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Abstract

We improve the effectiveness of propagation- and linear-optimization-based neural
network verification algorithms with a new tightened convex relaxation for ReLU
neurons. Unlike previous single-neuron relaxations which focus only on the
univariate input space of the ReLLU, our method considers the multivariate input
space of the affine pre-activation function preceding the ReLU. Using results from
submodularity and convex geometry, we derive an explicit description of the tightest
possible convex relaxation when this multivariate input is over a box domain. We
show that our convex relaxation is significantly stronger than the commonly used
univariate-input relaxation which has been proposed as a natural convex relaxation
barrier for verification. While our description of the relaxation may require an
exponential number of inequalities, we show that they can be separated in linear
time and hence can be efficiently incorporated into optimization algorithms on an
as-needed basis. Based on this novel relaxation, we design two polynomial-time
algorithms for neural network verification: a linear-programming-based algorithm
that leverages the full power of our relaxation, and a fast propagation algorithm
that generalizes existing approaches. In both cases, we show that for a modest
increase in computational effort, our strengthened relaxation enables us to verify a
significantly larger number of instances compared to similar algorithms.

1 Introduction

A fundamental problem in deep neural networks is to verify or certify that a trained network is
robust, i.e. not susceptible to adversarial attacks [[11} 29, 39]. Current approaches for neural
network verification can be divided into exact (complete) methods and relaxed (incomplete) methods.
Exact verifiers are often based on mixed integer programming (MIP) or more generally branch-
and-bound [33, 4} 9, 110} 112} (14} 17 24} 25, 31} 41, 48] or satisfiability modulo theories (SMT)
[16} 19,20} 27, [33]] and, per their name, exactly solve the problem, with no false negatives or false
positives. However, exact verifiers are typically based on solving NP-hard optimization problems
[20] which can significantly limit their scalability. In contrast, relaxed verifiers are often based on
polynomially-solvable optimization problems such as convex optimization or linear programming
(LP) [2, 18, 15123 126} 130} 132,134} 147, [50]], which in turn lend themselves to faster propagation-based
methods where bounds are computed by a series of variable substitutions in a backwards pass through
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the network [36} 44} 45/ 46, 149]. Unfortunately, relaxed verifiers achieve this speed and scalability by
trading off effectiveness (i.e. increased false negative rates), possibly failing to certify robustness
when robustness is, in fact, present. As might be expected, the success of relaxed methods hinges on
their tightness, or how closely they approximate the object which they are relaxing.

As producing the tightest possible relaxation for an entire neural network is no easier than the original
verification problem, most relaxation approaches turn their attention instead to simpler substructures,
such as individual neurons. For example, the commonly used A-relaxatiorﬁm] is simple and offers
the tightest possible relaxation for the univariate ReLU function, and as a result is the foundation for
many relaxed verification methods. Recently, Salman et al. [32]] characterized the convex relaxation
barrier, showing that the effectiveness of all existing propagation-based fast verifiers is fundamentally
limited by the tightness of this A-relaxation. Unfortunately, they show computationally that this
convex barrier can be a severe limitation on the effectiveness of relaxed verifiers based upon it.
While the convex relaxation barrier can be bypassed in various ways (e.g. considering relaxations for
multiple neurons [34]), as noted in [32] Appendix A] all existing approaches that achieve this do so
by trading off clarity and speed.

In this paper we improve the effectiveness of propagation- and LP-based relaxed verifiers with a
new tightened convex relaxation for ReLU neurons. Unlike the A-relaxation which focuses only on
the univariate input space of the ReLU, our relaxation considers the multivariate input space of the
affine pre-activation function preceding the ReLLU. By doing this, we are able to bypass the convex
barrier from [32] while remaining in the realm of single-neuron relaxations that can be utilized by
fast propagation- and LP-based verifiers.

More specifically, our contributions are as follows.

