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Abstract. We discuss inverse problems for the Helmholtz equation at fixed energy, specifically
the inverse source problem and the inverse scattering problem from a medium or an obstacle. In
[S. Kusiak and J. Sylvester, Comm. Pure Appl. Math., 56 (2003), pp. 1525–1548], we introduced the
convex scattering support of a far field, a set which will be a subset of the convex hull of the support
of any source or scattering inhomogeneity which can produce it.

We extend these results and modify the methods to locate a source within a known inhomogeneous
background medium, or a deviation from that medium, using observations of a single far field. We
also describe some numerical examples that illustrate the robustness of the method.
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1. Introduction. We study an inverse problem for the Helmholtz equation at
fixed energy. Our aim is to deduce the location of the source or scatterer from observa-
tions of scattered waves made at a distance, which are called far fields. Typically, one
has access to several far fields. For the inverse medium problem, the index of refrac-
tion is uniquely determined by the full scattering kernel, i.e., the observed scattered
field for every possible incident wave. In special cases [9, 5, 6], substantial information
about the support of the scatterer has been obtained from the scattered field of a few,
or even only one, incident wave.

In [8], we showed that, in a homogeneous background medium, we could associate
the convex scattering support with a single far field. This set is the smallest convex
set which supports a source that can produce that far field. We also produced a test,
the circular Paley–Wiener theorem, for computing the convex scattering support in
two dimensions. In [10], we introduced a different numerical method, called the range
test, for computing this support in a two-dimensional homogeneous medium.

Our work was motivated by the linear sampling method of Colton and Kirsch (see
[2]). They first developed a Picard test, which determines whether a far field belongs
to the range of the (compact) scattering operator, as a tool for inverse scattering.
This method, and the subsequent factorization method of Kirsch [7], differ from what
we present here in that they require much more data (the full scattering map) and
compute much more (the exact support of the scatterer).

In section 2 of this paper, we introduce the necessary scattering formalism and
restate the circular Paley–Wiener theorem as a Picard test. This restatement, though
less explicit, generalizes directly to inhomogeneous media and higher dimensions.

In section 3 we produce this general test. The general test tells us if a far field
could have been produced by a source or a scatterer located within a specific domain,
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but not whether the true source was located there. Section 4 addresses this issue by
extending the concept of convex scattering support to inhomogeneous media. The
conclusion is that we can locate a smallest convex set, which must be contained in
the convex hull of the support of any source which radiates that far field. Conversely,
we produce a source, supported in any neighborhood of the convex scattering support
which does radiate that far field.

Section 5 discusses the relationship between the support of a scatterer, rather
than a source, and the convex scattering support. In this case we show that the
convex scattering support provides a lower bound for the convex hull of the scatterer.
Unlike the source case, we don’t expect this lower bound to be optimal.

Section 6 contains a description of an explicit algorithm and some numerical
results. Maybe the most important observation in this section is that the practical
implementation of the algorithm is much simpler and more robust than the theorem
guarantees.

2. Far fields in a homogeneous medium. We model the time harmonic wave
radiated by a source in a homogeneous medium as a solution to the inhomogeneous
Helmholtz equation:

(∆ + k2)u(x) = f(x), x ∈ R
n.(2.1)

Equation (2.1) has a unique outgoing solution, u = G+
0 f , which can be computed by

the limiting absorption principle (see, e.g., [11, p. 147]).

G+
0 f = lim

ε↓0
(∆ + (k − iε)2)−1f

= − lim
ε↓0

∫
Rn

ei〈x,ξ〉f̂(ξ)

|ξ|2 − (k − iε)2
dξ.(2.2)

The limiting absorption principle chooses the unique solution u of (2.1) which
extends to be holomorphic in {Im(k) ≤ 0} and is continuous up to the boundary.
According to (one of the many theorems called) the Paley–Wiener theorem, this
solution is the Fourier transform of the unique solution ũ of the wave equation which
is zero in the past. That is,

u(k, x) =

∫ ∞

0

e−iktũ(x, t)dt.

We call a function in the range of G+
0 outgoing. We shall refer to a function as

incoming if v = G−
0 f , where

G−
0 f = lim

ε↓0
(∆ + (k + iε)2)−1f.

Alternatively, u = G+
0 f may be characterized as the unique solution of (2.1) satisfying

the Sommerfeld radiation condition:

lim
r→∞

r
n−1

2 (∂ru− iku) = 0, r = |x|.

