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that string theory flux compactifications lead to the most generic potentials allowing for
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1 Introduction

Since the pioneering work in [1–3] and its revival [4–10], recent years have witnessed an

enormous progress in the swampland program, see [11, 12] for reviews. The swampland

program seeks to constrain properties of effective field theories required to be consistently

realizable in theories of quantum gravity (such as string theory). A class of constraints

refers to the properties of the moduli space of massless scalars in the theory, in particular

the Swampland Distance Conjecture (SDC). A loose formulation of its best established

variant [2] is that, as one moves toward infinity in moduli space, there appears an infinite

tower of states with masses going to zero exponentially with the traversed distance, hence

below the cutoff of the effective theory, which thus breaks down. The strong version of this

SDC is that the critical distance controlling this exponential scaling is Planckian [13].

The SDC has been extensively tested in string theory compactifications [14–29]. Other

discussions of this conjecture involve towers of objects other than particles [30, 31], string

RG flows [32], backgrounds with Anti de Sitter spacetimes [33–36], etc. The central role of

the SDC is also made clear by its connection with other conjectures, like the Weak Gravity

Conjecture [14, 16, 28, 32, 37], the de Sitter conjectures [38–41], the Zk Weak Coupling

Conjecture [42], the emergence proposal [14, 43], etc.
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An important point in the discussion of SDC is that it should apply to adiabatic motion

in moduli space. Morally, this amounts to varying the scalar values as vevs, i.e. with no

spacetime variation. In fact, as shown in [33], backgrounds with spacetime varying scalars

can lead to transplanckian motion without encountering exponentially falling towers of

states.1 A useful way to understand this point is that adiabatic motion corresponds to

moving along geodesics in moduli space, while spacetime dependence introduces extra

forces in moduli space motion, leading to non-geodesic trajectories. This would seem to

imply that the SDC, in the adiabatic sense, should apply only to geodesic trajectories in

moduli space.

On the other hand, although the SDC and its variants are most precisely stated and

studied for exactly massless moduli, on physical grounds they should be expected to hold in

the presence of scalar potentials, as long as the relevant masses and energies remain smaller

than the cutoff, i.e. a pseudomoduli space. From this perspective, consider a theory with

a moduli space M parametrized by a set of scalars φi, such that the SDC is satisfied. If a

potential V (φ) is now introduced, the motion of scalars is restricted to the valleys of this

potential, which can either correspond to left-over massless moduli, or to directions along

which the potential may not be exactly flat but the relevant energies are smaller than a

given cutoff Λ. Let us denote this (pseudo)moduli space M. At energies below Λ, we may

integrate out the heavy directions of M and obtain and effective theory for the light scalars

ϕa parametrizing M .

Now this leads to the following conundrum. In the effective theory below Λ, one can

study the SDC by considering geodesic trajectories in the moduli space M. On the other

hand, the trajectory can be regarded as uplifted to a trajectory in M, so that distances

along it can be computed as in the parent theory.2 But these trajectories in general do not

correspond to geodesics in M, and could in principle violate the SDC, even if the SDC is

obeyed for geodesics in M !

A most relevant aspect of this apparent puzzle is that, if actually realized, the SDC

would cease to make sense as a swampland constraint. Given an effective theory violating

the SDC in its moduli space, one could always argue that this corresponds to the theory

on M, and that above certain scale Λ the theory is completed to a larger moduli space M

which obeys it, and which can in principle be completed into a quantum gravity theory.

In fact, there is no reason why this cannot occur in a nested manner with several effective

theories scalating up to some higher energy scale at which finally the SDC is fulfilled. In

other words, since the notion of moduli scape in the presence of multi-scale potentials is a

scale-dependent notion, the SDC constraint would only apply in a certain energy regime,

but then, which energy regime?

We have guided the reader through this argument to make our main point manifest.

We propose that the above situation cannot occur in a theory of quantum gravity, and that

1For spacetime dependence and transplanckian scalar travel, see also [13, 44, 45].
2An important point is that the kinetic terms on the effective theory in M are affected by the integration

of the heavy modes; this is captured by the statement that in the effective theory below Λ, the metric on

M is the induced metric from the embedding of M ⊂ M. This is equivalent to the statement that the

distance is obtained from the trajectory when embedded in M.
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the SDC must apply at any energy scale, namely, in any of the effective theories valid at

any intermediate energy scale. This has the following profound implication: since arbitrary

scalar potentials in a moduli space M can easily lead to subspaces M violating the SDC,

the validity of the SDC at all scales in quantum gravity theories constitutes a non-trivial

constraint on consistent potentials in quantum gravity theories.

The realization of the SDC in moduli spaces of light fields in the presence of potentials3

has been explored in diverse examples in flux compactifications in string theory e.g. [48–

50]. These top-down approaches are valuable, yet very model dependent. In this paper we

instead initiate a model-independent bottom-up approach, closer to the spirit of the swamp-

land program. Our strategy is instead to characterize the non-geodesic trajectories which

are nevertheless ‘sufficiently geodesic’ to allow the realization of the SDC. The approach is

very model independent, since it only involves geometrical properties of the moduli space,

and some information about the towers hiding at its asymptotic regions. Characterization

of the non-geodesicity allowed by the SDC for trajectories in a moduli space, leads in in-

teresting examples to explicit bounds. These bounds can be subsequently tested against

concrete models, and are interestingly saturated in string theory flux compactification in

the asymptotic limits [51].

The model-independent approach allows us to devise an illuminating rephrasing of

the SCD in terms of a Convex Hull condition, similar in spirit to that arising in the

context of the Weak Gravity Conjecture [52], or its scalar WGC (SWGC) extensions [53–

58]. In particular, we characterize SDC towers by a scalar charge to mass ratio as in the

SWGC; this controls the exponential decay rate along asymptotic trajectories characterized

in terms of their asymptotic unit tangent vectors. Conversely, by considering the space

of such vectors for all possible trajectories, we define an ‘extremal region’ by the set of

charge to mass ratios ensuring a fixed minimum decay rate along any possible trajectory.

Although in the original formulation of the SDC [2], the decay rate is an undetermined

O(1) factor, concrete lower bounds have been proposed in [14, 28, 32, 39–41]. This allows

to express the SDC in a given physical system as the condition that the convex hull of the

scalar mass to charge ratios of its towers contains the extremal region. If the convex hull

condition is not satisfied for arbitrary trajectories, one can use the convex hull to recover

the above mentioned bounds on the non-geodesicity of the trajectories. Alternatively, it

can also be used to predict the existence of new towers.

The fact that the scalar charge to mass ratio in our Convex Hull SDC agrees with

the SWGC is a tantalizing hint, although the physical requirement of ‘extremality’ in both

situations does not seem to be necessarily identical. It would be interesting to explore the

relationship between the WGC states and the SDC towers in this Convex Hull context,

possibly along the lines of [16, 28].

The paper is organized as follows. In section 2 we consider the example of non-geodesic

trajectories in a moduli space given by one hyperbolic plane (section 2.1) or products thereof

(section 2.2), and derive bounds on the non-geodesicity of trajectories obeying the SDC.

3In the original work [2] (see also [46, 47]), it was already noted that the SDC also applies to the

subspaces parametrizing minimum loci for the potential for a given effective cutoff scale, and that this can

imply powerful constraints on the potentials consistent with QG.
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The analysis of the multi-moduli cases motivates section 3, where we frame the multi-axion

examples in a general reformulation of the SDC (section 3). This allows us in section 4 to

formulate our Convex Hull SDC (section 4.1), and recover and vastly generalize results of

the previous sections, as we show in several explicit examples (section 4.2). In section 5

we revisit the results about asymptotic flux compactifications in [51], and show that they

realize the critical behaviours of non-geodesicity. Section 6 contains our final remarks.

