
 Open access Journal Article DOI:10.1007/S00778-019-00587-4

The core decomposition of networks: theory, algorithms and applications
— Source link

Fragkiskos D. Malliaros, Christos Giatsidis, Apostolos N. Papadopoulos, Michalis Vazirgiannis ...+1 more authors

Institutions: University of Paris, École Polytechnique, Aristotle University of Thessaloniki,
Athens University of Economics and Business

Published on: 01 Jan 2020 - Very Large Data Bases

Topics: Graph theory and Degeneracy (graph theory)

Related papers:

 Network structure and minimum degree

 Identification of influential spreaders in complex networks

 An O(m) Algorithm for Cores Decomposition of Networks

 Fast unfolding of communities in large networks

 Distributed k-Core Decomposition

Share this paper:

View more about this paper here: https://typeset.io/papers/the-core-decomposition-of-networks-theory-algorithms-and-
13iqiqe354

https://typeset.io/
https://www.doi.org/10.1007/S00778-019-00587-4
https://typeset.io/papers/the-core-decomposition-of-networks-theory-algorithms-and-13iqiqe354
https://typeset.io/authors/fragkiskos-d-malliaros-xad936y5b7
https://typeset.io/authors/christos-giatsidis-108tl7g0e8
https://typeset.io/authors/apostolos-n-papadopoulos-4qkwslj6w5
https://typeset.io/authors/michalis-vazirgiannis-1oiebr1d7r
https://typeset.io/institutions/university-of-paris-3fpqqchm
https://typeset.io/institutions/ecole-polytechnique-29q4ufob
https://typeset.io/institutions/aristotle-university-of-thessaloniki-3hg6qtpq
https://typeset.io/institutions/athens-university-of-economics-and-business-350utadl
https://typeset.io/conferences/very-large-data-bases-hqmyzr0f
https://typeset.io/topics/graph-theory-1ze17v9w
https://typeset.io/topics/degeneracy-graph-theory-f8rrrvl3
https://typeset.io/papers/network-structure-and-minimum-degree-2m52dre3r7
https://typeset.io/papers/identification-of-influential-spreaders-in-complex-networks-4zv30jmeio
https://typeset.io/papers/an-o-m-algorithm-for-cores-decomposition-of-networks-2nr73znzw0
https://typeset.io/papers/fast-unfolding-of-communities-in-large-networks-3hz1lz8b9n
https://typeset.io/papers/distributed-k-core-decomposition-z36qatyf23
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-core-decomposition-of-networks-theory-algorithms-and-13iqiqe354
https://twitter.com/intent/tweet?text=The%20core%20decomposition%20of%20networks:%20theory,%20algorithms%20and%20applications&url=https://typeset.io/papers/the-core-decomposition-of-networks-theory-algorithms-and-13iqiqe354
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-core-decomposition-of-networks-theory-algorithms-and-13iqiqe354
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-core-decomposition-of-networks-theory-algorithms-and-13iqiqe354
https://typeset.io/papers/the-core-decomposition-of-networks-theory-algorithms-and-13iqiqe354

HAL Id: hal-01986309
https://hal-centralesupelec.archives-ouvertes.fr/hal-01986309v3

Submitted on 3 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Core Decomposition of Networks: Theory,
Algorithms and Applications

Fragkiskos Malliaros, Christos Giatsidis, Apostolos Papadopoulos, Michalis
Vazirgiannis

To cite this version:
Fragkiskos Malliaros, Christos Giatsidis, Apostolos Papadopoulos, Michalis Vazirgiannis. The Core
Decomposition of Networks: Theory, Algorithms and Applications. The VLDB Journal, Springer,
2019. hal-01986309v3

https://hal-centralesupelec.archives-ouvertes.fr/hal-01986309v3
https://hal.archives-ouvertes.fr

The Core Decomposition of Networks:

Theory, Algorithms and Applications

(The VLDB Journal, 2019)

Fragkiskos D. Malliaros∗, Christos Giatsidis†, Apostolos N. Papadopoulos‡,

and Michalis Vazirgiannis§

Abstract

The core decomposition of networks has attracted significant attention due to its numerous appli-

cations in real-life problems. Simply stated, the core decomposition of a network (graph) assigns to

each graph node v, an integer number c(v) (the core number), capturing how well v is connected with

respect to its neighbors. This concept is strongly related to the concept of graph degeneracy, which has

a long history in Graph Theory. Although the core decomposition concept is extremely simple, there

is an enormous interest in the topic from diverse application domains, mainly because it can be used

to analyze a network in a simple and concise manner by quantifying the significance of graph nodes.

Therefore, there exists a respectable number of research works that either propose efficient algorithmic

techniques under different settings and graph types or apply the concept to another problem or scientific

area. Based on this large interest in the topic, in this survey, we perform an in-depth discussion of core

decomposition, focusing mainly on: i) the basic theory and fundamental concepts, ii) the algorithmic

techniques proposed for computing it efficiently under different settings, and iii) the applications that

can benefit significantly from it.

Keywords: Core decomposition, graph mining, graph degeneracy, graph theory, algorithms

∗Center for Visual Computing, CentraleSupélec, University of Paris-Saclay and Inria Saclay, France. Email: fragkiskos.
malliaros@centralesupelec.fr

†Computer Science Laboratory, École Polytechnique, France. Email: xristosakamad@gmail.com
‡School of Informatics, Aristotle University of Thessaloniki, Greece. Email: papadopo@csd.auth.gr
§Computer Science Laboratory, École Polytechnique, France. Email: mvazirg@lix.polytechnique.fr

1

fragkiskos.malliaros@centralesupelec.fr
fragkiskos.malliaros@centralesupelec.fr
 xristosakamad@gmail.com
papadopo@csd.auth.gr
 mvazirg@lix.polytechnique.fr

Contents

1 Introduction 4

2 Fundamental Concepts 8

2.1 Simple Graphs . 8

2.2 Extensions to Other Types of Graphs . 10

2.2.1 Directed Graphs . 10

2.2.2 Weighted Graphs . 10

2.2.3 Signed Graphs . 11

2.2.4 Bipartite Graphs . 11

2.2.5 Dynamic Graphs . 11

2.2.6 Temporal Graphs . 12

2.2.7 Probabilistic Graphs . 12

2.2.8 Multilayer Graphs . 12

2.2.9 Hidden Graphs . 13

2.3 Generalized Core Decomposition . 13

2.4 Extensions of the Core Decomposition . 14

2.4.1 Truss Decomposition . 14

2.4.2 Density-friendly Core Decomposition . 15

2.4.3 Peak Decomposition . 15

2.4.4 Nucleus Decomposition . 16

2.4.5 Distance-based Core Decomposition . 17

2.4.6 k-tip Decomposition . 18

2.4.7 Radius-Bounded Decomposition . 19

3 Algorithmic Techniques 20

3.1 In-Memory Computation . 20

3.2 Disk-Resident Graphs . 21

3.3 Core Decomposition in Dynamic Environments . 23

3.4 Local Computation of Core Numbers . 26

3.5 Parallel and Distributed Techniques . 27

3.5.1 Parallel Computation . 28

3.5.2 Distributed Computation . 29

3.6 Probabilistic Core Decomposition . 31

4 Representative Application Domains 33

4.1 Network Modeling and Analysis . 33

4.2 Temporal Evolution . 33

4.3 Anomaly Detection . 34

4.4 Detection of Influential Spreaders . 34

4.5 Network Visualization . 35

4.6 Communities and Dense Subgraphs . 37

4.7 Text Analytics . 38

4.8 The Anchored k-Core Problem and Engagement Dynamics in Social Graphs 39

4.9 Graph Similarity . 39

2

4.10 Physics, Biology and Ecology . 40

4.11 Neuroscience . 41

5 Conclusions and Further Research 41

3

1 Introduction

Graph management and graph mining are two important research areas with a plethora of significant

practical applications [3, 36]. The main reason for this is the fact that graphs are ubiquitous and, therefore,

their efficient management and mining is necessary to guarantee fast and meaningful knowledge discovery.

Research on graph processing and mining was boosted by the need to explore and analyze massive graphs

in Big Data Analytics tasks, aiming at computational efficiency and high scalability.

A network or graph (we will use the terms interchangeably) is denoted by G(V,E), where V is the set

of nodes or vertices and E is the set of edges or links. We will follow the trend in the literature and use

the symbol n for the number of nodes (n = |V |) and the symbol m for the number of edges (m = |E|).

The number of neighbors of a node u ∈ V plays a central role in general, and it will be denoted by deg(u).

Figure 1(a) presents a simple graph G(V,E) with n = 8 nodes and m = 12 edges. Based on the degree

definition, deg(v1) = 2, deg(v4) = 2 whereas node v3 has the highest degree deg(v3) = 5. Therefore, node

v8 has the smallest degree and node v3 the highest.

(a) 1-core (b) 2-core (c) 3-core

Figure 1: A small graph G with n = 8 nodes and m = 12 edges and the corresponding 1-core, 2-core and
3-core of G.

In many modern applications graphs are first class citizens. For example:

• The Web [80] can be modeled as a graph, where nodes represent web pages and edges represent

hyperlinks among them.

• In a social network [2], nodes may represent users and edges may provide information regarding

friendship relationships.

• In protein analysis, a protein-protein interaction network (PPI for short) [122] may be represented

as a graph, where nodes represent different proteins and edges capture the interaction between

proteins during a specific experiment.

• Graphs may also represent interactions among different types of nodes. For example, purchase

information may be captured by using a bipartite graph, where a set of nodes (e.g., customers)

interact with another set of nodes (e.g., products). In this case, a link between a customer c and a

product p captures the fact that p was purchased by c.

These are only a few examples of applications that model elements and the interactions among them

by using a graph structure. In these cases, it is important to rely on the structural properties of the

interactions among the elements in order to discover useful and meaningful patterns.

Exploring and analyzing massive complex networks involves the execution of (usually) computationally

intensive tasks, aiming at uncovering the network structure and detecting the presence of useful patterns

4

that could be proven significant. Some important graph mining tasks involve: reachability queries, graph

partitioning, graph clustering, classification of graph nodes, predicting network evolution, discovering

dense subgraphs, detecting influential spreaders.

In many cases we are searching for graph nodes that are considered “central” with respect to a

specific problem at hand. Therefore, the concept of node importance is crucial in network analysis, since

it is expected that among the nodes of a massive network, only a small fraction is of high significance.

Evidently, one should first determine a method to quantify this significance (importance), since this

concept is highly related to the application under consideration. For example, if we assume that we are

interested in nodes with a large degree (simply because the number of links is important), then evidently,

importance is directly measured by counting the number of neighbors of every node (a concept known as

degree centrality). As another example, we may define importance in relation to the number of triangles

each node participates in; the higher the number of triangles, the higher the node importance. Another

popular measure of importance is the total number of shortest paths passing through a specific node

(also known as betweenness centrality [50]). Also, one can quantify node importance using the concept

of random walks and applying techniques similar to PageRank [27]. In such a case, the importance of a

node is represented by the probability that this node will be visited by a random walker.

Based on the previous discussion, we realize that there is a plethora of different ways to define impor-

tance. However, it turns out that the concept of core decomposition can be used efficiently and effectively

to quantify node importance in many different domains, thus, avoiding the use of more complex and com-

putationally intensive algorithmic techniques. To be precise, the core decomposition of a simple graph

G can be computed in linear time with respect to the number of edges of G, if the computation is done

in main memory. Simply put, the k-core of a graph G is the maximal induced subgraph Gk, where the

number of neighbors of every node u in Gk is at least k. The core number of a node u (c(u)) is defined

as the maximum value of k such that u is contained in Gk. Figure 1 illustrates the 1-core, the 2-core and

the 3-core of a toy graph. Based on the definition of the core number, it holds that c(v8) = 1, c(v1) = 2

and c(v6) = 3.

Roadmap. Based on the fact that the core decomposition concept has numerous applications in diverse

domains, in this survey we cover the topic as thoroughly as possible, by presenting the concepts, the

algorithmic techniques used and also the fundamental applications that base their main results on the

core number (or variations) of graph nodes. This survey was inspired by four tutorials presented by

the authors [101] in the following conferences: i) 7th IEEE/ACM International Conference on Social

Network Analysis and Mining (ASONAM) 2015, ii) 19th EDBT/ICDT Joint Conference 2016, iii) IEEE

International Conference on Data Mining (ICDM) 2016 and iv) The European Conference on Machine

Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD) 2017. To the

best of our knowledge, this is the first comprehensive survey of the area. Existing works like [30, 23] cover

only specific parts of the problem and they do not provide an in-depth discussion of the algorithms and

the associated application domains.

Table 1 presents the timeline of the main research works related to core decomposition that are cited

in this survey. We classify the related research contributions into two basic groups: i) concepts and

algorithmic techniques and ii) representative application domains. In addition, the main topics covered

in this survey are summarized in four categories (graph types, decomposition types, algorithms discussed

and applications) as shown in Table 2. For each topic there are relevant references to the main text, to

help the reader focus on the most relevant sections. The rest of this article is organized as follows:

• In Section 2 we present some fundamental concepts in addition to the basic definition of the core

decomposition and some of its most widely used extensions for specific graph types. In particular,

5

Table 1: Core decomposition timeline.

Concepts and Algorithmic Techniques • Year • Representative Application Domains

coloring number [45] • 1968 •
degeneracy [94] • 1970 •

width [51] • 1982 •
• 1983 • dense subgraphs [133]

linkage [78] • 1996 •
• 1999 • adjacency matrix visualization [16]
• 2000 • web analysis [80]

generalized cores [17] • 2002 •
main-memory computation [18] • 2003 •

• 2005 • network analysis [8], visualization [6]
• 2006 • complex networks [41], fingerprinting and

visualization [7]
• 2007 • internet topology [29]

truss decomposition [34] • 2008 • internet evolution [165], network
analysis [69, 87, 9], neuroscience [67]

• 2009 • cell biology [99]
• 2010 • influential spreaders [79]

D-cores [62], disk-based computation [32],
distributed computation [109], anchored

k-core [20]

• 2011 • communities [63], influence [28],
neuroscience [147]

triangle cores (truss) [150, 166], weighted
networks [54]

• 2012 • visualizing triangle k-core [166]

dynamic cores [127], distributed
computation [110] , weighted networks [43]

• 2013 • influential spreaders [168],
engagement [103, 55], network analysis [1],
neuroscience [135]

local estimation [114], uncertain graphs [24],
S-cores [60]

• 2014 • clustering [61], neuroscience [125], influential
spreaders [119, 95]

temporal graphs [157], disk-based and
in-memory [77], parallel computation [134],

density-friendly decomposition [141]

• 2015 • keyword extraction [124], influential
communities [92], earthquake networks [68],
cell biology [73, 44], neuroscience [156, 21],
textual event detection [106], engagement
[104]

incremental computation [126], disk-based
computation [65, 153], distributed

computation [12], uncertain truss [72]

• 2016 • cell biology [42, 120], graph mining [136],
network analysis [148], neuroscience [85] ,
network decycling and dismantling [161],
influential spreaders [102], keyword
extraction [143], summarization [144]

hidden cores [139], multilayer graphs [53],
parallel computation [152, 74],

density-friendly decomposition [38], k-peak
decomposition [66], (k, r)-core [164], core

unravelling [162], truss in uncertain graphs
[170], dynamic graphs [167], α-β-core [40]

• 2017 • distributed clustering [33], community
search [4, 46], engagement [163],
ecology [58, 57], influential spreaders [5],
keyword extraction [107]

distributed computation [71], probabilistic
cores [121], radius-bounded cores [151],

bipartite peeling [128], temporal graphs [52],
local truss and nucleus [129]

• 2018 • community search [90, 91], biology [56],
ecology [112], core resilience [86], metabolic
networks [49], patterns and anomaly
detection [137], graph similarity [113]

disk-based computation [154],
distance-based cores [25]

• 2019 • network decycling and dismantling [132],
statistical mechanics [111]

6

Table 2: Main topics covered.

GRAPH TYPES

simple (§2.1, §4)

directed (§2.2.1,
§2.2.3)

weighted (§2.2.2,
§4.7, §4.10)

signed (§2.2.3)

bipartite (§2.2.4)

dynamic (§2.2.5,
§3.3)

temporal (§2.2.6,
§3.3, §4.2, §5)

uncertain (§2.2.7,
§3.6)

multilayered (§2.2.8)

hidden (§2.2.9)

DECOMPOSITIONS

simple core (§1, §3.1,
§3.2)

weighted core (§2.2.2,
§4.4, §4.10)

D-core (§2.2.1)

S-core (§2.2.3)

(α-β)-cores (§2.2.4)

(k-η)-cores (§2.2.7)

generalized cores
(§2.3)

truss (§2.4.1, §4.4,
§4.7)

density-friendly
(§2.4.2)

peak (§2.4.3)

nucleus (§2.4.4)

distance-based
(§2.4.5)

tip and wing (§2.4.6)

radius-bounded
(§2.4.7)

ALGORITHMS

baseline (§3.1)

linear (§3.1)

disk-based (§3.2)

dynamic (§3.3)

local computation
(§3.4)

parallel (§3.5.1)

distributed (§3.5.2)

probabilistic (§3.6)

APPLICATIONS

network modeling
(§4.1)

network analysis (§4.1)

network evolution
(§4.2)

anomaly detection
(§4.3)

influential spreaders
(§4.4)

network visualization
(§4.5)

communities (§4.6)

dense subgraphs (§4.6)

text analytics (§4.7)

engagement dynamics
(§4.8)

graph similarity (§4.9)

physics (§4.10)

biology (§4.10)

ecology (§4.10)

neuroscience (§4.11)

we will focus on simple, directed, weighted, signed, probabilistic, temporal, multilayer and hidden

graphs which are frequently used in modern network-based applications.

