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Abstract. The robust T ∝ nδ power-law relationship between the temperature (T ) and the density (n) that arises during the
radiative cooling phase of a solar coronal loop is investigated. Using an analytical model and numerical hydrodynamic simu-
lations, we demonstrate that radiative energy loss from the transition region is the dominant physical process. It governs the
down-flow by which mass is lost from the corona and hence controls the evolution of the entire loop.
We also show that the down-flow is initiated by a weakening of the pressure gradient between the corona and the transition
region, such that the plasma can no longer be supported in hydrostatic equilibrium. Rather than driving the down-flow, the
pressure gradient actually regulates it and acts as a brake against gravitational acceleration.
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1. Introduction

It is commonly thought that much of the energy deposited in
the solar corona occurs in very impulsive bursts of energy dis-
sipation lasting a few seconds or minutes. While solar flares are
the largest type of such energy release, it is plausible that bursty
heating can occur over at least nine orders of magnitude from
1024 (nanoflares) up to 1033 ergs (large flares). Unfortunately,
because of its short duration, impulsive heating is often very
difficult to detect directly, especially at the lower end of the en-
ergy scale, and so any observed signature comes largely from
cooling coronal plasma.

Impulsively-heated coronal plasmas cool by both thermal
conduction and radiation, and satisfy an energy equation:

dP
dt
= −γP∂V

∂s
+ (γ − 1)

[
∂

∂s

(
κ0T 5/2 ∂T

∂s

)
− Erad

]
, (1)

in the usual notation. To order of magnitude, a loop of length L
will cool by conduction and radiation on time-scales:

τc =
3nkL2

κ0T 5/2
, τr =

3kT 1−α

χn
, (2)

where we have assumed that Erad = n2Λ(T ) = n2χTα (e.g.
Priest 1982), P = 2nkBT , and γ = 5

3 . Conductive cooling is
important at high temperatures and low densities, whereas ra-
diation is more important at lower temperatures and higher den-
sities. This paper is concerned with radiative cooling.

It is well known that when a coronal plasma cools through
a series of equilibria, the density scales approximately as T 2

(e.g. Rosner et al. 1978). Plasma must also drain from the loop

during this cooling. An example of such a situation is when the
coronal energy input decreases on a time-scale much longer
than τc or τr. However, on the basis of numerical simulations
and observations of solar flares Serio et al. (1991) and Jakimiec
et al. (1992) noted that during the radiative cooling phase of
flares the temperature and density were related by a power-law
of the form:

T ∝ nδ, (3)

where δ ≈ 2. Subsequent investigations by Sylwester et al.
(1993) and Cargill et al. (1995, hereafter CMA95) showed that
while δwas not always two, the generic power-law relationship
was very robust.

The difference between these two approaches to radia-
tive cooling are significant. Consider a coronal plasma that
cools from temperature T0 to temperature T1. Then the ra-
tio of the density obtained from a radiative model described
by Eq. (3) (nr) to that from an equilibrium model (neq) is
nr/neq = (T0/T1)3/2. So the radiative model gives an “over-
dense” loop since it has a higher density than the equilibrium
model (e.g. Cargill & Klimchuk 2004). Since the coronal emis-
sion measure scales as n2, the effect on the observed radiative
signature can be large. Despite this higher density, one would
expect the magnitude of the velocity associated with the loop
draining to be larger for the case of uncompensated radiative
cooling simply because the cooling time-scale is much shorter
(τr, rather than the time-scale for the equilibrium to evolve
slowly).

The scalings between temperature and density described in
Eq. (3) have been used by Cargill (1993,1994) and CMA95 to

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20042405

http://www.edpsciences.org/aa
http://dx.doi.org/10.1051/0004-6361:20042405


312 S. J. Bradshaw and P. J. Cargill: Radiative cooling. II.

develop a series of simple analytical models of the cooling rate
of impulsively heated coronal plasmas that could also be ap-
plied to studies of stellar flares. However, despite their ready
appearance in numerical simulations, the cause of these robust
n − T scalings has never been established. We return to this
problem from the viewpoint of analytical models and numeri-
cal simulations.

In Sect. 2 we develop an analytical model that constrains δ
by considering the interaction of the transition region with the
corona. Section 3 contains results from numerical simulations
of cooling loops and a comparison with our analytical results.
In Sect. 4 we present an improvement to our analytical model,
based upon the results in Sect. 3. We summarise our results and
present our conclusions in Sect. 5.