Inverting the Fourier transform in (2.2), we may also represent u = G+
0 f (cf. [4])

as

(G+
0 f)(x) := − i

4

(
k

2π

)n−2
2

∫
Rn

|x− y|
2−n

2 H
(1)
n−2

2

(k|x− y|)f(y)dy.(2.3)
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Here, H
(1)
(n−2)/2 is the Hankel function of the first kind. The representation of G−

0 uses

the other Hankel function; i.e., its kernel is the complex conjugate of the kernel of
G+

0 .
The simplest estimate for the solution operators G±

0 is on the weighted L2 spaces,
Hs

δ(R
n). For δ = 0, Hs

0(R
n) is the Sobolev space, Hs(Rn). For δ > 0,

‖f‖s,δ = ‖(1 + |x|2)δ/2f‖s,0.

Proposition 2.1. The operators G±
0 are bounded as maps between the weighted

L2 spaces

G±
0 : Hs

δ(R
n) −→ Hs+2

−δ (Rn)(2.4)

for any real s and any δ > 1
2 . Moreover, G−

0 is the Hilbert space adjoint of G+
0 on L2

(i.e., s = 0 in (2.4)). That is,

G+
0

∗
= G−

0 .

Proof. The estimate was first proved in [1]. Once we have it, it is a simple matter to
interchange the order of integration in the L2 pairing to check that the two operators
are adjoints.

The far field describes the asymptotics of u as |x| → ∞. Stationary phase applied
to (2.2) or Hankel function asymptotics applied to (2.3) yields

u(x) ∼ eik|x|

|x|(n−1)/2
Cn,k

∫
Rn

e−ik〈Θ,y〉f(y)dy, |x| → ∞,(2.5)

where Θ = x
|x| is a unit vector on the n− 1-dimensional sphere Sn−1 and

Cn,k =
−i√
8π

(
k

2π

)n−2
2

e−i(n−1)π/4.

Hence, given a source f we define the far field, u∞ = F0f , by

(F0f)(Θ) =

∫
Rn

e−ik〈Θ,y〉f(y)dy(2.6)

= f̂(kΘ).(2.7)

The mapping properties of F+
0 are important for us.

Proposition 2.2. F+
0 is a compact linear map

F+
0 : Hs

δ(R
n) −→ L2(Sn−1).

Its adjoint with respect to the distributional (not the Hilbert space) pairing

F+
0

†
: L2(Sn−1) −→ H−s

−δ(R
n)

is the Herglotz operator

(F+
0

†
α)(x) = (Hf)(x)(2.8)

=

∫
Sn−1

eik〈Θ,x〉α(Θ)dS(Θ).
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Remark 2.3. Functions in the range of the Herglotz operator are usually re-
ferred to as incident fields. They are the Hs

−δ solutions of the homogeneous (or free)

Helmholtz equation for all real s and any δ > 1
2 . The Herglotz operator represents

these free solutions as superpositions of plane waves.
Proof. The boundedness of F+

0 follows easily from the representation (2.7). We

need only note that if f ∈ Hs
δ, then f̂ ∈ Hδ

s. As δ > 1
2 , the restriction map from

Hδ
s(R

n) to L2 of the codimension one sphere, Sn−1, is a compact operator.

The boundedness of F †
0 follows from the boundedness of F0. The equality (2.8)

can be seen by using formula (2.6), pairing with an L2 far field, and interchanging
the order of integration. Nevertheless, we give a proof that relies more on scattering.

Let u = G+
0 f and v = Hα. Stationary phase shows that v has the asymptotics

v(x) ∼ Cn,k
eik|x|

|x|(n−1)/2
α(θ) + Cn,k

e−ik|x|

|x|(n−1)/2
α(−θ), |x| → ∞.(2.9)

Applying Green’s theorem on the ball of radius R gives∫
∂BR

v
∂u

∂ν
− ∂v

∂ν
u =

∫
BR

v(∆ + k2)u− (∆ + k2)vu.(2.10)

Letting R → ∞ and making use of (2.5) and (2.9) allows us to evaluate the left-hand
side of (2.10). Recalling that v is a free solution of the Helmholtz equation removes
the second term from the left-hand side so that∫

Sn−1

α(θ)(F0f)(θ)dS(θ) =

∫
BR

vf

〈α, F0f〉 = 〈Hα, f〉.

Proposition 2.2 has a more general statement which will prove convenient in the
next section.