• Section 3 offers a thorough overview of some of the the algorithmic techniques required for the core

decomposition computation in different settings. In particular, we cover main memory computation,

disk-based computation, local core number computation, parallel/distributed core decomposition

and core decomposition in probabilistic graphs. Since it is not possible to cover every single algorithm

in its full extend, we have selected a representative set of algorithms which we describe in detail

and for the rest we offer the corresponding links to related research.

• Next, Section 4 elaborates on diverse application domains that benefit significantly from the core

decomposition concept. More specifically, we present the application of the core decomposition

concept in domains such as: network analysis, temporal evolution, influence maximization, dense

subgraph discovery, community detection, text mining, biological network analysis and neuroscience.

Evidently, the list is not exhaustive but we believe that these domains cover the vast majority of

research performed in the area. We note that the research contributions presented in this section

reuse existing techniques related to different versions of the k-core concept presented in the two

previous sections and they apply them in different scientific areas. The purpose of this section is to

7

point out that the k-core decomposition is useful in many different disciplines.

• Finally, Section 5 concludes this survey and discusses briefly open problems and future research di-

rections in areas like network representation learning, influence maximization and machine learning.

2 Fundamental Concepts

In this section, we cover the most important concepts related to core decomposition. In particular, we

formally present the basic definitions and the most important properties which can be used by applications

for performing more complex network analysis tasks. Table 3 illustrates some frequently used symbols

and the corresponding interpretations.

Table 3: Frequently used symbols.

Symbol Interpretation

G a graph

V set of vertices (or nodes) of G

E set of edges of G

n number of nodes (n = |V |)

m number of edges (m = |E|)

u, v some vertices of G

N(u) set of direct neighbors of vertex u

Nd(u) set of neighbors of u at a distance at most d

deg(u) degree of node u (number of incident edges)

degS(u) degree of node u in subgraph S

c(u) core number of node u

δ∗(G) the degeneracy of graph G

2.1 Simple Graphs

Let G(V,E) denote an undirected and unweighted graph, where V is the set of nodes and E is the

set of edges. The k-core decomposition of G is a threshold-based hierarchical decomposition of G into

nested subgraphs. The basic idea is that a threshold k is set on the degree of each node; nodes that do

not satisfy the threshold, are excluded from the process. The following definitions provide some basic

knowledge regarding the concepts around core decomposition.

Definition 1 (k-shell subgraph) The k-shell is the subgraph of G defined by the nodes that belong to

the k-core but not to the (k + 1)-core.

Definition 2 (k-core subgraph) Let H be a subgraph of G, i.e., H ⊆ G. H is defined to be the k-core

of G, denoted by Gk, if it is a maximal subgraph of G in which all nodes have degree at least k.

Definition 3 (graph degeneracy δ∗(G)) The degeneracy [94] δ∗(G) of a graph G is defined as the

maximum k for which graph G contains a non-empty k-core subgraph.

8

3-core

2-core

1-core

Core number Core number Core numberc = 1 c = 2 c = 3

Figure 2: Example of the k-core decomposition.

Definition 4 (core number) A node v has core number c(v) = k, if it belongs to a k-core but not to

the (k + 1)-core.

Based on the above definitions, it is evident that if all the nodes of the graph have degree at least

one, i.e., deg(v) ≥ 1, ∀v ∈ V , then the 1-core subgraph corresponds to the whole graph, i.e., G1 ≡ G.

Furthermore, assuming that Gi, i = 0, 1, 2, . . . , δ∗(G) is the i-core of G, then the k-core subgraphs are

nested. Formally:

G0 ⊇ G1 ⊇ G2 ⊇ . . . ⊇ Gδ∗(G) (1)

Typically, the subgraph Gδ∗(G) is called the maximal k-core subgraph of G. Figure 2 depicts an example

of a graph and the corresponding k-core decomposition. As we observe, the degeneracy of this graph is

δ∗(G) = 3; therefore, the decomposition creates three nested k-core subgraphs, with the 3-core being the

maximal one. An attempt to create a higher order core subgraph (i.e., the 4-core of the graph) would

result in an empty subgraph, since the removal of one of the nodes belonging to the 3-core will force the

removal of the remaining nodes. The nested structure of the k-core subgraphs is indicated by the dashed

lines shown in Figure 2. Furthermore, the color of the nodes indicate the core number c(u) of each node

u.

It is important to note that the k-core subgraphs are not necessarily connected. As an example,

consider the graph shown in Figure 3(a). The graph is composed of two cliques (complete subgraphs) of

size four that are connected by a node x with a degree of 2. Evidently, the graph is a 2-core, since the

degree of each node is at least 2. The transition from the 2-core to the 3-core of G will eliminate node x,

since deg(x) = 2. The remaining nodes constitute the 3-core of the graph, which evidently is disconnected

as shown in Figure 3(b).

The concept of degeneracy in graphs, as defined above, is also known as width [51] and linkage [78].

It is also related to the coloring number α of a graph [45], which is defined as the least k for which there

is an ordering ≺ of the graph nodes, such that for every v ∈ V , the number of adjacent nodes w ≺ v is

less than k.

9

(a) 2-core (b) 3-core

Figure 3: Example of a disconnected k-core subgraph. The 2-core is shown in (a). The removal of the
node with degree 2 leads to (b) which depicts the 3-core (and also the maximum core of the graph). The
3-core is disconnected.

2.2 Extensions to Other Types of Graphs

The k-core decomposition described above considers that graphs are unweighted and undirected. How-

ever, many real-world networks carry rich semantics, as expressed by more complex graph types. To that

end, there exist research efforts towards meaningful extensions of the k-core decomposition to other types

of graphs. In most of the cases, these extensions pose additional challenges to the efficient computation

of the decomposition as well.

2.2.1 Directed Graphs

Directed graphs or digraphs [13] are characterized by rich semantics in comparison to simple graphs,

simply because edge direction is important. In a directed graph the degree of a node u may refer to the

number of incoming links (degin(u)) or to the number of outgoing links (degout(u)). These are also known

as the in-degree and the out-degree respectively.

Giatsidis et al. [64, 62] introduced D-cores, an extension of the k-core structure to directed graphs.

In this case, the notion of (k, ℓ)-core is used to represent subgraphs in which all nodes have in-degree at

least k and out-degree at least ℓ respectively.

2.2.2 Weighted Graphs

A weighted graph is characterized by the existence of weights on the graph edges. Each edge e is associated

with a weight w(e) that may represent the cost of the edge, or the strength of the link between the

participating nodes, or any other type of quantification, depending on the application. Computing the

core decomposition in a weighted graph is significantly harder than the computation in a simple graph,

mainly because there is no easily derived bound on the core number of a node.

Definition 5 (Weighted k-core) Let G(V,E,w) be a weighted graph with w : E → R
+ denoting a

weight function that assigns weights on the edges of the graph. Let also degw(u) be the weighted degree of

node u in (G,w), i.e., degG,w(u) =
∑

e∈N(u)w(e). If (H,w′) is a subgraph of G where w′ is the restriction

of w to the edges of H, we define ∆(H,w′) = min{degH,w(u)|u ∈ VH}. Moreover, the weighted degeneracy

of G is defined as δ∗(G,w) = max{∆(H,w′)|(H,w′) is subgraph of (G,w)}. Then, the k-core of (G,w) is

the maximum-size subgraph (H,w′) of (G,w) where ∆(H,w) ≥ k.

10

In [63, 54, 43], the authors propose efficient algorithms for computing the core decomposition in weighted

graphs.

2.2.3 Signed Graphs

In [60], an extension of the k-core decomposition for signed networks was proposed. Signed networks

[81, 82, 88] are used to capture the notion of positive and negative interactions among the nodes of a

graph (e.g., trust/distrust, friend/foe relationships). Examples of such networks include the trust networks

that can be produced by product review websites like Epinions1 and the voting election network between

the administrators of Wikipedia2.

Let G(V,E,w) be a signed directed graph, where w : E → {+,−} is a labeling of E, assigning either

a positive or a negative sign on the edges of G. Given a vertex v of G, we denote by deg+in(v,G) (resp.

deg+out(v,G)) the positive in-degree (respectively positive outdegree) of v in G, i.e., the number of positive-

signed edges tailing (respectively heading) on v. The negative in- and out-degrees of the vertices of G are

defined in a similar manner and are denoted by deg−in(v,G) and deg
−
out(v,G).

Definition 6 (Signed (ℓt, ks)-core) Let G(V,E,w) be a signed graph. Let also s, t ∈ {+,−} and k, l ∈

N. We define the (ℓt, ks)-core of G as the maximum size subgraph H of G where, for each vertex v of H,

it holds that degsin(v,H) ≥ k and degtout(v,H) ≥ ℓ.

2.2.4 Bipartite Graphs

A graph G(Vh, Va, Eb) is called bipartite if the node set V can be partitioned into two disjoint sets Vh
and Va, where V = Vh ∪ Va, such that every edge e ∈ Eb connects a node of Vh to a node of Va,

i.e., e = (i, j) ∈ E ⇒ i ∈ Vh and j ∈ Va. In other words, there are no edges between nodes of the

same partition. A common approach to analyze bipartite networks is to project them into weighted

or unweighted unipartite ones. Nevertheless, this simplistic approach has several drawbacks – with the

major one being the fact that, a node with degree d in the original bipartite network will result in a

d-clique in the projected one. Thus, hub nodes will dominate the maximal k-core subgraph produced by

the core decomposition on the projected unipartite network. In an approach to generalize the concept

of core decomposition in bipartite graphs under the context of recommender systems, where partitions

correspond to users and items, Ding et al. [40] defined the concept of α-β-core, which constitutes a direct

generalization of the traditional core decomposition.

Definition 7 (α-β-core) Let G(Vh, Va, Eb) be a bipartite graph and let H(V ′
h, V

′
a, (V

′
h, V

′
a)|Eb) be a sub-

graph induced by V ′
h ⊆ Vh and V ′

a ⊆ Va. We call S as a candidate α-β-core, if ∀u ∈ Vh, degH(u) ≥ α and

∀v ∈ Va, degH(v) ≥ β. A candidate α-β-core is a α-β-core if H is a maximal subgraph with respect to

both α and β.

2.2.5 Dynamic Graphs

A dynamic graph is characterized by changes performed on the set of nodes and/or the set of edges. These

changes may correspond to insertion or deletions of edges. Changes in the graph may have an impact on

the core numbers of nodes. In the worst case, an insertion of a single edge may change all core numbers of

nodes. On the other extreme, the insertion may cause no changes at all. The typical case is that an edge

1www.epinions.com
2www.wikipedia.org

11

www.epinions.com
www.wikipedia.org

insertion (or deletion) will have an impact on some core numbers. Therefore, the challenge is to be able to

monitor the core numbers of all nodes by applying only a few computations, avoiding the re-computation

of the core decomposition.

In Section 3 we will discuss in detail, among others, a particular algorithm for monitoring the core

decomposition in a dynamic graph reported in [127], where insertions and deletions of edges may be

applied at any time. The main characteristic of that algorithm is that it detects the minimal set of

nodes that must be checked for changes in the core numbers, thus reducing the overall processing cost

significantly.

2.2.6 Temporal Graphs

A temporal graph is a special case of a dynamic graph. Two nodes u and v may be connected by an edge

at multiple time instances or intervals. We may assume that each edge is annotated with a timestamp,

denoting the time instance of the specific interaction. Also, two nodes may be linked for a specific time

interval [ti, tj] defined by two time instances ti, tj , where ti ≤ tj .

In [157], the definition of the core decomposition is adapted to the case of temporal graphs. The

concept of (k, h)-core is defined, where as usual k represents the degree of a node and h represents the

number of multiple temporal edges between two vertices. Given a temporal graph G, the (k, h)-core of G

is the largest subgraph H(k,h) of G such that every vertex u in H(k,h) has at least k direct neighbors, and

there are at least h temporal edges between u and each one of its neighbors in H(k,h).

2.2.7 Probabilistic Graphs

A special category of graphs, includes graphs that introduce uncertainty with respect to the existence of

nodes and edges [75]. For example, an edge e between nodes u and v may exist or not. The existence of an

edge depends on several factors, mainly on the particular application under consideration. For example,

in a social network where an edge corresponds to a message exchange between two users, the message will

be sent with some probability (i.e., it is not sure that user u will send a message to user v). As another

example, consider a protein-protein interaction network, where each node corresponds to a protein and

each edge denotes interactions among proteins. In this case, we may realize that proteins u and v interact

in 70% of the cases, which means that the edge eu,v will be present in the graph with a probability of 0.7.

Also, uncertainty may be introduced on purpose for privacy reasons.

Computing the core decomposition of an uncertain graph is not trivial. One approach could be to

transform the uncertain graph into a weighted graph, where the weight w(e) of an edge e is inversely

proportional to the existential probability p(e) of the edge. However, this simplistic approach has severe

drawbacks, since the meaning of the probability is lost during this transformation and it does not give

any insight regarding the importance of the computed cores. To attack the problem, Bonchi et al. [24]

proposed a core decomposition methodology for uncertain graphs. The problem was also studied later

in [121]. The algorithm of [24] will be covered in detail in the following section that covers the major

algorithmic techniques.

2.2.8 Multilayer Graphs

Usually, we assume that graph nodes are of the same type and also graph edges represent the same

relationship among nodes. However, in many cases this simple view of the network may not represent

reality. People interact in many different ways. For example, two persons may be friends in real life, but

12

also may be friends in a social network, may collaborate in a research project or may work in the same

company. These are different relationship types that may be present.

In its simplest form, a multilayer graph (a.k.a. multidimensional graph) G(V, E) is composed of a set

of nodes V and a set of edge subsets E = E1 ∪ E2 ∪ ... ∪ Eℓ, where ℓ is the total number of layers and

Ej contains the set of edges present in the j-th layer of G. The first algorithm for computing the core

decomposition of a multilayer graph is reported in [53].

Definition 8 (Multilayer k-core) Given a multilayer graph G(V, E) and an ℓ-dimensional integer vec-

tor k, the multilayer k-core of G is a maximal subgraph G[C] = (C ⊆ V,E[C]) such that µ(C, ℓ) ≥ kℓ, ∀ℓ,

where µ(C, ℓ) is the minimum degree of a node in layer ℓ. Vector k is referred to as coreness vector of

G[C].

The authors of [53] not only provide a novel definition for the core numbers on a multilayer graph but also

show that this definition has some nice properties regrading the density of the k-core subgraphs which

are in sync with the core decomposition concept in simple graphs.

2.2.9 Hidden Graphs

Conventional graphs are characterized by the fact that both the set of vertices V and the set of edges E

are known in advance, and are organized in such a way to enable efficient execution of basic tasks. Usually,

the adjacency lists representation is being used, which is a good compromise between space requirements

and computational efficiency. However, a concept that recently has started to gain significant interest is

that of hidden graphs [11]. In contrast to conventional graphs, a hidden graph is defined as G(V, f()),

where V is the set of vertices and f() is a function V × V → {0, 1} which takes as an input two vertex

identifiers and returns true or false if the edge exists or not respectively. Therefore, in a hidden graph the

edge set E is not given explicitly and it is inferred by using the function f().

Hidden graphs constitute an interesting tool and a promising alternative to conventional graphs, since

there is no need to represent the edges explicitly. This enables the analysis of different graph types that

are implicitly produced by changing the function f(). Note that the total number of possible graphs that

can be produced for the same set of vertices equals 2(
n

2), where n = |V | is the number of vertices. It

is evident, that the materialization of all possible graphs is not an option, especially when n is large.

Therefore, hidden graphs is a tempting alternative to model relationships among a set of entities. On

the other hand, there are significant challenges posed, since the existence of an edge must be verified by

evaluating the function f(), which is costly in general.

Motivated by recent developments in the area [140, 159] for detecting the top-k nodes with the highest

degrees in bipartite graphs, in [139], an algorithm is proposed to discover if a hidden graph contains a

k-core subgraph or not, by applying as few edge probing queries as possible.

2.3 Generalized Core Decomposition

The k-core decomposition was initially introduced for the degree property of the nodes in a graph. A

natural inquiry would be “why do we focus on node degrees?”. An obvious answer to this question would

be that the degree of a node is relatively easily computed and it is a very simple concept. However, the

degree is not the only node property that could be applied in this framework. Batagelj and Zaveršnik

proposed the notion of generalized cores [17], which extends cores from degree to other node properties.

In fact, any node property can be used potentially to define a different kind of core decomposition, where

the concept of the core is associated with the node property under consideration.

13

Definition 9 (Generalized Cores or p-cores) Let G = (V,E) be a graph and let w : E → R be a

function assigning values (or weights) to the edges of the graph. A node property function p() that assigns

real values on graph G, is defined as p(v, C), where v ∈ V and C ⊆ V . Then, a subgraph H(VH , EH)

induced by the set VH ⊆ V is called a p-core at level t ∈ R if and only if (i) ∀v ∈ VH : t ≤ p(v, VH) and

(ii) VH is a maximal set.