2 Non-geodesic bounds in the hyperbolic plane

We focus our analysis on trajectories approaching points at infinity in moduli space, in

the spirit of the SDC, since the interesting physics occurs in the asymptotic region near

infinity. Also, it often corresponds to weakly coupled regimes, where effective actions and

scalar potentials can be reliably computed. Moreover, fairly general moduli spaces simplify

in the asymptotic regime, so that very simple moduli space geometries are useful templates

for the asymptotics of general moduli spaces.

In this section, we discuss moduli spaces given by a hyperbolic plane, or products

thereof. Despite their apparent simplicity, they are key to describing moduli spaces of

general CY compactifications near their boundaries at infinity [14, 17, 51], to the extent

of encoding much of the dynamics of these models [59]. Moreover, they allow for explicit

computations which will be useful to motivate our generalizations in later sections.

2.1 One hyperbolic plane

Consider a 4d effective theory with two real moduli s and φ with kinetic terms

n2

s2
( ∂µ s ∂

µ s + ∂µ φ∂
µ φ ) , (2.1)

where n is a free parameter. In other words, the moduli space M is given by the upper

half-plane with metric

d∆2 =
n2

s2

(

ds2 + dφ2
)

. (2.2)

We note that n determines the Ricci scalar curvature

R = −
2

n2
. (2.3)

This geometry is ubiquitous in string theory, with φ corresponding to some periodic axion

and s its ‘saxion’ partner (although we do not assume susy, we stick to this name). For

instance, the type IIB complex coupling in 10d, the 4d axio-dilaton in string compactifica-

tions, and the Kähler and complex structure moduli of 2-tori in toroidal (and orbifold and

orientifolds thereof) compactifications.

In many of these, the SL(2,R) symmetry of the above geometry lead to an exact infin-

ity discrete SL(2,Z) duality symmetry. However, we work in a more general perspective, so

that our analysis is valid in the absence of this symmetry. On one hand, in many compact-

ifications, we would like to regard the above metric as a good approximation to the moduli

space (or suitable subspaces thereof) of CY compactifications, in the large s asymptotic
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region; hence the region near s = 0 is not relevant to this physics context, and the duality

s → 0 and s → ∞ is a mere artifact. Second, the discrete axion periodicity (which would be

present even near s → ∞) is in general spontaneously broken in the presence of potentials

of axion monodromy4 kind [60, 61], a generic situation in flux compactifications [62, 63].

Hence we consider φ to take real values, with no identification whatsoever.

We consider that the SDC is satisfied on this moduli space M, namely there exists a

tower of states with mass scale5

M ∼ s−a, a > 0. (2.4)

If s parametrizes the vertical axis, all geodesics in this space are either vertical lines

or half-circles with centers on the s = 0 line. Thus, the only geodesics approaching s → ∞

are vertical lines with φ = const. For these geodesics, the distance behaves as

∆ ∼ n log s (2.5)

(with n taken positive herefrom). The mass scale of the tower reads

M ∼ exp

(

−
a

n
∆

)

∼ exp (−α∆) , (2.6)

thus leading to the SDC with decay rate α = a
n . This is indeed O (1) in many realizations

in string theory.

Let us now consider a general trajectory approaching s → ∞ in this moduli space. For

reasonable trajectories, we can use s to parametrize it,6 so that the curve is defined by the

expression

φ = f(s) (2.7)

for some function f that we assume sufficiently smooth. This is a template to describe the

moduli space of an effective theory in which there is partial moduli stabilization, and the

light direction can be parametrized by s.

Recalling footnote 2, note that the distance in this effective theory is not measured by

just the metric component gss, but rather by the effective metric obtained upon replacing

the s-dependent value of φ in the underlying metric. This is equivalent to measuring

distance along the trajectory with the ambient space metric (2.2) in M. This yields

d∆ =
n

s

√

1 + f ′ (s)2 ds. (2.8)

4More precisely, the discrete periodicity is preserved due to the multiple-branched structure of the

potential. However, it is spontaneously broken when the problem under study (e.g. adiabatic motion in

moduli space) is restricted to a single branch.
5The fact that the overall scale is independent of φ does not imply that the masses of individual states

in the tower can not depend on φ. Indeed, a typical structure is given by Mn = M |n + φ|, with n labeling

states in the tower and M depending only on s, as required for our analysis. Here the φ-dependence is

determined by the fact [14, 18] that the different states in the tower are generated by monodromy in φ, i.e.

φ → φ + 1 is equivalent to n → n + 1. More general axion dependences in the tower scale will be easily

included in the analysis in section 4.
6Actually, requiring that the trajectory eventually goes to s → ∞ makes this parametrization always

valid for sufficiently large s.
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We can now classify general trajectories in three different kinds, according to the

asymptotic behaviour of f ′(s) in the s → ∞ limit:

• The Asymptotically Geodesic case: this corresponds to f ′ (s) → 0, and we have

d∆ = n
ds

s
. (2.9)

Trajectories of this class approach a geodesic when s → ∞. Therefore the SDC is

automatically satisfied with decay rate

αgeod. =
a

n
. (2.10)

• The Critical case: this corresponds to f ′ (s) → β = const. and we have

d∆ =
√

1 + β2 n
ds

s
. (2.11)

The tower of states has mass scale

M ∼ exp

(

−
α

√

1 + β2
∆

)

, (2.12)

which is consistent with the SDC, but modifies the scale of the exponential. We can

define a factor

ν ≡
αgeod

αnon-geod

(2.13)

that measures such a modification, so that M ∼ exp(−
αgeod

ν ∆). In this case we have

νcrit. =
√

1 + β2 → αcrit =
a

n
√

1 + β2
. (2.14)

Hence, ν → ∞ corresponds to a violation of the SDC in a non-geodesic trajectory.

• The Swampy case: this corresponds to f ′ (s) → ∞, and we have

d∆ = n
|f ′ (s)|

s
ds . (2.15)

Here we can evaluate the behaviour of the tower by computing

d logM

d∆
=
d logM

ds

ds

d∆
= −

a

n

∣

∣f ′ (s)
∣

∣

−1
→ 0. (2.16)

This violates the SDC since the tower mass scale is no longer falling exponentially

with the distance.

We note that the critical case corresponds to the maximum deviation from a geodesic

still consistent with the SDC. It therefore provides a non-trivial bound that any light

direction in the moduli space (after partial moduli stabilization by some scalar potential)

must obey. Notice that this is the class of curves in which the saxion varies linearly with the
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axion (s ∼ a). This will be contrasted with explicit string models of flux compactifications

in section 5, where we show that this class of models saturates the bound.