Theorem 2.4. Suppose that s1 + s2 > −2, δ > 1
2 , and that u and v satisfy

u ∈ Hs1+2
−δ (Rn) and (∆ + k2)u ∈ Hs1

δ (Rn),(2.11)

v ∈ Hs2+2
−δ (Rn) and (∆ + k2)v ∈ Hs2

δ (Rn);(2.12)

then as |x| → ∞,

u(x) ∼ eik|x|

|x|(n−1)/2
u+
∞(θ) +

e−ik|x|

|x|(n−1)/2
u−
∞(θ),(2.13)

v(x) ∼ eik|x|

|x|(n−1)/2
v+
∞(θ) +

e−ik|x|

|x|(n−1)/2
v−∞(θ),

and

〈u+
∞, v−∞〉 − 〈u−

∞, v+
∞〉 = 〈u, (∆ + k2)v〉 − 〈(∆ + k2)u, v〉.(2.14)

Remark 2.5. When we write “∼” meaning “asymptotic to,” we mean classical
asymptotics only in the case that u happens to be smooth near infinity. This is always
the case if (∆ + k2)u has compact support. In the more general setting, the space
of functions that satisfy (2.11) (or (2.12)) form a Hilbert space, and we are asserting
that the mappings

u 
→ u±
∞
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extend by continuity as mappings from that Hilbert space into L2(Sn−1).
Proof. Suppose first that u and v are compactly supported and smooth. Then

every such u (and v) is a linear combination of an outgoing function and a solution of
the homogeneous Helmholtz equation, i.e., an outgoing wave plus a Herglotz function.
Each of these has the asymptotics asserted in (2.5) and in (2.9), and therefore their
sum had these asymptotics as well. Now apply Green’s formula as in (2.10) to obtain
(2.14).

Finally, notice that the left-hand side of (2.14) is a continuous bilinear functional
with respect to L2 convergence and the right-hand side is continuous when un → u
and vn → v in the topologies of (2.11).

Definition 2.6. We shall refer to u+
∞ as the outgoing far field of u and u−

∞ as
its incoming far field. An outgoing function has zero incoming far field, i.e., u−

∞ = 0.
A Herglotz function has outgoing and incoming far fields related by the antipodal map
(2.9). Intuitively, one can see this by thinking about a spherical incoming wave passing
through the origin to become an outgoing wave.

In [8], we began to study the scattering support of a far field. The first step is to
ask whether a far field could have been produced by a source which is a distribution
supported in a closed set. We recall that the restricting of a distribution to an open
set means restricting it to act on the subspace C∞

0 (Ω) of C∞
0 (Rn). The support of a

distribution is the closed set defined below.
Definition 2.7. A point x belongs to the support of a distribution f if there

exists no open neighborhood, Ox, such that f |Ox = 0.
Distributions supported on a closed set form natural subspaces of Hs

δ(R
n).

Definition 2.8. Hs
0(Ω) is the closed subspace of Hs

δ(R
n) consisting of those

distributions which are supported in Ω.
The definition is independent of δ as long as Ω is bounded.
We point out that this is different from Hs(Ω), which denotes the restrictions

of distributions to a bounded open set, and is not a subspace of any Hs
δ(R

n). In
fact, H−s(Ω) is the natural dual to Hs

0(Ω) for all real s. For bounded open sets Ω
and positive s, our definition of Hs

0(Ω) coincides with the common definition, i.e., the
closure of C∞

0 (Ω) in the Hs norm. In [8], we proved the following theorem.
Theorem 2.9. Let α ∈ L2(S1) represent a far field. There exists f ∈ Hs

0(BR)
such that

F+
0 f = α =

∞∑
n=−∞

αne
inθ(2.15)

if and only if

∞∑
n=−∞

∣∣∣∣ αnn
s

σn(R)

∣∣∣∣2 < ∞,(2.16)

where

σn(R) =

(∫ R

0

|Jn(kr)|2rdr
) 1

2

.

In section 3 of this paper, we will prove a generalization of this result to variable
index of refraction, higher dimensions, and more general domains. We close this section
with a restatement of this theorem which anticipates the generalization to follow.
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We don’t give the proof here, as it will follow as a corollary of the more general
Theorem 3.6 in section 3.

Theorem 2.10. Let α ∈ L2(Sn−1) represent a far field. Let F+
0 |Hs

0(Ω) represent

the restriction of the compact operator F+
0 to Hs

0(Ω) and let

F+
0 |Hs

0(Ω) =
∑

σnψn ⊗ φn

be its singular value decomposition. Then

α ∈ Range(F+
0 |Hs

0(Ω))

if and only if

∑∣∣∣∣ (α, ψn)

σn

∣∣∣∣2 < ∞.(2.17)

To facilitate the comparison of Theorems 2.9 and 2.10, we describe two examples
with Ω equal to BR ∈ R

2, the ball of radius R centered at the origin. We can separate
variables in this case, representing the operator F+

0 in terms of complex exponentials,
Bessel functions, and the characteristic function of the ball, χBR

.

