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Abstract

The network loading problem (NLP) is a specialized capacitated network design

problem in which prescribed point-to-point demand between various pairs of nodes of a

network must be met by installing (loading) a capacitated facility. We can load any number

of units of the facility on each of the arcs at a specified arc dependent cost. The problem is

to determine the number of facilities to be loaded on the arcs that will satisfy the given

demand at minimum cost.

This paper studies two core subproblems of the NLP. The first problem, motivated

by a Lagrangian relaxation approach for solving the problem, considers a multiple

commodity, single arc capacitated network design problem. The second problem is a three

node network; this specialized network arises in larger networks if we aggregate nodes. In

both cases, we develop families of facets and completely characterize the convex hull of

feasible solutions to the integer programming formulation of the problems. These results in

turn strengthen the formulation of the NLP.

Keywords: Convex hull, Facets, Network design, Capacitated facilities.
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1. Introduction

In this paper, we study the polyhedral structure of two core subproblems of a

capacitated network design problem that we call the network loading problem (NLP). The

network loading problem models situations in which (i) the variable flow costs are zero,

and (ii) facilities of fixed capacity -- in our case a single type of facility -- are available to

carry flow. We can install (load) this facility on any of the arcs of a network. The problem

is to determine the number of facilities to be loaded on each of the arcs of the network that

will meet given point-to-point demand at minimum cost. In this introductory section, we

provide a mixed integer programming formulation of the NLP, briefly note its applications,

and provide motivation for our research.

Problem P(NLP):

minimize A bijyij
(ij)eA

subject to:

-Uk ifi = O(k)
Y.1i -Ž I ii = {k if i = D(k) for all i N, for all ke Q (1)
jeN jEN 0 otherwise

E (fi+i)<Cyij for all {ij) A (2)
ke Q

Yij > O and integerfor all {ij}e A; k, fj O for all {ij A, for all k E Q. (3)

In this formulation, N denotes the set of nodes in the network, A the set of arcs, and
Q the set of commodities; commodity k has origin O(k), destination D(k) and demand uk.

The variable fk models the flow of commodity k on arc i,j in the direction i to j and the

variable ij models the integer number of facilities that are loaded on arc {i,j . The

parameters C and bij represent the capacity of the facility and the cost of loading a single

facility on arc {i,j), and the objective function measures the total cost incurred in loading all

the facilities. Constraints (1) correspond to the usual flow conservation constraints for

each of the commodities at each node. The capacity constraints (2) model the requirement

that the total flow (in both directions) on an arc cannot exceed the capacity loaded on that

arc. We assume that the demands of all the commodities and the capacity C are integers.
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For a more detailed discussion of a generalized version of this model, we refer the reader

to Magnanti, Mirchandani and Vachani (1990).

This network loading problem is a special version of the general capacitated network

design problem and arises in several application contexts. In the telecommunications

industry, it represents the design of private networks that use digital transmission facilities

(called T1 circuits) to carry voice and data traffic between locations. In the transportation

industry, the facilities might represent trucks of fixed size and a slight variation of the
model would prescribe a load plan (the assignment of trucks to routes and the loading of

freight onto the trucks; see Powell and Sheffi, 1983). A generalization of the NLP, which

has nonzero flow costs in the objective function, models many other network design
problems, such as capacitated plant location (see Leung and Magnanti, 1989).

The NLP is strongly NP-hard (Magnanti, Mirchandani and Vachani, 1990) and,
therefore, there is little hope of developing a theoretically efficient algorithm for solving it.

Nonetheless, computational evidence in the literature suggests the possibility of developing

pragmatically efficient algorithms for the problem if we can develop a better understanding

of the problem's structure and the structure of its subproblems. For example, Crowder,

Padberg and Johnson (1983) showed that minimal cover cuts from single constraints of a
zero-one integer program are extremely effective in solving the (larger) original problem.

This observation is the primary motivation for this research. Consequently, we study the

polyhedral structure of two core subproblems of the NLP. The first subproblem arises

when we adopt a Lagrangian relaxation approach to solve NLP; as we will see, the
structural properties of the Lagrangian subproblem prove valuable in understanding the

structure of NLP. The second subproblem arises when we restrict the number of nodes in
the network; understanding the structure of this smaller problem, as well as the Lagrangian

subproblem, permits us to strengthen the integer programming formulation of the general

NLP. For each subproblem, we provide a complete characterization of the convex hull of
its feasible solutions and comment briefly on how these results strengthen the formulation
of NLP.

We might note that despite extensive study, researchers have been able to describe the
convex hull of feasible solutions to core, polynomially solvable integer programming
problems (other than problems like network flow that are inherently integer) for only a few
problem classes: for example, 1-matching and matroids (Edmonds, 1965, 1970, 1971),
perfectly matchable subgraphs of bipartite and general graphs (Balas and Pulleyblank,
1983, 1987), and uncapacitated production lot sizing (Barany, Van Roy and Wolsey,
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1984). Although our problems are more specialized than those cited above, the results in

this paper are applicable to a wide variety of fixed charge problems. Furthermore, for most

of the polyhedra that researchers have been able to completely characterize in previous

studies, the integer variables are restricted to be binary, whereas, for the problems that we

study in this paper, the integer variables can assume any nonnegative value.

This paper is organized as follows. In Section 2, we describe the two subproblems.

In Section 3, we discuss the polyhedral properties of the first subproblem. We show that

the convex hull of feasible solutions to this problem has full dimension, introduce a family

of facets for the problem, and show that with the addition of these facets, the linear

programming relaxation of the problem describes the convex hull of its solutions. Our

proof constructs a primal feasible solution and demonstrates the existence of a dual feasible

solution that satisfies complementary slackness. We depart from the conventional "primal-

dual" convex hull proofs that construct specific values of the primal and dual solutions.

One reason for adopting this approach is that our primal problem is degenerate and so its

linear programming optimal solution corresponds to several linear programming bases,

each of which defines a potential dual optimal solution. Section 4 studies the second

subproblem; in this case as well, we show how to strengthen the formulation and develop a

complete and nonredundant characterization of the convex hull of integer solutions.

Section 5 summarizes our results.