It is interesting to explore the characterization of these classes in terms of a geometrical

quantity of the trajectories. A natural scalar measure of non-geodesicity is the modulus

|Ω| of the proper acceleration7

Ωi = T j∇jT
i , (2.17)

where T is the normalized tangent vector of the trajectory and ∇ is de covariant derivative

in moduli space. In our case we have

|Ω|2 =

(

f ′(s) + f ′(s)3 − sf ′′(s)
)2

n2 (1 + f ′(s)2)3
. (2.18)

We can now characterize the three classes of paths above in terms of the asymptotic

behaviour for |Ω| as follows. The Asymptotically Geodesic case corresponds to f ′ (s) → 0

which translates to |Ω|2 → 0 . The proper acceleration vanishes asymptotically, since the

trajectory approaches a geodesic. Contrary, for the Swampy case, one has f ′ (s) → ∞

leading8 to |Ω|2 → 1
n2 . Thus, the proper acceleration at s → ∞ attains a maximal value,

and signals a hard violation to the SDC. Finally, the Critical case corresponds to

f ′ (s) → β = const. =⇒ |Ω|2 →
1

n2

β2

1 + β2
. (2.19)

The change in the parameter of the exponential defined in (2.13) can be written as

ν =
1

√

1 − n2|Ω|2
. (2.20)

We can thus recast the criterion that the trajectory respects the SDC as a bound on the

non-geodesicity:

|Ω|2 <
|R|

2
=

1

n2
(2.21)

In the next subsection, we will generalize these bounds to higher dimensional moduli

spaces in which there is more than one hyperbolic plane. We will see that they cannot

be stated simply in terms of the modulus of the proper acceleration, as the direction will

also matter. In other words, the bounds will vary depending on the type of trajectory/ the

growth sector to which the trajectory belongs.

2.2 Product of hyperbolic planes

We now consider a moduli space given by a product of hyperbolic planes. For simplicity,

we consider the case of two, which suffices to illustrate the point. The metric is

d∆2 =
n2

s2

(

ds2 + dφ2
)

+
m2

u2

(

du2 + dψ2
)

. (2.22)

7Actually, since our trajectories are not worldlines, we should use the term “extrinsic curvature”, but

we stick to the kinematical language.
8One also needs that sf ′′

f ′3 → 0. This is satisfied for all functions of the form f(s) = sn, (log s)n, esn

.
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As in section 2.1, we focus in paths approaching the infinite distance regime s, u → ∞.

Note that this setup (2.22) nicely models the asymptotic behaviour of CY moduli spaces,

cf. section 5, thus our discussion is of direct relevance to the study of non-geodesic paths

in CY moduli space.

In order to satisfy the SDC for geodesics, it is enough to introduce a tower of states

for each of the hyperbolic planes, with mass scales

Ms ∼ s−a, Mu ∼ u−b, a, b > 0. (2.23)

It is clear that these towers enforce the SDC for geodesic paths contained in a single

hyperbolic plane. Moreover, one can show that they also suffice to recover the SDC for

more general geodesics.9

Let us consider non-geodesic paths approaching infinity in different ways, some of

which correspond to different growth sectors, in the terminology of [17]. For instance, we

can consider paths that only move on one of the hyperbolic planes, namely approaching

s → ∞ while keeping u, φ fixed, or alternatively, approaching u → ∞ with s, φ fixed. In

that case, the situation is equivalent to the one discussed in section 2.1 and we can simply

borrow the classification of asymptotically geodesic, critical and swampy trajectories. We

could also apply the criterion (2.21) on the proper acceleration |Ω|2, although this would

yield two different bounds for the two different curvature paratemeters n and m. In other

words, there is no single discriminating criterion on |Ω| which applies to both kinds of

paths.

On the other hand, we may consider a path

ψ = f(s) with φ, u const. (2.24)

so that we move along a trajectory involving the axion and saxion of different hyperbolic

planes. The distance along this curve is given by

d∆ =

√

n2

s2
+
m2

u2
f ′(s)2 ds =

n

s

√

1 +
m2

n2

s2

u2
f ′(s)2 ds . (2.25)

In the second equality we recognize the two terms in the square root to be the geodesic

and the non-geodesic contribution to the field distance.

As done in section 2.1, we can classify the trajectories in the same three different

families, depending on the relevance of the non-geodesic contribution in the asymptotic

limit s → ∞. We thus see that the critical case is:

m2

n2

s2

u2
f ′(s)2 → const. , (2.26)

which means that sf ′ → γ = const., implying the critical behaviour

f(s) → γ log s . (2.27)

9Physical realizations like CY compactification may produce additional towers. This is ignored in this

section for simplicity, but is included in the general analysis in later sections.
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If f(s) grows slower or faster than this critical case one gets the asymptotically geodesic

and the swampy case respectively.

The SDC will only be satisfied for asymptotically geodesic or critical trajectories. Only

for those paths, the towers of states in (2.23) will still exhibit the exponential behaviour

in terms of the distance along the path. Recall that the critical case is the maximum

deviation from a geodesic still consistent with the exponential behaviour required by the

SDC, although the factor in the exponential changes. For a tower with Ms ∼ s−a one finds

Ms ∼ exp

(

−
α

ν

)

, (2.28)

with α = a
n being the geodesic decay rate, and the factor of violation of the SDC given by

ν =

√

1 +
m2

n2

γ2

u2
. (2.29)

In comparison with the case of dual axion-saxion pair, we find that this factor varies when

choosing different u = const. planes.

This also produces a direct relation, albeit a different one, between ν and the modulus

of the proper acceleration. Indeed we find

ν =
1

√

1 −m|Ω|
. (2.30)

Hence the existence of two axionic directions on which the path can wind lead to

different relations between ν and |Ω|. An implication is that, taking the ν → ∞ limit, they

lead to different discriminating criteria. The critical values correspond to |Ω| → 1
n and

|Ω| → 1
m , when moving along φ or ψ respectively.

The difficulty in finding a criterion based solely on the modulus of the proper acceler-

ation is that |Ω| misses the information about the direction in moduli space. And trying

to include this information more explicitly may quickly run into nasty and unphysical de-

pendences on the coordinates chosen in moduli space. In the next section we provide a

concrete description which avoids these pitfalls, and yet allows to provide a purely geo-

metrical reformulation of the SDC in general moduli spaces. We will then translate this

general criterion into a Convex Hull SDC condition in section 4.

3 A geometric formulation of the SDC

Let us recap our approach in general language. Consider some theory satisfying the SDC,

i.e. containing towers of states decaying exponentially for every geodesic approaching an

infinite distance limit of the moduli space M. When adding a scalar potential lifting some

of the directions, we will be left with a new moduli space M whose geodesic trajectories

might lift to non-geodesic trajectories in M. To satisfy the SDC in the new IR theory, we

need that the level of non-geodesicity of these trajectories is small enough to still allow for

exponentially falling towers. Given the field metric of M and the towers of states, we can

always identify the non-geodesic trajectories that are consistent with satisfying the SDC

– 9 –
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in the IR theory, where the limiting cases are dubbed critical paths. This was done in

section 2 for the case of products of hyperbolic planes, obtaining specific bounds for the

critical paths. However, this procedure requires specific information about the geometry

of the moduli space, so it needs to be worked out case by case.

In this section, we are going to take a step back and reformulate the SDC in a language

that will allow us to generalise the results of section 2 for general moduli spaces. This will

be later translated into a Convex Hull condition in analogy to the WGC in section 4. The

strategy is to provide a geometric description of the criteria for trajectories to fulfill or

violate the SDC. We will keep the nomenclature introduced in section 2 to distinguish

between the different types of trajectories, namely:

• Asymptotically geodesic paths: they approach a geodesic in the asymptotic limit, so

the exponential rate is that of the geodesic.

• Critical paths: non-geodesics that still marginally allow for the exponential decay of

the tower, although the exponential rate differs from the geodesic one.

• Swampy paths: they highly deviate from geodesics so the tower does no longer fall

exponentially.

3.1 Geometric formulation

The general formulation of the SDC establishes that, for any geodesic in moduli space in

an infinite distance limit there exists a tower of states with mass scale

M = exp ( −α∆ ) (3.1)

with positive α > 0. Stronger versions of the conjecture further require α > O (1), moti-

vated by string theory setups. Let us now focus in the mildest version and simply require

α > 0, leaving the study of the implications of α > O (1) for the next subsection.