1. Using results from submodularity and convex geometry, we derive an explicit linear in-
equality description for the tightest possible convex relaxation of a single neuron, where,
in the spirit of [3, 4], we take this to encompass the ReLU activation function, the affine
pre-activation function preceding it, and known bounds on each input to this affine function.
We show that this new convex relaxation is significantly stronger than the A-relaxation,
and hence bypasses the convex barrier from [32] without the need to consider multi-neuron
interactions as in, e.g. [34].

2. We show that this description, while requiring an exponential number of inequalities in
the worst case, admits an efficient separation routine. In particular, we present a linear
time algorithm that, given a point, either asserts that this point lies within the relaxation, or
returns an inequality that is not satisfied by this point. Using this routine, we develop two
verification algorithms that incorporate our tighter inequalities into the relaxation.

(a) OptC2V: We develop a polynomial-time LP-based algorithm that harnesses the full
power of our new relaxation.

(b) FastC2V: We develop a fast propagation-based algorithm that generalizes existing
approaches (e.g. Fast-Lin [44] and DeepPoly [36]) by dynamically adapting the
relaxation using our new inequalities.

3. Computational experiments on verification problems using networks from the ERAN
dataset [38] demonstrate that leveraging these inequalities yields a substantial improve-
ment in verification capability. In particular, our fast propagation-based algorithm surpasses
the strongest possible algorithm restricted by the convex barrier (i.e. optimizing over the
A-relaxation at every neuron). We also show that our methods are competitive with more
expensive state-of-the-art methods such as RefineZono [37] and kPoly [34], certifying
more images than them in several cases.

2 Verification via mathematical optimization

Consider a neural network f : R” — R" described in terms of N neurons in a linear order[’| The
first m neurons are the input neurons, while the remaining intermediate neurons are indexed by

2Sometimes also called the triangle relaxation [22,134].
3This allows us to consider feedforward networks, including those that skip layers (e.g. see [32,50]).



i=m+1,...,N. Given some input 2z € R™, the relationship f(x) = y can be described as

T, = 2 Vi=1,...,m (the inputs) (1a)
i—1

Z; = Zj:1 w;jzj +b; Yi=m4+1,...,N (the pre-activation value) (1b)

zi = 0(%;) Vi=m+1,...,N (the post-activation value) (1c)
N

yi = ijl wizj +bi Yi=N+1,...,N+r (the outputs). (1d)

Here the constants w and b are the weights and biases, respectively, learned during training, while

o(v) £ max{0, v} is the ReLU activation function. Appropriately, for each neuron i we dub the
variable Z; the pre-activation variable and z; the post-activation variable.

Given a trained network (i.e. fixed architecture, weights, and biases), we study a verification problem
of the following form: given constant ¢ € R", polyhedron X € R™, 5 € R, and

(e, X) défmaxxexc-f(x) =max,,:.{c-ylzeX, (D}, 2)

does (¢, X) < (? Unfortunately, this problem is NP-hard [20]. Moreover, one is typically not
content with solving just one problem of this form, but would like to query for many reasonable
choices of c and X to be convinced that the network is robust to adversarial perturbations.

A promising approach to approximately solving the verification problem is to replace the intractable
optimization problem defining «y in (2) with a tractable relaxation. In particular, we aim to identify a
tractable optimization problem whose optimal objective value yg (¢, X) satisfies y(c, X) < vgr(c, X),
for all parameters ¢ and X of interest. Then, if vz(c, X) < 3, we have answered the verification
problem in the affirmative. However, note that it may well be the case that, by relaxing the problem,
we may fail to verify a network that is, in fact, verifiable (i.e. v(c, X) < 8 < yr(¢, X)). Therefore,
the strength of our relaxation is crucial for reducing the false negative rate of our verification method.

2.1 The A-relaxation and its convex relaxation barrier

Salman et al. [32] note that many relaxation approaches for ReLU networks are based on the single-
activation-function set A’ & { (2i,2) € R? | Ly < 2; < Ui, 2 = 0j(%)}, where the pre-activation
bounds L-, ﬁi € R are taken so that L <z < Ui for any point that satisfies © € X and (I). The
A-relaxation C'4 & Conv(A?) is optimal in the sense that it describes the convex hull of A?, with

three simple linear inequalities: z; = 0, z; > 2;, and z; < U-[fL (2, — Ly).