2. An analytical model for radiative cooling

2.1. The coronal region

We develop a model of the coronal region during the radiative
cooling phase, thereby assuming that thermal conduction in the
corona can be neglected and the plasma down-flow associated
with radiative cooling is already well-established. This down-
flow arises due to the fact that the radiative losses at the base
of the loop are greater than at the apex, which reduces the pres-
sure gradient that supports the plasma against gravity when the
loop is in hydrostatic equilibrium. When the pressure gradient
can no longer counteract the gravitational force, the down-flow
begins to develop. Consequently, the coronal part of the loop
loses energy both to space by optically thin radiation and to the
cooler plasma further down, by convection.

Integrating Eq. (1) over a characteristic coronal length-
scale, Lc, we obtain:

dPc

dt
= −γPcVc

Lc
− (γ − 1)n2

cχT
α
c , (4)

where subscript c denotes coronal averaged quantities.
Integrating the equation of mass conservation we find:

dnc

dt
= −ncVc

Lc
· (5)

Combining Eqs. (4) and (5) gives:

dPc

dnc
=
γPc

nc
+ (γ − 1)

ncLcχTαc
Vc

· (6)

We now write Eq. (3) in the form:

Tc

Tc0
=

(
nc

nc0

)δ
, (7)

which implies:

Pc

Pc0
=

(
nc

nc0

)δ+1

, (8)

where subscript 0 corresponds to the start of the radiative cool-
ing phase. From Eq. (8):

∂Pc

∂t
= (δ + 1)

Pc0

nc0

(
nc

nc0

)δ
∂nc

∂t
, (9)

and, using Eq. (7), Eq. (6) becomes:

Pc0

nc0

(
nc

nc0

)δ
(δ+1−γ)= (γ−1)χnc0T

α
c0Lc

(
nc

nc0

)αδ+1

V−1
c . (10)

The power of nc must be the same on each side of Eq. (10).
This is clearly not the case for common values of α and δ (− 1

2
and 2, respectively: CMA95) which implies that Vc must scale
as the coronal density to some power. On writing:

Vc = Vc0

(
nc

nc0

)β
, (11)

we obtain from equating the power of nc in Eq. (10):

β = δ(α − 1) + 1, (12)

and from equating the coefficients:

δ = γ − 1 +

(
Lc

Vc0

)  (γ − 1)χn2
c0Tαc0

Pc0

 = 2
3
+

(
τv0
τr0

)
, (13)

where τv0 = Lc/Vc0, τr0 is the initial radiative cooling time and
we have set γ = 5

3 .

2.2. Interaction with the transition region

In order to progress further, we require a determination of
Vc0. During the radiative cooling phase, any volumetric heat-
ing in the transition region is not sufficient to balance the
large amount of energy lost through optically-thin radiation.
Consequently, the transition region must receive a supply of
energy from the corona. Since thermal conduction is negligible
(by definition) during the radiative phase, the energy must be
supplied by convection.

We now introduce a transition region into our analytical
model, which we expect to provide us with new power-law rela-
tionships showing how its properties give rise to the power-law
relationships for Tc and Vc. The analytical scalings can then be
checked by comparing the predicted values for the indices with
those from full, numerical hydrodynamic simulations.

The equation of energy balance between the corona and the
transition region is:

−(γ + 1)
PcVc

Lt
= −(γ − 1)n2

t χT
α
t , (14)

where subscript t denotes a transition region quantity.
Equation (14) is essentially a statement of Gauss’ Law applied
to an energy flux across a surface – in this case across the in-
terface between the corona and the transition region. Here, we
assume that the energy provided to the transition region by the
corona is radiated away to space.

Let Γ = −(γ + 1)/(γ − 1) and, since n2
t Tαt = Tα−2

t P2
t /4k2

B,
then:

ΓPcVc = ΓPc0Vc0

(
nc

nc0

)δ+1+β

= − χ
4k2

B

Tα−2
t LtP

2
t , (15)

where the power-law relationships for Pc and Vc (Eqs. (8)
and (11), respectively) are used. Recalling that β = δ(α−1)+1,
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then the power of nc on the left-hand side of Eq. (15) must be
δα + 2.

Given the scaling of the left-hand side of the equation
with nc, then the transition region radiative energy loss must
also exhibit the same dependence on nc, which can be ex-
pressed via power-law relationships. More specifically, we
require power-law relationships, with respect to nc, for the
quantities Pt and Lt. The necessary relationships can be ob-
tained using straightforward physical reasoning.