Consider a trajectory γ approaching an infinite distance point in moduli space. We

start by rewriting the exponential decay rate α of the tower mass scale as

α(∆) = −
d logM

d∆
= −T i ∂i logM , (3.2)

where T is the normalized tangent vector of γ, and M is implicitly evaluated along it.

This rewriting shows that the only information about γ relevant for the SDC is the

limiting tangent vector when approaching the infinite distance point. This agrees with our

observation that the modulus of the proper acceleration (2.17) is not the right quantity to

discriminate the behaviour of asymptotic trajectories.

An important observation is that the set of allowed asymptotic tangent vectors T

near a point at infinity is in general restricted, in particular for asymptotically geodesic

trajectories.10 For instance, in the hyperbolic plane case, any curve approaching s → ∞

with bounded φ must have φ̇ → 0; hence only the asymptotic tangent vector in the s

10Notice that for this it is crucial that the point at infinity is singular. For a regular point, space is locally

flat and thus any tangent vector corresponds to a geodesic passing through it.
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direction is allowed. On the other hand, relaxing the asymptotic geodesicity requirement

allows to explore more general vectors T , as in the case of critical or swampy trajectories.

To reflect this fact, we define the subspace G as that spanned by asymptotic tangent vectors

of asymptotically geodesic trajectories.11

Let us now consider the implications of the SDC (in its milder version) for such asymp-

totically geodesic trajectories. We note that what appears in (3.2) is the scalar product

between the (limit) tangent vector and the gradient of logM . This implies that a single

tower of states along an asymptotically geodesic direction suffices to satisfy the SDC for

any other direction, except for the orthogonal ones. Thus, the minimal requirement of the

SDC is that there exist as many towers as orthogonal limit tangent vectors in G.

Actually, in general, there may exist other towers of states beyond the above minimal

set. Hence it is convenient to consider a new subspace, denoted by M, spanned by the

gradient vectors of (log of) the scale M , for all existing towers of states. Note that in many

string theory realizations the directions associated to such towers are “dense”; for instance,

in a KK compactification on S
1 × S

1 near the decompactification limit R1, R2 → ∞, there

are towers of KK states with masses

M2 =
( n1

R1

)2

+
( n2

R2

)2

. (3.3)

Hence, for any rational direction of γ i.e. R ≡ R1/q1 = R2/q2, there is a tower of states

with mass M ∼ n/R by taking the states n1 = nq1, n2 = nq2.

In terms of these spaces, the mildest version of the SDC (with α > 0) can be ex-

pressed as:

For any vector in G (i.e. any asymptotically geodesic tangent vector),

there must be at least one non-orthogonal vector in M (i.e. a suitable

tower of states becoming massless).

Equivalently, the projection of M onto G should completely fill the latter:

PGM = G . (3.4)

Incidentally, this implies that their dimensions satisfy dimM ≥ dimG.

This geometric formulation of the SDC resembles a kind of Completeness Hypothesis

where the towers of states play the role of the charge spectra in gauge field theories.

Analogously, here the role of the charge space is played by the space of asymptotic tangent

vectors of asymptotically geodesic trajectories. Stronger conditions - similar to the WGC -

will appear when further requiring the towers to satisfy a lower bound for the exponential

rate α ≥ α0, with α0 some order one constant. This mild formulation, though, already

allows us to extract interesting conclusions. The first observation is that a single tower

of states might not suffice to satisfy the SDC whenever the space G is spanned by more

than one tangent vector while M remains one-dimensional. This can occur e.g. in higher

11Strictly speaking, we are interested in the subset containing all asymptotically geodesic vectors, which

may not necessarily form a vector subspace. However, being it the case in all the examples at hand motivated

by string theory, we will treat G as a well-defined vector subspace.
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dimensional moduli spaces in which the tower misses to depend on at least one of the

saxions. A second observation is that, by satisfying the above criterion, we are actually

fulfilling the SDC along a more general set of trajectories beyond geodesics. We will

characterize this set of trajectories in the next subsection.

3.2 Non-geodesic bounds

We can now turn to characterizing which trajectories could satisfy or violate the SDC.

Indeed, the presence of a single tower makes the mild version of the SDC satisfied for all

its non-orthogonal directions, and not only geodesics. Taking into account all possible

towers, this defines a subset TSDC composed by all the directions that satisfy the SDC. In

this way, the SDC can be reformulated as imposing that this subset must contain all the

asymptotically geodesic directions,

G ⊂ TSDC . (3.5)

Clearly, swampy trajectories violating the SDC will therefore correspond to those not

belonging to TSDC. Notice that, for this mild version, TSDC is just the whole set of directions

in moduli space minus the orthogonal complementary of the subspace M. Hence, critical

trajectories also belong to TSDC in this mild formulation.

Let us now turn to the stronger version of the SDC, in which we impose a lower

bound for the exponential rate α ≥ α0 with α0 some O(1) constant. It is reasonable

to assume that α cannot take arbitrarily small values as otherwise it would violate the

exponential behaviour required by the SDC. Moreover, all string theory examples studied

so far have O(10−1 − 10), and precise bounds have been given in the context of towers of

BPS particles in Calabi-Yau compactifications [14, 28]. There, one finds that α ≥ 1√
2n

for

a CYn, implying α ≥ 1√
6

for a CY3 Type II compactification to four dimensions. A lower

bound has also been motivated by using the Transplanckian Censorship Conjecture [39–

41] or by identifying infinite distance limits with RG flow endpoints of BPS strings in 4d

N = 1 EFTs [32]. Here, we will not commit to any of these specific values for α0 although

it would be extremely interesting to get a better understanding of this.

We can now extend the last formulation in (3.5) to include the lower bound on α

by finding an appropriate definition of TSDC. To do this, let us recast the scalar product

in (3.2) in terms of the angle θ between the (limit) tangent vector and the gradient of

logM , and get

α = −|∂ logM | cos θ . (3.6)

Here we see that a single tower will make the SDC with α ≥ α0 satisfied for any direction

such that

cos θ ≤ −
α0

|∂ logM |
. (3.7)

This is, each tower will then come with an associate cone of directions satisfying the SDC,

CM (α0), and defined by (3.7). Therefore, TSDC will be formed by the union of the associate

cones of all the towers of states (see figure 1), this is,

TSDC =
⋃

CMi
(α0) . (3.8)
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Figure 1. Pictorial representation of the subset of directions TSDC. There are two towers of states

and their associated cones are represented. Every direction outside both of these cones does violate

the SDC for α ≥ α0.

With this definition, the SDC with α ≥ α0 reduces again to (3.5). Notice that not all

critical trajectories will satisfy (3.7), so only a subset of them will belong to TSDC, whose

definition now depends on α0. We will translate this condition into a convex hull condition

in section 4, which provides an equivalent but simplified and more elegant formulation of

the above criterion.

In general, determining TSDC is not only associated to the non-geodesicity of the tra-

jectory but requires full information about the tower of states. However, it becomes a

purely geometric condition in the particular case that

M = G . (3.9)

In this situation, the realization of the SDC is such that the non-geodesicity of trajectories

is directly related to the slow-down of the exponential falloff of state masses along them.

It is in this case when the moduli space geometry completely determines the structure of

the towers near infinity, as indeed occurred in earlier examples, and in most string theory

examples. Hence, it is a natural framework to discriminate the asymptotically geodesic,

critical and swampy trajectories, generalizing our discussion in section 2.

