 2 — R and by LY (12, Z, ) the set of all
positive z € L*(12, X, u). :
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3. The converse of Hélder’s inequality for multiplicatively con-
jugate functions. We begin this section with the following

THEOREM 1. Let (12,5, 11) be a measure space with two disjoint sets
A, B € 5 of finite and positive measure. If ¢, : Ry — Ry are bijections
such that for some ¢ > 0,

(4) MY TN =t ({t>0),

and

(5) [ eydp <py()py(y)  (=v€S:),
s

then ¢ and v are conjugate power functions, i.e. there are p,q > 1 such that
plag =1, (t) = H(1)tP and B(t) = (1) (£ > 0).

Proof Relation (4) implies that ¢(0) = %(0) = 0 and, consequently, the
functionals pg and py are well defined. We denote by x4 the characteristic
function of a set 4. Put a = u(A4), b= p(B). Setting in (5)

@ =T1Xa +2axs, Y =wiXa+ixs (v >20),
we get
az1yy + bzays < ¢ ag(zy) + be(w2)) Y (av{yn) + by (y))  (ws, 35 2 0).
Replacing 2; by ¢~ (z;) and 3 by v~ () (i = 1,2), we obtain
(6)  ad~(wa)b™(31) + bo~ (w22 () .
< ¢ Hazy + bza)y ™ ayr + bys)
for all nonnegative z1, 2, Y1, Ya- Setting o = y2 = 0 we have
ad™ Mz ) (1) < 07 az ) ay) (21,01 2 0).
Since, in view of (4), ¥~1(t) = ctlg~1(¢)] ! for t > 0, we get
07 ay) _ 67 az)
—1 =
¢~y) T ¢7Hm)

(xlsyl > 0) '

This implies that the function t — ¢~1(t)/¢1{a~1t) is constant in (0, 00),

and, consequently,

oMo w) _ 47 (1)
(7) ¢_1(ﬁm1y1) - qb,_]_(yl) (mlzyl > 0) :
In the same way we show that

¢ (b w) _ ¢ (w2)
) ) " e 7O

From (6) and (4) we obtain

“z1) (z2) " azy + bzy)
¢~ w) T 2¢ Ty) = ) T
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Replacing z1, @2, y1, 92 by a2y, b xy, a1y, b1y, resp. we get

¢~ Ha1ay) qb‘l(b‘lmg} Ny +a2)
" 6 1(aTgy) + ¥ 5 1(5 1) = < (3 +'£/2)m
Now from (7) and (8) we obtain the inequality
¢ z1) ¢’_1(932) ¢ (21 + @)
9 1+ 22
O NGy T Yy S Wt Y

valid for all 21,22,y1,y2 > 0. Making again use of (4) we can write this
inequality in the following symmetric form:

6™ @)Y ) + 67z ye) < 67 (w1 + )My + 3a),

and, consequently, we have

67 @) 1) < oM@ F ) g +ya) (24, 2e,y1, 4 > 0).

Now we can prove that ¢ and 1 are 11omeomorph1c in (0,00). In view of (4)
it is sufficient to show that either ¢~ or ¢! is increasing in (0, 00). Suppose
for mstance that ¢! is not increasing in (0, 00). Then we have 1~ Ly) >
%Yy + y2) for some positive yy,y, and the last inequality implies that
¢ (1) < ¢7Hay + 22) (21,20 > 0), Le. o~ is increasing in (0, 00).