Transition region pressure
It was stated above that the down-flow arises from a weak-

ening of the pressure gradient between the transition region and
the corona, rendering it unable to support the plasma against
gravity in hydrostatic equilibrium. Therefore, as a first approx-
imation we will assume that Pt ≈ Pc:

Pt = Pc0

(
nc

nc0

)δ+1

· (16)

Transition region thickness
As the corona radiatively cools its thermal energy decreases

and so, consequently, does the heat flux supplied to the transi-
tion region via thermal conduction. The transition region tem-
perature gradient responds to changes in the heat flux that it is
required to carry by changes in its own temperature gradient; a
reduced heat flux results in a weaker temperature gradient and
thus a thicker transition region. We expect the thickness of the
transition region to obey a power-law relationship of the form:

Lt = Lt0

(
nc

nc0

)ε
, (17)

where it is anticipated that ε < 0.
Substituting the power-law relationships into Eq. (15)

gives:

ΓPc0Vc0

(
nc

nc0

)δα+2

= − χ
4k2

B

Lt0P2
c0Tα−2

t

(
nc

nc0

)ε+2(δ+1)

. (18)

The value of the index ε can now be calculated as:

ε = δ(α − 2). (19)

For the values α = − 1
2 and δ = 2 quoted above and from

CMA95, Eq. (12) gives β = −2, and we find that ε = −5.
CMA95 also found that for α = −2 then δ ≈ 1, and so β = −2
and ε = −4.

Finally, by equating the coeffients in Eq. (18) we find:

Vc0 = − χ
4Γk2

B

Lt0Pc0Tα−2
t , (20)

and can substitute it into Eq. (13) in order to complete our
expression for δ:

δ = γ − 1 + (γ + 1)

Lcn2
c0Tαc0

Lt0n2
t0Tαt

 · (21)

We recognise that the part of the second term in brackets is
just the ratio of the initial radiative losses integrated over the
coronal and transition region thicknesses respectively. For γ =
5/3 and δ = 2, this ratio must be 0.8.

Table 1. Initial (t = 0) conditions for the numerical simulations of
cooling loops.

Simulation L (Mm) Tapex (MK)
1 10 2
2 40 2
3 40 4

Equations (12) and (19) show how the indices, for each of
the power-law relationships that have been proposed, are re-
lated. Since we are interested primarily in δ, the relationships
between the indices can give us an idea of how the relevant
physical processes must interact to control the evolution of the
loop in order to give the robust scaling between T and n.

If the power-law relationships are correct and the behaviour
of the key parameters has been identified, then sensible values
for α and δ (e.g. based upon observations and/or numerical sim-
ulations) should then yield sensible values for the other indices,
and vice-versa.

In the following section we describe several numerical hy-
drodynamic simulations of cooling loops and from the results
we calculate the values of the indices for each of the power-
laws that we have postulated. If our analytical model captures
the true physical behaviour of a cooling loop then the values of
the indices given above should be in reasonably good agree-
ment with those calculated from the simulations, bearing in
mind of course the approximations made in the above analysis.

3. Comparison between the analytical model
and numerical simulations

The computational code HYDRAD (Bradshaw & Mason
2003a,b; Bradshaw et al. 2004) was used to perform three sim-
ulations of cooling loops and different initial conditions were
adopted for each one. These are summarised in Table 1. The
initial conditions for each loop are an equilibrium between con-
ductive and radiative losses, and a heating function. For a fixed
length, a hotter loop has a higher density, and for a fixed tem-
perature a shorter loop has a higher density (e.g. Rosner et al.
1978).

The HYDRAD code evolves the initial conditions in time
by setting the volumetric heating rate to zero and solving the
coupled mass, momentum and energy density equations that
describe the hydrodynamics of a compressible plasma. The en-
ergy equation includes terms for convective transport, thermal
conduction, energy gain (loss) by compression (rarefaction)
and optically-thin radiation. HYDRAD calculates optically-
thin radiation using data provided by the CHIANTI atomic
database (Young et al. 2003), whereas many existing hydro-
dynamic models use a series of power-laws to reproduce the
characteristic radiative loss vs. temperature curve for the solar
atmosphere. While HYDRAD is capable of solving the equa-
tions of ionisation balance simultaneously with the hydrody-
namic equations, in order to calculate the optically-thin radi-
ation when the ion populations depart from their equilibrium
values, in the present work we use the equilibrium values for
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Fig. 1. The time-evolution of the apex temperature, during the radia-
tive cooling phase, for simulation 1 (solid); simulation 2 (dashed); and
simulation 3 (dot-dash).