Our approach allows to go even further, and also obtain the modification factor ν in

the exponential decay rate for the non-geodesic cases, as follows. The exponential rate

in (3.2) can be written as

α = −(PMT )i∂i logM = −(PGT )i∂i logM . (3.10)

where we have used (3.9) in the last step. Notice that PMT is nothing else than cos(θ)

defined in (3.6). For a unit vector in G, the result of this expression is the non-vanishing

exponential decay rate required to fulfil the SDC along geodesics, i.e.

α = |PGT |αgeod. (3.11)
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Hence, the factor ν in (2.13) is given by

ν = |PGT |−1 = (1 − |PG⊥T |2)−1/2. (3.12)

It is straightforward to apply these concepts to recover the results for the hyperbolic

space in section 2.1. As can be readily checked from (2.4), the relevant subspaces are

spanned by ∂s,

G = M = 〈 ∂s 〉 . (3.13)

For trajectories φ = f(s) we have the tangent vector

T =
s

n
√

1 + f ′(s)2

(

∂s + f ′(s) ∂φ
)

. (3.14)

Non-geodesic trajectories are those with a nontrivial ∂φ component in their limit tangent

vector. Finally, the criterion depending on the modulus of the proper acceleration (2.20)

is recovered from (3.12) by checking, in the limit s → ∞, the relation

PG⊥T = n|Ω|. (3.15)

One can similarly recover the results for products of hyperbolic spaces from these

considerations, as the interested reader in encouraged to check. We instead move on to

provide an even more intuitive formulation of these criteria in terms of a Convex Hull

condition similar to that used for WGC.

4 The convex hull SDC

In this section we formulate the SDC in terms of a Convex Hull condition in the space of

asymptotic trajectories. This will let us to easily recover our earlier results about different

classes of asymptotic trajectories in a pictorial way which is more familiar in the Swampland

program. Moreover, it will also allow us to generalize the story for any combination of

towers of states and any asymptotic structure of the field space.

4.1 General formulation

Consider a trajectory γ approaching an infinite distance point in moduli space and ~T

its normalised tangent vector. As in section 3, we denote by G the subspace spanned

only by asymptotically geodesic vectors, i.e. that approach a geodesic trajectory at infinite

distance. We have seen that requiring the existence of an infinite tower of states becoming

light along any of these asymptotically geodesic trajectories, actually allows for satisfying

the SDC along a more general set of trajectories characterised by vectors in TSDC ⊃ G.

This larger space allows for a certain level of non-geodesicity, including critical paths but

excluding swampy trajectories, according to the nomenclature summarised at the beginning

of section 3. If we require a stronger version of the SDC in which the exponential rate

in (3.2) satisfies a lower bound α ≥ α0, only a subset of the critical paths will be included

in TSDC. In other words, the SDC with α ≥ α0 is equivalent to requiring that, for any
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direction in G, there must exist a tower of states such that the gradient vector of logM

projected onto that direction is sufficiently large. Our goal now is to translate this statement

into a convex hull condition.

The key observation is that there is a formal analogy with WGC quantities. The

gradient of M can be regarded as the scalar charge of the tower under the moduli. We

can also think of G as the vector space of possible ‘charge’ directions. Hence, the previous

criterion can be rephrased as requiring that for every charge direction, there must exist a

charged infinite tower of states satisfying α(∆) ≥ α0 asymptotically, where α0 is a fixed

contant (of order 1) which quantifies the criterion of fast enough decay to satisfy the SDC.

The SDC conditions can thus be formulated in analogy with the scalar version of the

WGC [53]. In particular for a tower with (scalar dependent) mass scale M , we can define

a scalar charge to mass ratio

~z = −g− 1
2 ~∇ logM , (4.1)

where g1/2 is a matrix whose square is the field metric (more precisely, introducing the

n-vein eai e
b
jδab = gij , we have za = −eai g

ij∂j logM). The inclusion of the metric absorbs a

piece in (3.2), such that scalar products become cartesian in the following.

The scalar WGC requires the existence of at least one state satisfying |~z| ≥ O(1), such

that the gravitational force acts weaker than the scalar force [53] (see [58] for a different

motivation of this proposal). Hence, the order one factor is typically fixed such that states

saturating the scalar WGC should feel no force. Unlike with the usual WGC, the order

one factor is not associated to extremality of black holes but, for convenience, we will keep

the terminology extremal to refer to those states saturating the bound. At first glance, it

seems that the scalar WGC is different to the SDC, as for the latter what matters is not the

modulus of the scalar charge to mass ratio but the projection over a trajectory. However,

we will se that the SDC can actually be understood as a Convex hull Scalar WGC in which

the extremal states are instead identified as those decaying exponentially with a minimum

rate α0.

Consider a vector space of dimension equal to the number of scalars under consider-

ation, and a general unit vector ~n therein to parametrize the asymptotic behaviour of a

general trajectory. This is related to the earlier vector ~T by na = eai T
i, and is unit norm

with respect to the Cartesian dot product. We define the extremal states as those with a

scalar charge to mass ratio vectors ~z satisfyng

~n · ~z = α0 (4.2)

for some fixed α0 > 0 determining the lower bound for the SDC exponent. From (3.2), we

see that for fixed ~n, this corresponds to the full set of towers with exponential rate α0 along

the asymptotic trajectory defined by ~n. It corresponds to a hyperplane orthogonal to ~n,

at a distance α0 from the origin. Scanning over all possible unit vectors,12 we define the

12Note that we allow for both positive and negative values of all components of ~n. This is unphysical

for the scalars becoming large in trajectories going off to points at infinity. However, we allow for this

possibility at the formal level, to produce a simpler formulation of the convex hull condition, out of which

the physical constraints follow from simple restriction of the allowed trajectories.
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Figure 2. The extremal region as envelope of hyperplanes.

extremal region as the enveloping hypersurface defined by the set of all such hyperplanes.

It corresponds to a sphere or radius α0, see figure 2.

By allowing the sphere in figure 2 to take any radius, we recover the mildest version of

the SDC in which α is an undetermined positive constant, α > 0. However, it seems reason-

able to consider a finite radius for the extremal ball which cannot be taken parametrically

small, as that would spoil the exponential behaviour and violate the SDC. Determining

how small α can get is one of the biggest open questions of the SDC and, as explained

above, specific lower bounds have been proposed in the literature [14, 28, 32, 39–41]. One

possibility motivated by the key role of the scalar charge to mass ratio above is that α0

can indeed be determined by using the scalar WGC or some sort of no-force requirement,

as it was probably envisioned in [53]. This would be very interesting as it might be used

to provide a bottom-up rationale for the SDC.

It is now straightforward to define the SDC in terms of a convex hull13 condition:

Convex hull SDC: in a theory with a set of towers corresponding to

scalar charge to mass ratios ~zi, the requirement that the SDC is satisfied

(with at least decay rate α0) by any trajectory is exactly the condition

that the convex hull of the vectors ~zi contains the above defined extremal

region, namely the unit ball of radius α0.

Alternatively, it is possible that the SDC convex hull condition is not satisfied, so

the SDC does not hold (with decay rate α0) for all trajectories, but it still applies to

some trajectories. In this situation we can put bounds on the trajectories not to become

swampy, constraining the level of non-geodesicity allowed such that the SDC is satisfied.