From (9), by induction, we obtain

—1
J1¢ ($)+ R D) ¢ m) A G e P 79
1) 7 () ~ o~y + .+ yx)
for all positive &1,...,%k, y1,...,yr and k € N. Setting z; =
n=...=yp =1, we get
k) _ 97 (hs)
$HE) T 9(s)
It follows that for every k € N the function ¢t — ¢~ (kt)/¢~1(t) (¢t > 0) is
constant. Hence for every k € N there is ct > 0 such that
¢ (kt) = ™ () (2> 0).
Taking k = 2 and k = 3 we see that v = ¢~ | (g c0) satisfies

7(2t) = ax(d), ~(3¢) = By(t) (t>0),
where a = o, § = «3. Since 7 is continuous and M is irrational, Lemma 3

implies that there is a P ¢ R such that ¢~(¢) = ¢ L#/P (¢ > 0). By
the monotom(:ity of =1 we have p > 0. In the same way one can show
that %~1() = ¢~ H{1)t/7 (£ > 0) for some ¢ > 0. In view of (4) we have
pltg =1 Thls completes the proof.

Sln+...+y )

=T =S,

(s,t>0; k € N).
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Modifying the above reasoning in an obvious way we can prove

THROREM 2. Let (2, X, ) be o measure space with two disjoint sets of
finite and positive measure. If ¢,¢ : Ry — Ry are bijections of Ry such
that (4) holds and

f eydu (2,9 €8.),
n

then there exist p,q € R such that ¢(t) =
pl+g =1, pg<0.

pPy(z)py(y) <

d{1)tP and P{t) = (137 (¢ > 0),

Remark 3. Suppose that ¢, : Ry — R.. satisfy the following condi-
tions:

(i) the function & : Ry — Ry given by &(t) = t~1¢(t) for ¢ > 0
and #(0) = 0 is Increasing and continuous in Ry and twice continuously
differentiable in (0, co);

(ii) the function ¥ : Ry — Ry given by ¥(t) = t~1¢(t) for ¢t > 0 and
¥(0) = 0 is the inverse of &,

(iii) for every n € N and for all positive g1, ...
= 1 we have

+Qn Such that g1 + ...+ gy

ATy + ...+ WmEnln
< ¢ Ha@e(wms) + ..+ gd(zn) )

for all nonnegative zy,...,2n, ¥1,---, Un-

Under these assumptions G. H. Hardy, J. E. Littlewood and G. Pélya
(cf. [3], p. 82, Theorem 101(a)) proved that ¢ and ¢ are conjugate power
functions. Because condition (ii) implies that ¢ =1 (£)5h =1 (¢) = ¢ (¢ > 0), this
is a special case of Theorem 1. Moreover, the condition of “multiplicative
conjugacy” seems to be more convenient than (if).

Hap(z) + .+ ()

3. The main theorem. The main resuit of this paper reads as follows.

THEOREM 3. Suppose that (£2,X, 1) is a measure space with two sets
A, B € X such thot

0 <pu(A) <l<pu(B) <oo.
If ¢,9 1Ry — Ry are bijections such that ¢(0) = ¥(0) = 0 and

[ 2y du < py(a)py(v)
0

then o(t) = ¢(1)tP and ¢(t) =
pr+et=1

(m,y € S+),

w(1)t? (¢ > 0) for some p,q > 1 such that

icm
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Proof. Put a = p(A) and b= u(B\ A). Setting

T =2Z1XA T TaXB\4> ¥ = Y1Xa + Y2XBr4 € Sy
we obtain, as in the proof of Theorem 1,

ad™ @1 )y (w1) + b e (2) < 67 (azy + bza)y ™ (ay1 + bya)

for all nonnegative x1, z2,y1,92. Define f : Ry — Ry by f(t)=¢(t)%~1 ()
(t 20). For z; = y1 = s and 29 = y, = ¢ we hence get af(s) +bf(t) <
flas+bt) (s,t > 0). Since 0 < a < 1 < a+b it follows by Lemma 1 that
£(t) = F(1)t (¢ > 0). Thus ¢ and ¢ are multiplicatively conjugate and our
result is a consequence of Theorem 1.

Remark4. It can be easily verified that if u({2) < oo then the function-
als py and py are well defined for all bijections ¢ and 9 of R... Therefore
in this case the assumption ¢(0) = 4(0) = 0 can be dropped.