2. Description and Formulation of Subproblems

Single Arc Design Problem

When using a Lagrangian relaxation approach to solve the NLP, we can dualize either

constraints (1) or (2). If we choose to relax constraints (2), the resulting Lagrangian

problem is a network flow problem; thus, this problem satisfies the integrality property

(i.e., it has integer extreme points) and, hence, the Lagrangian lower bound equals the

bound provided by the linear programming relaxation of NLP (Geoffrion, 1974). It is easy

to see that, in general, the linear programming relaxation provides a weak lower bound for

the problem. (See Magnanti, Mirchandani and Vachani (1990) for confirming empirical

evidence.) On the other hand, if we relax constraints (1) using multipliers vk, then the

resulting Lagrangian problem, with Vok) =0, is
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Problem P(LAG):

minimize E fbijyij + Ai Ii-fivI' vj + E V(k) Uk

(ij)eA keQ EQ

subject to:

(2) and (3).

To this problem, we add the following upper bound constraints which are redundant in the

original formulation but improve the Lagrangian lower bound.

f < uk for all (ij} EA,for all k Q. (4)
fk< Uk

This problem does not satisfy the integrality property and therefore, we might expect

the lower bound obtained from this Lagrangian dual to be stronger than that obtained from

the linear programming relaxation. Vachani (1988) uses this Lagrangian relaxation strategy

to solve a more general version of the NLP in which the network designer has a choice of

two types of facilities. Her results show that the lower bounds from this relaxation

improve upon the linear programming relaxation bounds considerably. This empirical

evidence suggested that knowledge about the polyhedral structure of problem P(LAG)

might permit us to strengthen the linear programming relaxation of the NLP.

The Lagrangian problem, P(LAG), separates by arc for a given set of multipliers.

Furthermore, in an optimal solution to the Lagrangian problem either > 0 or i > 0.

Defining = max(f, ) and ai - v vj - v and, for convenience, dropping- v v i) and, for convenience, dropping

the arc subscripts and denoting commodity k by a subscript of the appropriate variable, we

obtain the single arc design problem (SADP).



-5-

Problem P(SADP):

minimize by+ , akgk
k Q

subject to:

gk < uk for all k E Q (5)

gk <Cy (6)
keQ

gk > Ofor all ke Q, y > 0 and integer.

Although our study of this single arc design problem has been motivated by the fact

that it arises as a Lagrangian subproblem of the NLP, the problem is of greater interest

because it is a Lagrangian subproblem for the general capacitated network design problem

with nonzero flow costs as well (see, for example, Leung, Magnanti, and Singhal, 1990).

Vachani (1988) shows how to solve the single arc design problem efficiently using a

greedy procedure. In this paper, we show how to enhance the formulation to describe the

convex hull of feasible solutions to the problem.

To conclude this subsection, we might comment on a related problem: a single node

flow problem with an exogenous supply of u units and several outflow arcs incident to the

node. Each arc has capacity Cj, carries flow fj, and has a variable yj associated with it

which equals 1 if the arc is available to carry flow and is 0 otherwise. Padberg, Van Roy

and Wolsey (1983) have studied the polyhedral structure of this single node flow problem

and identified facets for this model and its generalizations. However, unlike the single arc

design problem, the single node flow problem is NP-hard; a transformation from the

knapsack problem establishes this result. Thus, these two core problems, which both arise

in the context of capacitated network design, differ significantly in their computational

complexity. This result has implications concerning the underlying polyhedral structure of

the problem. In particular, unless P = NP, it is unlikely that the research community would

be able to completely characterize the convex hull of the single node flow problem.

Three Node Network Problem

The second problem, P(3N), we study in this paper is a three node version of the

NLP. The NLP is defined over an undirected network, i.e., the total bidirectional flow on

any arc determines its installed capacity. Suppose we obtain instance P2 of the NLP from
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instance P1 by interchanging the origin and destination of some commodity, say q*.
Further, suppose we are given a feasible solution to instance P1. We can obtain a feasible
solution to instance P2 by reversing the flow of commodity q* on all the arcs and by
keeping the remaining variable at the same values as in the feasible solution to instance P1.
In particular, the optimal objective function values of both instances P1 and P2 are equal.
Thus, we can view the three node network loading problem, with demand between every

pair of nodes, as a problem in which all commodities originate at either of two nodes.
Papernov (1976) has shown that a capacitated multicommodity flow problem, whose
commodities all have either of two nodes as their origin node, has a feasible solution if and
only if the capacity of every cutset is at least as large as the demand across the cutset. We
can use this Papernov's result to eliminate the flow variables and obtain a formulation of
the three node problem in the subspace of y variables only.

Let us denote the nodes of the network as nodes 1, 2 and 3, and let u 12 , u13 and u23

denote the demands between nodes 1 and 2, 1 and 3, and 2 and 3, respectively. The
formulation of the three node version of the NLP, projected into the subspace of y
variables, is

Problem P(3N):

minimize b12Y12 + b3Y13 + b23Y23

subject to:

Y12 + Y13 2 U12 + u13C
Y12 + Y23 2 U12 + U23C
Y13 + Y23 2 U13 + U23C

yij > 0 and integer for all ij).

In general, the linear programming relaxation of this projected formulation does not have
integer extreme points. In fact, since the lefthand side of each inequality is an integer for
any feasible solution, we can strengthen these inequalities to obtain the cutset inequalities:

Y12 + Y13 >[ u
12

+ U13]

Y12 + Y23 > [U1 2 + U23]
-Y C 

Y13 + Y23 >[U13 + u23
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Although the cutset inequalities define facets of the NLP (see Magnanti, Mirchandani and

Vachani, 1990), they are not sufficient, in general, for generating integer solutions of the y
variables. For example, if C = 10, u12 = u13 = u23 = 5, b12 = 2, b13 = 3 and b2 3 = 4, then

Y12 = Y13 = Y23 = 1/2 is an optimal solution to the linear programming relaxation of the

problem with the cutset inequalities included. This solution costs 4.5; the optimal solution

to the network loading problem is a minimum spanning tree that costs 5 units. Notice that

the arcs corresponding to the half-integral y's in the linear programming solution form a

cycle. This phenomenon occurs in larger networks for the same reason: a "half-cycle"

satisfies the cutset constraints but might be cheaper than any integral solution. The facet

inequalities presented in Section 4 are useful for cutting off these half-integral solutions. In

particular, for the three node network, they, along with the cutset inequalities, are sufficient

for describing the convex hull of feasible solutions.