Recall that, a function p() is called monotone if and only if the following property holds:

C1 ⊆ C2 ⇒ p(v, C1) ≤ p(v, C2), ∀v ∈ V. (2)

In [17] it was shown that for a monotone function p, the p-core at level t of the decomposition can

be found be successively removing nodes with value of p less than t – as has been already described

for the k-core decomposition. Furthermore, the subgraphs corresponding to the cores are nested, i.e.,

t1 < t2 ⇒ Ht2 ⊆ Ht2 . In fact, if we consider that function p corresponds to the degree of a node, i.e.,

p(v, C) = dCv , where d
C
v is the degree of node v in subgraph C, this function is monotone. Also, many

other functions on the nodes v of the graph including the in-degree and out-degree, the weighted degree

(i.e., sum of weights of the adjacent edges) and the number of cycles of length l that pass through node

v, have been proven to be monotone; thus, the same procedure can be used to extract the corresponding

p-cores.

2.4 Extensions of the Core Decomposition

In this section, we describe various extensions of the core decomposition, covering among others the notion

of truss decomposition – a particular type of generalized cores based on the property of triangles.

2.4.1 Truss Decomposition

The K-truss decomposition extends the notion of k-core using triangles, i.e., cycle subgraphs of length

three [34, 150, 166]. Let G(V,E) be an undirected graph. We define as a triangle △uvw a cycle subgraph

of nodes u, v, w ∈ V . Additionally, the set of triangles of G is denoted by △G. The support of an edge

e = (u, v) ∈ E is defined as sup(e,G) = |{△uvw : △uvw ∈ △G}| and expresses the number of triangles

that contain edge e.

Given an undirected graph G, the K-truss, K ≥ 2, denoted by TK(VTK
, ETK

), is defined as the

largest subgraph of G, where every edge is contained in at least K − 2 triangles within the subgraph,

i.e., ∀e ∈ ETK
, sup(e, TK) ≥ K − 2. Based on that, the truss number of an edge e ∈ G is defined as

tedge(e) = max{K : e ∈ ETK
}. Thus, if tedge(e) = K, then e ∈ ETK

but e 6∈ ETK+1
. We use Kmax to

denote the maximum truss number of any edge e ∈ E. The K-class of a graph G(V,E) is defined as

ΦK = {e : e ∈ E, tedge(e) = K}. Figure 4 shows an example graph and its K-classes.

Based on the above definitions, we can now introduce the concept of K-truss decomposition.

Definition 10 (K-truss decomposition) In a graph G(V,E), the K-truss decomposition is defined as

the task of finding the K-truss subgraphs of G, for all 2 ≤ K ≤ Kmax. That is, the K-truss can be obtained

by the union of all edges that have truss number at least K, i.e., ETK
=

⋃

j≥K Φj.

Since the K-truss decomposition is defined based on the number of triangles – a more “strict” criterion

compared to the one of degree – it can intuitively be considered as the “core” of the k-core subgraph.

Lastly, we mention here that the concept of K-truss decomposition has recently been extended to the

case of probabilistic (or uncertain) graphs [72, 170].

14

Figure 4: Example of a graph and its K-classes, 2 ≤ K ≤ 5. The figure is courtesy of Wang and Cheng
[150]. c©2012 VLDB Endowment.

2.4.2 Density-friendly Core Decomposition

One of the drawbacks of the k-core decomposition is that the nested k-core subgraphs do not satisfy a

natural density property – simply defined as the ratio between the number of edges and nodes of the

subgraph. In other words, the maximal k-core subgraph is not necessarily the densest subgraph of the

graph. Based on this observation, Tatti and Gionis [141] introduced the concept of density-friendly graph

decomposition, where i) the density of the inner core subgraphs given by the decomposition is higher than

the density of the outer ones, and ii) the most inner subgraph will correspond to the densest subgraph.

Furthermore, the authors of [141] have shown that the locally-dense decomposition can be computed

in polynomial time. Note that, more recently, Danisch et al. [38] proposed a scalable algorithm for

computing such a decomposition, based on convex programming.

2.4.3 Peak Decomposition

Another drawback of the k-core decomposition defined earlier has to do with the fact that it is computed

globally; if the graph contains distinct regions of different densities, the sparser among these regions might

be neglected by the decomposition. To deal with this issue, the authors of [66] have proposed the notion

of k-peak decomposition, which aims at finding the centers of distinct regions in the graph – viewing the

global structure of the graph as a set of regions, each one resembling a mountain with a central peak.

More precisely, given a graph G, the k-contour can be defined as follows:

Definition 11 (k-contour) Given a graph G(V,E), a k-contour is the induced subgraph over the max-

imal set of nodes, such that i) the k-contour does not contain nodes from a higher contour (i.e., values

higher than k), and ii) each node in the k-contour has at least k links to other nodes in the k-contour.

Based on that, we can define the peak number of a node as the value k such that the node belongs to a

k-contour. Then, a k-peak decomposition of a graph G is defined as the assignment of each node to exactly

one contour. Figure 5 shows an example graph and the corresponding k-core and k-peak decomposition.

Definition 12 (k-peak) Given a graph G, a k-peak is the induced subgraph of the union of j-contours,

∀j ≤ k.

Lastly, as shown in the paper [66], similar to the case of k-core decomposition, the k-peak decompo-

sition is also unique, i.e., each node has a single unique peak number.

15

(a) k-cores and k-shells (b) k-contours and k-peaks

Figure 5: Example of the k-core and k-peak decomposition. The peak number of a node is at most its
core number. The figure is courtesy of Govindan et al. [66]. c©2017 International World Wide Web
Conference Committee.

Figure 6: (3, 4)-nuclei subgraphs for a snapshot of the Facebook graph [130]. Branching depicts the
different regions in the graph. The figure is courtesy of Sarıyüce et al. [130]. c©2015 International World
Wide Web Conference Committee (IW3C2).

2.4.4 Nucleus Decomposition

Another extension of the core decomposition is the nucleus decomposition [130]. The basic motivation here

comes from the problem of dense subgraph detection, where the goal is to identify structures of dense

subgraphs within a large graph and to understand how those structures are related to each other. In

particular, we are interested in extracting a global, hierarchical representation of many dense subgraphs.

To this direction, the authors of [130] defined the notion of nuclei in a graph: an (r, s)-nucleus, for

fixed and small positive integers r < s, is defined as a maximal subgraph where every r-clique (i.e.,

16

complete graph of r nodes) is part of many s-cliques. Furthermore, nuclei subgraphs that do not contain

one another, cannot share an r-clique. Based on that, for various values of r and s (r < s), it can be

shown that the (r, s)-nuclei form an hierarchical decomposition of the graph – where the density of the

nuclei is increasing as we move towards the leaves of the decomposition. In practice, the authors of

[130] have observed that the (3, 4)-nuclei provide the most interesting decomposition of real-world graphs.

Figure 6 depicts an example of the hierarchical structure of (3, 4)-nuclei decomposition in a snapshot of

the Facebook graph composed by 88K nodes. Each node of the structure corresponds to a (3, 4)-nucleus,

and the tree edges indicate containment. More generally, an ancestor nucleus contains all descendant

nuclei. The figure also shows the scale and densities of the various nuclei subgraphs.

2.4.5 Distance-based Core Decomposition

In the basic formulation of the k-core decomposition, the k-core subgraph is defined as the maximal

subgraph where every node has at least k neighbors within the subgraph. Bonchi et al. [25] introduced a

generalization of the k-core decomposition, taking into account the shortest path distance among nodes.

In particular, they proposed the concept of distance-generalized core decomposition, refering to as the

(k, h)-core, i.e., the maximal subgraph in which every node has at least k neighbors within the subgraph

at distance smaller or equal to h.

Definition 13 (h-degree of a node) Let G(V,E) be an undirected graph, and let G[S] = (S,E[S]) be

the subgraph induced by S. Given a positive integer h ∈ N
+, the h-neighborhood of a node v ∈ S in G[S]

is defined as NG[S](v, h) = {u ∈ S|u 6= v, degG[S](u, v) ≤ h}, where dG[S](u, v) is the shortest-path distance

between u and v computed on G[S]. The h-degree of a node v is defined as the size of its h-neighborhood,

i.e., deghG[S](u) = |NG[S](v, h)|.

Definition 14 ((k, h)-core) Given a threshold integer h ∈ N
+ and an integer k ≥ 0, the (k, h)-core (or

h-neighborhood k-core) of a graph G is a maximal subgraph G[Ck](Ck, E[Ck]) in which all nodes have

h-degree at least k, i.e., degh
G[Ck]

(v) ≥ k.

Note that, the traditional k-core decomposition is an instance of the (k, h)-decomposition, where the

degree of a node v corresponds to the number of nodes in the graph which have distance ≤ 1 from v, i.e.,

the size of the 1-neighborhood of v. Figure 7 shows an example of the distance-based core decomposition.

Contrary to the traditional k-core decomposition which can also be interpreted as the (k, 1)-core (Fig. 7

(left)), the (k, 2)-core decomposition (Fig. 7 (right)) is able to detect groups of nodes (nodes 4 to 13)

that form a denser and more well-structured region.

In a similar spirit, Zhang et al. [164] extended the notion of core decomposition to capture pairwise

similarities among nodes, based on node attributes. In particular, the concept of (k, r)-core was introduced

– being able to capture both graph structural constraints as well as node similarity constraints. Let

G(V,E,A) be an attributed graph, where A denotes the attributes of the nodes. Let sim(u, v) be the

similarity of two nodes u, v ∈ V , based on their attribute values (e.g., user profile information and interests

in social networks). Given a positive integer k and a subgraph S, the structural constraint refers to the

traditional degree-based requirement of core decomposition, i.e., deg(v, S) ≥ k∀v ∈ S. In addition, for

a node v and a similarity threshold r, DP (v, S) denotes the number of nodes in S that are dissimilar

to v (based on the threshold r). Then, we say that subgraph S satisfies the similarity constraint if

DP (v, S) = 0 for each node v ∈ S. Based on the structural and similarity constraints, we can define the

notion of (k, r)−core.

17

3

2

1

4

5

6

7

98

k = 4k = 2 k = 5
k = 6

10

12

11

13 3

2

1

4

5

6

7

98

10

12

11

13

Figure 7: Example of (k, h)-core decomposition. (Left) The traditional k-core decomposition (k = 2),
which corresponds to the (k, 1)-core under the distance-generalized setting. (Right) The (k, 2)-core de-
composition. The figure is courtesy of Bonchi et al. [25]. c©2019 Association for Computing Machinery.

Definition 15 ((k, r)-core) We say that a subgraph S is a (k, r)-core if S satisfies both the structural

and similarity constraints.

2.4.6 k-tip Decomposition

Motivated by the task of dense subgraph detection in bipartite networks, Sarıyüce and Pinar [128] in-

troduced the concept of bipartite graph peeling to detect dense subgraphs and the relationships among

them. The main idea is to rely on higher-order structural motifs [19] that are able to capture cohesiveness

in bipartite graphs. More precisely, the authors of [128] have used a particular motif, called butterfly

subgraph, which corresponds to a (2, 2)-biclique (bipartite clique with 2 nodes at each partition) – the

overall goal is to discover bipartite subgraphs including many butterfly structures and to construct rela-

tions among them. Then, two types of decomposition can be defined: the tip decomposition and the wing

decomposition.

Definition 16 (k-tip decomposition) A bipartite subgraph H(U, V,E) ⊂ G induced on U , is a k-tip

if and only if: i) each node u ∈ U takes part in at least k butterflies; ii) each node pair (u, v) ∈ U is

connected by a series of butterflies; iii) H is maximal, i.e., there is no other k-tip that subsumes H.

Note that, two nodes u,w ∈ U are connected by a series of butterfly subgraphs, if there exists a sequence

of nodes u = v1, v2, . . . , vk = w such that some butterfly contains vi and vi+1, for each i.

Definition 17 (Tip number θ(u)) The tip number θ(u) of a node u ∈ U is the largest value t such that

there exists a t-tip that contains u. Then, the tip decomposition of a bipartite graph G(U, V,E) is to find

the tip numbers of nodes in U .

Figure 8 gives an example graph and its k-tip decomposition. Notice that, the k-tip decomposition does

not allow node overlaps, which might be the case in many real-world bipartite networks (e.g., author-

paper collaboration networks). To allow node overlaps, the authors of [128] have introduced the concept

of k-wing decomposition, where the focus is on the edges of the network instead of the nodes.

Definition 18 (k-wing decomposition) A bipartite subgraph H(U, V,E) ⊂ G induced on U , is a k-

tip if and only if: i) each edge (u, v) ∈ E participates in at least k butterflies; ii) each edge pair

(u1, v1), (u2, v2) ∈ E is connected by a series of butterflies; iii) H is maximal, i.e., there is no other

k-wing that subsumes H.

18

2-tip

!()=2

a b c

2 31

d e f

5 64

g

Figure 8: Example of k-tip decomposition. Nodes a, b, e, and f participate at two butterfly subgraphs,
while nodes c and d at three. Notice that, nodes c and d cannot have a tip number of 3 since their
induced subgraph has just one butterfly. Therefore, nodes a to f form a 2-tip, and their tip number will
be θ(a − f) = 2. The figure is courtesy of Sarıyüce and Pinar [128]. c©2018 Association for Computing
Machinery.

Definition 19 (Wing number ψ(e)) The wing number ψ(e) of an edge e ∈ E is the largest value s such

that there exists a s-wing that contains e. Then, the wing decomposition of a bipartite graph G(U, V,E)

is to find the wing numbers of edges in a graph G.

2.4.7 Radius-Bounded Decomposition

Motivated by the fact that geo-social networks (a.k.a. geo-spatial social networks or location-based social

networks (LBSNs)) have emerged recently [14], the work in [151] studies the adaptation of the core

decomposition process in cases where additional spatial information is available. More precisely, let

G(V,E) be a geo-social graph, where each vertex v ∈ V is associated with location information (v.x, v.y),

which corresponds to the position of v in the two-dimensional space. Given a set of vertices, we can now

define the notion of minimum covering circle (MCC).

!"#$

%&'

(#)*

+',

-&.

/#,*'0

1'2

30#.4

5'6.

7#04

58$

18**

%&&

94$

Figure 9: Example of a geo-social network, where edges represent friendship relationships among users
and locations on the map correspond to home locations of users. The figure is courtesy of Wang et al.
[151]. c©2018 IEEE.

Definition 20 (Minimum Covering Circle (MCC)) Given a set of vertices S ⊆ V , the minimum

covering circle of S is the circle which encloses all the vertices v ∈ S with the smallest radius. The vertices

which lie on the boundary of an MCC are called boundary vertices.

19

Based on the definition of MCC, we can now define the concept of radius-bounded k-core, which extends

k-core decomposition to geo-social graphs.

Definition 21 (Radius-bounded k-core) Given a geo-social network G(V,E), a vertex w ∈ V , a posi-

tive integer k and a query radius r, subgraph Gr
k ⊆ G is defined as a radius-bounded k-core if the following

constraints are satisfied:

1. Connectivity constraint: Gr
k ⊆ G is a connected subgraph that contains w;

2. Social constraint: for all vertices v of Gr
k, degGr

k
(v) ≥ k;

3. Spatial constraint: the MCC of the nodes belonging to Gr
k has a radius r′ ≤ r;

4. Maximality constraint: there exists no other radius-bounded k-core G′
k
r ⊇ Gr

k satisfying constraints

(1), (2) and (3).

Figure 9 shows an example of a geo-social network, where edges correspond to friendship relationships

among users and spatial locations on the map correspond to home locations of users. Setting r = 3 and

k = 3, there are two radius-bounded k-core subgraphs recommended to the user named Leo, as illustrated

by the two shadowed areas, i.e., {Leo, Ken, Jim, Adam} and {Leo, Bill, Frank, Bob, Lee}.

3 Algorithmic Techniques

In this section, we focus on algorithmic techniques for the computation of the k-core decomposition in

different settings. The design of an algorithm for core decomposition depends on many diverse factors such

as the type of the graph (simple, directed, signed, weighted, probabilistic), the hardware infrastructure

(memory-based, disk-based, parallel, distributed), the type of the output (exact, approximate), just to

name a few. The goal of this section is to provide details for representative algorithmic techniques that

solve the k-core decomposition problem under different settings. Since there is a plethora of different

algorithmic techniques we are going to discuss the most representative ones. In addition, we note that the

techniques presented in this section are generic, meaning that potentially they can be applied to many

different types of graphs reported in Section 2.

3.1 In-Memory Computation

The computation of the k-core decomposition of a graph can be performed through a simple process that

is based on the following rationale: to extract the k-core subgraph, all nodes with degree less than k and

their adjacent edges should be recursively deleted [133]. That way, beginning with k = 1, the algorithm

removes all the nodes (and the incident edges) with degree equal to or less than k, until no such node

remains in the graph. Also notice that, removing edges that are incident to a node may cause reductions

to the degree of neighboring nodes; the degree of some nodes may become at most k, and thus, they

should also be removed at this step of the algorithm. When all remaining nodes have degree dv > k, k is

increased by one and the process is repeated until no more remaining nodes are left in the graph.

A straight-forward implementation of this algorithm requires a priority queue to store the nodes,

prioritized by their degree. The removal of a node requires in the worst case the deletion of n− 1 edges

which translates to the execution of n− 1 decrease-key operations in the priority queue. Since each edge

is examined exactly once, the worst case complexity of the naive algorithms becomes O(m · log n).