Analogously, applying Lemma 2 and Theorem 2, we can prove

THEOREM 4. Suppose that (2, X, u) is o measure space with two sets
A, B € X such that 0 < u(A) < 1 < p(B) < 0. If 9 : Ry — R are
bijections such that qb( ) = 4(0) = 0 and the function f: R, — Ry given
by f(t) = ¢~ e}~ (t) (t > 0) is bounded in a neighbourhood of 0 and

J 2y du = ps(z)py(v)
{2

then ¢(t) = qﬁ(l)#’ and (t}) = H(1)? (¢t > 0) for some p,q € R such that
pg<Vandp™t+qg7t=1.

(m,y € 84},

Remark 5. Note that in Theorems 4 and 2 one of the power functions
is increasing in R4 and the other is decreasing in (0, co).

4. Discussion of the assumptions and generalizations of Hélder’s
inequality. We begin this section with a generalization of Hélder’s inequal-
ity which shows that the assumption of the existence of a set B € £ with
#(B) > 1 in Theorem 3 is essential.

THROREM 5. Suppose that (2, X, 1) is a normalized measure space (.e.
w({2) = 1) with at least one set A € X such that 0 < u(A) < 1 and let
&, : Ry — Ry be arbitrary bijections. Under these conditions,

f rydp < py(2)py (¥)
2

if and only if the function F : RZ — R given by F(s,2) = ¢~ (s}~ 1(t) is
concave.

(zay € S+)
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Proof. Assume that the inequality holds for all z,y € S84 and put

B =02\ A, a= u(A), b= u(B). Substituting
T =Zxa+2oxp, Y=vxat+xs (Ti,y=0),

and then replacing =1, 22,1, ¥2 by ¢ (21), ¢ (22), %~ (y1), ¥ (y2) resp.
we obtain (6). Since a+b = 1, inequality (6) says that the function F(s,t) =
o~ (s)y~1(2) (s,t = 0) satisfies the concavity condition for one value a &
(0,1):

aF(z1,91) + (1 — a)F(z2, 42) £ Flazy + (1 - a)zz, a1 + (1 — a)ya)

(wi: Wi 2 0) '

In view of Lemma 4, F is Jensen concave. Since it iz nonnegative, by the

Bernstein-Doetsch Theorem (cf. M. Kuczma [4], p. 143), F is concave in
}Ri. The converse implication is obvious. This completes the proof.

Remark6. If the reverse inequality holds, then in the same way one can
show that F satisfies the convexity condition for at least one value a = p{A}.
To get an analogous result in this case we have to assume additionally that F'
is bounded above on an open subset of R (cf. [4], p. 145, Bernstein-Doetsch
Theorem) or that it is measurable (cf. [4], p. 218, Sierpidski’s Theorem).

Remark 7. Suppose that u{2) < 1. Then it is easy to verify that
concavity of F' is a sufficient condition for the inequality of Theorem 5 to
hold. With obvious modifications, the same concerns the reverse inequality.

The theorem below also generalizes Holder’s inequality and proves that
the assumption of the existence of a set 4 € X such that 0 < p(4) <1 in
Theorem 3 is essential,

THEOREM 6. Let (12, X, 1) be a measure space such that for every A € %,
etther

(10) BA) =0 or u(A)21,
and suppose that ¢ and ¥ are homeomorphisms of Ry. If there are p,q > 0,
p~t 4 g7 = 1, such that one of the following conditions is satisfied:

(1) the functions @,¥ : (0,00) — (0,00) defined by the formulas

B{t) =t7P4(t), T(t)=t"T%(t) (¢>0),

are NOMINCreasing;

(ii) ¢ or v is subadditive and
(1) ¢(a'7t) S ad(t), (@) Sap(t) (a€p(T), t20),
then

[ ovdu <pylepyly) (2,5 €84).