3. The Single Arc Design Problem.

In this section, we study the single arc design problem and show how results about its

structure are useful in strengthening the formulation of the NLP. The linear programming

relaxation of P(SADP) does not satisfy the integrality restriction on y. Our objective is to

identify valid inequalities for P(SADP) that strengthen its linear programming relaxation.

In fact, we will give a complete description of the convex hull of the feasible integer

solutions to the problem, that is, if Conv(P) denotes the convex hull of the feasible

solutions to Problem (P), we identify linear inequalities that completely describe

Conv(SADP). For Problem (P), let dim(P) denote the dimension of Conv(P).

We first state some results about Conv(SADP) and about the constraints of

formulation P(SADP). Let q = IQI, the number of commodities.

Proposition 3.1. Conv(SADP) is a full dimensional polyhedron. That is, dim

(Conv(SADP)) equals q + 1.

Proof. See Appendix A.
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Proposition 3.2.

1. For every k e Q, gk >0 defines a facet of Conv(SADP).

2. For every k E Q, gk uk defines a facet of Conv(SADP).

3. If I uk > C, then I gk • Cy defines a facet of Conv(SADP).
keQ keQ

Proof. See Appendix A.

New Inequalities

We next identify a set of additional inequalities (facets) of Conv(SADP) that are
necessary for completely describing it. We first note that if uk < C for any k, then we can

tighten the upper bound constraint gk < uk for small values of y (i.e., when O<y<l) by

replacing it with the strongerforcing inequality gk < ukY which, in fact, defines a facet of

Conv(SADP). This idea of replacing a variable upper bound constraint by a forcing

constraint is an old idea in the mathematical programming literature - for example, this

replacement arises in the context of the uncapacitated facility location problem (see
Cornuejols, Sridharan and Thizy, 1990). This observation implies that if A uk < C, then

keQ

gk < Cy is no longer a facet of Conv(SADP) since the constraint gk < ( A uk)Y,
kEQ kEQ kE Q

which is an aggregation of gk < uky for all k E Q, dominates it. On the other hand, if uk >

C for any k, then gk < ukY is not a facet of Conv(SADP). In the following discussion, we

develop a class of inequalities that generalize the forcing constraint gk < ukY in two ways:

(i) by permitting an arbitrary value of uk, and (ii) by considering aggregations defined over

an arbitrary subset P c Q of variables rather than just a single variable gk. To avoid some

technicalities in the following discussion, we assume that E uk > C.
kEQ

Consider the inequality

gp - rpy < (UP - 1)(C - rp). (7)

In this expression, for any P c Q, gp denotes X gk and up denotes , Uk; rp = up
kE P ke P

(mod C) and p = Fup/Cl. By convention, we set rp equal to C if up is a multiple of C.

We refer to this inequality as the arc residual capacity inequality because (C-rp) is the
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residual capacity left if we (i) set y = gp, (ii) set the flow values for all the commodities in P

at their upper bounds, and (iii) set the flow values for all commodities in Q\P at value zero.

We now show that the arc residual capacity inequalities are valid for P(SADP) and

also show how they tighten the linear programming relaxation of the problem.

Validity

Suppose we write the arc residual capacity inequality as

gp < rp[y - (p - 1)] + (p - 1)C RHS(y).

As shown in Table I, the inequality is valid if y = gp - 1 or y = glp, it is dominated by the

aggregate upper bound inequality gp < up if y > gp, and it is dominated by the capacity

inequality gQ < Cy if y < gp- 1.

Table I. Bounds on the flow variable gp from the arc residual capacity inequality

Note that if gp = up, then the arc residual capacity inequality forces y to be at least gp,

and if gp = up - rp, then the inequality forces y to be at least (p - 1). Thus, the inequality

is tighter than the corresponding capacity constraint gQ < Cy whenever gQ\p = 0, rp C

and up - rp < gp < up. As the next result shows, this strengthening is sufficient for the

inequality to be a facet Conv(SADP).

Proposition 3.3. For a given nonempty set P c Q, the arc residual capacity inequality

(7) defines a facet of Conv(SADP) if and only if the set P satisfies the following

conditions.

Value of y RHS(y)

< p- 1 > Cy

9lp - 1 (gp- 1) C

p (lp - 1) C + rp = up

> p >Up
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I1. If up = 1, then /P/ = .

2. If rp = C, then P =Q.

Proof.

Necessity of the Conditions.

Suppose Condition 1 is not valid, i.e., tp = 1 and IPI 2 2. Let P = {1, 2, ..., p}.

Then the arc residual capacity inequality (7) is a linear combination of facet inequalities gk <

uky for 1 < k < p. Hence, (7) is not facet defining. On the other hand, if Condition 2 is

not valid, then (7) is dominated by the capacity constraint gQ < Cy and hence is not facet

defining.

Sufficiency of the Conditions.

In light of Proposition 3.2 (part 3) and our remarks following it, we can assume that

Žp > 2 and r < C. Now, consider the equation

gp - rpy = (p - 1) (C - rp) (7')

and let L = Conv(SADP) n { (y, g): y, g satisfies (7')) . We will show that inequality (7)

is a facet of Conv(SADP) by showing that whenever any inequality

xy + 3g < 3o (8)

is valid for Conv(SADP) and satisfies the condition that Xy + [3g = [o for all points in L,

then the equation Xy + [3g = [fo is a scalar multiple of (7').

Without loss of generality, let P = {1, 2, ..., p) and let

k
s = argmax k p k: uj < C (p - 1) } and S = 1, 2, ... , s}. We adopt the

j=1

convention that s = 0 and S = f if u1 > C (gp - 1).