Fig. 2. The time-evolution of the apex density, during the radiative
cooling phase, for simulation 1 (solid); simulation 2 (dashed); and
simulation 3 (dot-dash).

the ion populations to retain compatibility with our analytical
model.

HYDRAD also features an adaptive computational grid in
order to ensure that small-scale and discontinuous features are
captured with sufficient resolution as they propagate. Examples
of such features are: shocks; thermal conduction fronts; and
ionisation fronts. Since we have assumed that the energetics of
the transition region control the dynamics of the loop, then it is
extremely important that the transition region is captured with
sufficient resolution in the case of a loop undergoing radiative
cooling.

Figures 1 and 2 show the time-evolution of the temperature
and the density at the loop apex during the radiative cooling
phase of each simulation. The difference between the radiative
energy losses at the base and apex of the loop have sufficiently
weakened the pressure gradient so that the down-flow has been
initiated. At the onset of the radiative phase it has become suf-
ficient to drain plasma from the corona.

Fig. 3. Phase-space plots of temperature and density at the loop apex,
during the radiative cooling phase, for simulation 1 (solid); simula-
tion 2 (dashed); and simulation 3 (dot-dash). The gradient of each line
gives the index δ.

Of the two loops with an initial apex temperature of 2 MK,
the shortest one cools the most rapidly. The difference in their
lengths is a factor of 4 and the difference in their cooling time-
scales is a factor of 5.9, which suggests a weakly non-linear
scaling between the cooling time-scale and the loop length of
1.28, on the order of the L5/6 scaling noted by Cargill (1993)
and CMA95.

Of the two loops of length 40 Mm, the hotter one cools
the most rapidly, reaching a temperature of 5 × 105 K at about
730 s, which is on the order of one minute sooner than the
other 40 Mm loop. This cooling is consistent with the analytical
models of Cargill (1993) and CMA95 who predict a relatively
weak scaling of the cooling time with pressure, the relationship
being p−1/6.

Figure 3 shows the phase-space plots of T and n at the loop
apex during the radiative cooling phase of each simulation. The
gradient of each line gives the value of δ for the corresponding
simulation. There is a clear power-law relationship between T
and n, and in each case δ ≈ 2, in agreement with previous
findings (Sect. 1).

Figures 4 and 5 show the phase-space plots of the average
values of Vc and Lt, as functions of nc, during the radiative cool-
ing phase, for each simulation. Calculating these average val-
ues is not a trivial matter since defining appropriate diagnostic
measurements so that meaningful quantities can be extracted
from numerical results can be very difficult. For example, how
does one precisely and consistently define the transition region,
bearing in mind that its location and properties change consid-
erably during the simulations?

In order to calculate average values for the transition re-
gion properties Pt and Lt, and to normalise their values to the
initial values at the onset of the radiative cooling phase, we de-
fine the transition region as being in the temperature interval
between 2 × 104 and 2 × 105 K. We find that varying the width
of this temperature interval, though it alters the calculated val-
ues of the indices, does not affect the generic conclusions that
we draw from the numerical results. The average coronal
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Fig. 4. Phase-space plots of Vc and nc averaged along the coronal re-
gion of the loop, during the radiative cooling phase, for simulation 1
(solid); simulation 2 (dashed); and simulation 3 (dot-dash). The gra-
dient of each line gives the index β.

Fig. 5. Phase-space plots of Lt and nc averaged along the transition and
coronal regions of the loop, respectively, during the radiative cooling
phase, for simulation 1 (solid); simulation 2 (dashed); and simulation 3
(dot-dash). The gradient of each line gives the index ε.

values (nc and Vc) are calculated between the top of the transi-
tion region and the loop apex.

Figure 4 shows the scaling relationship between Vc and nc

in each simulation. Although there is some variation of the scal-
ing as the loop cools, β is on average negative with average
values between −2.0 and −0.9. β varies the most during simu-
lation 3, though it also does not remain absolutely constant dur-
ing simulations 1 and 2 either. This indicates that the evolution
of Vc is more complicated than a straightforward power-law
can describe, however, the figures also show that it is reason-
able to take an average value of β in order to capture the overall
behaviour of Vc. Figure 5 shows a clear and consistent scaling
relationship between Lt and nc in each simulation, with ε in the
range −3.5 to −3.

Table 2 compares the values of the indices β and ε pre-
dicted by the analytical model, with the average values calcu-
lated from the simulation results.