F+
0 |L2(BR) =

∞∑
n=−∞

ein(θ−π
2 ) ⊗ χBR

e−in(φ−π
2 )Jn(kr).(2.18)

Because we are in L2, its Hilbert space adjoint is

(F+
0 |L2(BR))

∗ =

∞∑
n=−∞

χBR
ein(φ−π

2 )Jn(kr) ⊗ e−in(θ−π
2 )

and its singular values are the eigenvalues of (F+
0 |L2(BR)F

+
0 |∗L2(BR))

σ2
n = 4π2

∫ R

0

J2
n(ks)sds,

so we see that (2.16) and (2.17) agree in the case s = 0.
Next, we consider F+

0 |H1
0(BR). The operator itself has the same representation

as in (2.18); we are just considering it on a smaller subspace. A bit of a calculation
shows that the Hilbert space adjoint is now

(F+
0 |H1

0(BR))
∗ =

∞∑
n=−∞

χBR
ein(φ−π

2 )

(
Jn(kr) −

( r

R

)|n|
Jn(kR)

)
⊗ e−in(θ−π

2 )

with singular values (we’ll call them σ̃n’s)

σ̃2
n = 4π2

[∫ R

0

J2
n(ks)sds− Jn(kR)

Rn

∫ R

0

Jn(ks)sn+1ds

]
.(2.19)

Now, the large n asymptotics of the Bessel function is

Jn(kr) ∼ 1√
πn

(
ekr

2n

)n

for n � kr.
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Integrating with respect to r then gives

σ2
n ∼ 8π

(ek)2

(
ekR

2n

)2n+2 (
1 + O

(
1

n

))
, n → ∞,

while the leading order asymptotics of the two terms in (2.19) cancel, so that

σ̃2
n = O

(
σ2
n

n2

)
,

which agrees with (2.16) in the case s = 1.

3. Far fields in an inhomogeneous medium. If the medium is inhomoge-
neous, (2.1) is replaced by

(∆ + k2n(x))u(x) = f(x), x ∈ R
n.(3.1)

The coefficient n(x) is the index of refraction and is the square of the reciprocal of
the wave speed at x. We will assume that n has positive imaginary part, that n − 1
is compactly supported, and that n ∈ Lp(Rn) for p > max(n − 2, n/2). The unique
continuation principle holds for this is the class of n’s.

It will be convenient to rewrite (3.1) as

(∆ + k2 − q(x))u = f

with q = k2(n−1). Because q is not necessarily smooth, we must restrict the regularity
of the Sobolev spaces. We want to allow single and double layer potentials as sources,
so that the application of our results to active scattering will include scattering from
an obstacle. We will treat f ∈ Hs−2

δ (Rn) with 0 ≤ s ≤ n/p and δ > 1
2 .

We will standardize the notation used in this section. We will use η and σ to
denote unrestricted real numbers. The symbols δ, p, and s will always satisfy the
inequalities

δ > 1/2,

p > max(2, n/2),(3.2)

0 ≤ s ≤ n/p.

Our next theorem asserts the existence of the analogues of G0 and F0.
Theorem 3.1. Let q ∈ Lp(Rn) and have compact support. Let f ∈ Hs−2

δ (Rn)
with p, s, δ satisfying (3.2). Then there exists a unique outgoing (resp., incoming)
solution of

(∆ + k2 − q(x))u = f

which has the asymptotic behavior

u(x) ∼ eik|x|

|x|(n−1)/2
u±
∞(Θ), |x| → ∞.