20

However, the problem can be solved in linear time, by using bin-sorting as it was demonstrated in [18]

by Batagelj and Zaveršnik. However, the same idea was applied by Matula and Beck [105]. All nodes

are maintained sorted with respect to their degrees by using a comparison-free sorting algorithm which

maintains separate bins for each degree value. Clearly, for a graph with n nodes, the minimum degree

of a node is 1 (assuming no isolated nodes exist) and the maximum is n − 1. Thus, by keeping an in-

memory array of all possible degree values and keeping track of bin boundaries, each edge deletion can

be handled in O(1) time, resulting in a total complexity of O(m+ n). Note that, maintaining the k-core

decomposition of a graph is equivalent of keeping the core number c(ui), ∀ui ∈ V .

3.2 Disk-Resident Graphs

A natural extension to the previous algorithm is based on the fact that most of the interesting real-world

networks are too large to fit in main memory. Therefore, we need efficient algorithmic techniques for

providing the core decomposition in cases where the graph is stored in secondary storage (i.e., on disk).

The first algorithm (EMCore) to attack the problem in secondary storage was reported in [32]. EM-

Core assumes that the graph resides on disk and it performs the following steps: i), graph partitioning,

ii) core number estimation and iii) recursive top-down processing.

Graph partitioning. The purpose of this step is to decompose the graph into small subgraphs, so

that core number computation can be performed in each subgraph separately. Evidently, each of these

subgraphs must fit in main memory.

The algorithm scans the input graph only once and partitions the vertex set V into a set of p mu-

tually disjoint vertex subsets U = {U1, ..., Up}, where V =
⋃

i Ui and for any i, j, Ui ∩ Uj = ∅. The

graph partitioning algorithm starts reading nodes from the disk-resident graph and maintains in memory

as many nodes as possible. Let Umem denote the current memory-resident part of the graph. For any

examined node u, if u is not connected to any of the vertex subsets currently in Umem, a new partition

is created and u becomes the only member of it. Otherwise, u is assigned to the vertex subset to with u

has the most connections. In case we reach the block limits, a new block is flushed to the disk. Also, if

the memory capacity is reached, the largest partition of the memory-resident part Umem is flushed to the

disk. This process continuous until all nodes have been scanned.

Core number estimation. For each subgraph determined by the partitioning process, the upper bound

of the core number of each node is determined. This bound becomes tighter during the course of the

algorithm. Initially, the upper bound ψ(u) of the core number of each node u, is set to the degree of u,

i.e., ψ(u) = deg(u).

The refinement of the upper bound is performed by using the following observation: for a vertex u let

Z denote the subset of the neighbors of u such that their upper bound is strictly less than ψ(u). Then,

for any nonempty subset Z ′ ⊆ Z, if deg(u) − |Z ′| < ψ(u), then the upper bound ψ(u) can be tighten as

ψ(u) = max{deg(u)− |Z ′|, ψmax(Z
′)}, where ψmax(Z

′) denotes the maximum upper bound found in Z ′.

The algorithm is executed every time a block needs to be flushed to disk during the partitioning

process described previously. Note that in order to determine the subset Z ′, there is no need to generate

all possible subsets of Z which would lead to checking 2|Z| subsets. Instead, nodes in Z are sorted in

decreasing order of ψ(u) and keep the first nodes in the order that minimize the value of f(Z ′). This

results in a much more efficient computation, since we only need to check at most |Z| subsets.

21

Recursive top-down processing. Based on the upper bound of the core number, the k-classes are

recursively computed for a convenient value of k. The value of k is determined so that the relevant

subgraph can fit in main memory. More specifically, a range of values [kl, ku] is determined, where

kl ≤ ku. The target is to determine the value of kl, given the value of ku and b, which is the maximum

number of blocks that can be accommodated in main memory. The value of b is simply ⌊M/B⌋, where

M is the total memory capacity and B is the size of the disk block.

Let Ψku
kl

denote the subset of nodes with core upper bound estimation in the range [kl, ku], i.e.,

Ψku
kl

= {u : u ∈ V, kl ≤ ψ(u) ≤ ku}. At each recursive step, the algorithm constructs a subgraph that is

relevant for the computation of the exact core numbers of the nodes v ∈ Ψku
kl
.

Let K be the set of values of k such that the nodes in the set Ψku
k are distributed in at most b different

vertex sets of U . Formally, the set K is computed as follows:

K = {k : 1 < k ≤ ku, |Ux : Ux ∈ U,Ux ∩Ψku
k 6= ∅| ≤ b}

Based on this, the value of kl is set to min{k : k ∈ K} if K 6= ∅ or it is set to ku otherwise. This way, at

each recursive step, the algorithm loads as many parts of the graph as possible into main memory. Since

both kl and ku are determined, the algorithm proceeds with the computation of the core numbers of all

nodes in Ψku
kl

by loading in main memory the corresponding subgraphs. Then, the core number of each

node u currently in main memory is refined. Before the execution of the next recursive step, the nodes

that have their core number refined are removed from main memory (together with the corresponding

edges) after depositing some important bookkeeping information that may be needed by the next recursive

step.

In conclusion, EMCore manages to compute the core number of all nodes without the requirement

that the graph fits in main memory. This fact enables the computation of the core decomposition of

large disk-resident graphs. The algorithm performs O(kmax) iterations over a graph G, where kmax is the

maximum core number of G.

A limitation of EMCore is that it may require a significant number of I/O operations to detect

the appropriate partitions. In [65] a space-efficient algorithm is proposed (NimbleCore), that provides

accurate estimates of the core numbers by using O(n) space for graphs with power-law degree distribu-

tion and O(n log dmax) space for arbitrary graphs, where dmax is the maximum node degree. Another

implementation of EMCore has been reported in [77], which is based on GraphChi [84]. In the same

work, the classic code decomposition algorithm [18] is implemented using the Webgraph [22] framework.

Webgraph is a graph compression framework that provides efficient access to a compressed graph.

The limitations of EMCore are highlighted in [153] especially concerning the amount of main memory

it might need. The authors note that the worst case memory complexity is that of O(n+m) and provide a

better bounded algorithm for computing the degeneracy of a graph while maintaining most of it stored in

disk. Their approach relies on maintaining only the vertices of the graph in memory with some additional

properties and having the edges stored in disk. They start with the basic property of locality for the core

number of a vertex that is also used in [109] for the design of a distributed k-core algorithm.

The locality property states that the core number core(v) of a node v ∈ V can be calculated based on

the following recursive function :

core(v) = max k s.t. |{u ∈ N(v)|core(u) ≥ k}| ≥ k (3)

The intuition of this function is that one may start with an upper bound of the core number for each

node and keep updating it based on the core numbers of its’ neighbors until it converges. The upper

22

bound can be the degree of the node as the core number cannot be higher than that.

The authors of [153] start with this as their first (out of three) and most naive algorithm (SemiCore)

and calculate the core numbers while having to load the list of neighbors from disk (where the edges of

the graph are stored). They further optimize the I/O requests (from the disk) of SemiCore by noticing

that not all nodes need to be checked at each iteration. In fact if the neighbors of a node v have not

been updated in iteration i then v does not need to be updated with the aforementioned equation in

iteration i + 1. By maintaining the range of node ids that have been updated (with a vmin and vmax

value) they present SemiCore+ which does less requests as it skips the neighbor loading for nodes outside

the (vmin, vmax) range. The final improvement (SemiCore*) is introduced by maintaining for each node v

the number of neighbors u with core(u) ≥ core(v). This information remains in memory and when they

calculate the core of v they update the count for each u. Then on each iteration if the count is larger

than core(v) the node is skipped as it already satisfies the minimum requirement for having its current

core value (i.e., the number of neighbors with greater or equal core number are enough to support the

current core number of v).

The authors of [153] present again their improvements in their subsequent work of [154] where they

also tackle the problem of degeneracy ordering. In this problem, we may consider a topological (acyclic)

ordering of the graph where the nodes are ordered arbitrarily and the original non-directed edges are

given a direction from the earliest node to the latest. We can define the degeneracy of the ordering as

the maximum out-degree and the degeneracy of the graph can be shown to be the minimum degeneracy

of any ordering [48]. An ordering whose degeneracy is equal to the original degeneracy of the non-direct

graph is an degenerate ordering. This task of ordering a graph falls outside the scope of this survey but

the specific ordering can be useful in other algorithmic problems (e.g., finding shortest paths in a graph).

In [154] they utilize the algorithms first introduced in [153] to build degenerate orderings and maintain

when the graph is updated. Given an arbitrary original ordering, their solution to build the degenerate

ordering relies on calculating the core value of each node with SemiCore* and then add the nodes that

have a degree lower than the graph degeneracy at the end of the ordering while removing them from the

graph.

3.3 Core Decomposition in Dynamic Environments

The previous techniques discussed so far mainly assume that the input graph is available in the very

beginning of the execution. However, many modern applications are characterized by frequent updates,

meaning that the structure of the graph may change over time by insertions/deletions of nodes or edges.

Evidently, if the graph changes then one can reevaluate the core numbers by running the core decompo-

sition algorithm again. Although this approach will provide the correct results, it is expected that the

performance will degrade, especially if updates are frequent.

As an example, consider the graph shown in Figure 10(a). The core numbers are shown in parentheses

near each node identifier. Assume that a new edge between nodes 6 and 8 is inserted. The updated core

numbers are shown in Figure 10(b). It is evident that only the core numbers of node 8 will change from

1 to 2. No other changes are required, since the core number of the rest of the nodes does not change.

A possible alternative is to maintain the previous core numbers and perform only incremental changes

to the core numbers, based on the parts of the graph that have change. For example, the insertion of

a new edge in the graph may impact the core numbers of specific nodes. The basic idea is to detect

the set of affected nodes and recompute their core numbers without recomputing the core numbers for

all the nodes. A similar approach can be followed when an edge is deleted from the graph. Performing

incremental changes is expected to be much more efficient than re-executing the core decomposition

23

(a) initial graph (b) after inserting edge (6,8)

Figure 10: Changes performed to the core numbers after inserting a new edge linking nodes 6 and 8. Only
the core number of node 8 needs to be updated.

algorithm from scratch. In this section, we discuss the methodology proposed in [127], which provides

an incremental way to update the core numbers. The incremental algorithm is based on the following

foundations:

1. If an edge is inserted to or removed from G, the core number of any node u can change by at most

one.

2. If an edge (u, v) is inserted to or removed from G, where c(u) < c(v), then c(v) cannot change.

3. If an edge (u, v) is inserted into G, then all of the vertices whose core numbers have changed should

form a connected subgraph. Similarly, if an edge (u, v) is removed from G, then all the vertices

whose core numbers have changed should form a connected subgraph.

4. If an edge (u, v) is inserted (removed) and c(u) ≤ c(v), then only the vertices w that have c(w) = c(u)

and are reachable from u via a path that consists of vertices with core numbers equal to c(u), may

have their core numbers incremented (decremented).

In [127], three different algorithms are studied: i) SubCore, which is based on the aforementioned

foundations, ii) PureCore, which applies some additional optimizations and iii) Traversal, which

manages to reduce the number of examined nodes even further and shows the best overall performance.

Based on the experimental results in [127], even the SubCore algorithm, which is the simplest among

the three proposed, manages to update the core numbers up to 14,000 faster than the standard baseline

algorithm which recomputes the core decomposition from scratch. Interestingly, a very similar set of

foundations is also defined in [93] for the same topic. The two pieces of work are seemingly developed

in parallel and there is no direct comparison of their proposed algorithms but the theorems appear to be

equivalent.

The later work in [157] addresses [127] and [93] as being impractical for large graphs (in the aspect

of the number of nodes). Dynamic graphs are referred to as temporal in [157] and the number of edges

between two vertices may be more than one as a mean to describe an edge being in multiple instances in

time (i.e., if an edge exists in t1 and t2 then it is counted as two edges). This transforms the problem of

k-core decomposition to a (k, h)-core decomposition where the h is the number of edges a node shares with

all of its neighbors and it is an additional degree/dimension in the core decomposition model. Effectively,

by thresholding h (similar to k) one calculates cores as different temporal instances.

A proposal for improving the Traversal algorithm is presented in [167] where the authors focus on

limiting the cardinality of the set of nodes need to be examined. While this work comes after [157], it

does not compare against it but one may see it as a direct evolution of the technique proposed in [127].

24

The main point of [167] is that the Traversal algorithm may visit a very large number of edges to

decide the set of affected nodes by the insertion of edges. The improvements of their solution rely on the

following ideas:

• An ordering of the nodes by the sets of the k-core decomposition. (i.e., nodes belonging to core k−1

are before nodes in k) and a further ordering in each core by the order the nodes where removed

during the decomposition algorithm.

• Two degrees for each node u :

– deg(u)+ : The number of nodes that are after u. This is essentially the number of nodes that

can potentially support the increment of the current core number of u by being after u in the

ordering (and can have their core number increased).

– deg(u)∗ : The number of nodes that are before u have the same core number as k and could

potentially have their own core number increased. In order to determine if their core number

may increase they use deg(u)∗ + deg(u)+.

The latter recursive check takes a crucial part in their algorithm as it creates a chain effect through the

ordering in the visitation of the nodes and their exclusion from the set of nodes that will have their core

number increased. The case of edge deletion follows the Traversal algorithm in logic.

In the scenario of low-memory environments, [153] -beyond the presentation of memory efficient

decomposition algorithms- also tackles the topic of core maintenance. In fact, it is shown that a small

modification of the SemiCore* is enough to handle the maintenance of the core number for the case of a

single edge deletion. The basic intuition of this modification is that the main algorithm can be called on

the current core values by only updating beforehand the count property of one of the nodes connected by

the edge. The node with the lowest core number out of the two is selected or both if they have equal core

numbers. The case of edge insertion is more complicated as the core number of a node v may increase and

that can cascade to all nodes that are reachable from v on a path of nodes u where core(u) = core(v). In

a baseline attempt, the authors provide a modification of SemiCore* where the neighbors of a node v

are labeled for a possible update if they belong in the aforementioned path (i.e., if v is in the path and the

core number has the expected value). This is further improved by modifying the original “count” logic (of

SemiCore*) to take into account the updated core value only. In this aspect, the path is restricted by

the count of neighbors (of a candidate node v) which have a core value equal or greater than the updated

one.

Moreover, in [154] (presented in the “Disk-Resident Graphs” section), we also see solutions regard-

ing maintenance in the degeneracy ordering task. This approach relies on maintaining two additional

properties for each node upon insertion and deletion of an edge:

• Level-value: a partitioning of the nodes where each partition contains nodes that their removal order

would not affect the final ordering. The neighbors of the nodes of each partition have to be in the

same or higher level partition.

• Upper-degree: the number of neighbors that are in the same or higher level-value partition.

In other publications, two distributed algorithms are proposed for the calculation of the temporal core

decomposition. The first is based on the Pregel model [100] and is similar to the classic k-core algorithm

on Pregel but it is considered inefficient as it has high memory, communication and computation costs. A

25

more efficient distributed algorithm is then presented based a block-centric model for graph computations

[158] (Blogel) which is elaborated in the Distributed Computation section.

In [52] cores in a temporal graph are considered to exist in temporal internals ∆ and are named

span-cores. The authors then make the the note that a span-core at k,∆ is contained in a span core k,∆′

if k′ ≤ k & ∆′ ⊆ ∆. Based on this, they define a maximal span-core as one where it is not contained in

another span core (the previous condition cannot be satisfied by another core).

In order to figure out whether a graph of ∆ = [ts, te] contains a maximal span-core, the authors

prove that one only needs the core numbers from ∆′ = [ts − 1, te] and ∆′′ = [ts, te + 1]. This eventually

motivates the authors to start from larger temporal spans instead of calculating the core decomposition at

each time-instance t of the graph. In this manner, the authors do not consider every core decomposition

at each t as a maximal one.

3.4 Local Computation of Core Numbers

The main characteristic of the aforementioned techniques is that the core number of a node is determined

by taking into account the whole graph. Moreover, the output in all cases is the core number of every

node u ∈ V . In interesting alternative is to try to estimate the core number of a node u by considering

only the neighborhood of u (e.g., the 1-hop, 2-hop 3-hop neighborhood, etc). The main advantage of

such an approach is that we do not need to consider the whole graph, which potentially leads to more

efficient computation. Also, in many cases we need to compute the core number of a small subset of

nodes. However, we expect that the core number determined by such a local computation may not much

the core number determined if the whole graph is taken into account.

The first work towards local core number estimation was reported in [114]. For a node u let Nd(u)

denote the set of nodes at a distance at most d from u. In its simplest form, the distance can be the

shortest path distance, which, in the case of unweighted graphs, translates to the minimum number of

hops between two nodes. Let Gu
d denote the graph induced by the d-neighborhood of u. One possible

approach is to compute the core number of node u in the induced subgraph Gu
d . Let cd(u) denote the

core number of node u computed in the induced subgraph Gu
d . By increasing d it is expected that a more

accurate estimate of the core number may be achieved, since a larger induced subgraph is being used.

Evidently, if d is large enough so that Gu
d = G, then cd(u) = c(u), meaning that the core number will be

accurately computed. It is not hard to prove that always cd(u) ≤ c(u), i.e., the core number computed in

the induced subgraph Gu
d is a lower bound on the exact core number c(u) computed in the whole graph.