Table 2. Comparison between analytical predictions and numerical
hydrodynamic calculations of the power-law indices β and ε.

Index Model Sim. 1 Sim. 2 Sim. 3
β −2.0 −2.0 −1.5 −0.9
ε −5.0 −3.2 −3.5 −3.0

The analytical prediction of β = −2.0 is in reasonable
agreement with the numerical hydrodynamic calculations for
simulations 1 and 2, though the value of −0.9 given by sim-
ulation 3 shows more deviation. The analytical prediction of
ε = −5.0 appears to be somewhat of an over-estimate in magni-
tude, since the numerical hydrodyanmic calculations yield rea-
sonably similar values, between −3.0 and −3.5.

Despite these differences, the predictions for the values of
the indices made by the analytical model are encouraging, es-
pecially when one takes into account the averaging process
used to calculate the indices and the more significant prob-
lem of the difficulty in defining appropriate diagnostic mea-
surements, as discussed above. Overall, each set of indices is
in sufficiently good agreement that a different choice of diag-
nostic would not lead us to significantly different conclusions.
Furthermore, HYDRAD calculates the radiative emission us-
ing a full treatment of the atomic physics of the process, with
data provided by CHIANTI (Young et al. 2003), rather than a
simple scaling with Tα. Since we have related β and ε to α, it is
to be expected that the analytical and numerical values for the
indices are not in exact agreement.

However, the main and most crucial finding is that our an-
alytical model not only provides reasonable values for each of
the indices, it describes in a simple way the overall behaviour
of the physical system. This lends strong support to our as-
sumption that thermal conduction everywhere along the loop,
and convection in the transition region, can be neglected from
the analytical model, consequently showing that optically-thin
radiation from the transition region controls the evolution of
the loop during the radiative cooling phase and establishes the
robust power-law relationship between T and n.

Some observational support for these scalings comes from
the work of Sylwester et al. (1993). They first carried out nu-
merical hydrodynamic simulations of cooling flare plasma and
from the results calculated n − T and corresponding

√
EM − T

diagrams, where EM is the emission measure. For δ ≈ 1.96

they found δEM ≈ 1.46, i.e. T ∝
(√

EM
)1.46

. Following this,
they used the calcium spectrum of a selection of flares recorded
by the Solar Maximum Mission Bent Crystal Spectrometer to
analyse the relationship between EM and T , and found the ob-
servationally derived value δEM ≈ 1.32. Though not conclusive,
these results are indicative of the presence of these scalings.

4. An improved analytical model

The analytical model presented in Sect. 2 makes good predic-
tions of the power-law relationships between key variables dur-
ing the radiative cooling phase. However, an improved treat-
ment of the physics should provide even better predictions and,
in particular, we address the over-estimation of the magnitude
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Fig. 6. Time series of the velocity profile between the loop base and
apex, during the radiative cooling phase, for simulation 2 at: 150 s
(solid line); 300 s (dotted); 450 s (dashed); 600 s (dot-dash); 800 s
(triple-dot-dash); 1000 s (long-dashed).

Fig. 7. Time series of the pressure profile between the loop base and
apex, during the radiative cooling phase, for simulation 2 at: 150 s
(solid line); 300 s (dotted); 450 s (dashed); 600 s (dot-dash); 800 s
(triple-dot-dash); 1000 s (long-dashed).

of the index ε that described the thickness of the transition
region.

We stated previously that the down-flow associated with ra-
diative cooling arises due to a weakening of the pressure gradi-
ent that supports the plasma against gravity in hydrostatic equi-
librium. Figure 6 shows how the down-flow develops during
simulation 2 and Fig. 7 shows the corresponding pressure pro-
file along the loop.

Figure 7 shows that the pressure monotonically increases
towards the loop base (i.e. Pt > Pc). Therefore, the pressure
gradient cannot contribute towards driving the down-flow but,
rather, acts to oppose it. However, the pressure gradient is not
sufficient to halt the down-flow altogether and so it must in-
fact regulate or attenuate the down-flow against the downward
gravitational force exerted by the Sun.