Moreover, the unique solution u is computed by the operator

u(x) = (G±
q f)(x)

:= (I −G±
0 q)

−1G±
0 f(3.3)

= G±
0 (I − qG±

0 )−1f(3.4)
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and

u±
∞(Θ) = (F±

q f)(Θ)

:= F±
0 (I − qG±

0 )−1f.(3.5)

Additionally, both G±
q and F±

q are compact operators:

G±
q : Hs−2

δ (Rn) → H
s−n/p
−δ (Rn),(3.6)

F±
q : Hs−2

δ (Rn) → L2(Sn−1).(3.7)

The proof requires that we show that (I −G±
0 q) is invertible. Let Mq denote the

operator of multiplication by q. Then we have the following lemma.
Lemma 3.2. Let q be a compactly supported function on R

n. For any real p ≥ 2,
any real δ and η, and any 0 ≤ s ≤ n

p ,

Mq : Hs
η1

(Rn) → H
s−n

p
η2 (Rn)(3.8)

is bounded.
Proof. According to Hölder’s inequality,

‖qu‖L2(Rn) ≤ ‖q‖Lp(Rn)‖u‖
L

2p
p−2 (Rn)

≤ ‖q‖Lp(Rn)‖u‖H
n
p (Rn)

,

with the second line a consequence of the Sobolev inequality. Thus

Mq : H
n
p

0 (Rn) → L2(Rn)

is bounded. Duality implies that

Mq : L2(Rn) → H
−n

p

0 (Rn)

is also bounded. Interpolation then gives (3.8) in the case that δ = η = 0. However,
because q is compactly supported,∥∥∥(1 + |x|2)

η−δ
2 q

∥∥∥
Lp(Rn)

≤ C‖q‖Lp(Rn),

which implies (3.8) for any δ and any η.
As a consequence, we have the following corollary.
Corollary 3.3. Let p ≥ 2, 0 ≤ s ≤ n

p , and δ > 1
2 . Then

G+
0 q : Hs

η(R
n) → H

s+2−n
p

−δ (Rn),(3.9)

and

qG+
0 : Hs−2

δ (Rn) → H
s−n

p
η (Rn)

is bounded. If, in addition, p > n
2 , then

G±
0 q : Hs

−δ(R
n) → Hs

−δ(R
n)

are compact.
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Proof. The first statement is a direct consequence of Proposition 2.1 and Lemma
3.2, while the second follows from the compact embedding of Hs1

η in Hs2
δ whenever

η > δ and s1 > s2.
Corollary 3.4. Let q ∈ Lp(Rn) with compact support and let p, s, δ sat-

isfy (3.2). Then (I − G+
0 q)

−1 exists as a bounded linear operator from Hs
−δ(R

n) to
Hs

−δ(R
n).

Proof. Corollary 3.3 implies that (I −G+
0 q) is Fredholm, so we only need to show

uniqueness. Suppose that u ∈ Hs
−δ(R

n) satisfies

(I −G+
0 q)u = 0.(3.10)

Repeated application of (3.9) shows us that u ∈ H2
−δ(R

n) and satisfies

(∆ + k2)u = qu.

Since u is outgoing, u is incoming and satisfies

(∆ + k2)u = qu

so that we may apply (2.14) to obtain the identities

2ik
〈
u+
∞, u∞

〉
= 〈qu, u〉 − 〈u, qu〉,

2ik‖u+
∞‖2

L2 = 2i

∫
Im q|u|2,

which implies

‖u+
∞‖2

L2 ≤ 0.

Thus, u is an outgoing function with no far field. Rellich’s lemma [3] implies that
u vanishes outside the support of q, and unique continuation then implies that u = 0
everywhere.

Corollary 3.5. Let q ∈ Lp(Rn) with compact support and let p, s, δ sat-
isfy (3.2). Then (I − qG+

0 )−1 exists as a bounded linear operator from Hs−2
δ (Rn) to

Hs−2
δ (Rn).

Proof. (I−qG+
0 )−1 is also Fredholm, so only uniqueness need be checked. Suppose

f = qG+
0 f . Then u = G+

0 f satisfies (3.10), and therefore it must be zero. However,
f = (∆ + k2)u, so f must also vanish.

Proof of Theorem 3.1. We have shown that formulas (3.3), (3.4), and (3.5) make
sense. Both (3.6) and (3.7) follow from the previous corollaries and the mapping
properties of F0 and G0. To verify that (3.3) and (3.4) are equal, we start with the
factorization

(I −G±
0 q)G

±
0 = G±

0 (I − qG±
0 ).

Now, both (I −G±
0 q) and (I − qG±

0 ) are invertible, so that

(I −G±
0 q)

−1(I −G±
0 q)G

±
0 (I − qG±

0 )−1 = (I −G±
0 q)

−1G±
0 (I − qG±

0 )(I − qG±
0 )−1,

which implies

G±
0 (I − qG±

0 )−1 = (I −G±
0 q)

−1G±
0 .
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With Theorem 3.1 in place, we may extend the Picard test (2.17) to the inhomo-
geneous equation.