Consider the following feasible point which belongs to L:

y = 9p; gk = uk for k < p; gk = 0 for all k > p+l.
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Since rp is less than C, we can modify this solution to obtain another solution that belongs

to L by increasing the flow gk to 1 from 0 for some k > p+l. Substituting these two

solutions in the equality Ly + Og = P0 and subtracting, we obtain Pk = 0 for all k > p+l.

Now define the solution

y= .p-1;gk=ukfork s;gs+l=C(pgp-1)- Uk<Us+,; gk=0forall k > s+l.
k=l

Construct a new solution by decreasing the flow of some commodity k1 belonging to S by

1 (or by decreasing the flow of commodity 1 if S = 4), and increasing the flow of some

commodity k2 belonging to PS by the same quantity. Since this solution also belongs to

L, by substituting both solutions in the equality Xy + f3g = 0o and subtracting, we obtain

kl = k2 ' Using a similar argument on the other commodities belonging to P, we obtain

P = a for all k E P. It is now easy to see that X = -rpa, and we are done. ®

Suppose we now add all of the arc residual capacity inequalities to the formulation

P(SADP). The polyhedron defined by the linear programming relaxation of this problem is

fairly complex: (i) as shown by Proposition 3.3, it has an exponential number of facets,

and (ii) as shown by the following example, the polyhedron can be highly degenerate; that

is, an excessive number of facets might intersect at a vertex of Conv(SADP) and, therefore,

also at a vertex of the polyhedron defined by the linear programming relaxation.

Example 3.4. Let q = 3 with ul = 8, u2 = 7 and u3 = 4, and C = 10. Let gk = uk for all

k and y = 2. This solution satisfies the upper bound constraint gk < uk as an equality for all

k, as well as the arc residual capacity inequalities (7) as an equality for all two and three

element subsets P of Q. Thus the primal solution to the linear programming relaxation can
be highly degenerate.

We now establish the main result of this section.

Theorem 3.5. The upper bound inequalities (5), the capacity inequality (6), the arc

residual capacity inequalities (7), and the nonnegativity constraints describe the convex hull

of the set offeasible solutions to P(SADP).

Before proving this result, we provide a geometric interpretation.
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Underlying Geometry

Figures 1 and 2 illustrate the geometry for a two-commodity version of the single arc

design problem. Because the problem is a mixed integer program, the feasible region

contains slices of continuous regions, one for each choice of the integer variable y. For

any specific value of y, the feasible region gl + g2
< Cy over the nonnegative variables gl

and g2 is a triangle (it is a simplex in higher dimensions); as y becomes larger, so do the

triangles. The upper bound constraints gl < ul and g2
< u 2 will truncate some of the

triangles, depending upon the value of y. As indicated in Figure 1, the overall feasible

region is composed of these (truncated) triangles, one for each integral value of y. At y =

0, the triangle is a single point. For the example illustrated in the figure, u1 < C, C < u2 <

2C and 2C < u 1,2} < 3C. Since ul < C, the upper bound gl < ul truncates the triangles in

the gl direction for all y > 1. Since C < u 2 < 2C, the upper bound g2
< u2 truncates the

triangles for all values of y 2 2. Note that at y = 3, the box O < gl < ul and 0 < g2
< u 2 lies

strictly within the triangle gl + g2
< 3C so the feasible region is a box. (The feasible region

is a box for larger values of y as well; the figures do not show this portion of the

polyhedron.)

Figure 2 shows the polyhedron defined by the convex hull of the truncated triangles

shown in Figure 1. This polyhedron has eight faces, four defined by the nonnegativity and

upper bound constraints imposed upon the flow variables g, one defined by the capacity

constraint gl + g2
< Cy, and three defined by the arc residual capacity inequalities (one for

each nonempty subset of { 1, 2)). The three arc residual capacity inequalities have the

following structure.

(i) Since ul < C, the arc residual capacity constraint for variable gl becomes gl - rl y

< 0; the facet defined by this constraint is hidden in the figure (its extreme points are the

origin and two points with y = 1 and gl = rl; at one of these points g2 = 0, and at the other

g 2 = C - rl).

(ii) Since u2 lies between C and 2C, the arc residual capacity constraint for the flow

variable g2 is g2 - r2y < C - r2. The facet defined by this inequality contains one extreme

point with y = 1 (gl = O and g2
= C) and two extreme points with y = 2 (g2 = C + r2 , and

gl =0 or gl = 2C - (C +r 2 ) = C - r2).
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(iii) Since u(1,2) lies between 2C and 3C, {(1,2) = 3 and the arc residual capacity

constraint corresponding to the variable set { 1,2) is g( 1,2 - r(1 ,2)Y < 2 (C- r(1 ,2). The

facet defined by this inequality has one extreme point with y = 3 (gl = ul and g2 = u2) and

two extreme points with y = 2 (gl = ul, g2 = 2C - ul and g2 = u 2 and gl = 2C - u2).

These extreme points correspond to the "outermost" comer of the box shown at level y = 3
in Figure 1 and the two corner points where the constraint gl + g2

< 2C truncates the box at

level y = 2.

Proof of Theorem 3.5. Let P(FACET) denote the problem defined by appending the arc

residual capacity inequalities constraints (7) to the linear programming relaxation of

P(SADP). Consider the dual P(D) to this problem.

Problem P(D):

maximize I Ukk + I Sp(pp- -1XC-rp)
kE Q P:PQ

subject to:

tk+ + Sp<akforallke Q
P: keP

-Cca- rpp < b
P: PgQ

a < O, Ak <Ofor all k Q, p < Ofor all P c Q.

For any given choice of cost data, we will define an integer feasible solution to

P(FACET). We will then show that some corresponding (but unspecified) dual solution

satisfies complementary slackness. This result will prove the theorem. The proof is

complicated by the possibility of degeneracy as illustrated by Example 3.4, which implies t

that the dual might have many potentially optimal solutions since many linear programming

bases might correspond to the same degenerate primal optimal solution.

Before continuing with the proof, we make two observations.