K3

The simplicity and small size of the A-relaxation is appealing, as it leads to the relaxation

va (e, X) o max {c-y | re X, (@), 0),[@d), (%, z2)eCyVi= m+1,...,N}. 3)
T,Y, 2,2

This is a smalﬂ Linear Programming (LP) problem than is theoretically tractable and relatively easy
to solve in practice. Moreover, a plethora of fast propagation-based algorithms 35,136} 143} 44,45, 149]]
center on an approach that can be interpreted as further relaxing ya, where inequalities describing the
sets C'y are judiciously dropped from the description in such a way that this LP becomes much easier
to solve. Unfortunately, Salman et al. [32] observe that the quality of the verification bounds obtained
through the A-relaxation are intrinsically limited; a phenomenon they call the convex relaxation
barrier. Nonetheless, this LP, along with faster propagation algorithms that utilize the inequalities
defining C'% , have been frequently applied to the verification task, often with substantial success.

2.2 Our approach: Eliding pre-activation variables

In this paper, we show that we can significantly improve over the accuracy of A-relaxation verifiers
with only a minimal trade-off in simplicity and speed. The key for this result is the observation
that pre-activation variables are a “devil in disguise” in the context of convex relaxations. For a
neuron 7, the pre-activation variable Z; and the post-activation variable z; form the minimal set of
variables needed to capture (and relax) the nonlinearity introduced by the ReLLU. However, this

*Here, “small” means the number of variables and constraints is O (# of neurons).



approach ignores the inputs to the pre-activation variable Z;, i.e. the preceding post-activation
variables Z1:i—1 déf (Zl, ceey Zi—1)~

Our approach captures these relationships by instead turning our attention to the i-dimensional
se gi % { zeRV|L<z,,0<U, z=0 (22;11 w; 25 + bi) }, where the post-activation
bounds L,U € R*! are such that L; < z; < U; for each point satisfying z € X and (I). Note
that no pre-activation variables appear in this description; we elide them completely, substituting the
affine function describing them inside of the activation function.

z3 z3

21 21

Figure 1: A simple neural network with m = 2 dimensional input and one intermediate neuron
(N = 3). (Left) The feasible region for ya, and (Right) The feasible region for yg134.. The x, y, and
Z variables, which depend affinely on the others, are projected out.

This immediately gives a single-neuron relaxation of the form

def ; )

Ye11de(C, X) = gnéz)zi{cy | rze X, (Ia),(d), z14€ ChiqeVi=m-+ 1,...,N}, 4
where Ciy,,. % Conv(S?) is the convex hull of S7, as shown in Figure(adapted from [3])), which
contrasts it with the convex barrier and A-relaxation. We will show that, unsurprisingly, Cg,; 4 Will
require exponentially many inequalities to describe in the worst case. However, we show that this
need not be a barrier to incorporating this tighter relaxation into verification algorithms.

3 An exact convex relaxation for a single ReLLU neuron

Letw e R™, beR, f(x) C ozt b, and L,U € R™ be such that I, < U. For ease of exposition,

we rewrite the single-neuron set S in the generic form

SE {(z,y) € [LUI xR |y =0(f(2))}. (5)
y Cw > . ow; > ,
Notationally, take [n] £ {1,...,n}, L; £ {52 Wiz 0 U; & {gl Wi 20 g cachi e [n].

E(I) gef Zie] wiii + Ziqﬁ[ ’U)ijz + b, and
J":ef{(Lh)ez[[n]] x [n] ‘w) >0, (Iu{h) <0, w ¢0v¢ef},

Our main technical result uses results from submodularity and convex geometry [1} 6} [28]140] to give
the following closed-form characterization of Conv(S). For a proof of [Theorem 1| see Appendix A.