Theorem 3.6. Let α ∈ L2(Sn−1) represent a far field and let F+
q |Hs

0(Ω) represent
the restriction of the compact operator F+

q to Hs
0(Ω). Then

α ∈ Range(F+
q |Hs

0(Ω))

if and only if

∑∣∣∣∣ (αn, ψn)

σn

∣∣∣∣2 < ∞,

where

F+
q |Hs

0(Ω) =
∑

σnψn ⊗ φn

is the singular value decomposition of F+
q |Hs

0(Ω).
This theorem tells us that we can look for a source in a known inhomogeneous

background by simply replacing F0 by Fq in the convergence test given in Theo-
rem 2.10. Of course, to apply it we must numerically or analytically compute the
singular value decomposition of F+

q |Hs
0(Ω).

4. The convex scattering support. We are ready to use Theorem 3.6 to locate
the support of a source in an inhomogeneous medium. In Theorem 5.2 of section 5, we
will locate the region where a medium differs from a known background by applying
this test. In both cases our data will be a single far field.

As we pointed out in [8], a single far field is not enough information to uniquely
determine the support of a source. For example, if φ has compact support, then
fφ = (∆ + k2)φ will always have zero far field. We can always add fφ to a source to
produce a new one with bigger support which produces the same far field. Thus we
cannot associate with a far field a set which contains the support of any source which
produces it.

However, we can determine a unique smallest convex set which must be a subset
of the convex hull of the support of any source which produces that far field. We refer
to this set as the convex scattering support of a far field. We will show below that the
convex scattering support of any nonzero far field is a nonempty closed set, and that
there always exists an L2 source, supported in an arbitrarily small neighborhood of
the convex scattering support, which will reproduce the far field.

We begin with the definition.
Definition 4.1. The convex scattering support of the far field u∞, with respect

to the background q, is

cSksuppqu∞ =
⋂

Fqf=u∞
f∈Hs

δ(R
n)

ch(supp f).(4.1)

Here, ch(supp f) denotes the convex hull of the support of f .
We must take s > −2 because Fq is only defined for such sources. The next

lemma asserts that the cSksuppqu∞ doesn’t depend on s for −2 < s ≤ 0. It doesn’t
depend on s at all if q is smooth. We will use the notation Nε(Ω) to denote an open
epsilon neighborhood of a set Ω.
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Lemma 4.2. For any f ∈ Hs
0(Ω) and any ε > 0, there exists f̃ ∈ L2(Nε(Ω)) such

that

F+
q f̃ = F+

q f.

Proof. Let u = G+
q f and let φ ∈ C∞(Rn) satisfy

φ =

{
1, x ∈ R

n\Nε(Ω),

0, x ∈ Nε(Ω),

and set

f̃ = (∆ + k2 − q(x))φu.

Now, G+
q f = u outside Nε(Ω) and therefore has the same far field. Note that φu is

supported outside supp f so that u is H2 there, and thus f̃ ∈ L2.
Theorem 4.3. For any far field α ∈ L2(Sn−1) with a compactly supported source,

and any ε > 0, there exists an L2 source fε such that G+
q fε = α and

ch(supp fε) ⊂ Nε(cSksuppqα).

We shall need two lemmas for the proof.
Lemma 4.4. Suppose supp f1 ⊂ Ω1, supp f2 ⊂ Ω2, and that R

n \ (Ω1

⋃
Ω2) is

connected and contains a neighborhood of ∞. If

F+
q f1 = F+

q f2 = α,

then, for any ε > 0, there exists an f3 ∈ C∞(Rn) with

supp f3 ⊂ Nε(Ω1 ∩ Ω2)

and

F+
q f3 = α.

Proof. According to Rellich’s lemma and unique continuation [3], u1 = G+
q f1 and

u2 = G+
q f2 agree on the R

n \ (Ω1

⋃
Ω2).

Let φ ∈ C∞(Rn) satisfy

φ =

{
1, x ∈ R

n\Nε(Ω1 ∩ Ω2),

0, x ∈ N ε
2
(Ω1 ∩ Ω2);

then

v =

⎧⎪⎨⎪⎩
φu1, x ∈ R

n\Ω1,

φu2, x ∈ R
n\Ω2,

0, x ∈ Ω1 ∩ Ω2

is a well-defined C∞ function and v = u1 = u2 outside a compact set, so that

f3 = (∆ + k2 − q(x))v

must also have far field α.
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Lemma 4.5. For any ε > 0 and any far field α with a compactly supported source,
there exists an integer N and a sequence of sources fn such that

Nε(cSksuppqα) ⊃
N⋂

n=1

ch supp(fn).(4.2)

Proof. Let B denote the complement of cSksuppqα, let Bε denote the complement
of Nε(cSksuppqα), and let Af denote the complement of ch supp(f). The Af ’s are
open and Bε is closed. Taking complements in the definition (4.1) tells us that

B =
⋃

F+
q f=α

Af .