Note 1. We can assume without loss of generality that ak < 0 for all k E Q. Suppose

not. Let M = {k: ak 2 0, k E Q}, M * . Suppose we solve P(FACET) and P(D) with Q'
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= Q\M and let (y*, g*) and (*, a*, 8*) be the optimal solutions to these two problems

(with Q' as the commodity set). It is easy to see that (y*; gk = gk* for kE Q'; gk = O for k

E M) and (k = Xk* fork e Q'; k = O for k M; a*, S s = SS* for S c Q'; s =

otherwise) are optimal for the original problems. Thus if (y*, g*) is integer for all values
of b and all negative values of the coefficients ak, then so is the solution to the problem

when some of the values of ak are nonnegative.

Note 2. We will restrict ourselves to situations with b > 0. If b < 0, then the primal

problem is unbounded and if b = 0, then the proof is trivial.

Index the commodities so that a 1 < a2 < ... < aq < 0. Let

M = {k Q:ak <-b/C) = {1, 2, ... , m};

Q\M = {k E Q:- b/C < ak < 0) = {m+l, m+2, ... , q};

k
s = argmaxk < m k: uj <C (M - 1) } and S = 1, 2, ... , s}. Note that if y=

j=1

gM - 1, then it is possible to set all the variables gk for k E S to their upper bounds
uk, but not all the variables gl, g2 , ', gs+l;

k
t = argmax mk_<q {k: uj < C M }, T = { 1, 2, ... , t}.

j=1

Note that by definition of s and t, s+1 < m < t and g s. = gM for all S' = {1, 2, ...,

s'} with s + 1 <s'< t.

We will consider the following two mutually exclusive and exhaustive cases.

Case 1. b > O, ak > - b/C for all k, i.e., M = .

Notice that the condition on the flow costs implies that all the flows in the optimal

solution to the linear programming relaxation of P(SADP) will be zero. Thus, the optimal

flow values will be zero for P(SADP) as well. Define the following primal and dual

solutions.

Primal solution. y = 0; gk = 0 for all k E Q.

k = 0 for all k E Q; a = - b/C; p =0 for all P c Q.Dual solution.
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This dual solution is feasible since, by assumption, -b/C < ak for all k E Q.

Furthermore, it is easy to see that these primal and dual solutions satisfy the complementary

slackness conditions.

Case 2. b > 0, and M , i.e., a < - b/C.

For this case, for notational convenience we define the following terms:

(i) aq+1 = 0;

(ii) Rk=r1, 2...,k}-

If M * , then by definition of M, the optimal solution to the linear programming

relaxation of P(SADP) is given by gk = uk for all commodities k E M, gk = 0 for all

commodities k E Q\M, and y = I uk/C. Based on this observation, it is easy to check
ke M

that if M • 4, then the optimal primal (and so integer) solution to P(SADP) will load either

gm (which equals Fr uk/Cl ) or (gM - 1) facilities on the arc, i.e., y = gm or y = (gm -
ke M

1) in an optimal solution. The variable y will equal (M - 1) if b, the cost of the facility,

exceeds the "maximum contribution" from flowing the commodities in Q\S on this facility.
That is, in the integer programming solution, we can always set gk = uk for all k E S. If y

s+l
= (!1M - 1) we send a flow of value (C - R s) < us+ of commodity s+l, since X uk >

k=l

(M - 1)C. If we set y = IM, however, then we send a flow of the remaining Rs+l units

of commodity s+l, send a flow of value equal to the respective demands of commodities
s+2, s+3, ... , t, and a flow of value (C- Rt) of commodity t+ 1. Consequently, if

t

b >- Rs+las+l - uk ak - (C - Rt)at+l for t < q,
k=s+2

or

b >- Rs+as+l - uk ak fort=q
k=s+2

then y = (gM - 1) and the optimal flows are gk = Uk for all commodities k E S, gs+l =

C (M - 1) - uk and gk = 0 for all k > s+l.
k=l
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If the cost b is less than the additional flow contribution, then y will equal gM in the

optimal primal solution. We consider the two cases corresponding to these two primal

solutions separately.

Subcase 2(a).

(i) b + Rs+las+l +

t

Uk
k=s+2

ak + (C - Rt)at+l > 0 if t < q,

or

(ii) b + Rs+las+l +
t

Uk ak > 0

k=s+2

Subcase 2 (b).

(i) b + Rs+las+l +

t

uk ak + (C- Rt)at+ < 0 if t < q,
k=s+2

or

(ii) b+R s+las+ + ukak < 0
k=s+2

if t = q.

As Example 3.4 shows, a given primal solution might be highly degenerate,

satisfying the arc residual capacity inequality as an equality for many subsets P of Q. We
will deal with this degeneracy by parameterizing the dual variables a or A and showing that

some dual feasible solution satisfies the complementary slackness conditions. (The dual

problem may have multiple dual optimal solutions and we will not specify any particular

one for this part of the proof.)

if t = q.
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Subcase 2(a).

Primal solution. Y = AM - 1; gk = Uk for k < s; g+1 = C (I M - 1) - k <
k=l

us+l; gk = 0 for all k > s+l.

Dual solution. Recall that, by definition of S and T, gS' = gM for all S' = (1,

2, ... , s'} with s+l<s'<t. Therefore, with the above definition of the primal variables, the

arc residual capacity constraints

gp- rpy <(lp - 1)(C - rp)

are tight for all P = 1, 2, ... , p} with s+ 1 < p < t. We set 8w = O for all sets W c Q not

of this form. We also define Ak = 6{1, 2, ..., k}

We now construct an optimal dual solution by considering the dual constraints that

must be satisfied as an equality to satisfy complementary slackness. Since y > 0, we

require

- Rs+lAs+I - Rs+2As+ 2 - ... - RtA t- Ca = b.

Since gk < uk for all k > s+l, we set k = 0 for these commodities. Now, consider

the dual feasibility constraints for the variables gs+l, ... , gt, gt+l:

As+l + As+2 + '+ At + a = as+

As+ 2 + .. + At+ <a+2

At + a at
a < at+l.

We have written the first of these constraints as an equality so that it satisfies
complementary slackness (since gs+l > 0). Notice that these constraints and the

nonpositivity of the variables Ak imply that as+l < a < a+l. For a in this range define

Ak(a) = min (0, ak - a - Ak+l(a) - ... - At(a) 

and v(a) = - RS+IAS+(a) - R+ 2As+ 2 (a) - ... - RtAt(a) - Ca.