With this in mind we now drop the assumption that Pt ≈
Pc in our original model and adopt a new formulation for Pt

Fig. 8. Phase-space plots of Pt
Pc

and nc averaged along the transition
and coronal regions of the loop, respectively, during the radiative cool-
ing phase, for simulation 1 (solid), simulation 2 (dashed) and simula-
tion 3 (dot-dash). The gradient of each line gives the index θ.

in order to account for the presence, as shown by Fig. 7, of a
pressure gradient between the corona and the transition region:

Pt = KPc, (22)

where K is small and on the order of 1. Let:

K =

(
nc

nc0

)θ
, (23)

thus, from Fig. 7, we expect θ to be small and negative since
nc < nc0 as the radiative cooling proceeds. Now:

Pt = Pc0

(
nc

nc0

)δ+θ+1

· (24)

Substituting Eqs. (24) and (17) into Eq. (15) gives:

αδ + 2 = ε + 2(δ + θ + 1). (25)

Figure 8 shows the phase-space plots of the average values of
Pt
Pc

, as functions of nc, during the radiative cooling phase for
each simulation. The values of θ derived from the plots are:
simulation 1, θ = −0.2; simulation 2, θ = −0.4; and simula-
tion 3, θ = −0.1.

In Table 2 the value of ε given by the analytical model,
which does not take into account the pressure gradient, is com-
pared with the values given by the simulations, which obvi-
ously do account for the pressure gradient. Therefore, a better
comparison could be made if the values of ε given by the sim-
ulations could be corrected, such that the effect of the pressure
gradient is removed from the result.

From Eq. (19):

ε = δ(α − 2), (26)

and from Eq. (25):

ε = δ(α − 2) − 2θ. (27)

Therefore:

ε = ε0 − 2θ, (28)



S. J. Bradshaw and P. J. Cargill: Radiative cooling. II. 317

where ε0 is the value obtained when the pressure gradient has
not been accounted for. Equation (28) provides a way to cor-
rect the values of ε for each simulation to give an estimate of
ε0, which can be compared more directly with the analytical
estimate of −5.0. The values given by the simulations are: sim-
ulation 1, ε0 = −3.6; simulation 2, ε0 = −4.3; and simulation 3,
ε0 = −3.2. Each of these values is in better agreement with
the analytical estimate, as a consequence of developing a more
accurate treatment of the key physics.

The discrepancies between our analytical and numerical
models, in the values for the power-law indices, are due to
the treatment of optically-thin radiation from the transition re-
gion. The analytical model necessarily employs a very simplis-
tic treatment of the form Erad ∝ χTα (e.g. Priest 1982), which
is a function of temperature only, whereas HYDRAD uses data
from the CHIANTI atomic database (Young et al. 2003) to pro-
vide a far more accurate and comprehensive calculation of the
radiative emission as a function of both temperature and den-
sity. Cargill et al. (1995) also demonstrated the sensitivity of
the value of δ to the value chosen for α. The differences be-
tween the values for the power-law indices are also due partly
to the difficulties in defining appropriate and consistent defini-
tions for transition region diagnostics, as discussed in Sect. 3.

5. Summary and conclusions

We have developed an analytical model of the radiative cool-
ing phase of a coronal loop in order to establish the physical
mechanism behind the robust T ∝ nδ scaling. Our analyti-
cal model assumes that during the radiative cooling phase the
corona loses energy by radiation and, due to the presence of a
down-flow, by convection to the transition region; the energy
supplied to the transition region by the corona is radiated away
to space.

We have shown, through the use of additional power-law
relationships, that radiative emission from the transition region
controls the evolution of the loop during the radiative phase.
This has been achieved by comparing the scaling with coronal
density of the average coronal down-flow velocity and the
thickness of the transition region as predicted by our analytical
model, with the scaling given by full, numerical hydrodynamic
simulations. Given the approximations used in our analytical
model and the difficulty of defining appropriate diagnostic
measurements, we have found remarkably good agreement

between the values of the indices of the power-laws predicted
by the analytical model and those given by the simulations.
Since the simulations solve a full energy equation, including
terms that account for convection, thermal conduction, com-
pressibility and radiation, and only radiation is considered in
the analytical model, the agreement between the predicted val-
ues for the indices demonstrates conclusively that transition re-
gion radiation is the dominant physical process governing the
evolution of the loop during the radiative cooling phase and
gives rise to the robust T ∝ nδ scaling.

We have also shown that the down-flow associated with
radiative cooling is initiated by a weakening of the pressure
gradient between the corona and the transition region, due
to differences in the radiative emission, so that the plasma
can no longer be supported in hydrostatic equilibrium. Hence,
rather than driving the down-flow, the pressure gradient actu-
ally serves to regulate it and acts as a brake to gravitational
acceleration. We demonstrated this by accounting for the pres-
ence of a pressure gradient in our analytical model and showing
how a correction can be derived to provide a more direct com-
parison between the indices predicted by the analytical model
and those given by the simulations.
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