Theorem 1. If ¢([n]) = 0, then Conv(S) = S = { (z,y) € [L,U] x R | y = f(x) }. Alternatively,
if () < 0, then Conv(S) = S = [L,U] x {0}. Otherwise, Conv(S) is equal to the set of all
(z,y) € R™ x R satisfying

yzw-x+b y=0, L<a<U (6a)
y oI y

< - wi(x; — L) + ———(xp, — L Y(I,h)e J. 6b

y< . wil ) Uh—Lh(} n) (I, h) (6b)

Furthermore, if d £ |{i e [n]|w; #0}|, then d < |J| < [%d]([fd]) and for each of these
2
inequalities (and each d € [n])) there exist data that makes it hold at equality.

5The effective dimension of this set can be much smaller if w; . is sparse. This is the case with a feedforward
network, where the number of nonzeros is (at most) the number of neurons in the preceding layer.



Note that this is the tightest possible relaxation when x € [L, U]. Moreover, we observe that the
relaxation offered by Conv(S) can be arbitrarily tighter than that derived from the A-relaxation.

Proposition 1. For any input dimension n, there exists a point & € R", and a problem in-
stance given by the affine function f, the A-relaxation Ca, and the single neuron set S such
that (maxy;(f(;f;)’y)eCA y) — (maxy:(i,y)eConv(S) y) = Q(n)

Although the family of upper-bounding constraints (6b) may be exponentially large, the structure of
the inequalities is remarkably simple. As a result, the separation problem can be solved efficiently:
given (x,y), either verify that (x,y) € Conv(S), or produce an inequality from the description (6)
which is violated at (x, y). For instance, we can solve in O(nlogn) time the optimization problem

def . o £(1) N ‘ }
v(x) = min Cowi(w; — L) + ———(xp — L I,hyeJ ¢, @)
(@) Zmin{ 3, wilos = L)+ 0o = L) | (121)
by sorting the indices with w; # 0 in nondecreasing order of values (z; — f/i) / (Ui - ii), then adding
them to [ in this order so long as ¢(I) > 0 (note that adding to I can only decrease ¢(I)), and then
letting h be the index that triggered the stopping condition ¢(I U {h}) < 0. For more details, see the

proof of in Appendix B.

Then, to check if (x,y) € Conv(S), we first check if the point satisfies (6a), which can be ac-
complished in O(n) time. If so, we compute v(z) in O(nlogn) time. If y < v(z), then
(z,y) € Conv(S). Otherwise, an optimal solution to (7) yields an inequality from (6b) that is
most violated at (x, y). In addition, we can also solve (7)) slightly faster.

Proposition 2. The optimization problem (1) can be solved in O(n) time.

Together with the ellipsoid algorithm [18]], shows that the single-neuron relaxation
Ye1ide Can be efficiently solved (at least in a theoretical sense).

Corollary 1. If the weights w and biases b describing the neural network are rational, then the
single-neuron relaxation @) can be solved in polynomial time on the encoding sizes of w and b.

For proofs of [Proposition 1] [Proposition 2| and [Corollary 1] see Appendix B.

Connections with Anderson et al. [3,4] Anderson et al. [3,/4] have previously presented a MIP
formulation that exactly models the set S in (E]) This formulation is ideal so, in particular, its
LP relaxation offers a lifted LP formulation with one auxiliary variable whose projection onto the
original variables x and y is exactly Conv(.S). Indeed, in Appendix we provide an alternative
derivation for Theorem [T] using the machinery presented in [3]]. This lifted LP can be used in lieu
of our new formulation (6)), though it offers no greater strength and requires an additional N — m
variables if applied for each neuron in the network. Moreover, it is not clear how to incorporate the
lifted LP into propagation-based algorithms to be presented in the following section, which naturally
work in the original variable space.

4 A propagation-based algorithm

We now present a technique to use the new family of strong inequalities (6b) to generate strong post-
activation bounds for a trained neural network. A step-by-step example of this method is available in
Appendix D] To properly define the algorithm, we begin by restating a generic propagation-based
bound generation framework under which various algorithms from the literature are special cases
(partially or completely) [35 1361 143|144} 45 49].