This situation naturally occurs when we start with a UV theory satisfying the SDC and

then add a scalar potential lifting some directions, so we are left with a IR moduli space

13To achieve a full convex hull, we formally use the method of images and also include the mirror vectors

along the negative directions mentioned in footnote 12.
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whose geodesics might lift to non-geodesics from the UV perspective. In this case, we can

use the convex hull SDC in the UV theory to constrain the allowed set of non-geodesic

trajectories that would still allow us to comply with the SDC in the IR. The advantage of

this formulation is that it also allows us to incorporate the possibility that new towers of

states appear in the IR theory when adding the scalar potential. Hence, the Convex Hull

SDC can be used to constrain either:

• the spectra of the theory, by requiring as many towers as needed to satisfy the convex

hull condition,

• or the possible trajectories along which the SDC can be satisfied for a fixed set of

towers and, therefore, the scalar potentials consistent with quantum gravity.

This latter option is not possible in the usual WGC, as the charge lattice is typically a

fixed input of the theory.14 However, it is very natural in the context of the SDC, as the

allowed set of trajectories consistent with quantum gravity is still an open question, as it

depends in turn on what scalar potentials can be realised in quantum gravity.

4.2 Examples

In this section we illustrate these ideas with examples, reproducing and generalizing the

results in previous sections.

4.2.1 The hyperbolic plane complex scalar revisited

Consider the case of the hyperbolic plane in section 2.1. Using the metric (2.2) the charge

to mass ratio vector for a tower with mass scale M is

~z = −
s

n
(∂φ logM,∂s logM) . (4.3)

Asymptotically geodesic trajectories have a tangent vector which approaches ~n = (0, 1)

asymptotically. Critical trajectories are parametrised by (2.7) with constant f ′ = β, so the

unit vector is

~n =
1

√

1 + β2
(β, 1) . (4.4)

For these trajectories the vector ~n is constant so that (4.2) corresponds to the equation of

a straight line in the plane (z1, z2). Different trajectories with different values of f ′ will

give rise to different straight lines, e.g. horizontal lines correspond to a purely saxionic

trajectory, and bigger β leads to bigger slopes.

For the particular case of a single tower M ∼ s−a, cf. (2.4), we have a single point

(and its image) at ~z = (0,±a/n). Clearly, the convex hull of these two points does not

14Actually, the charge lattice can vary after higgsing a gauge group. If the higgsing is too large, this can

lead to a violation of the WGC in the IR, even if it was originally satisfied in the UV. This is a known

loophole of the WGC [64]. From our perspective, by analogy with the SDC, the resolution is that the

amount of higgsing should be restricted in quantum gravity, so the WGC could also be used to constrain

the allowed IR charge lattices.
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Figure 3. The bound on almost saxionic trajectories.

contain the ball of radius α0, hence it does not satisfy the SDC for any trajectory. The

SDC is satisfied only in the purely saxionic (geodesic) direction if a/n > α0, or trajectories

close enough to it. We can then use the convex hull condition to put a bound of how much

a trajectory can deviate from the geodesic saxionic trajectory. For this porpuse, we just

need to compute the angle cos θ = 1/
√

1 + β2
max at which a tangent trajectory to the ball

passes by the point ~z = (0,±a/n) (see figure 3). This occurs for a trajectory with

βmax = (cos θ)−2 − 1 =

(

a

nα0

)2

− 1 (4.5)

Hence, critical trajectories with β ≤ βmax will satisfy the SDC with a exponential rate

given by

αcrit. =
a

n
√

1 + β2
, (4.6)

recovering the result (2.14) in section 2.1.

Alternatively, if one is interested in enforcing the SDC for any trajectory, we have to

introduce more towers, such that the convex hull of their ~z’s encloses the extremal region.

In figure 4 we depict situations with different towers and fulfilling, or not, the SDC for

any trajectory. It is instructive to compare with the criterion in section 3.1 in terms of the

cones comprising TSDC, see figure 5.

4.2.2 Two saxions

Let us consider now a theory with two saxion-like real scalars, namely with a metric

d∆2 =
n2

1

s2
1

ds 2
1 +

n2
2

s2
2

ds 2
2 . (4.7)

This can be considered as template for the situation with two complex scalars,

with hyperbolic space metric (2.22), if we restrict to trajectories not involving the

corresponding axions.
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Figure 4. The convex hull satisfied or not.

Figure 5. Same setups as those shown in figure 4 from the perspective of the subset TSDC.

The scalar charge to mass ratio for a general tower with mass scale M(s1, s2) is

~z = −
( s1

n1

∂s1
logM ,

s2

n2

∂s2
logM

)

. (4.8)

A typical situation is to have two towers, each ensuring the SDC along its corresponding

saxionic direction

M1 ∼ s−a1

1 , M2 ∼ s−a2

2 . (4.9)

This corresponds to the values ~z1 = (a1/n1, 0) and ~z2 = (0, a2/n2) respectively. In figure 6

we depict some examples of the corresponding convex hull conditions. Note that even if

the SDC is satisfied along each saxion direction individually, it may fail along some other

mixed trajectories, see figure 6b. This is reminiscent of similar behaviours in the WGC,

see e.g. [6]. The condition that the SDC is satisfied (with decay rate α0) for any trajectory

is straightforward to get from the geometric figure:

a1a2

n1n2

[(

a1

n1

)2

+

(

a2

n2

)2]− 1
2

> α0 . (4.10)

It is interesting to compare this with the case in which the states are, or are not,

mutually BPS. For instance, if we consider that the two towers of states are mutually BPS

and can form threshold bound states, we expect there are towers with mass scales

M = q1M1 + q2M2 . (4.11)
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Figure 6. The convex hull satisfied or not for two saxions, depending on the specific values of

ai, ni. For simplicity, we only show the positive quadrant.

For these, the scalar charge to mass ratio is given by

~zq1,q2
=

(

a1

n1

q1

M
s−a1

1 ,
a2

n2

q2

M
s−a2

2

)

. (4.12)

Denoting its two components ~z = (z1, z2), they all lie in the hyperplane
n1

a1

z1 +
n2

a2

z2 = 1 , (4.13)

which is the line joining the two towers, namely the red dashed line in figure 6. Hence,

mutually BPS states do not need to comply with our definition of extremal in the context

of the SDC convex hull. This can be important in the case in which the towers correspond

to excitation modes of mutually BPS strings, as e.g. in [32]. It also contrasts with the usual

WGC, where only BPS states are expected to have a gauge charge to mass ratio equal to

an extremal black hole. It would be interesting to clarify the interplay of the two notions

of extremality to possibly improve on the SDC convex hull formulation.

On the other hand, if we consider towers of states which are not mutually BPS, they

might form an ellipse in the scalar charge to mass ratio plane, satisfying the SDC convex

hull condition more easily. This can play an important role when checking the SDC in the

context of BPS towers of particles in CY compactifications and patching the results from

different growth sectors.15

4.2.3 Decoupled saxion-axion

In this section we consider trajectories involving a saxionic scalar s, and an axionic scalar

ψ corresponding to a different saxion u, namely the metric reads

d∆2 =
n2

s2
ds2 +

m2

u2
dψ2 . (4.14)

15Each growth sector corresponds to an specific ordering of the saxions, regarding which one grows faster

when approaching the infinite distance loci. Typically, the tests of the SDC in this context focus on each

growth sector independently [17, 28].
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Clearly the prefactor of the second term can be removed by redefining ψ, but we prefer to

keep it. This allows an easier interpretation of the results as a subsector in a model with

two hyperbolic plane complex scalars, cf. (2.22).