_1_1
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We note the following properties of the dual variables and v(a). The first property

assigns specific values to the variables Ak(a) given a particular value of a. The second

and third properties place lower and upper bounds on the function v(a).

Property 1. Sequential difference property.

Let k(a)= max { k: a > ak) Then by definition of the Ak(a) variables,

0 for k 2 k(a) + 1
Ak(a) = ak- a for k = k(a)

ak- ak+l for s+l k < k(a).

In particular, As+l(a) + As+ 2 (a) + ... + At(a) + a = as+,.

Property 2. Lower bounding property.

Ak(aS+l) = 0 for all k = s+l, ... , t. Thus v(as+l) = - Cas+l > b.

Property 3. Upper bounding property.

Ak(at+) = ak - ak+1 for all k = s+l, ..., t. Thus

v(at+l) = - Rs+l(as+l - as+2 ) - ... - Rt(a t - at+l) - Cat+,

=- Rs+las+I - (Rs+2 - Rs+l)as+ 2 - ...- - (Rt - Rt_l)at - (C - Rt)at+I

=- Rs+las+l - s+2 as+2 - ... - uta t - (C - Rt)at+

<b

by hypothesis of subcase 2(a)(i). Note that this expression is also valid for

subcase 2(a)(ii) because aq+l = 0. 

Since v(a) is a continuous function of a, Properties 2 and 3 and the mean value

theorem imply that v(a) = b for some value a of a in the interval (as+l, at+,). For k = 1,

2, ..., s, define Xk = ak - as+l. Then Xk + As+l(ca) + ... + At() + a = ak for 1 < k < s+l

by Property 1. Also, a < at+l implies a < ak for all k > t+l. Therefore, the dual variables

corresponding to a = a are dual feasible and they, together with the primal solution, satisfy

complementary slackness. Therefore, for case 2, subcase (a), the linear programming

formulation P(FACET) always has an integer optimal solution.

111_11___1___1_1__·1_I--. .11 ICI·-�--P-I_·-·^III�·--·II�-��
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Subcase 2(b).

Primal solution. Y = l tM; gk = Uk

t
for k < t; gt+1 = CgM - Uk < Ut+1; gk = 0

k=1

for all k > t+1.

Dual solution. We again set 8 w = 0 for all sets W that are not of the form W =

{ 1, 2, ..., p for some s+l < p < t. Consider the complementary slackness conditions for

the variables gs+l, gs+2, .. gt, gt+ , and y:

A+l + A+ 2 + ... + At + a = as+l

a = as+2

a =at

a = at+l

-Rs+lAs+l - Rs+2As+2 - ''' - RtAt- Ca =b.

Now, consider two solutions to the equalities corresponding to the gk variables:

1. Ak = 0 and = ak - at+l for all s+ < k < t, a = at+l.

2. A = ak - ak+l and Xk = for alls+ l k < t, a = at+l.

For O < 0 < 1, let

Ak(0 ) = 0A + (1- 0)A 2 and Xk(0)= 0k, +(1- 0), 2 for all s+l < k < t. Then

Ak(O), Xk(O) and a = at+l satisfy the complementary slackness equalities corresponding to

the variables gs+l, gs+2, .. , gt. Next note that

- Rs+IAs +(1) - Rs+2 As+2 (1) - .. - RtAt(l) - Ca = - Cat+l < b. Furthermore, as in

subcase 2(a),

-Rs+lAs+l(0) - Rs+2 As+ 2 (0) - .. - RtAt(O) - Ca

- Rs+las+ - Us+ 2as+ 2 - ... - utat - (C - Rt)at+l 2 b
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by hypothesis. Therefore, for some value of 0 of 0, with a = at 1

- Rs+lAs+l(0) - Rs+2As+2(0) - . - RtAt(0) - Ca = b.

For k < s, set .k(0) = ak - As+l(0) - As+2(0) - ... - At() - a. Since As+l(0) +

s+2(0) + --... + At(O) + a = as+1 - Xs+i(0), Xk( 0 ) = ak - as+l + Xs+l(0) < 0. Also, a =
at+ implies a < ak for all k > t+l. Therefore, the dual variables corresponding to 0 = 0

are dual feasible and, they, together with the primal solution, satisfy complementary

slackness. Therefore, for case 2, subcase (b), the linear programming formulation

P(FACET) always has an integer optimal solution. ®

The arc residual inequalities for the single arc design problem are also valid for the

NLP and hence could be used to strengthen its linear programming relaxation. Magnanti,

Mirchandani and Vachani (1990) show that the linear programming relaxation of P(NLP),

with inequalities (7) included, will provide a lower bound that is the same as that obtained

from a Lagrangian approach that relaxes the flow conservation constraints (1). They

identify additional facets for P(NLP) which further strengthen the formulation of NLP.

Thus, the objective function value of the linear programming relaxation of their extended

model is at least as strong as the bound obtained by the Lagrangian approach described in

Section 2.

4. The Three-node Network Loading Problem

This section discusses the three-node network loading problem. As noted in Section

2, we will study P(3N), the projected formulation of the problem in the space of y
variables. Recall that the nodes of the network are numbered 1, 2 and 3 and u 12, u 13 , and

u23 denote the demands between nodes 1 and 2, 1 and 3, and, 2 and 3 respectively. Let rij

equal uij (mod C). To consider interesting cases only, we assume that the demand values

are nonzero and further, that they are not multiples of C, i.e., 0 < rij < C. Our results for

the three-node network apply to the general NLP if we partition the nodes for the larger
problem into three sets. Thus, the facets developed for P(3N) are useful for tightening the

linear programming relaxation of the general problem as well.
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As mentioned in Section 2, the following set of cutset inequalities strengthen

formulation P(3N):

Y12 + Y13 > [u 12 + u13]
-I C

Y12 + Y23 > [u12 + u23 (9)

Y13 + y23 > [u13 + u23].