We will prove the theorem by showing that we may choose fn such that

Bε ⊂
N⋃

n=1

Afn .

Let f1 be a compactly supported source which radiates α. Now Bε\Af1 is compact
and the Af ’s provide an open cover of that compact set, so a finite subcover exists.
Numbering that finite subcover Af2 through AfN establishes (4.2) and proves the
theorem.

Proof of Theorem 4.3. Lemma 4.5 implies that Nε(cSksuppqα) is contained in the
intersection of finitely many sources. We may take Ω1 and Ω2 in Lemma 4.4 to be
the convex hulls of the supports of two of the sources, so that the hypothesis that
R

n\(Ω1

⋃
Ω2) is connected is automatic. Thus we can produce a source supported

on a neighborhood of the intersection of the convex hulls of the supports of any two
sources, and we complete the proof by induction.

5. Active sensing: Finding the support of a scatterer. The convex scat-
tering support of a far field which was not radiated by a source, but rather scattered
by an inhomogeneity in a homogeneous medium, detects the deviation of the index of
refraction from that of the homogeneous background medium. That is, when we illu-
minate the medium with an incoming wave, the inhomogeneity becomes a secondary,
or induced, source, and our test can be applied to locate that source.

Similarly, we can apply the Picard test in an inhomogeneous background if we
wish to locate the deviation of the index of refraction from that known background. In
both cases, we apply the test to the deviation of the measured outgoing far field from
the outgoing far field that we should have measured if no deviation were present. If
the background is homogeneous, the test is applied to the scattered wave, the outgoing
far field minus the antipodal map of the incoming field, which is the outgoing far field
of the free solution with the same incoming far field. In the case of an inhomogeneous
background, we subtract the wave scattered by the background.

In order to be mathematically precise we need to recall the scattering operator.
We may formulate the scattering problem as

(∆ + k2 − q(x))u = 0,

u−
∞(Θ) = β(Θ),
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where β ∈ L2(Sn−1) parameterizes the incoming far field (recall (2.13)). It is custom-
ary to seek the total wave u as the sum of an incident wave and a scattered wave:

u = uinc + usc

= Hβ + usc.

In our notation, the incident wave is just the Herglotz operator (2.8) acting on β.
Because Hβ has incoming far field equal to β, the scattered wave is outgoing and
satisfies

(∆ + k2 − q(x))usc = qHβ,(5.1)

(usc)
−
∞ = 0.

Thus,

usc = G+
q qHβ

and has far field

(usc)
+
∞ = F+

q qHβ.

The scattering operator, which maps the incoming far field to the scattered far
field, is given by

Sq = F+
q qH

= F+
0 q(I −G+

0 q)
−1H.

If we can measure the far field Sqβ for a single incoming wave β, we may apply
the Picard test to Sqβ to find what must be a subset of the convex hull of the support
of the induced source

f = q(I −G+
0 q)

−1Hβ

= qu.

Because the unique continuation principle guarantees that u cannot vanish on an
open set, we can be certain that we are truly estimating the support of q, i.e., we have
the following lemma.

Lemma 5.1.

supp qu = supp q.

Suppose now that we are looking to locate not the support of q, but the support
of q − qbg. That is, we want to find the places where the medium deviates from the
known inhomogeneous background qbg. We rewrite (5.1) as

(∆ + k2 − qbg)usc = qbgHβ + (q − qbg)u,

(usc)
−
∞ = 0,

which shows that

usc = G+
qbg

Hβ + G+
qbg

(q − qbg)u
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with outgoing far field

Sqβ = Sqbgβ + F+
qbg

(q − qbg)u.

Thus, if we apply the Picard test to the far field

Sqβ − Sqbgβ,

we obtain an estimate of the support of the induced source (q−qbg)u, which, according
to Lemma 5.1, is a lower bound on the support of q− qbg. We state this as a corollary
of Theorem 3.6.

Theorem 5.2. For every incident field α,

cSksuppq(S
+
qbg

− S+
q )α ⊂ ch supp(q − qbg),

i.e., if q = qbg in R
n \ Ω,

(S+
qbg

− S+
q )α ∈ Range(F+

qbg
|L2(Ω))

for every incident field α.