The scalar charge to mass ratio has the form

~z = −

(

u

m
∂ψ logM,

s

n
∂s logM

)

. (4.15)

Asymptotically, the trajectory can be parametrized with s, so it reads ψ = f(s). The

corresponding unit vector is

~n =
1

√

m2

u2 f ′2 + n2

s2

(

m

u
f ′,

n

s

)

=
1

√

m2

n2
s2

u2 f ′2 + 1

(

m

n

s

u
f ′, 1

)

, (4.16)

where the last equality is just a convenient rewriting. As derived in section 2.2, critical

trajectories in this subsector (with u constant) obey sf ′ → γ = const., yielding f(s) →

γ log s. For these trajectories, the unit vector reads

~n =
1

√

1 + β2
(β, 1) , (4.17)

where we have defined β = m
nuγ. If f(s) grows faster, we recover ~n = (1, 0) (swampy paths),

while if it grows slower we obtain ~n = (0, 1) (asymptotically geodesic paths). As in the

previous examples, (4.17) scans over different directions in the 2d plane of ~z, covering all

possible critical trajectories.

It is straightforward to consider different possible towers and analyze whether the

Convex Hull SDC is satisfied, or else, which bounds it sets on the parameters of the model

and the allowed trajectories. For instance, since (4.17) is formally like (4.4), if we consider

a single tower with scaling M ∼ s−a, we obtain a critical value of the decay rate along the

trajectory (4.6). In other words,

γ =
nu

m

√

a2

n2α2
crit

− 1 . (4.18)

from which we can extract the value of αcrit in terms of γ. Only along trajectories with

γ ≤ γ(αcrit = α0) the SDC is satisfied. This defines the maximal amount of excitation the

axion ψ can have not to spoil a given exponential decay rate αcrit along the trajectory.

Interpreting the result as applied to subsector of a two complex scalar model, a trajec-

tory deviating from a geodesic single saxionic direction by exciting the axion of the second

complex scalar preserves the SDC if the axion grows with at most the log dependence

ψ = f(s) → γ log s and γ above. We leave to the interested reader the discussion of

further possibilities of tower distributions and the corresponding bounds.

Combining the results of sections 4.2.1, 4.2.2 and 4.2.3, we complete the analysis of

a two complex dimensional moduli space given by a product of hyperbolic planes. This

can be trivially generalised to products of more than two hyperbolic planes. As explained

in section 5, they are good templates of the asymptotic geometry realised at the infinite

distance limits of Calabi-Yau compactifications.
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5 Constraints on the potential and asymptotic flux compactifications

Throughout this paper, we have argued that consistency of the SDC at any energy scale

put constraints on the set of nearly-flat field trajectories allowed by quantum gravity. This

is because the moduli space of a theory, and consequently the identification of geodesic

paths, varies when going to the IR and integrating out heavy scalar degrees of freedom.

But by placing bounds on the trajectories we are actually constraining the scalar potentials

consistent with quantum gravity! In this section, we give some first steps translating

our bounds to the potential and comparing with previous literature on the asymptotic

behaviour of scalar potentials in string theory.

A natural setup in which to apply our above strategy is string theory flux compact-

ifications. These are most often described by starting with a flux-less compactification,

with a moduli space on which a potential is subsequently introduced by means of a flux

superpotential. The resulting theory may maintain a moduli space of smaller dimension,

if moduli stabilization is only partial, or the resulting potential may admit valleys which

can be discussed as pseudomoduli. From our vantange point we are thus led to propose

that the most general flux compactification must necessarily lead to potentials such that

the resulting (pseudo)moduli space still satisfies the SDC. In particular, this implies that

geodesics in this (pseudo)moduli space must belong to TSDC defined in (3.8), and it should

be impossible to get a valley along a highly turning trajectory which is not in TSDC. We

will see below that in a fairly general class of models, the flux potentials precisely yield

nearly-flat trajectories which are critical according to the definition at the beginning of

section 3. In other words, the valleys of the potential have the maximum level of non-

geodesicity (from the perspective of the original UV moduli space) that it is allowed to

satisfy the SDC in the IR.

The asymptotic behaviour of the potential have been considered in quite some detail

in CY flux compactifications in [51]. The setup is compactifications of M-theory on Calabi-

Yau fourfolds with G4 fluxes [65, 66], for which the mathematical machinery of asymptotic

Hodge theory allows to study the asymptotic form of the flux potential near any infinite

distance limit in complex structure moduli space. By taking the F-theory limit, one recovers

a 4d N = 1 theory with a flux-induced scalar potential. This allows us to study, not only

the more familiar infinite distance limits in perturbative Type IIB/A, but also other types

of limits for finite gs. In the following, we summarize the results of [51] that are relevant

to our discussion, in order to reinterpret them from the new perspective advocated in

this paper.

All infinite distance limits in complex structure moduli space of Calabi-Yau can be

described as the loci of n̂ intersecting complex divisors. In an appropriate parametrization,

these are described by

tj = φj + isj → i∞ , j = 0, . . . , n̂ , (5.1)

while all the other coordinates remain finite. Taking φj and sj to be the axion and saxion

of complex scalars, the above limits correspont to sending to infinity some of the saxion

vevs. Using the Nilpotent Orbit Theorem [67], one can show (see e.g. [14, 17]) that the
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Kähler potential takes the following form in the asymptotic limit,

K = − log(pd(s
j) + O(e2πitj )) (5.2)

where pd(s
j) is a polynomial of degree d on the saxions, and d characterizes the type

of singular limit.16 More concretely, d is associated to the properties of a monodromy

transformation encoding the action of the axionic discrete shift symmetry in the limit. For

single moduli limits, i.e. j = 1, the field metric exhibits the hyperbolic behaviour studied

in section 2.1:

d∆2 =
n2

s2

[

(ds)2 + (dφ)2
]

+ d∆2
finite (5.3)

with n = d/4 and ∆finite only depending on the moduli that are not taken to the asymptotic

limit. The same behaviour occurs if we restrict to paths in some growth sector in multi-

moduli limits. This amounts to approaching the infinite distance limit in such a way that

some axion vevs are much bigger than others. Namely, choosing as suitable ordering, we

have s1 ≫ s2, s2 ≫ s3, . . . and so on. In this so-called strict asymptotic regime we can

neglect polynomial terms of the form sj/sj+1. The leading term of the Kähler potential

can then be factorized,17 yielding

d∆2 =
∑

i

n2
i

(si)2

[

(dsi)2 + (dφi)2
]

+ . . . . (5.4)

to leading order in the asymptotic limit. Namely, each complex modulus whose saxion is

taken to the asymptotic limit parametrizes a hyperbolic plane, cf. section 2.2. Hereby our

motivation to use hyperbolic metrics as toy models to illustrate our proposal and results

in this paper.

Interestingly, not only the field metic, but also the flux-induced scalar potential is

highly constrained in the infinite distance limits. In particular, it is possible to build an

adapted basis of 4-cycles for each growth sector such that the corresponding cohomology

group is divided in orthogonal subspaces under the Hodge norm in the strict asymptotic

regime [51]. This induces a split of the G4 flux in different components Gℓ4, such that the

scalar potential behaves as V ≃
∑

ℓ ||Gℓ4||2. Here ||Gℓ4||2 denotes the Hodge norm of each

flux component, whose moduli dependence can be completely determined using the discrete

data characterizing the singular limit. Amusingly, the moduli dependence is such that the

potential behaves as an homogeneous function18 to leading order in the large field limit,

V (λsj , λφj) ≃ λmV (sj , φj) (5.5)

16Although this also holds for singular loci at finite distance in moduli space, we restrict the discussion

to infinite distance regimes, so d 6= 0.
17For each saxion sj , it is possible to define some integer di characterizing the singularity. If all di 6= 0,

then one simply has ni = di/4. However, the factorization of K breaks down when some di = 0 and a

more detailed analysis is required. We refer the reader interested in the details of these degenerate cases

to [37, 68].
18There were a few exceptions in [51] in which the potential was not homogeneous to leading order (see

also [69]). However, they are not relevant for our analysis as they do not allow for parametrically large

axionic field variations in a controlled regime with s ≫ 1.
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This was exploited in [51] to consider the question of the backreaction on the saxions

due to the motion of the axion away from its minimum e.g. along an inflationary valley in

an axion monodromy scenario [62, 63] (see [60, 61, 70] for early axion monodromy models

unrelated to flux compactifications).