1

The converse of the Holder inequality 179

Proof. Suppose that (i) holds. Then we have
(12) #(aMPt) < ad(t), V(o) <ap(t) (a>1, 3 0).

Since the functions $(t"/P) = t~14(t1/?) and W(t1/9) = t~1p(#2/9) (£ > 0),
are also nonincreasing, the functions ¢(t/7} and (t1/9) are subadditive (cf.
for instance [3], p. 239, Theorem 7.2.4(i)). Consequently,

qb[(znj) ]<i¢ 67 (G205 i=1,...,n).

i=1

Replacing t; by ¢ (i = 1,...,n) and making use of the monotonicity of ¢
we can write this inequality in the form

(13) (itf)l/pswl(iqb(m))- >0 i=1,..,n).
im=] i=1

In the same way we get

(14) (it;?)uqsw"l(zﬂ:w(ti)) (¢ =05 i=1,...,0).
i=1 i=1

Take now arbitrary z,y € 8... Then, by (10) there exist n € N and disjoint
sets 4; € X with a; = u(A;) > 1 (i = 1,...,n) such that

z = szm“ y= Z%XA«,

i,

(ziy: 2 0;1=1,...,n).

The classical Holder inequality and (12)-(14) imply

f zy dps = Zalxzyt = Z ;i) (e M)

i=1

(Zaam )Up(;azyz)l/q
< qs"l(éqsmi/‘” ) (de a7y )
(5 ) (Fote)

de=] =1
= po()Py(¥),
which completes the proof in this case,

Suppose now that (ii) is satisfied and let, for instance, 1 be subadditive.
Hence, since % is increasing, ¥~! is superadditive. Writing =,y € S, as
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above and making use in turn of (11), the monotonicity of ¢~ and super-
additivity of ¥y ~! we have

1] T n
Jeydu= Y aws = 3 (o m) ey M) < 367 (o) ank(vs))
n =1

3 |

< 38 (3 agia)) v (ans(ve)

=] j=1

= py() ZTP'I(&M(%)) < pol)y™ (Z am('yi)) = py(z)Py(v),

i=1
which completes the proof.

Remark 8 One can easily check that the assumptions of Theorem 6(i)
are satisfied if the functions ¢(t'/#) and ¥ (¢*/9) are concave. Taking in par-
ticular @(#) = £? and ¥(¢) = 9, with p~* +¢7! = 1, p,q > 0, we hence
get Holder’s inequality. Thus, on the one hand, Theorem 6(i) generalizes
Holder’s inequality, and on the other hand, it shows that the assumption of
the existence of a set A € X such that 0 < p{A4) < 1 in Theorem 3 is indis-
pensable. Note also that if ¢ and ¢ are subadditive and u(X), the range of
the measure p, is contained in NU {0, oo} then conditions (11) are satisfied.

Remark 9. Modifying the assumptions of the above Theorem 6 in an ob-
vious way one can obtain the corresponding result for the reverse inequality.

5. A generalized integral Hélder—Minkowski inequality. In [7],
using a weaker versiorn of Lemma 1, we determined the form of all the
fanctions f : R% — Ry satisfying the inequality

af(z)+bf(y) < flaz +by) (z,y €RE)

for some a, b such that 0 < a < 1 < @+ b. This result for k = 2 leads to the
following obvious observation: a function b : (0,00) — R is convez iff

) 1 Zg
o " + shis h(— , T, Y1, Ye > 0).
(12) (w—i—yg)(yl v) = (yl)yﬁ- (yg)yi (21, 32, 91,92 > 0)

It seems to be of interest that this is a generalization of Holder’s and
Minkowski’s inequalities in the discrete case. To get for instance a one-line
proof of Minkowski’s inequality it is enough to apply {(15) to the convex
function h(t) = (t# + 1)1/?,p > 1. It should be emphasized that we do not
need Hélder’s inequality in this argument. Taking p > 1 and applying (15)
for h(t) = —t'/? we obtain Holder’s inequality.