4.1 A generic framework for computing post-activation bounds

Consider a bounded input domain X < R™, along with a single output (i.e. = 1) to be maximized,
which we name C(z) = >/, ¢;2; + b for some 17 < N. In this section, our goal is produce efficient
algorithms for producing valid upper bounds for C. First, let z;(x) denote the unique value of z;
(post-activation variable 7) implied by the equalities when we set 21.,,, = x for some x € X.

Next, assume that for each intermediate neuron ¢ = m + 1,...,n we have affine functions of the
form L;(z1.4_1) = Z;;ll wﬁjzj + bl and Ui (21.-1) = Z;;ll w2 + by, such that
Ei(leifl(.’B)) < 21(37) < ui(Zl;i,1<.’17)) Vz e X, 7= 1, NN IE (8)



We consider how to construct these functions in the next subsection. Then, given these functions we
can compute a bound on C (z1.,, (x)) through the following optimization problem:

B(C,n) € max C(z2) = ijl cizi +b (9a)
sit. z1.m € X (9b)
Li(z1:i-1) < zi <Ui(z1:-1) Yi=m+1,...,1. (9¢)

Proposition 3. The optimal value of Q) is no less than maxzecx C (z1. (2)).

The optimal value B (C, n) can be quickly computed through propagation methods without explicitly
computing an optimal solution to (9) [321/49]. Such methods perform a backward pass to sequentially
eliminate (project out) the intermediate variables 2z, . . . , 2,41, Which can be interpreted as applying
Fourier-Motzkin elimination [7, Chapter 2.8]. In a nutshell, for ¢ = 7, ..., m + 1, the elimination
step for variable z; uses its objective coefficient (which may be changing throughout the algorithm)
to determine which one of the bounds from will be binding at the optimal solution and replaces
z; by the expression £;(z1.;—1) or U;(z1.,—1) accordingly. The procedure ends with a smaller LP
that only involves the input variables z1.,, and can be quickly solved with an appropriate method.
For instance, when X is a box, as is common in verification problems, this final LP can be trivially
solved by considering each variable individually. For more details, see Algorithm 1 in Appendix C.

4.2 Selecting the bounding functions

The framework described in the previous section required as input the family of bounding functions
{Li,U;}]_,, 1. A typical approach to generate these will proceed sequentially, deriving the i-th pair

of functions using scalar bounds I:i, U; € R on the i-th pre-activation variables Z;, which by is
equal to Z;;ll w;, j2; + b;. Hence, these scalar bounds must satisfy

- i—1 .
These bounds can then be used as a basis to linearize the nonlinear equation
i—1
= (ijl Wij 2+ bi) 11

implied by (1bl{ic). If U; < 0 or L; > 0, then behaves linearly when holds, and so we
can let £i(31:i—1) = Z/{i(zl;i_l) = Z;;ll Wy, %25 + b; or ,Ci(zl;i_l) = Z/{i(zl;i_l) =0, respectively.

Otherwise, we can construct non-trivial bounds such as

Li(z1:-1) = Ui iiw' izj+b; | and  Ui(z1:-1) = Ui
i\~1:i—1 UZ—IAJL = 1,j %] % i\~1:4—1 UZ—IAJ

i—1 R
(Z Wi 25 + b; — L2> s
i \j=1

which can be derived from the A-relaxation: U;(z1.,—1) is the single upper-bounding inequality
present on the left side of and £;(21.;—1) is a shifted down version of this inequality}’| This
pair is used by algorithms such as Fast-Lin [44], DeepZ [35]], Neurify [43], and that of Wong and
Kolter [45]]. Algorithms such as DeepPoly [36] and CROWN-Ada [49] can be derived by selecting

the same Z/{Z'(Zl;ifl) as above and ‘Ci(zlzifl) =0if ‘£Z| = |Uz‘ or ﬁi(leifl) = Z;;ll Ws, 525 + bl
otherwise (i.e. whichever yields the smallest area of the relaxation). In the next subsection, we
propose using (6b)) for U; (z1.;—1).