As explained in [51], the resulting backreaction for potentials satisfying (5.5) is of

the form

s ∼ βφ (5.6)

with β a flux-independent parameter. The above relation holds for each individual hyper-

bolic plane independently; namely, a trajectory in which the axions are excited away from

their minima necessarily requires the saxions to have a backreaction linear in the corre-

sponding axions. This implies that the valleys of the potential at the asymptotic regimes

occur along (5.6), so that e.g. highly turning axionic trajectories are not realised. Therefore,

a tower of states decaying exponentially in the saxionic field, will also decay exponentially

in terms of the axion, eventually signaling the EFT breakdown for large field variations.

This linear backreaction, and their correlation to the SDC, had previously been noted

in certain models of Type II flux compactifications [48], see also [42, 49, 50]. It is also highly

correlated to the difficulties for obatining mass hierarchies in these flux compactifications,

as studied in [71, 72]. The analysis in [51] supports that this behaviour is universal in flux

Calabi-Yau compactifications, as it is tied to asymptotic properties of the moduli space

inherited from Hodge Theory. But is it a general feature of potentials consistent with

quantum gravity?

We are now ready to reinterpret (5.6) from a new perspective and provide an answer to

the above question in view of the results of our paper. Noticing that the asymptotic moduli

space metric is that of a hyperbolic plane, the linear result (5.6) corresponds to the critical

case of non-geodesic trajectories in section 2.1. Namely, it corresponds to traveling along

a trajectory which is as non-geodesic as possible in a way compatible with the distance

conjecture. It is very exciting that string theory flux compactification thus saturate the

non-geodesicity bound of the hyperbolic plane. It also implies that the flux potentials

are consistent with the SDC being satisfied at any energy scale, providing evidence for

our proposal.

Clearly, other asymptotic metrics could lead to different parametrizations of the critical

paths. But the conclusion of our work is equivalent: the potential should be such that it

only generates (pseudo)moduli spaces that ensure consistency of the SDC along the RG

flow. This has interesting implications for single field inflation, including axion monodromy

models. It would be interesting to turn the question around, and determine from a bottom-

up perspective what is the more general form of the potential that generates nearly-flat

trajectories corresponding to critical paths. In other words, such that the lightest field is

associated to a field direction that coincides with a critical trajectory. One could then try

to compare these general bounds on the potentials coming from the Convex Hull SDC with

other swampland conjectures constraining the asymptotic form of the potential as the de

Sitter conjecture [73].

Before closing this section, we would like to point out that a counterexample to the

linear backreaction above was presented in [33] by considering field variations with a spatial
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dependence. There, it was shown that the stabilization of the breathing mode is such that

the resulting light mode avoids the KK tower to fall exponentially when approaching infinite

distance. However, this does not contradict our proposal, since this dangerous direction is

not a geodesic from the perspective of the low energy pseudomoduli space. In other words,

it belonged to the subspace G
⊥ of the low energy pseudomoduli space, and thus the SDC

was still satisfied in the IR.

6 Conclusions

In this paper we have discussed the interpretation of the Swampland Distance Conjecture

in effective theories with scalar potentials leading to valleys of light fields. We have argued

that the SDC is meaningful as a swampland constraint only if it applies at any scale, and

that this poses non-trivial constraints of the potentials. We have approached the problem

of characterizing these contraints by first studying the structure of non-geodesic trajectories

near points at infinity in moduli spaces, and characterizing the constraints implied by the

SDC. The analysis is carried out in hyperbolic spaces or products thereof, which provide a

good template of general CY moduli spaces near infinite distance loci. We have shown that

the critical behaviour of maximal non-geodesicity compatible with the SDC corresponds

to axion variations with a linear backreaction on their corresponding saxions. We have

argued that this agrees with the structure of flux compactifications near infinite distance

loci. This suggests that string theory flux potentials are the most generic ones compatible

with the SDC.

We have also reformulated the SDC in terms of a Convex Hull condition, in which scalar

charge to mass ratio of SDC towers determine the exponential falloff α along asymptotic

trajectories. The SDC is satisfied with an exponential rate lower bounded by α0 if the

convex hull of the scalar charge to mass ratio of the towers includes the ball of radius α0.

This allowed a very intuitive pictorial rederivation of the above mentioned results. For a

given set of towers, it can be used to determine the set of trajectories consistent with the

SDC, recovering the critical behaviour of maximum non-geodesicty above. Conversely, it

can be used to argue for the existence of more than one tower in higher dimensional spaces.

Our work opens several interesting avenues for future research. The existence of a

Convex Hull SDC and the scalar charge to mass ratio are tantalizingly reminiscent of

the WGC. It would be interesting to strengthen this connection in explicit string theory

examples along the lines of [16, 28]. Moreover, we have seen that it is only upon requiring

consistency of the SDC at any energy scale with a minimal exponential rate α0, that the

SDC becomes formally equivalent to a convex hull Scalar WGC, implying bounds on non-

geodesic trajectories. However, it is not clear whether the definition of the extremal region

should coincide for the SDC and the scalar WGC. Saturating the scalar WGC is associated

to a no-force condition [53], while the lower bound α0 for the SDC have been motivated

based on the TCC [39–41] and string theory examples [28]. It would be interesting to

understand better this lower bound for the SDC exponential rate and whether it can

always been identified with saturating the scalar WGC or has a different origin. This

might eventually provide a bottom-up rationale for the SDC.
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We would also like to note that our results are in nice harmony with [32] in the context

of BPS strings in N = 1 4d EFTs. The gauge charge to mass ratio of these strings is equal to

their scalar charge to mass ratio, and the string RG flow ensures that its tensions decreases

exponentially with the distance. Hence, in this setup, the extremality factor for the WGC

coincides with the scalar WGC and with the exponential decay rate. It is not surprising

then that all these conditions look formally equivalent.

It would also be interesting to use our ideas to produce constraints on general potentials

in quantum gravity, and to compare them with existing swampland constraints, like the

de Sitter conjectures [38, 73, 74] or the TCC [39]. Another interesting source of potentials

in string theory are non-perturbative D-brane instanton effects. These are relevant for

attempts to achieve full moduli stabilization in type IIB models [75], and there are recent

tools to recast them in terms of fluxes in a backreacted geometry [76] (see also [77, 78]). It

would be interesting to verify the interplay of the resulting instanton flux contributions with

the SDC. Finally, the derivation of the linear backreaction from the potential in asymptotic

flux compactifications in [51] exploits homogeneity of the potential on the complexified

moduli. This is also encountered in the action of certain Zk symmetries in [42]. It would

be interesting to explore the role of the discrete symmetries present in compactifications

with large fluxes on the structure of their potential and hence on their mechanism to enforce

the SDC. We hope to come back to these questions in the near future.
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