Although these cutset inequalities are facets of P(3N) (see Magnanti, Mirchandani and

Vachani, 1990), in general, they are not sufficient to describe the convex hull of feasible

solutions to the problem. We can view the cutset inequalities as (rank 1) Chvdtal-Gomory

inequalities derived by taking linear combinations of known inequalities and then tightening

the aggregate inequality using integrality arguments. By applying the Chvatal-Gomory

procedure to the cutset inequalities, we obtain the following additional (three-partition)

valid inequality for P(3N):

Y12 + Y13 + Y23 > [([U12 + U13] +[U12 + 23 + U23 (10)
2 C C C

We refer to this inequality as the three-partition inequality since it specifies a lower

bound on the number of installed facilities on the arcs { 1,2), { 1,3 and 2,31 that connect

three nodes (a generalization of these three-partition inequalities with a set of nodes in place

of each of the three nodes applies to the general network loading problem - see Magnanti,

Mirchandani and Vachani, 1990).

This rank 2 Chvatal-Gomory inequality is a facet for P(3N) if it is nonredundant, i.e.,

if the righthand sides of the three inequalities in (9) sum to an odd integer. The next

theorem shows that the cutset and three-partition inequalities completely characterize the

convex hull of feasible solutions to P(3N).

Theorem 4.1. The cutset inequalities (9), the three-partition inequality (10), and the

nonnegativity constraints completely describe the convex hull of feasible solutions to

P(3N). Furthermore, these inequalities provide a nonredundant description of the convex

hull if the three-partition inequality (10) is nonredundant; otherwise, the cutset inequalities

and the nonnegativity constraints provide a nonredundant description of the convex hull.

Proof.

Let P(3LP) denote the following linear program
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Problem P(3LP):

minimize b 12y12 + b13Y13 + b23Y23

subject to:

Y12 + Y13 2

Y12 + Y23 2

Y13 + Y23 2

Y12 + Y13 + Y23 > [I (U12 +U13 +
12 Cl + [U13 + U231)1

Y12, Y13, Y23 > 0

and let P(3D) denote its dual

Problem P(3D):

maximize A4 U12 U 13) + U2 + U231) + A 14 13 + U23

+ itI ([1 12+11 + U12 + U231 + [U13 + U23)11

subject to:

A1 + A2 + -< b1 2

A1 + 3 + r < b 13

A2 + A3 + r < b23

A1, A2 , A3 , r > 0.

To prove the theorem, we will construct an integer solution to P(3LP) and a

corresponding dual solution to P(3D) that have the same objective function value (or,

equivalently, that satisfy complementary slackness). We will assume that bij > 0 for all

(i,j }, since otherwise the primal solution is unbounded. We also assume, without loss of
generality, that b23 > b12 and b23 > b13. We consider the following two cases.

Case 1. b 12 + b13 < b23.

This condition on the facility costs implies that an optimal solution to P(3N) will not

load facilities on arc {2,3); instead, the solution will route the demand between nodes 2
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and 3 on arcs { 1,2) and ({ 1,3). Thus, we construct the following solutions to P(3LP) and

P(3D), respectively.

Primal solution. 1 2 =[u12 + U23] Y13 [U13 + U231 and Y23 = 0.
C ' Y1= C

Dual solution. )1 = 0, 2 = b1 2 , 3 = b1 3, = 0

Case 2. b 12 + b13 > b23 -

The condition of this case implies that Yij > Luij/CJ for all {i,j) in an optimal

solution to P(3N); however, the exact number of facilities to be loaded on each of the arcs

depends on the demand between the different pairs of nodes and we need to consider

several subcases.

Subcase 2(a). r 12 + r 13 < C, r 12 + r23 < C and rl 3 + r23 < C.

Subcase 2(b). r 12 + r1 3 < C, r1 2 + r23 < C and r 13 + r2 3 > C.

Subcase 2(c). r 12 + r13 < C, r12 + r23 > C and r1 3 + r 23 > C.

Subcase 2(d). r 12 + r13 > C, r 12 + r23 < C and r 13 + r2 3 < C.

Subcase 2(e). r12 + r13 > C, r 12 + r23 < C and r1 3 + r23 > C.

Subcase 2(f). r 12 + r1 3 > C, r 12 + r23 > C and r 13 + r2 3 > C.

Note that because of symmetry between the variables Y12 and Y13, we do not need

to consider the remaining two subcases:

Subcase 2(g). r 12 + r13 < C, r12 + r23 > C and r13 + r23 < C.

Subcase 2(h). r 12 + r1 3 > C, r12 + r2 3 > C and r1 3 + r 23 < C.

Consider subcase 2(a). The stated condition implies that

U12 + U13] [u12j +L' 1 3J +

U12 +u23l =u12] +L[U23+ 
u13 + U231 =LU31 +[LU23+C~s 1 - Iu 3]_~J1'2-+

and, hence, the three-partition inequality (10) is nonredundant with righthand side equal to
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[Ui2J + [C] + [F] + 2.

Similarly, the three-partition inequality is nonredundant for subcases 2(c) and 2(e) and is

redundant for the other three cases.

Subcases 2(a), 2(c) and 2(e). For these three subcases, we define the dual solution as

follows:

X = 0, X2 = b2 3 - b1 3 , X3 = b2 3 - b1 2 , = b1 2 + b1 3 - b2 3.

This solution is feasible for P(3D) and satisfies each of the constraints as an equality. The

optimal solutions to P(3LP) corresponding to this solution depend on the values of rij and

are:

Y12 = lC2J + 1 for all three subcases;

(UjX3 + 1 for subcases 2(a) and 2(c),

Y13 =-U
UC3 + 2 for subcase 2(e);

U3] for subcases 2(a) and 2(e),

Y23 =u + 1 for subcase 2(c).

It is easy to verify that these solutions are feasible for P(3LP) for the respective cases and

that these integer solutions and the dual solution satisfy complementary slackness.

Subcases 2(b), 2(d) and 2(f). For these subcases, the three-partition inequality is

redundant; we set x = 0 and the remaining variables of P(3D) as follows for all three

subcases:

, = bl2 + b1 3 - b23 b 12 + b2 3 - b13 and3 = b13 + b23 - b1 2
2 2 2

This solution is feasible for P(3D) and satisfies each of the constraints as an equality. The

optimal solutions to P(3LP) corresponding to this dual solution are:
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l2 = ( I2 for subcase 2(b),

Y 12 2 + 1 for subcase 2(d) and 2(f);

Y13 = [-C3 + 1 for all three subcases;

=U23] + 1 for subcases 2(b) and 2(f),

y23 = ~ - 3] for subcase 2(d).