Scalar bounds satisfying (I0) for the i-th pre-activation variable can be computed by let-
ting C%* (z1.-1)) = Z;;ll w; jz; + b; and then setting L; = —B(C*'i—1) and U; =
B (CUvi,i — 1). Therefore, to reach a final bound for = N, we can iteratively compute L;

and U; fori =m+1,...,N by solving (9) each time, since each of these problems requires only
affine bounding functions up to intermediate neuron ¢ — 1. See Algorithm[d]in Appendix C for details.



(a) An inequality from the A- (b) Aninequality from (6B). (c) Another inequality from (6E).
relaxation.

Figure 2: Possible choices of upper bounding functions U; for a single ReLU. The black point depicts
a solution 2. that we would like to separate (projected to the input-output space of the ReLU),
which is cut off by the inequality in (b). A full example involving these particular inequalities can be
found in Appendix D}

4.3 Our contribution: Tighter bounds by dynamically updating bounding functions

In Theorem|I] we have derived a family of inequalities, (6b), which can be applied to yield valid upper
bounding affine functions for each intermediate neuron in a network. As there may be exponentially
many such inequalities, it is not clear a priori which to select as input to the algorithm from Section
Therefore, we present a simple iterative scheme in which we apply a small number of solves of (9)),
incrementally updating the set of affine bounding functions used at each iteration.

Our goal is to update the upper bounding function I/; with one of the inequalities from as
illustrated in Figure [2] via the separation procedure of which requires an optimal
solution zy.y for (9). However, the backward pass of the propagation algorithm described in
Sectiononly computes the optimal value B (C, ) and a partial solution z1.,,,. For this reason, we
first extend the propagation algorithm with a forward pass that completes the partial solution 21.,, by
propagating the values for z,,+1,. .., 2x through the network. This propagation uses the same affine
bounding functions from that were used to eliminate variables in the backward pass. For more
details, see Algorithm 2 in Appendix C.

In essence, our complete dynamic algorithm initializes with a set of bounding functions (e.g. from
Fast-Lin or DeepPoly), applies a backward pass to solve the bounding problem, and then a forward
pass to reconstruct the full solution. It then takes that full solution, and at each intermediate neuron ¢
applies the separation procedure of to produce an inequality from the family (6b)). If this
inequality is violated, it replaces the upper bounding function ¢; with this inequality from (6b). We
repeat for as many iterations as desired and take the best bound produced across all iterations. In this
way, we use separation to help us select from a large family just one inequality that will (hopefully)
be most beneficial for improving the bound. For more details, see Algorithm 3 in Appendix C.

S Computational experiments

5.1 Computational setup

We evaluate two methods: the propagation-based algorithm from Section and a method based
on partially solving the LP from Theorem [I] by treating the inequalities as cutting planes,
i.e. inequalities that are dynamically added to tighten a relaxation. To focus on the benefit of
incorporating the inequalities (6b) into verification algorithms, we implement simple versions of the
algorithms, devoid of extraneous features and fine-tuning. We name this framework “Cut-to-Verify”
(C2V), and the propagation-based and LP-based algorithms FastC2V and OptC2V, respectively. See
https://github.com/google-research/tf-opt for the implementation.

The overall framework in both methods is the same: we compute scalar bounds for the pre-activation
variables of all neurons as we move forward in the network, using those bounds to produce the
subsequent affine bounding functions and LP formulations as discussed in Section[4.2] Below, we
describe the bounds computation for each individual neuron.

%Note that these functions satisty (E[) only when Ul > 0 and L < 0.
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Propagation-based algorithm (FastC2V). We implement the algorithm described in Section[4.3]
using the initial affine bounding functions {L;, U} 41 from DeepPoly [36] and CROWN-Ada [49],

as described in Section 4.1)’| In this implementation, we run a single iteration of the algorithm.