In the sequel, we elaborate on a more sophisticated estimator which, in contrast to the previous one,

uses some additional foundations to provide tighter bounds for the core number. Let u the node we

are interested in. In case d = 0, the only available bound that we may use is the degree of u, since

c(u) ≤ deg(u). By setting d = 1, we may use additional information related to the 1-hop neighborhood

of u. For example, if the core numbers of the direct neighbors of u are known, then the value of c(u) can

be computed accurately, by utilizing the following rationale:

• A node u belongs to the k-core of G, if and only if u has at least k direct neighbors in the k-core.

• Let u1, u2, ... be the direct neighbors of u with known core numbers. Then, it holds that:

c(u) = max
1≤i≤deg(u)

(min(c(ui), deg(u)− i+ 1)) (4)

Evidently, the assumption that the core numbers of all neighbors of u are known, is quite restrictive.

However, the rationale of the previous idea is very useful in deriving an upper bound of the core number

26

of a node, based on upper bounds of the core numbers if its neighbors. In fact, Equation 4 is valid for

any f(u) ≥ c(u), ∀u ∈ V . Thus, we can derive the following recurrence, where u1, u2, ... are the direct

neighbors of u ordered in increasing order based on ĉd−1(), i.e., ĉd−1(ui) ≤ ĉd−1(ui+1):

ĉd(u) =

{

max
1≤i≤deg(u)

(min(ĉd−1(ui), deg(u)− i+ 1)), d > 0

0, d = 0

Evidently, ĉd(u) is an upper bound for c(u).

Based on the previous discussion, the exact core number c(u) of a node u is bounded by the two values

cd(u) and ĉd(u):

cd(u) ≤ c(u) ≤ ĉd(u), ∀d ≥ 0

Based on the experimental results given in [114], both estimators provide satisfactory results for d = 2

for different input graphs. The accuracy of the estimators is quantified by considering the percentage of

the total number of nodes for which the estimators give the exact core number. In most of the cases, the

propagating estimator ĉd(u) is more efficient than the induced estimator cd(u) in terms of accuracy as

defined previously. In fact, the propagating estimator manages to achieve an accuracy between 80% and

90%, in the majority of the experiments performed, for d = 2. As a concluding remark, in cases were the

core number of specific nodes needs to be computed, the methodology described is an effective alternative

to the complete core decomposition process since it is more efficient with respect to runtime and provides

satisfactory accuracy results.

Truss and nucleus decomposition. In a more recent work, Sariyüce et al. [129] capitalized on the

relationship between core number and h-index [98], in order to propose efficient local algorithms for truss

and nucleus decomposition with convergence guarantees. Lu et al. [98] have introduced an alternative

formulation for the k-core decomposition that considers local information, utilizing the concept of h-index

which is widely used in scientometrics. In particular, the degree of the nodes are used as the initial core

number estimates; then, each node updates its estimates as the h-index of the neighbor’s core number

estimates. At the end of the process, it was shown that the estimates converge to the core numbers. As

we have presented in Section 2, the nucleous decomposition is a framework that generalizes the k-core

and k-truss decompositions, using higher order structures to find dense subgraphs. The authors of [129]

generalized the work by Lu et al. for any nucleus decomposition – providing also theoretical quarantess

about the convergence properties. In addition, the proposed algorithms are highly parallel due to the fact

that they operate based on local computations.

3.5 Parallel and Distributed Techniques

The main feature of the algorithmic techniques discussed so far is that they work in a centralized envi-

ronment. However, mining massive graphs in a centralized manner does not provide scalable solutions. A

very promising alternative is the exploitation of multiple resources to attack the problem. Towards this

goal, there are two different research directions based on architectural assumptions: i) solving the prob-

lem in a shared-memory multi-core machine (the parallel case) and ii) solving the problem in a cluster

of machines (the distributed case).

27

3.5.1 Parallel Computation

Parallel computation of core decomposition in multi-core processors was first investigated in [134], where

the ParK algorithm was proposed. ParK was designed to work efficiently in multi-core processors where

locality of reference is very important. In contrast to other techniques, ParK carefully reduces the number

of random memory accesses performed. Note that random memory accesses may invalidate the caches in

a multi-core system leading to significant performance degradation.

ParK uses three data structures: Core, Curr and Next. Core is an array of size n, initialized to

the degrees of the nodes, i.e., initially Core(u) = deg(u) for any node u. Recall that the degree of a

node serves as an upper bound for its core number. Core is updated continuously during the course of

the algorithm and its final values correspond to the core numbers of the nodes. Curr contains the set of

nodes to be processed during the current iteration, whereas Next contains the nodes to be processed in

the next iteration.

The processing of a node u involves accessing the direct neighbors of u and decreasing their degree

if they have not already been processed. Computation is performed in different levels. While processing

level l, all nodes that belong to the l-shell are processed. This is performed in two steps, Scan and Loop:

• During the Scan phase, the array Core is scanned and all relevant nodes belonging to the l-shell

are collected in the set Curr. Formally: Curr = {u : deg(u) = l}.

• The Loop phase is executed in sublevels. In each sublevel, all nodes in the set Curr are processed.

While processing node u, if a neighbor v is moved to Curr, which means that deg(v) = l, then node

v is added to the set Next. At the end of the sublevel, the contents of Next are transferred to the

set Curr to be processed in the next sublevel.

In the previous discussion, the description of ParK is based on a centralized environment. In the

sequel we provide the changes need to be applied in order to use ParK in a parallel (shared-memory)

setting. First, we assume that processing will be performed by a set of threads T . Let t denote the total

number of threads in T . Graph nodes are split among the t threads, meaning that each thread handles

roughly n/t nodes. However, since the data structures used may need to be written by multiple threads

concurrently, race conditions may appear and they must be handled carefully to avoid inconsistencies.

To facilitate effective parallel processing, some modifications must be applied. Updates performed to the

Curr set must be atomic, which means that write operations must be protected due to race conditions.

For example, adding a new node id to Curr requires an atomicIncrement(). Similar atomic operations

are required in several other cases, to protect the consistency of the data structures.

In addition, we need to invoke fork() to create multiple instances that will execute in parallel and

also join() to wait for the threads to finish before we report the core numbers back to the caller of

ParK. Moreover, there is a need to include synchronization calls. The invocation of synchronize() sets

a barrier which must be reached by all running threads before code execution can continue.

To get an idea of the performance improvement that ParK achieves, for the Friendster graph [89]

which contains 65 million nodes and 1.8 billion edges, ParK needs roughly 160 seconds to compute the

core numbers whereas the centralized algorithm requires almost 1000 seconds on a machine with 8 physical

cores. Similar behavior is observed in the majority of the datasets used for experimental evaluation.

Based on the main idea of ParK, a more scalable algorithm (PKC) has been reported in [74]. The

main motivation for the design of PKC is that ParK does not scale well when the number of running

threads is increased beyond 32. This behavior implies that ParK cannot provide the required efficiency

when the number of physical cores is increased. On the other hand, PKC manages to scale well by

28

increasing the level of parallelism. The first modification applied on ParK is based on the observation

that arrays Curr and Next are not need to be maintained. On the other hand, PKC utilizes only the

arrays Core and Buff and applies additional optimizations as follows:

• To process nodes at level l, the array Core is scanned and if the degree of a node is equal to l, it is

appended to Buff . Then, nodes in Buff are processed until Buff becomes empty. A node u of

Buff is processed by checking its neighbors. The current core value of u’s neighbors are examined

and if the current core number is larger than l, the core number of a neighbor is decreased. During

this process, new nodes may be added to Buff . The iteration is complete when all nodes contained

in the l-core have been determined and the array Buff is empty. The algorithm proceeds by setting

l← l + 1 and it terminates when all the nodes are examined.

• Based on the power-law degree distribution in real-world networks, is is observed that the vast

majority of nodes have a small core number. For example, in a typical case, more than than 90% of

the nodes have a relatively small core number. Thus, 10% of the nodes are classified as high-degree

nodes. For these high-degree nodes, we need to check the core numbers of their neighbors, although

we know that most of them have a smaller core number. PKC exploits this observation by creating

a new Core array as soon as a significant percentage of the nodes has been processed.

Based on performance evaluation results reported in [74], PKC is significantly more efficient and

scalable in comparison to ParK and thus, it is more suitable for large levels of parallelism.

A recent research work reported in [152] studies the parallel k-core computation in dynamic graphs.

An important contribution of that work is the definition of the superior edge set, which is composed by

edges that may change the core number of nodes by at most one. This observation enables the processing

of these edges in parallel. In addition, the authors provide sufficient conditions to enable the identification

of nodes whose core numbers will change when a superior edge set is inserted or deleted. These techniques

are able to increase the level of parallelism significantly, reducing the number of iterations required to

determine the final values of the core numbers.

3.5.2 Distributed Computation

Although the computation of the core decomposition using parallelism is very attractive compared to the

centralized approach, still there are significant limitations. The use of shared memory may become a

bottleneck by increasing the number of parallel resources in the system. Anyway, the level of parallelism

may increase up to a point using a shared-memory architecture. In addition, if the size of the graph grows

significantly, we may face storage problems since the graph may not be accommodated in main memory.

One may argue that in such a case, disk-based techniques, like the EMCore algorithm which was covered

in a previous section, could be applied. The problem with the algorithms that utilize secondary storage

is that they perform a large number of passes over the data. As the graph grows larger the number of

passes is expected to increase leading to inefficient computation.

During the last fifteen years we have witnessed a tremendous progress in data-driven distributed com-

puting. In addition to the numerous ad-hoc solutions, several unified distributed platforms like MapRe-

duce [39], Hadoop [155] and Spark [160] appeared and paved the way for nowadays cluster computing.

These platforms are based on a cluster of shared-nothing machines (usually of commodity hardware) and

they are able to execute complex data mining and machine learning algorithms over massive datasets

efficiently. For the remaining of this section we will focus on a distributed core decomposition algorithm

29

that was initially designed for a cluster of machines without any specific organization. The only require-

ment is that the processors may communicate my exchanging messages through the interconnect (usually

a high-speed LAN). However, the algorithm was later adapted in order to be applicable in the Spark

distributed engine.

The first distributed core decomposition algorithm was reported in [109, 110]. In the general case,

each processing unit is responsible for multiple graph nodes. To simplify the presentation we will adopt

the one-to-one scenario, meaning that we assume that each graph node corresponds to a single processing

unit (a processor or a core). This model, resembles the Pregel’s [100] “think as a vertex” point of view.

In other words, to design an algorithm we should take the point of view of a graph node u and try to

provide the answer based on the information collected from the neighbors of u in an iterative manner.

Each graph node u maintains the following information:

• core(u): This is the currently most accurate estimate for the core number of u, which is initialized

to the degree of u.

• est[u1, ..., ul]: This is an array (or hashmap) storing the current estimates for the core numbers of

u’s neighbors. More specifically, est[uj] is the most up-to-date estimate of the core number of uj
known by u. Initially, est[uj]←∞.

• changed(u): This is a boolean flag that is set to true whenever the value of core(u) changes. This

attribute is initialized to false.

The computation for a node u begins by sending a message to all it’s neighbors. Since initially there

is no accurate estimate for c(u) (the core number of u), we may use the node degree as an upper bound.

Node u prepares a messagemsg[u, deg(u)] containing the node identifier of u and the current best estimate

of the core number. This message is transmitted to all neighbors of u.

Assume now that u receives a message msg[ui, k] from node ui (i.e., the i-th neighbor of u). From this

message, we know that k is the current best estimate for core(ui). Therefore, if k < est[ui], this means

that the previous estimate that node u knows about ui is larger than the last received, and it should be

updated by setting est[ui]← k. Once node u receives such a message, a new estimate for core(u) may be

produced. Let h denote the newly estimated value of the core number based on the information contained

in est[u1, ..., ul]. If h < core(u), then core(u)← h and also changed(u)← true, which means that a new

estimate for core(u) is available.

The main part of the algorithm is composed of three phases, depending on the event being handled.

Initially, and before the start of execution an initialization step is applied. In this step, the only valid

estimate for the core number of the degree of u. Therefore, the message send by node u to all its neighbors

simply contains the degree of u. Every time a new message is received by u from one of its neighbors ui,

an update is performed in case the new value received has an impact on the estimation the core(u). Node

u sends periodically (every ∆t time instances) the value of core(u) to its neighbors, in case core(u) has

changed. The algorithm terminates when no change is performed on any core number. If this happens,

then the core number estimate for each node equals its actual core number. To be able to achieve this

convergence several techniques may be applied, e.g., centralized, decentralized, barrier synchronization.

Another more efficient technique is to execute the algorithm for a fixed number of rounds. The main

motivation for this alternative is that after the first few rounds the core number estimates are quite close

to the actual core numbers. Therefore, there is an efficiency vs. accuracy trade-off since on one hand the

number of rounds is fixed but on the other hand the core numbers reported may not be 100% accurate.

We have performed some experiments to test the accuracy of the algorithm by using a fixed number of

30

iterations. Table 4 presents some representative results. More specifically, the table shows the percentage

of nodes that have the correct core number after 20 rounds (iterations). We observe, that the accuracy

is adequate for most realistic scenarios taking into account that an exact computation would require a

significant number of rounds (shown in column max num of iters). All datasets are available at [89].

Table 4: Percentage of nodes with correct core numbers after 20 iterations (Accuracy@20).

Graph Max Num of Iters Accuracy@20

Orkut 191 88.76%

LiveJournal 99 98.49%

Web-Stanford 538 90.2%

Enron Email 28 99.7%

In [157], the Pregel model is deemed inefficient for large temporal graphs and an alternative is

proposed based on the Bogel model [158]. This approach partitions the graph into blocks Vb that are

accompanied with the information of which vertices are also connected to Vb (V
+
b). The core numbers in

each Vb are computed and then the core numbers of the V +
b vertices are used to update their respective

block (Vb). The degree of a node in Vb takes into account also V +
b . The main intuition of the update

is that the vertices in V +
b with a core number lower than the minimum degree of Vb will not contribute

to the core number of vertices in the future. Those vertices are removed from V +
b and core numbers are

recomputed in Vb recursively.

An interesting technique reported in [12], involves the distributed core decomposition computation

in dynamic graphs. In the previous section, we have discussed a similar topic which was related to

parallel processing of dynamic graphs. The proposed distributed algorithms exploit the graph topology

to compute all k-cores and maintain them under frequent insertions and deletions of edges. The main idea

is that when an edge is inserted or deleted, a limited number of core numbers is updated. The proposed

technique is implemented by using the AKKA framework3 and the experimental evaluation has shown

that the algorithm is efficient when applied in large dynamic graphs.

3.6 Probabilistic Core Decomposition

The aforementioned algorithmic techniques operate on certain graphs, meaning that graph nodes and

edges are present with certainty (they always exist). However, as stated in Section 2, many applications

require some kind of uncertainty associated with nodes or edges. In such a case, the graph becomes

uncertain or probabilistic, meaning that the edge (or node) will be present in the network with some

probability. For the following discussion, we will assume that graph nodes are certain (i.e., they exist at

all times) whereas uncertainty is associated only with edges.

In the sequel we describe the algorithm reported in [24]. Let G = (V,E, p) be an uncertain (a.k.a

probabilistic) graph, where p : E → (0, 1] is a function that assigns probabilities to the edges of the

graph. A widely used approach to analyze uncertain graphs is the one of possible worlds, where each

possible world constitutes a deterministic realization of G. According to this model, an uncertain graph

G is interpreted as a set {G = (V,EG)}EG⊆E of 2|E| possible deterministic graphs [123, 115, 116]. Let

3https://akka.io

31

https://akka.io

(a) G (b) G1

b

b

b

v3

b

b
b

b

b
v1

v2

v4

v5

v6

v7

v8

v9

b

(c) G2

Figure 11: A probabilistic graph G and two possible instances G1 and G2. The numbers near the edges
denote existential probabilities.

G ⊑ G indicate that G is a possible world of G. Then, the probability that G = (V,EG) is observed as a

possible world of G (assuming independence of edge existence) is given by the following formula:

Pr[G|G] =
∏

e∈EG

p(e)
∏

e∈E\EG

(1− p(e)) (5)

As an example, consider the probabilistic graph G shown in Figure 11(a). Two possible instances of G

are given in Figure 11(b) and 11(c). High-probability edges are expected to show up more frequently in

instances of G in comparison to low-probability edges. In this example, G1 and G2 are two of the possible

worlds that can be produced by using G as a template.

One of the novelties of the approach proposed in [24] is that the degree of a node is expressed by

using probabilistic arguments. First, we need an expression of the probability that the degree of a node

u is more than k. Note that this is a natural concept taking into account that the degree of a node is

in general different in different instances of the probabilistic graph G. This probability is expressed as

follows:

Pr[deg(u) ≥ k] =
∑

G∈Gk
u

Pr[G] (6)

where Gku is the set of instances of G where u has a degree at least k. Next, we introduce the η-degree of

a node u, denoted as ηdeg(u) and defined as follows:

ηdeg(u) = max{k ≤ |N(u)||Pr[deg(u) ≥ k] ≥ η} (7)

More specifically, the ηdeg(u) is the maximum k for which the probability that the degree of u is more

than k, is more than η. Recall that |N(u)| is the number of direct neighbors of u in the probabilistic graph

G. Based on the variables k and η, the concept of (k, η)-core is defined: the (k, η)-core of a probabilistic

graph G is a maximal subgraph H(VH, EH, p) such that the probability that each vertex u ∈ VH has

degree no less than k in H is greater than or equal to η, i.e., ∀u ∈ V : Pr[degH(u) ≥ k] ≥ η.