Again, it is easy to verify that these solutions are feasible for P(3LP) for the respective

cases and satisfy complementary slackness. 

4. Conclusion

In this paper, we have studied two core subproblems of the Network Loading

Problem. In both cases we completely characterized the convex hull of the set of feasible

solutions by identifying additional classes of facets. Several generalizations of the results

are possible. For example, a generalized version of the arc residual capacity inequality

applies to practical situations in the telecommunications and trucking industries when two

facilities of capacities 1 and C (representing two communication channels or two trucks) are

available. More importantly, a generalization of Theorem 3.5 applies to these situations.

This generalization has an algorithmic implication: for the two facility case, it permits us to

develop a linear programming formulation of the NLP whose bound is at least as strong as

the bound obtained by a Lagrangian relaxation approach that relaxes flow conservation

constraints. Magnanti, Mirchandani and Vachani (1990) describe this result and its

computational consequences in greater detail.

The second subproblem that we have studied is a three-node network loading problem

with a demand between every pair of nodes. Although the problem has little, if any, direct

application, it is useful in the context of network loading problems defined on general

networks if the nodes are partitioned into three subsets. We have noted that the cutset facet

inequalities are not, in general, sufficient for describing the convex hull of feasible

solutions to this problem. We identified an additional facet inequality, the three-partition

inequality, and appended it to the formulation to describe the convex hull. This three-

partition facet generalizes to facets for larger networks if we consider a three-partition of the

node set; moreover, a generalization of this facet define valid inequalities for the two facility

�I· ------ lllsrrrr--u�--·^-Y·llpl �·-·r_�-c�·l---�·--·-r r_-_·_�·�L�-�-__-L�i-__-__ll__i�^·_ -·1I1_�-_I__
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case. These facets and valid inequalities can form the basis of a cutting plane procedure for

solving the NLP.

Indeed, we are currently in the process of testing the computational efficacy of the arc

residual capacity and the three-partition inequalities. Our preliminary results are quite

encouraging: when applied to some practical multifacility network problems encountered in

the telecommunications industry, the addition of these inequalities, together with some
related cutset residual capacity inequalities, has reduced the gap between the objective

values of the integer program and its linear programming relaxation by 75%. Magnanti,

Mirchandani and Vachani (1990) give more details concerning these computational

ramifications of the results presented in this paper.
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Appendix A

In this appendix we provide proofs for two of the results stated in the body of this

paper.

Proposition 3.1. Conv(SADP) is a full dimensional polyhedron. That is, dim

(Conv(SADP)) equals q + 1.

Proof. The constraint set of P(SADP) has q + 1 variables and no explicitly defined

equations. Therefore, dim (Conv(SADP)) is no more than q + 1. To show that this bound

is tight, we list q + 2 affinely independent points belonging to Conv(SADP).

(i) y=O; gk=Oforall k Q.

(ii) y = 1; gk = 0 for all k E Q.

(iii) Let j E Q; y = Fuj / C1; gk = uk for k = j and O otherwise. (There are q

such solutions.) 

Proposition 3.2.

1. For every k E Q, gk 2 0 defines a facet of Conv(SADP).

2. For every k E Q, gk u Uk defines afacet of Conv(SADP).

3. If E uk > C, then gk c Cy defines a facet of Conv(SADP).
keQ keQ

Proof. In order to show that a valid inequality Xy + g < P0 for Conv(SADP) is also facet

defining we must show that (a) {(y, g) e Conv(SADP): Xy + g = •0} X Conv(SADP),

i.e., y + f3g < o0 defines a proper face of Conv(SADP) and (b) (q+l) affinely

independent points in Conv(SADP) satisfy Xy + [g = 30.

It is easy to see that all three inequalities satisfy condition (a). Thus, we will establish

only condition (b).

1. Without loss of generality, consider the inequality gl > 0. The (q + 1) points

listed in the proof of Proposition 3.1 with j E Q\ 1) } satisfy gl = 0.

2. Without loss of generality, consider the inequality gl ul. The following

solutions are affinely independent, belong to Conv(SADP), and satisfy gl = u l.

_ I __1_1_� I--I-�11II�·- ICIIU·-IIII_·LUII·II� .) �-�II_-·-·� -.���--
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(i) y = rul/C; gl = ul; gk = 0 for all k 2.

(ii) y = rl/C]+ 1; g =U; gk = 0 for all k > 2.

(iii) Let j Q\{ 1 }, y = (ul + uj)/C1; g1
= ul; gk = Uk for k = j and O

otherwise. (There are q-1 such solutions.)

3. Let P form a minimal cover of C, i.e., I uk > C and I uk < C for any j E P.
kEP keP~Fj}

By assumption, the problem has a minimum cover. Without loss of generality, suppose

that P = (1, 2, ..., p}. Let 6 = C - uk < up. The following q + 1 solutions are
keP\Ip)

affinely independent, belong to Conv(SADP), and satisfy C gk = Cy.
kEQ

(i) y = O; gk = O for all k e Q.

(ii) y = 1; gk = uk for all 1 < k < (p-1); gp = ; and gk = 0 for all k Q\P.

(iii) y = 1; gl = ul - 1; gk = Uk for all 2 <k < (p-1); gp = + 1; and gk = 0,

for all k E Q\P.

(iv) y = 1; gl = ul- 1; gk = Uk for all 2 <k < (p-1); gp = 8; letj E Q\P, gk=

1 for k = j and 0 otherwise. (There are (q - p) such solutions.)

(v) y = 1; letj E P\{ 1), gj = uj - 1; gk = Uk for k E P\{j); gp = + 1; and

gk = 0 for k E Q\P. (There are (p - 2) such solutions.) 0

^·IIIP--·-L_ I�Llla�Y1�.�--iIIUW�� ·�Y IC�II-·--^-UCIIIYUI·V-L·-L-^�I··I�-�__-�
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