LP-based algorithm (OptC2V). Each bound is generated by solving a series of LPs where our
upper bounding inequalities are dynamically generated and added as cutting planes. We start with the
standard A-relaxation LP, solve it to optimality, and then for every neuron preceding the one we are
bounding, we add the most violated inequality with respect to the LP optimum by solving (7). This
can be repeated multiple times. In this implementation, we perform three rounds of separation. We
generate new cuts from scratch for each bound that we compute.

In both methods, at each neuron we take the best between the bound produced by the method and the
trivial interval arithmetic bound. Appendix E contains other implementation details.

We compare each of our novel algorithms against their natural baselines: DeepPoly for our
propagation-based method, and the standard A-relaxation LP for our cutting plane method. Our
implementation of DeepPoly is slightly different from the one in [36] in that we take the best of
interval arithmetic and the result of DeepPoly at each neuron. Moreover, our implementation is
sequential, even though operations in the same layer could be parallelized (for each of the algo-
rithms implemented in this work). The LP method simply solves the A-relaxation LP to generate
bounds at each neuron. In addition, we compare them with RefineZono [37] and kPoly [34], two
state-of-the-art incomplete verification methods.

Verification problem. We consider the following verification problem: given a correctly labeled
target image, certify that the neural network returns the same label for each input within L.,-distance
at most e of that target image. More precisely, given an image & € [0,1]™ correctly labeled as ¢,
a neural network where fy () returns its logit for class k € K, and a distance ¢ > 0, the image &

is verified to be robust if max, . ; 5 maxper{fe(x) — fi(x)} < 0, where L; = max{0,&; — ¢}

and U; = min{l,Z; + €} forall ¢ = 1,...,m. For propagation-based methods, the inner max term
can be handled by computing bounds for fi(z) — f;(z) for every class k # t and checking if the
maximum bound is negative, although we only need to compute pre-activation bounds throughout the
network once. For LP-based methods, this inner term can be incorporated directly into the model.

To facilitate the comparison with existing algorithms, our experimental setup closely follows that of
Singh et al. [34]]. We experiment on a subset of trained neural networks from the publicly available
ERAN dataset [38]]. We examine the following networks: the fully connected ReLLU networks 6x100
(e = 0.026), 9x100 (¢ = 0.026), 6x200 (¢ = 0.015), 9x200 (¢ = 0.015), all trained on MNIST
without adversarial training; the ReL.U convolutional networks ConvSmall for MNIST (e = 0.12),
with 3 layers and trained without adversarial training; the ReLU network ConvBig for MNIST
(e = 0.3), with 6 layers and trained with DiffAlI; and the ReLU network ConvSmall for CIFAR-10
(e = 2/255), with 3 layers and trained with PGD. These € values are the ones used in [34] and they
are cited as being challenging. For more details on these networks, see Appendix [E]or [38]. For
each network, we verify the first 1000 images from their respective test sets except those that are
incorrectly classified.

Due to numerical issues with LPs, we zero out small values in the convolutional networks for the
LP-based algorithms (see Appendix [E). Other than this, we do not perform any tuning according to
instance. Our implementation is in C++ and we perform our experiments in an Intel Xeon E5-2699
2.3Ghz machine with 128GB of RAM. We use Gurobi 8.1 as the LP solver, take advantage of
incremental solves, and set the LP algorithm to dual simplex, as we find it to be faster for these LPs
in practice. This means that our LP implementation does not run in polynomial time, even though it
could in theory by using a different LP algorithm (see Corollary [T).

To contextualize the results, we include an upper bound on the number of verifiable images. This
is computed with a standard implementation of gradient descent with learning rate 0.01 and 20
steps. For each image, we take 100 random initializations (10 for MNIST ConvBig and CIFAR-10
ConvSmall) and check if the adversarial example produced by gradient descent is valid. The upper
bound is the number of images for which we were unable to produce an adversarial example.

"Our framework supports initializing from the Fast-Lin inequalities as well, but it has been observed that
the inequalities from DeepPoly perform better computationally.



Table 1: Number of images verified and average verification times per image for a set of networks
from the ERAN dataset [38]. ConvS and ConvB denote ConvSmall and ConvBig, respectively.
Results for RefineZono and kPoly are taken from [34]].