The probabilistic core decomposition problem is defined as follows: Given an uncertain graph G and a

probability threshold η ∈ [0, 1], find the (k, η)-core decomposition of G, that is the set of all (k, η)-cores

of G.

In contrast to the standard core decomposition approach, degree computation is substituted by η-

degree computation in the probabilistic case. More specifically, all η-degrees are computed at the beginning

of the processing and η-degrees of neighboring nodes are updated accordingly. However, while the degree

32

computation is straightforward in the deterministic case, computing η-degrees are far from trivial. In [24],

interesting techniques are developed for computing η-degrees efficiently, based on dynamic programming.

Probabilistic core decomposition was also studied recently in [121], where (k, θ)-cores were proposed.

In contrast to (k, η)-cores, (k, θ)-cores capture the likelihood of a node to be a k-core member in different

instances of an uncertain graph G. Given k and the probability threshold θ, the technique of [121] detects

nodes such that with probability at least θ are included in the k-core in possible worlds.

4 Representative Application Domains

The core decomposition concept, despite its simplicity, has been applied successfully in many different

scientific disciplines. It turns out that the core number of network nodes plays different roles, depending

on the context being used and the type of the network applied. In this section, we present the most

representative use cases and the associated results obtained.

4.1 Network Modeling and Analysis

The k-core decomposition and its extensions have been extensively used in several applications. Seidman

[133] was the first that proposed to use the tool of k-core decomposition in social network analysis, as

an easy to compute and effective way to extract dense subgraphs. Later, other studies in large scale real

networks followed [69, 63], including the analysis of Microsoft Instant Messenger (MSN) [87] and Facebook

[146] social graphs. In a similar way, the decomposition has been applied to study [8, 9] and model [29]

the Internet graph.

Furthermore, several theoretical studies about the structure of real networks have been presented from

the statistical physics community [41, 148]. In [70], it was shown that the k-core plays a central role for

the modeling of real world graphs and their percolation properties. Based on that, a graph generation

model was introduced, and the properties of the generated graphs has been compared against a variety

of real networks.

On a conceptually opposite side, some works have studied how the concept of core decomposition

can been used to study the resilience or robustness of a network. Adiga and Vullikanti [1] examined the

robustness of the top (i.e., maximal) cores under sampling and in pertrubed (i.e., noisy) networks. The

authors of [161] have used the k-core as a heuristic tool in the process of graph decycling and dismantling.

Their corehd algorithm (which utilizes the core decomposition) provides an efficient manner for finding

a minimal set of nodes which if removed will decycle (and then dismantle) a graph. Their work is further

improved by the recent work in [132] which improves the heuristic by selecting nodes of high degree in the

k-core with low degree neighbors. In a similar spirit, the authors of [86] proposed metrics for measuring

core resilience in order to characterize the robustness of the core structure of a network when nodes and

edges are removed.

4.2 Temporal Evolution

An interesting application of temporal cores is found in the aforementioned work of [52] (Dynamic Graphs)

for the detection of anomalous contacts in social networks. Besides the extensions of the k-core structure

into temporal graphs, the evolution of degeneracy has also been studied as a property through time (e.g.

like density, diameter etc.). In [165] the authors use k-core to study the evolution of the Internet through

time and discover that the majority of new nodes are added to the periphery of the graph while the size

of the maximal k-core is quite stable through time.

33

4.3 Anomaly Detection

Shin et al. [136, 137] examined the properties of the k-core decomposition in a wide range of real-world

networks. Their main observations include a set of empirical patterns that hold across several real-world

graphs and can further be used to detect anomalies. The main observation, called the mirror pattern,

indicates that the core number of the nodes of a graph has a strong positive correlation with the degree

(which essentially represents an upper bound for the core number).

Figure 12: The mirror pattern of an Email communication graph (left) and a snapshot of the Twitter
network (right). Each plot depicts the correlation between the degree and core number of the nodes of
the graph. The figure is courtesy of Shin et al. [136]. c©2016 IEEE.

Figure 12 depicts the mirror pattern of two real-world graphs: an Email communication network and

a snapshot of the Twitter graph. As one can observe, their is strong positive correlation between node

degree and core number. For example, in the case of the Email network, Spearman’s rank correlation

coefficient has value ρ = 0.99, while in Twitter network the correlation coefficient is ρ = 0.95. Intuitively,

the mirror pattern implies that nodes with high core number have also the tendency to have high degree

and vice versa.

Nevertheless, one may observe that some nodes deviate from this “ideal” behavior; as the authors

mention, these nodes correspond to two different types of anomalies: “lonerstars” (i.e., nodes mostly

connected to “loners”) and “lockstep behavior” (i.e., a group of similarly behaving nodes). In the Email

network of Figure 12 (left), the marked node has the highest degree but relatively low core number; this

node corresponds to a secondary email account of the former CEO of the company, which was used only

to receive emails.

In the case of the Twitter network, the nodes with the highest core number in Figure 12 (right)

have been marked. Those nodes, have relatively low degrees and slightly deviate from the mirror pattern.

Taking a closer look on the corresponding Twitter accounts, the authors noticed that at least 78% of those

nodes were directly involved in a “Follower-Boosting” service – thus, can be annotated as anomalies.

In order to conduct this analysis, they devised a novel approach for estimating the core number in

huge graphs (CORE-D, Algorithm). CORE-D is based on estimating the number of triangles by using

the work of [145] for sampling and estimating the triangle count in large networks. The degeneracy of

the graph can be estimated based on coefficients (w0, w1) which are computed from real data using linear

regression.

4.4 Detection of Influential Spreaders

Detecting influential spreaders is an important topic for understanding how information diffuses in social

networks. An intuitive notion in this domain is that individuals with high connectivity would contribute

34

more in the diffusion process. This would naturally lead to metrics like betweenness centrality to be

utilized for the identification of good spreaders (e.g., [117]).

The work of Kitsak et al. [79] finds a contradiction to that – as being highly connected in a network is

not sufficient. It is pointed out that the quality of the connections are also important (i.e., the neighbors

must be also well connected) and that the k-core is better at finding highly influential nodes. The

observation that the core number of a node is a good predictor of its spreading capabilities, formed a new

line of research in the area of influence spreading. A similar study that was conducted in [119], including

PageRank as well as additional influence spreading metrics, lead to the same conclusion in favour of

k-core.

Naturally, several improvements and extensions have been made to this approach (e.g., [98, 118, 97,

168]). One such improvement ranks nodes of a network by the sum of the core numbers of its neighbors [95].

In [28], the authors apply k-core (k-shell) on data from Twitter and notice that the skew in the degrees

of the nodes creates a unnecessary number of cores (thousands) with most of the nodes existing in the

lowered ranked ones (up to 4). To limit the number of cores, instead of mapping k connection to the k-th

level, they assign 2k − 1 to k. In order to provide a more sophisticated decomposition, weights can be

introduced in the graph. The authors of [5] provide a weighting scheme that represents the interaction

among nodes and apply a weighted version of the k-core algorithm. This weight is specific to the nature

of the graph (e.g. based on retweets in Twitter).

Other extensions of the k-core decomposition can be utilized as well. A prime example is the use of

k-truss (triangle-based) [102]. This more restrictive version of graph degeneracy provides a smaller and

more refined set of nodes in the maximal k-truss subgraph (which is a subset of the maximal k-core). The

k-truss structure also captures the cohesiveness of the graph.

The work of [92] utilizes the k-core as a prepossessing step for an algorithm that extracts influential

communities. A basic assumption in that work is that we can weight the graphs with some influential

metric (e.g., Pagerank). Then the k-influential community is defined as an induced subgraph Hk of G

where:

• Hk is connected.

• Each node in Hk has a degree of k.

• There is no other subgraph that satisfies the other two criteria, is not a subgraph of Hk and has a

minimum weight (among its nodes) lower than Hk.

While there is a much more efficient algorithm presented in that work, we present here in Algorithm 1

the naive basic version of computing the top-r k-connected communities as it is more intuitive. The

authors note that this is better than k-truss as it includes the influence of each community (the minimum

node-weight) but there is no direct comparison.

The work of [137] uses k-core decomposition for detecting influential spreaders as well (besides anomaly

detection). In their approach (CORE-S Algorithm) for this application, they apply “vanilla” k-core

decomposition and rank the potential spreaders with their eigen-centrality within the core (instead of

the global graph). They compare their approach against k-core, k-truss, and eigen-centrality presenting

better results than them both in efficiency and accuracy.

4.5 Network Visualization

The nested decomposition of k-core organizes vertices efficiently into groups for visual analysis as well.

One of the earliest pieces of work for k-core based graph visualization focused on the presentation of the

35

Algorithm 1: TopCom (G,W ,r,k)

Input: G(V,E), W , r, and k
Result: The top-r k-influential communities

1 G0 ← G, i← 0;
2 while Gi contains a k − core do
3 Compute the maximal k − core Ck(Gi);

4 Let Hk(i) be the maximal connected component

of Ck(Gi) with the smallest influence value;
5 Let u be the smallest− weight node in Hk(i);
6 Delete u;

7 Let Gi+1 be a subgraph of C
k(Gi) after

deleting u;
8 i← i+ 1;

9 if i ≥ r then
10 return Hk(i1), . . . , Hk(ir)

11 else
12 return Hk(i1), . . . , Hk(0)

Figure 13: Example of k-core-based ego network.

graph’s adjacency matrix [16]. The main idea is to reorder the vertices in rows and columns by their

core number.

In general, the k-core has been used to display examples of results from the analysis of real world

graphs by focusing in the most dense cores. In [63] the authors display dense cliques of collaboration

found in the academia with fractional (weighted) cores. Triangle cores are also used on publication data in

[166] as well as the Wikipedia graph and protein to protein interaction networks among others to display

examples of discovered cliques. A similar concept to the triangle cores, the m-core is defined based on

the number of triangles an edge (instead of a vertex) belongs to [169]. Based on the m-coreness of an

edge, a vertex will belong to an m-core if at least one of its endpoint vertices belongs to it. The m-core

is utilized in [35] on an internet graph as well as on the E. Coli metabolic network to support that real

world networks are organized with mechanisms that are based on local instead of global properties.

36

Figure 14: Example of the model for graph visualization with k-cores of [6, 7].

A variety of system and software applications have been developed to provide visualizations of graphs

either at their entirety or at specific sub-graphs. Focusing on those that utilize graph degeneracy, Gephi

[15] is a popular graph visualization tool that includes -among many others- k-core as a vertex positioning

algorithm to organize vertices in concentric nested circles that are equal to the number of cores while the

position of the a vertex in each circle is random. In a work with a specific focus of evaluation of individuals,

the authors of [59], present a tool for selecting and displaying the ego network of researchers in the graph

of academic collaborations where only the colleagues of at least equal core number are included while the

rest are hidden (example shown in Figure 13).

Finally, [6, 7] offers a well-developed tool for degeneracy based graph visualization. An mock-up of

what it produces can be found in Fig 14. The nodes are organized in a nested manner that indicates

their core number while the degree of the vertices and their proximity among them is also taken into

account. Specifically the degree is represented by the size of the vertex while the proximity is displayed

by positioning them in relevant proximity at the nested circles.

4.6 Communities and Dense Subgraphs

In a recent work on community detection [61], the authors built upon the properties of the decomposition

to speed-up the execution time of computationally intensive graph clustering algorithms, such as spectral

clustering. In particular, they have proposed CoreCluster, an efficient clustering framework that can be

used along with any known graph clustering algorithm. The approach capitalizes on processing the graph

in a hierarchical way guided by its k-core decomposition. Nodes are clustered in an incremental manner

that preserve the clustering structure of the graph, while making the execution of the chosen clustering

algorithm much faster due to the smaller size of the graph’s partitions onto which the algorithm operates.

In addition to the community detection problem, another interesting problem, community search has

been addressed recently. In community search, given a node v the aim is to detect the most appropriate

community for v. This problem was introduced in [138] and it attracted significant interest. In most

of the cases, graph nodes have specific characteristics (i.e., attributes) that must be taken into account

during community search. This concept was introduced in [47], where node attributes play a key role

towards supporting a new query termed attributed community query (ACQ). In fact, one of the properties

that a subset S of nodes must satisfy to qualify as a potential answer is structure cohesiveness, which

essentially is the k-core property (i.e., for each node u ∈ S, degS(u) ≥ k). The structure cohesiveness

37

property is used also in [46], where the focus is to support spatial-aware communities (SAC).

In [91] the concept of k-core is combined with the concept of skyline, in order to spot communities that

are not dominated. This technique is applied to graphs with d numeric attributes per node. Therefore,

each node may be seen as a point in the d-dimensional space. The skyline concept was introduced in the

data management community by [26]. In fact, the skyline concept is based on the concept of maximal

vectors which was studied before in Computational Geometry [83]. The dominance property states that

a point p1 dominates another point p2, if p1 is as good as p2 in every dimension, and p1 is strictly better

than p2 in at least one of them. The points that are not dominated, form the skyline set. In the case of

communities, a community c1 dominates another community c2, if c1 is at least as good as c2 in every

dimension and strictly better than c2 in at least one dimension. Comparisons are performed based on an

aggregation function fi() that takes into account the i-th dimension of all nodes of the community.

An interesting application of the k-core concept is the detection of persistent communities in networks

that change over time, reported in [90]. The main idea behind that work is that a persistent community

should exist during a specified period of time. One of the contributions of [90] is the definition of the

(θ, τ)-persistent k-core. The challenging part in this concept is that the problem of finding the largest

(θ, τ)-persistent k-core is NP-hard. The authors propose algorithmic techniques to solve the problem

efficiently.

Another “famous” application of the k-core decomposition is the identification of dense subgraphs;

Andersen and Chellapilla [10] were based on this to propose solutions with approximation guarantees for

variants of the densest subgraph problem. In a similar spirit, variants of the community detection problem

has been addressed utilizing the properties of k-core decomposition, including local community detection

techniques [37] and the influential community search problem [92, 4] where the notion of influence is

defined as the minimum weight of the nodes in that community.

4.7 Text Analytics

Recently, the concept of k-core decomposition has been also applied in information networks used to

represent textual information. Models for graph construction from textual data can be found at [108].

In short, one may consider elements of text (n-grams, single terms etc.) as vertices and as edges the

co-occurrence of those elements. The edges can be enriched with additional properties depending on

the application. One common approach assigns weights to the edges based on the frequency of term

co-occurrence withing a fixed window - where a sliding window is assumed over the text.

A variety of graph based techniques have been utilized on those graphs. For example, [108] utilizes

Pagerank and [96] uses HITS for ranking words in text based on their ranking in the corresponding

graph. This, in both cases, aims at of the task of keyword extraction. Naturally, the ranking provided

from degeneracy has been utilized as well for keyword extraction [124]. As the authors note in their work,

beyond better results than the he other aforementioned approaches, the maximal k-core automatically

decides the number of keywords in contrast with other methodologies where a fixed number is selected.

Later on, Tixier et al. [143] further refined the concept of core (and truss) decomposition for the task of

keyword extraction. Overall, the additional benefit of flexibility on the properties of the graph motivated

the utilization of advanced approaches and applications of the k-core in text mining.

One such example is found in the later work of detecting events in Twitter streams [106]. The

graph of words is build there from tweets in time-windows of fixed size and the detection of the event is

based on thresholding the vertex/term weighted degree in the maximal core (i.e. the degrees define the

event appearance). Another example [144], utilizes the k-core and k-truss structure for text visualization

and summarization as an online real-time application. Moreover, the degeneracy approach has found

38

application on keyword extraction from multiparty conversations [107]. In all cases there is a benefit

from the efficient calculation of the k-core which allows almost instant results.

4.8 The Anchored k-Core Problem and Engagement Dynamics in Social Graphs

A common behavior of users in social networks is that their decisions are influenced by that of their

neighbors, exhibiting the so-called positive network effect : assuming some notion of utility or gain per

individual, this is increasing with the number of friends that behave in a certain way. For example, it

has been empirically observed that users are more likely to engage to the activities of a social network if

their friends do so. Based on that, how can we design or modify a social network in order to maximize

the engagement of its users?

Assume that all users in a community are initially engaged and each individual has two strategies:

to remain engaged in the activities of the community or to drop out [103]. An individual will remain

engaged if at least k of his/her friends are engaged (i.e., degree constraint). A user with less than k

engaged friends will decide to drop out, and his/her decision might spread over the network forming a

cascade of departures (i.e., other individuals might drop out too). When the collapse stops, the remaining

engaged users correspond to the k-core subgraph. That way, the size of k-core can be used to measure

the overall engagement of the social network. In the related literature, many empirical studies have used

the core number of nodes or the size of the maximal k-core subgraph to characterize the engagement

properties of individual nodes or even the engagement characteristics of the whole graph [103, 55, 104].

Based on the previously described model of user engagement in social networks, Bhawalkar et al. [20]

introduced the anchored k-core problem, which examines how to prevent unravelling on the network: we

aim at retaining (anchoring) some individuals, so as to maximize the number of users that will remain

engaged when the unraveling stops (i.e., the size of the maximal k-core subgraph). Once a node v in

G is anchored, it is always retained by the k-core decomposition regardless of its degree (i.e., it is never

removed by the decomposition) [162, 163].

Definition 22 (Anchored k-core subgraph) Given an undirected graph G and a vertex set A ⊂ G,

the anchored k-core subgraph, denoted by Ck(GA), is the corresponding k-core of G with vertices in A

anchored.