In this section we prove the following integral counterpart of inequal-
ity (15).

icm
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THEOREM 7 (Generalized Integral Hélder—Minkowski Inequality). Let

({2, X, ) be a measure space such that u(2) > 0. If a function h : (0,00) —
R is convex (resp. concave), then

0 (32) fris o (o cnericnsn

(resp. the reverse inequality holds).

Proof Take z,y € L1 (12, %, 1) and define the measure v : 5 —s [0, oc]

by
v(A) = -—~——--—IA ydu
Joydu
Clearly ({2, X,v) is a normalized measure space and z/y € Li(2,%,v).
By the integral Jensen inequality for convex functions (cf. M. Kuczma [4]

p. 181) we obtain
h(ffdv)s ho(f)du.
F Qf y

Using the formula for dv we get (16). This completes the proof.

(Ae X).

3

Now we apply this result to get the integral H5lder and Minkowski in-
equalities.

Hilder's Inequality. Take p,g € R\ {0,1} such that p~X + ¢~ = 1 and

nonnegative functions z, y such that z?,y? € L (2, £, ). The function
Aty =7 (t>0)

is concave for p > 1 and convex for p < 1. Writing inequality (16) for this
function and replacing z by P and y by 47 we obtain the integral Holder
inequality for p > 1 and the “companion” inequality for p < 1.

Minkowski’s Inequality. Take p € R, p # 0. The function

h(t) = (P + 17 (> 0)

is concave for p > 1 and convex for p < 1. Substituting this function into (16)
and replacing x and y by 2P,y € LJ_]_(Q,E, 4}, resp,, we get the integral
Minkowski inequality for p > 1 and the “companion” inequality for p < 1.

Remark 10. A weaker version of Theorem 7 in which z and y are
assumed to be elements of 8., has been proved in [9] (cf. also [7]).
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A localization property for B;, and F;, spaces
by

HANS TRIEBEL (Jena)

Abstract. Let f7 = P akf(zj“:r. — 2k), where the sum is taken over the lattice of
all points k in R™ having integer-valued components, j € N and ap € C. Let A7, be either
Bpg or Fg (s €R, 0 < p < 00,0 < g < oo) on R". The aim of the paper is to clarify
under what conditions ||f7 | A3 | is equivalent to Zj(a-—n/p)(zk lax |PYPIEF | Adgll.

1. Introduction and theorem. The spaces B, and Fj, with s € R,
0 <p < oo(p< oo for the Fscale), 0 < ¢ < o0, on R™ cover many
well-known classical function spaces, such as the Sobolev spaces Wzﬁc = F;,z
(with k& € Np, 1 < p < ©0), the fractional Sobolev spaces H; = F}, (with
s € R, 1 <p < o0), the Holder-Zygmund spaces C* = B, , (with s > 0),
the (inhomogeneous) Hardy spaces hy, = Fl), (with 0 < p < oc) and the
classical Besov spaces By, (with s > 0,1 < p < 00,1 < g < 00). The theory
of these spaces has been developed in [8, 9]. The aim of this paper is to prove
a localization property for all these spaces which in this generality and in
its almost final form is unexpected and rather surprising.

Let Z™ be the lattice of all points in R™ having integer-valued com-
ponents. Let $%7 = 279k with k € Z" and j € N. Let f € &' with
suppf C @y = {z e R" : |oy| <« dif{ = 1,...,n}, where d > 0 is as-
sumed to be small, at least d £ 1/2, and let

(1) Fllzy =3 af(2H(z — M),

kezn

ar € C.

Of course, the terms in (1) have mutually disjoint supports. Let o, =
max(0,n(l/p — 1)) and let [a] be the largest integer less than or equal to
a € R

THEOREM. Let s €R, 0 < p < oo (p < oo for the F-scale), 0 < g < 0.
Let A;q be either B;q or Fp, and let 0 < d < 1/4.
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