6. Computing the convex scattering support. In the previous section, we
have shown how to unambiguously associate a closed convex set, the convex scattering
support, with a far field; we showed that any source which produces that far field must
contain that set in the convex hull of its support, and that there always exists a source
supported in any neighborhood of the convex scattering support which radiates that
far field.

Theorem 3.6 tests whether that set is contained in a test region Ω. In this sec-
tion we describe a simple algorithm to make use of Theorem 3.6 to find the convex
scattering support and show a numerical result for a homogeneous background in two
dimensions to illustrate how the method works. We do not intend to suggest that
what we present below is careful numerical study. It is meant to be illustrative. We
do, however, view it as strong evidence that this provides a stable numerical method.

Algorithm. We will choose as test domain, Ω = BR(c), the ball of radius R
with center c.

1. Choose the center c = 0 and find the smallest R such that BR(0) contains the
scattering support. For a homogeneous background medium this is easily seen
by simply plotting the modulus of the Fourier coefficients of the far field and
looking for the place they become effectively zero (i.e., uniformly small). In
the plot on the bottom left in Figure 1, the modulus of the Fourier coefficients
are effectively zero for |n| a little bigger than 50. The wavenumber in this
example is k = 50, so the radius R of the circle about zero is one ( 50

50 ).

This succeeds because the decomposition of F+
0 |L2(Bc(R)) is exactly

F+
0 |L2(B0(R)) =

∞∑
n=−∞

ein(θ−π
2 ) ⊗ χB0(R)(r)Jn(kr)e−in(φ−π

2 )

(here χB0(R)(r) is the characteristic function of the ball) so that its singular
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Fig. 1. Estimating the convex scattering support of a triangular source.

values are

σn =

(∫ R

0

J2
n(ks)sds

) 1
2

(6.1)

∼

⎧⎪⎨⎪⎩
(R2 − n2)

1
4 for n < kR,

1√
n

(
eR

2n

)n

for n > kR,

which means that the σn are uniformly large for n < kR and decay rapidly
to zero as soon as n > kR.

2. Choose another center and repeat. In the homogeneous case, we compute the
far field of the translated source instead of translating the test region. We
use the formula

F+
0 f(x− c) = eik|c| cos(θ−θc)F+

0 f(6.2)

and then apply the test from the previous step to the new far field given
by the left-hand side of (6.2). The plots on the left-hand sides of Figures 1
and 2 are the results of translating the far fields to the centers indicated in
the figures.
We don’t suggest a specific algorithm for choosing the centers here. In the
first example, we chose a new center to be on the intersection of previous
circles. In the second, we needed to choose centers far from the line source to
see that it was flat. One expensive alternative is just to grid space and then
choose centers at each grid point.

3. Our estimate of the convex scattering support is the intersection of these balls
as in the large plots at the top left of Figures 1 and 2).
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Fig. 2. Estimating the convex scattering support of a line source.

7. Conclusions. We have shown that the notion of the convex scattering sup-
port extends to scattering in an inhomogeneous background. Theoretically, the notion
is actually quite general, relying only on unique continuation, and we expect it to hold
in a very general mathematical setting. The observation of a far field can easily be
replaced by the observation of a set of Cauchy data on all or part of the boundary of
a region.

From a practical point of view, it is the threshold behavior of the σn’s in (6.1)
that is the most encouraging and intriguing. Equation (6.1) tells us not only that
the Fourier coefficients of a far field produced in the ball of radius R will go to zero
rapidly when n becomes greater than kR, but that they can, in general,1 be expected
to be uniformly large for n even slightly less than kR. This means that we need only
look for this transition to zero, which is much less sensitive to noise than any sort of
convergence or ratio test.

This threshold is intimately associated with wave propagation, and not merely a
consequence of unique continuation. While the convex scattering support can easily be
defined for Laplace’s equation (the Helmholtz equation with ω = 0), the corresponding
σn’s exhibit no such behavior.

From our point of view, one very relevant question is whether this thresholding
behavior occurs for other test domains and for Helmholtz equations with inhomoge-
neous backgrounds. If it does, we can expect these tests to be robust in the presence
of noise as well.

1Theorem 3.6 itself guarantees that we can always artificially choose examples where the first 1000
Fourier coefficients are zero, and only after that do the hypotheses of the theorem hold. Nevertheless,
we expect that, for a broad class of sources, this won’t be the case.
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