Definition 23 (Anchored k-core problem) Given an undirected graph G, a degree constraint k and a

budget b, the anchored k-core problem aims at finding a set A of b nodes, such that the size of the resulting

anchored k-core, Ck(GA), is maximized.

If we have a set A of anchor nodes, then we can directly use the linear time algorithm presented in

Section 3 to compute Ck(GA). However, finding the optimal A is a computational difficult problem; it

has been shown that, when k ≥ 3, the anchored k-core problem is NP-hard [20]. Zhang et al. [162] have

proposed an efficient heuristic algorithm, called OLAK, to deal with the complexity constraints of the

anchored k-core problem.

4.9 Graph Similarity

In a very recent work [113], the hierarchy of the core decomposition is utilized to provide a general

framework for computing similarity metrics among graphs.

Graph similarity is an upcoming topic in the domains of computational biology, chemistry and natural

language processing. Simply put, when computing similarities among graphs basic structures (e.g. trees,

39

cycles) are compared between graphs in a local or global level with graph kernels. The aforementioned

work [113], contributes by utilizing existing kernels at equivalent core levels between graphs in order to

compare the structures at similar levels of connectivity.

Algorithm 2: GraphSimKernel(G,G′)

Input: A pair of graphs G and G′

Result: Result of the kernel function, val
1 val = 0
2 δmin = min(δ(G), δ(G′))
3 Let Ci, C

′
i be the i− core of G,G

′ for i = 0, . . . , δmin

4 for i = δmin to 0 do
5 val = val + kernel(Ci, C

′
i)

Algorithm 2 is straightforward as it accumulates the similarities of a base-kernel along with the

corresponding cores between two graphs. Despite its simplicity in implementation, it outperforms the

utilized baselines in comparison with the result if they (the baselines) were used without the framework.

The evaluation is performed on classification tasks of real world graphs from a variety of domains.

4.10 Physics, Biology and Ecology

Many interactions in real organisms are modeled as networks. Biological networks have been studied

significantly by many different perspectives. One of these, is related to the discovery of core/periphery

structure of biological networks. In [99] this idea is studied for protein-protein interactions networks

(PPI). It turns out that in addition to the discovery of interesting correlations between connectivity and

biological properties, the core/periphery structures help to reveal the existence of multiple levels of protein

expression dynamics. Moreover, as reported in [73], residues belonging to inner cores are more conserved

than those at the periphery of the network and also it seems that these groups are functionally and

structurally critical. Another important result was reported in [44] which studied the relation between

the core numbers of proteins and mutation rates. It turns out that the mutation rates for the interior

cores is lower.

In addition to homogeneous networks that appear in biology, bipartite networks are also quite frequent:

gene-protein, host-pathogen, predator-prey. In [56], two new visualization types are proposed that exploit

the structural properties of these networks to improve readability. The basis of these methods is the core

decomposition of the bipartite graph.

Other Biology-related works that use the concept of core decomposition include: [42], which applies

the concept in weighted biological networks, [120] that performs protein complex prediction and [49] which

uses core decomposition in plant metabolic networks.

The core decomposition has been effectively applied to other branches of Biology, such as Ecology.

For example, in [57] an application is presented to plot bipartite ecological networks. Also, in [58], the

authors study different techniques to identifying the species for which the networks are most vulnerable to

cascade extinctions. It turns out that the core decomposition concept sheds light on the understanding of

the robustness properties in mutualistic networks. Also, similar ideas can be found in [112], which studies

the concept of structural collapse in mutualistic ecosystems. More specifically, based on the authors, it

was shown that “when species located at the maximum k-core of the network go extinct as a consequence

of sufficiently weak interaction strengths, the system will reach the tipping point of its collapse”.

40

In a surprising application of the classik k-core decomposition, [111] finds that when that modeling

viscosity in materials as a network of contacts leads to the k-core being the tool for explaining a phe-

nomenon referred as jamming (increment of viscosity with increment of density). In fact the network of

contacts show a behavior similar to an Erdos-Renyi graph model in the aspect of k-core percolation.

4.11 Neuroscience

The study and the understanding of the brain is an ongoing adventure. It turns out the core decomposition

concept plays an important role in this study. One of the first works that applied the concept was published

in [67]. In that work, the authors performed an in-depth analysis of the brain functional network which is

composed of parts of the brain that are functionally interconnected in a dense manner. The main result

of this study is that regions of the brain that belong to the structural core, share high degree, strength,

and betweenness centrality, and they operate as hubs linking other major structural modules.

In a similar line, the work in [147] demonstrates that parts of the brain with high connectivity (i.e.,

brain hubs) form a so-called “rich club”, which means that there is a tendency for high-degree nodes to

be more densely connected among themselves than nodes of a lower degree. The result is that this “rich

club” provides important information on the higher-level topology of the brain functional network.

Later, this idea was developed further in [135] in order to compare the brain organization of pigeons

and mammals. The main result of this study was that the pigeon telencephalon4 is organized in a similar

manner to that of a mammal.

Additional research efforts in the area that use the core decomposition concept as a first class citizen

include: [125] which studies the influence of wiring cost on the large-scale architecture of human cortical

connectivity, [21] which examines the way the brain functional network reorganizes during cognition, [156]

which links the concept of cell assemblies to that of k-core and studies a specific type of cell assembly

called k-assembly and [85] which studies the hierarchical cortical organization of the human brain.

5 Conclusions and Further Research

The core decomposition of a graph is a concept that has been studied for many years and is applied in

many different problems in diverse scientific areas – also displaying its value in real world applications.

The main reason for its ubiquity lies in the fact that it provides an efficient manner for organizing the

graph into hierarchical structures of increasing cohesiveness.

In this survey article, we have provided a thorough review on existing approaches for applications and

algorithmic techniques concerning degeneracy-based graph decompositions. In the application domain,

most of the works have focused primarily on real-world scale-free networks. A possible explanation is

that, random graphs do not exhibit interesting degeneracy-based properties. In other words, there is no

actual discrepancy of the core numbers of nodes in random graphs. Concerning algorithmic techniques,

we have examined k-core (and its variants) being applied to a multitude of computational models covering

many scenarios. One perhaps issue, we notice that in most cases the approaches are tailored by utilizing

specialized structures which makes difficult to utilize the same model in a more generic graph analysis

scenario (we elaborate on this below).

We have organized this review by three major axes i) graph types, ii) algorithmic techniques, and

iii) applications. We note that many publications could be mentioned in all of these axes as the graph

type is usually defined in a specific scenario for “not simple” graphs which in turn requires re-definition

4The telencephalon is the most highly developed and anterior part of the forebrain, composed mainly of the cerebral
hemispheres (https://en.wikipedia.org/wiki/Cerebrum).

41

https://en.wikipedia.org/wiki/Cerebrum

(or extension of the definition) of degeneracy and consecutively the re-design of the algorithm. For this

reason we place each piece work into one of these axes based on its major focus.

To the extend of our knowledge, this survey is the first in attempting to cover degeneracy to this

extend. Two notable attempts in similar reviews exist in the general literature as book chapters found

in “Encyclopedia of Social Network Analysis and Mining” [23] and in “Cohesive Subgraph Computation

over Large Sparse Graphs” [31] both covering to a lesser extend a subset of the main topics presented in

this manuscript.

Although core decomposition has been covered by many different perspectives, still there is room for

more work in the area. Next, we discuss briefly possible topics of interest for future research.

Algorithmic Aspects. A variety of techniques have been studied for k-core decomposition (in memory,

streaming, in parallel), but most of them focus on a single dimension of decomposition based on a function

upon properties of the node i.e., the degree, the number of triangles etc. As graph models become more

elaborate (direction, label, timestamp), the algorithms are redesigned for a specific computational model.

While this is expected (one designs an algorithm specific to the needs of application and core extension),

there is a lack for a uniform model regardless of the dimensions across which the core is computed. One

of the original works for Generalized Cores [17] attempted at providing such a general model but this

would not be applicable in e.g., temporal cores as the additional dimension can be used in a different

manner than the degree (which lead to a variety of works specifically for temporal cores).

Through out this review, the reader may notice that different models for graph decomposition try to

solve the same problem in principle for computing the decomposition -while they study different graph

properties. Nevertheless, a variety of algorithms has been introduced that solve the same problem (with

similar approaches). As such, it is expected in future research for ”generalized cores” to re-appear for a

greater extension of dimensions and computational models.

Furthermore, there is a lot of potential for graph computational models in general in distributed envi-

ronments due to the advances in this domain both in academia but in the industry as well combined with

need for scalable algorithms on fast evolving data. While we cover here cases for distributed, parallel and

streaming computation for large graphs, these approaches are yet to be adopted in general in real world

applications and for now are specific implementations. One major factor for this is due to the fact that

they require specific data structures and designs that do not generalize in usability by other algorithms

e.g., the model used in incremental k-core decomposition [?] is very efficient but it might not be very

efficient in other graph analysis tasks like eigen-centrality computation or triangle counting. As such, it is

hard to adopt a solution if it requires a great cost for transformation in order to use other graph mining

algorithms.

Core Decomposition in Machine Learning. While we saw here the potential of k-core decomposition

even in graphs that are extracted from non-graph data (e.g., in graphs of words), it seems that it has not

been explored in too many cases in the domain of Machine Learning or Data Science in general. While

the topic is beyond the scope of this review, there are many cases where a graph structure is assumed as

representation of the data in some form (e.g., manifold based decomposition [142], spectral clustering on

none graph data through affinity kernels [149]).

Despite that graph structures are used quite frequently through data transformations and affinity

kernels, the k-core structure of those graphs has not even been examined for its properties and potentials

(e.g., feature extraction). This is somewhat, surprising as the k-core algorithm is quite efficient and -as it

has been seen in this review- it offers the potential of finding out-liers or anomalies in real-world graphs.

42

Of course, other types of data (e.g., points in the Euclidean space) will not have the same properties as

the graphs that are usually studied with degeneracy. Nevertheless, at the minimum a study is lacking on

the properties of “other” graphs.

Representation Learning on Graphs. A recent work (core2vec [131]) showed the potential of using

k-core decomposition in feature engineering with deep learning techniques. In general this work lies in

the domain of representing nodes with latent features – as an embedding in a multidimensional space –

that are learned automatically. Usually, this embedding represents similar vertices as vectors with a high

similarity in the vector space model. The aforementioned work describes an alternative to using random

walk during one of the phases of an existing technique, by biasing the walk with core-based information

(focusing the walk in the same core). Although this can be considered a marginal modification, it offers

motivation on working in this sub-domain of machine learning. We have seen throughout this review a

variety of core models with different interpretations – capturing different (structural) properties of the

vertices and subgraphs in general. While these properties can be considered as features, one could utilize

them in a similar way to the core2vec model (e.g., as prepossessing techniques), in order to optimize graph

embedding techniques.

Influence Maximization. The topic of influence maximization and the identification of influential

spreaders has received a lot of attention in the domain of online social networks and recommender systems

due to its economical applications but also due to the general emergence of interest in the study of

information diffusion.

As we have seen in Section 4, the k-core has played a major role in this domain and further improve-

ments did not involve only the extension of the k-core but also its combination with other methodologies.

As only a few basic models have been studied, the exploration of the more elaborate ones remains still an

open subject (e.g., in directed graphs). Moreover, any lateral property defined on this topic will always

have the potential of being combined with the k-core structure in similar manners to the ones reviewed.

Lastly, the k-core has mainly been used so far as a heuristic algorithm to identify nodes with good spread-

ing properties. It remains open problem how to combine the properties of the core decomposition with the

greedy algorithm by Kempe et al. [76], towards a scalable core-based influence maximization algorithm

with theoretical guarantees.

ıyuce2016ıyuce2016

References

[1] A. Adiga and A. K. S. Vullikanti. How robust is the core of a network? In H. Blockeel, K. Kersting,

S. Nijssen, and F. Železný, editors, Machine Learning and Knowledge Discovery in Databases, pages

541–556, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. (Cited on pages 6 and 33.)

[2] C. C. Aggarwal, editor. Social Network Data Analytics. Springer, 2011. (Cited on page 4.)

[3] C. C. Aggarwal and H. Wang. Managing and Mining Graph Data. Springer, 2010. (Cited on page 4.)

[4] E. Akbas and P. Zhao. Truss-based community search: A truss-equivalence based indexing approach.

Proceedings of the VLDB Endowment, 10(11):1298–1309, Aug. 2017. (Cited on pages 6 and 38.)

43

[5] M. A. Al-garadi, K. D. Varathan, and S. D. Ravana. Identification of influential spreaders in online

social networks using interaction weighted k-core decomposition method. Physica A: Statistical

Mechanics and its Applications, 468:278–288, 2017. (Cited on pages 6 and 35.)

[6] J. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. K-core decomposition: A tool for

the visualization of large scale networks. Adv. Neural Inf. Process. Syst., 18, 04 2005. (Cited on

pages 6 and 37.)

[7] J. I. Alvarez-hamelin, A. Barrat, and A. Vespignani. Large scale networks fingerprinting and visu-

alization using the k-core decomposition. In NIPS ’06: Advances in Neural Information Processing

Systems, pages 41–50, 2006. (Cited on pages 6 and 37.)

[8] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. k-core decomposition: a tool for

the analysis of large scale internet graphs, 2005. (Cited on pages 6 and 33.)

[9] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. k-core decomposition of internet

graphs: Hierarchies, self-similarity and measurement biases. NHM, 3(2):371, 2008. (Cited on pages 6

and 33.)

[10] R. Andersen and K. Chellapilla. Finding dense subgraphs with size bounds. In WAW, pages 25–37,

2009. (Cited on page 38.)

[11] D. Angluin and J. Chen. Learning a hidden graph using o(logn) queries per edge. J. Comput. Syst.

Sci., 74(4):546–556, June 2008. (Cited on page 13.)

[12] S. Aridhi, M. Brugnara, A. Montresor, and Y. Velegrakis. Distributed k-core decomposition and

maintenance in large dynamic graphs. In Proceedings of the 10th ACM International Conference on

Distributed and Event-based Systems, DEBS ’16, pages 161–168, New York, NY, USA, 2016. ACM.

(Cited on pages 6 and 31.)

[13] J. Bang-Jensen and G. Z. Gutin. Digraphs: Theory, Algorithms and Applications. Springer Pub-

lishing Company, Incorporated, 2nd edition, 2008. (Cited on page 10.)

[14] J. Bao, Y. Zheng, D. Wilkie, and M. Mokbel. Recommendations in location-based social networks:

a survey. GeoInformatica, 19(3):525–565, Jul 2015. (Cited on page 19.)

[15] M. Bastian, S. Heymann, M. Jacomy, et al. Gephi: an open source software for exploring and

manipulating networks. Icwsm, 8(2009):361–362, 2009. (Cited on page 37.)

[16] V. Batagelj, A. Mrvar, and M. Zaveršnik. Partitioning approach to visualization of large graphs.

In International Symposium on Graph Drawing, pages 90–97. Springer, 1999. (Cited on pages 6

and 36.)

[17] V. Batagelj and M. Zaversnik. Generalized cores. CoRR, cs.DS/0202039, 2002. (Cited on pages 6,

13, 14, and 42.)

[18] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decomposition of networks, 2003. cite

arxiv:cs/0310049. (Cited on pages 6, 21, and 22.)

[19] A. R. Benson, D. F. Gleich, and J. Leskovec. Higher-order organization of complex networks.

Science, 353(6295):163–166, 2016. (Cited on page 18.)

44

[20] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma. Preventing unraveling in

social networks: the anchored k-core problem. In ICALP ’11: Proceedings of the 39th International

Colloquium Conference on Automata, Languages, and Programming, pages 440–451, 2011. (Cited

on pages 6 and 39.)

[21] M. Bola and B. Sabel. Dynamic reorganization of brain functional networks during cognition.

NeuroImage, 114, 03 2015. (Cited on pages 6 and 41.)

[22] P. Boldi and S. Vigna. The webgraph framework i: Compression techniques. In Proceedings of the

13th International Conference on World Wide Web, WWW ’04, pages 595–602, New York, NY,

USA, 2004. ACM. (Cited on page 22.)

[23] F. Bonchi, F. Gullo, and A. Kaltenbrunner. Core Decomposition of Massive, Information-Rich

Graphs, pages 1–11. Springer New York, New York, NY, 2017. (Cited on pages 5 and 42.)

[24] F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich. Core decomposition of uncertain graphs.

In KDD, pages 1316–1325, 2014. (Cited on pages 6, 12, 31, 32, and 33.)

[25] F. Bonchi, A. Khan, and L. Severini. Distance-generalized core decomposition. In Proceedings of the

2019 ACM SIGMOD International Conference on Management of Data, 2019. (Cited on pages 6,

17, and 18.)

[26] S. Borzsony, D. Kossmann, and K. Stocker. The skyline operator. In Proceedings 17th International

Conference on Data Engineering, pages 421–430, April 2001. (Cited on page 38.)

[27] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In Proceedings of

the Seventh International Conference on World Wide Web 7, WWW7, pages 107–117, Amsterdam,

The Netherlands, The Netherlands, 1998. Elsevier Science Publishers B. V. (Cited on page 5.)

[28] P. Brown and J. Feng. Measuring user influence on twitter using modified k-shell decomposition.

In The Social Mobile Web, volume WS-11-02 of AAAI Workshops. AAAI, 2011. (Cited on pages 6

and 35.)

[29] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir. A model of internet topology using

k-shell decomposition. PNAS, 104(27):11150–11154, 2007. (Cited on pages 6 and 33.)