MNIST CIFAR-10

Method 6x100 9x100 6x200 9x200 ConvS ConvB ConvS
DeenPol #verified 160 182 292 259 162 652 359
PEOY Time (s) 0.7 1.4 2.4 5.6 0.9 7.4 2.8
FastCoV #verified 279 269 477 392 274 691 390
Time (s) 8.7 19.3 25.2 57.2 5.3 16.3 15.3

LP #verified 201 223 344 307 242 743 373
Time (s) 50.5 3856 2182 2824.7 23.1 24.9 38.1

OotCaV #verified 429 384 601 528 436 771 398
P Time (s) 136.7 759.4 402.8 3450.7 55.4 102.0 104.8
RefineZono #verified 312 304 341 316 179 648 347
kPoly #verified 441 369 574 506 347 736 399
Upper bound  #verified 842 820 901 911 746 831 482

5.2 Computational results

The computational results in Table[I|demonstrate that adding the upper bounding inequalities proposed
in this paper significantly improves the number of images verified compared to their base counterparts.
While on average FastC2V spends an order of magnitude more time than DeepPoly to achieve this,
it still takes below one minute on average for all instances examined. OptC2V takes approximately
1.2 to 2.7 times of a pure LP method to generate bounds in the problems examined. Since we start
from the LP basis of the previous solve, subsequent LPs after adding cuts are generally faster.

Interestingly, we observe that FastC2V verifies more images than LP in almost all cases in much
less time. This indicates that, in practice, a two-inequality relaxation with a single (carefully chosen)
tighter inequality from (6B) can often be stronger than the three-inequality A-relaxation.

When compared to other state-of-the-art incomplete verifiers, we observe that for the larger networks,
improving DeepPoly with our inequalities enables it to verify more images than Ref ineZono [37],
a highly fine-tuned method that combines MIP, LP, and DeepPoly, but without the expensive
computation and the parameter tuning needs from RefineZono. In addition, we find that adding
our inequalities to LPs is competitive with kPoly, surpassing it for some of the networks. While
the timings in [34] may not be comparable to our timings, the authors report average times for
RefineZono and kPoly within the range of 4 to 15 minutes and 40 seconds to 8 minutes, respectively.

Appendix [F] contains additional computational results where we consider multiple trained networks
and distances e from the base image.

Outlook: Our methods as subroutines The scope of our computational experiments is to demon-
strate the practicality and strength of our full-neuron relaxation applied to simple methods, rather
than to engineer full-blown state-of-the-art verification methods. Towards such a goal, we remark
that both RefineZono and kPoly rely on LP and other faster verification methods as building blocks
to a stronger method, and either of our methods could be plugged into them. For example, we could
consider a hybrid approach similar to RefineZono that uses the stronger, but slower OptC2V in the
earlier layers (where it can have the most impact) and then switches to FastC2V, which could result
in verification times closer to FastC2V with an effectiveness closer to OptC2V. In addition, kPoly
exploits the correlation between multiple neurons in the same layer, whereas our approach does
not, suggesting that there is room to combine approaches. Finally, we note that solving time can be
controlled with a more careful management of the inequalities to be added and parallelizing bound
computation of neurons in the same layer.



Broader Impact

In a world where deep learning is impacting our lives in ever more tangible ways, verification is an
essential task to ensure that these black box systems behave as we expect them to. Our fast, simple
algorithms have the potential to make a positive impact by verifying a larger number of inputs to be
robust within a short time-frame, often required in several applications. Of course, we should be
cautious that although our algorithms provide a mathematical certificate of an instance being robust,
failure to use the system correctly, such as modeling the verification problem in a way that does
not reflect real-world concerns, can still lead to unreliable neural networks. We also highlight that
our version of the verification problem, while accurately capturing a reasonable formal specification
of robustness, clearly does not perfectly coincide with “robustness” as may be used in a colloquial
sense. Therefore, we highlight the importance of understanding the strengths and limitations of the
mathematical model of verification used, so that a false sense of complacency does not set in.
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