[30] L. Chang and L. Qin. Cohesive Subgraph Computation over Large Sparse Graphs. Springer, 2018.

(Cited on page 5.)

[31] Q.-L. Chang, Lijun. Minimum Degree-Based Core Decomposition, pages 21––39. Springer Series in

the Data Sciences, 2018. (Cited on page 42.)

[32] J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu. Efficient core decomposition in massive networks. In

ICDE, pages 51–62, 2011. (Cited on pages 6 and 21.)

[33] S.-T. Cheng, Y.-C. Chen, and M.-S. Tsai. Using k-core decomposition to find cluster centers for

k-means algorithm in graphx on spark. In Proceedings of the 8-th International Conference on Cloud

Computing, GRIDs, and Virtualization, pages 93–98, 2017. (Cited on page 6.)

[34] J. Cohen. Trusses: Cohesive subgraphs for social network analysis. National Security Agency

Technical Report, 2008. (Cited on pages 6 and 14.)

45

[35] P. Colomer-de Simón, M. A. Serrano, M. G. Beiró, J. I. Alvarez-Hamelin, and M. Boguná. Deci-

phering the global organization of clustering in real complex networks. Scientific reports, 3:2517,

2013. (Cited on page 36.)

[36] D. J. Cook and L. B. Holder. Mining Graph Data. John Wiley & Sons, 2006. (Cited on page 4.)

[37] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of communities in large graphs. In

Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pages

991–1002, 2014. (Cited on page 38.)

[38] M. Danisch, T.-H. H. Chan, and M. Sozio. Large scale density-friendly graph decomposition via

convex programming. In Proceedings of the 26th International Conference on World Wide Web,

WWW ’17, pages 233–242, 2017. (Cited on pages 6 and 15.)

[39] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In Proceedings

of the 6th Conference on Symposium on Opearting Systems Design & Implementation - Volume 6,

OSDI’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX Association. (Cited on page 29.)

[40] D. Ding, H. Li, Z. Huang, and N. Mamoulis. Efficient fault-tolerant group recommendation using

alpha-beta-core. In Proceedings of the 2017 ACM on Conference on Information and Knowledge

Management, CIKM ’17, pages 2047–2050, New York, NY, USA, 2017. ACM. (Cited on pages 6

and 11.)

[41] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. k-core organization of complex networks.

Physical Review Letters, 96:040601, 2006. (Cited on pages 6 and 33.)

[42] M. Eidsaa. Core Decomposition Analysis of Weighted Biological Networks. PhD thesis, NTNU,

2016. (Cited on pages 6 and 40.)

[43] M. Eidsaa and E. Almaas. s-core network decomposition: A generalization of k-core analysis to

weighted networks. Phys. Rev. E, 88:062819, 2013. (Cited on pages 6 and 11.)

[44] A. I. Emerson, S. Andrews, I. Ahmed, T. K. Azis, and J. A. Malek. K-core decomposition of a

protein domain co-occurrence network reveals lower cancer mutation rates for interior cores. Journal

of Clinical Bioinformatics, 5(1):1, Mar 2015. (Cited on pages 6 and 40.)

[45] P. ErdÅs and A. Hajnal. On chromatic number of graphs and set-systems. Acta Mathematica

Academiae Scientiarum Hungarica, 17(1-2):61–99, 1966. (Cited on pages 6 and 9.)

[46] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu. Effective community search over large spatial graphs.

Proc. VLDB Endow., 10(6):709–720, Feb. 2017. (Cited on pages 6 and 38.)

[47] Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective community search for large attributed graphs.

Proc. VLDB Endow., 9(12):1233–1244, Aug. 2016. (Cited on page 37.)

[48] M. Farach-Colton and M.-T. Tsai. Computing the degeneracy of large graphs. In Latin American

Symposium on Theoretical Informatics, pages 250–260. Springer, 2014. (Cited on page 23.)

[49] H. A. Filho, J. Machicao, and O. M. Bruno. A hierarchical model of metabolic machinery based on

the kcore decomposition of plant metabolic networks. PLOS ONE, 13(5):1–15, 05 2018. (Cited on

pages 6 and 40.)

46

[50] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40(1):35–41,

1977. (Cited on page 5.)

[51] E. C. Freuder. A sufficient condition for backtrack-free search. J. ACM, 29(1):24–32, 1982. (Cited

on pages 6 and 9.)

[52] E. Galimberti, A. Barrat, F. Bonchi, C. Cattuto, and F. Gullo. Mining (maximal) span-cores from

temporal networks. In Proceedings of the 27th ACM International Conference on Information and

Knowledge Management, pages 107–116. ACM, 2018. (Cited on pages 6, 26, and 33.)

[53] E. Galimberti, F. Bonchi, and F. Gullo. Core decomposition and densest subgraph in multilayer net-

works. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,

CIKM ’17, pages 1807–1816, New York, NY, USA, 2017. ACM. (Cited on pages 6 and 13.)

[54] A. Garas, F. Schweitzer, and S. Havlin. A k-shell decomposition method for weighted networks.

New Journal of Physics, 14(8), 2012. (Cited on pages 6 and 11.)

[55] D. Garcia, P. Mavrodiev, and F. Schweitzer. Social resilience in online communities: The autopsy

of friendster. In COSN ’13: Proceedings of the First ACM Conference on Online Social Networks,

pages 39–50, 2013. (Cited on pages 6 and 39.)

[56] J. Garcia-Algarra, J. Pastor, M. L. Mouronte, and J. Galeano. A structural approach to disentangle

the visualization of bipartite biological networks. Complexity, 2018:1–11, 02 2018. (Cited on pages 6

and 40.)

[57] J. Garcia-Algarra, J. M. M. Pastor, M. L. Mouronte, and J. Galeano. Bipartgraph: An interactive

application to plot bipartite ecological networks. bioRxiv, 2017. (Cited on pages 6 and 40.)

[58] J. Garćıa-Algarra, J. Pastor, J. Iriondo, and J. Galeano. Ranking of critical species to preserve the

functionality of mutualistic networks using the k-core decomposition. PeerJ, 5(e3321), 2017. (Cited

on pages 6 and 40.)

[59] C. Giatsidis, K. Berberich, D. M. Thilikos, and M. Vazirgiannis. Visual exploration of collaboration

networks based on graph degeneracy. In Proceedings of the 18th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 1512–1515. ACM, 2012. (Cited on

page 37.)

[60] C. Giatsidis, B. Cautis, S. Maniu, D. M. Thilikos, and M. Vazirgiannis. Quantifying trust dynamics

in signed graphs, the s-cores approach. In Proceedings of the 2014 SIAM International Conference

on Data Mining, Philadelphia, Pennsylvania, USA, April 24-26, 2014, pages 668–676, 2014. (Cited

on pages 6 and 11.)

[61] C. Giatsidis, F. D. Malliaros, D. M. Thilikos, and M. Vazirgiannis. Corecluster: A degeneracy based

graph clustering framework. In AAAI ’14: Proceedings of the Twenty-Eighth AAAI Conference on

Artificial Intelligence, pages 44–50, 2014. (Cited on pages 6 and 37.)

[62] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. D-cores: Measuring collaboration of directed

graphs based on degeneracy. In ICDM ’11: Proceedings of the 11th IEEE International Conference

on Data Mining, pages 201–210, 2011. (Cited on pages 6 and 10.)

47

[63] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. Evaluating cooperation in communities with the

k-core structure. In ASONAM ’11: Proceedings of the International Conference on Advances in

Social Networks Analysis and Mining, pages 87–93, 2011. (Cited on pages 6, 11, 33, and 36.)

[64] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. D-cores: measuring collaboration of directed

graphs based on degeneracy. Knowl. Inf. Syst., 35(2):311–343, 2013. (Cited on page 10.)

[65] P. Govindan, S. Soundarajan, T. Eliassi-Rad, and C. Faloutsos. Nimblecore: A space-efficient exter-

nal memory algorithm for estimating core numbers. In ASONAM, pages 207–214. IEEE Computer

Society, 2016. (Cited on pages 6 and 22.)

[66] P. Govindan, C. Wang, C. Xu, H. Duan, and S. Soundarajan. The k-peak decomposition: Mapping

the global structure of graphs. In Proceedings of the 26th International Conference on World Wide

Web, WWW ’17, pages 1441–1450, 2017. (Cited on pages 6, 15, and 16.)

[67] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, and O. Sporns. Mapping the

structural core of human cerebral cortex. PLOS Biology, 6(7):e159, 2008. (Cited on pages 6 and 41.)

[68] X. He, H. Zhao, W. Cai, G.-G. Li, and F.-D. Pei. Analyzing the structure of earthquake network

by k-core decomposition. Physica A: Statistical Mechanics and its Applications, 421:34–43, 2015.

(Cited on page 6.)

[69] J. Healy, J. Janssen, E. Milios, and W. Aiello. Characterization of graphs using degree cores. In

WAW ’08: Algorithms and Models for the Web-Graph, pages 137–148, 2008. (Cited on pages 6

and 33.)

[70] L. Hébert-Dufresne, A. Allard, J.-G. Young, and L. J. Dubé. Percolation on random networks with

arbitrary k-core structure. Physical Review E, 88(6):062820, 2013. (Cited on page 33.)

[71] X. Hu, F. Liu, V. Srinivasan, and A. Thomo. k-core decomposition on giraph and graphchi. In

L. Barolli, I. Woungang, and O. K. Hussain, editors, Advances in Intelligent Networking and Collab-

orative Systems, pages 274–284, Cham, 2018. Springer International Publishing. (Cited on page 6.)

[72] X. Huang, W. Lu, and L. V. Lakshmanan. Truss decomposition of probabilistic graphs: Semantics

and algorithms. In Proceedings of the 2016 ACM SIGMOD International Conference on Manage-

ment of Data, SIGMOD ’16, pages 77–90, 2016. (Cited on pages 6 and 14.)

[73] A. E. Isaac and S. Sinha. Analysis of core–periphery organization in protein contact networks reveals

groups of structurally and functionally critical residues. Journal of Biosciences, 40(4):683–699, Oct

2015. (Cited on pages 6 and 40.)

[74] H. Kabir and K. Madduri. Parallel k-core decomposition on multicore platforms. In IPDPS Work-

shops, pages 1482–1491. IEEE Computer Society, 2017. (Cited on pages 6, 28, and 29.)

[75] V. Kassiano, A. Gounaris, A. N. Papadopoulos, and K. Tsichlas. Mining uncertain graphs: An

overview. In T. Sellis and K. Oikonomou, editors, Algorithmic Aspects of Cloud Computing, pages

87–116, Cham, 2017. Springer International Publishing. (Cited on page 12.)

[76] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network.

In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’03, pages 137–146, 2003. (Cited on page 43.)

48

[77] W. Khaouid, M. Barsky, S. Venkatesh, and A. Thomo. K-core decomposition of large networks on

a single PC. PVLDB, 9(1):13–23, 2015. (Cited on pages 6 and 22.)

[78] L. M. Kirousis and D. M. Thilikos. The linkage of a graph. SIAM J. Comput., 25(3):626–647, 1996.

(Cited on pages 6 and 9.)

[79] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljerosand, L. Muchnik, H. E. Stanley, and H. A. Makse.

Identification of influential spreaders in complex networks. Nature Physics, 2010. (Cited on pages 6

and 35.)

[80] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal. The web as a

graph. In PODS, 2000. (Cited on pages 4 and 6.)

[81] J. Kunegis, A. Lommatzsch, and C. Bauckhage. The slashdot zoo: Mining a social network with

negative edges. In Proceedings of the 18th International Conference on World Wide Web, WWW

’09, pages 741–750, New York, NY, USA, 2009. ACM. (Cited on page 11.)

[82] J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. W. D. Luca, and S. Albayrak. Spectral

analysis of signed graphs for clustering, prediction and visualization. In SDM, pages 559–570.

SIAM, 2010. (Cited on page 11.)

[83] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors. J. ACM,

22(4):469–476, Oct. 1975. (Cited on page 38.)

[84] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph computation on just a pc.

In Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation,

OSDI’12, pages 31–46, Berkeley, CA, USA, 2012. USENIX Association. (Cited on page 22.)

[85] N. Lahav, B. Ksherim, E. Ben-Simon, A. Maron-Katz, R. Cohen, and S. Havlin. K -shell decom-

position reveals hierarchical cortical organization of the human brain. New Journal of Physics,

18(8):083013, 2016. (Cited on pages 6 and 41.)

[86] R. Laishram, A. E. Sariyüce, T. Eliassi-Rad, A. Pinar, and S. Soundarajan. Measuring and im-

proving the core resilience of networks. In Proceedings of the 2018 World Wide Web Conference,

WWW ’18, pages 609–618, 2018. (Cited on pages 6 and 33.)

[87] J. Leskovec and E. Horvitz. Planetary-scale views on a large instant-messaging network. In WWW

’08: Proceedings of the 17th International Conference on World Wide Web, pages 915–924, 2008.

(Cited on pages 6 and 33.)

[88] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pages 1361–1370, New

York, NY, USA, 2010. ACM. (Cited on page 11.)

[89] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http:

//snap.stanford.edu/data, June 2014. (Cited on pages 28 and 31.)

[90] R. Li, J. Su, L. Qin, J. X. Yu, and Q. Dai. Persistent community search in temporal networks. In

2018 IEEE 34th International Conference on Data Engineering (ICDE), pages 797–808, April 2018.

(Cited on pages 6 and 38.)

49

http://snap.stanford.edu/data
http://snap.stanford.edu/data

[91] R.-H. Li, L. Qin, F. Ye, J. X. Yu, X. Xiao, N. Xiao, and Z. Zheng. Skyline community search

in multi-valued networks. In Proceedings of the 2018 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’18, pages 457–472, New York, NY, USA, 2018. ACM. (Cited on

pages 6 and 38.)

[92] R.-H. Li, L. Qin, J. X. Yu, and R. Mao. Influential community search in large networks. Proceedings

of the VLDB Endowment, 8(5):509–520, 2015. (Cited on pages 6, 35, and 38.)

[93] R.-H. Li, J. X. Yu, and R. Mao. Efficient core maintenance in large dynamic graphs. IEEE

Transactions on Knowledge and Data Engineering, 26(10):2453–2465, 2014. (Cited on page 24.)

[94] D. R. Lick and A. T. White. k-degenerate graphs. Canadian Journal of Mathematics, 22:1082–1096,

1970. (Cited on pages 6 and 8.)

[95] J.-H. Lin, Q. Guo, W.-Z. Dong, L.-Y. Tang, and J.-G. Liu. Identifying the node spreading influence

with largest k-core values. Physics Letters A, 378(45):3279–3284, 2014. (Cited on pages 6 and 35.)

[96] M. Litvak and M. Last. Graph-based keyword extraction for single-document summarization. In

Proceedings of the workshop on Multi-source Multilingual Information Extraction and Summariza-

tion, pages 17–24. Association for Computational Linguistics, 2008. (Cited on page 38.)

[97] L. Lü, D. Chen, X.-L. Ren, Q.-M. Zhang, Y.-C. Zhang, and T. Zhou. Vital nodes identification in

complex networks. Physics Reports, 650:1–63, 2016. (Cited on page 35.)

[98] L. Lü, T. Zhou, Q.-M. Zhang, and H. E. Stanley. The h-index of a network node and its relation to

degree and coreness. Nature Communications, 7:10168 EP –, 01 2016. (Cited on pages 27 and 35.)

[99] F. Luo, B. Li, X.-F. Wan, and R. H. Scheuermann. Core and periphery structures in protein

interaction networks. BMC Bioinformatics, 10(Suppl 4):s8, 2009. (Cited on pages 6 and 40.)

[100] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel:

A system for large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’10, pages 135–146, New York, NY, USA, 2010.

ACM. (Cited on pages 25 and 30.)

[101] F. D. Malliaros, A. N. Papadopoulos, and M. Vazirgiannis. Core decomposition in graphs: Concepts,

algorithms and applications. In EDBT, pages 720–721. OpenProceedings.org, 2016. (Cited on

page 5.)

[102] F. D. Malliaros, M.-E. G. Rossi, and M. Vazirgiannis. Locating influential nodes in complex net-

works. Scientific reports, 6:19307, 2016. (Cited on pages 6 and 35.)

[103] F. D. Malliaros and M. Vazirgiannis. To stay or not to stay: modeling engagement dynamics in

social graphs. In 22nd ACM International Conference on Information and Knowledge Management,

CIKM’13, pages 469–478, 2013. (Cited on pages 6 and 39.)

[104] F. D. Malliaros and M. Vazirgiannis. Vulnerability assessment in social networks under cascade-

based node departures. EPL (Europhysics Letters), 110(6):68006, 2015. (Cited on pages 6 and 39.)

[105] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring algorithms.

J. ACM, 30(3):417–427, July 1983. (Cited on page 21.)

50

[106] P. Meladianos, G. Nikolentzos, F. Rousseau, Y. Stavrakas, and M. Vazirgiannis. Degeneracy-based

real-time sub-event detection in twitter stream. In ICWSM, pages 248–257, 2015. (Cited on pages 6

and 38.)

[107] P. Meladianos, A. Tixier, I. Nikolentzos, and M. Vazirgiannis. Real-time keyword extraction from

conversations. In Proceedings of the 15th Conference of the European Chapter of the Association

for Computational Linguistics: Volume 2, Short Papers, volume 2, pages 462–467, 2017. (Cited on

pages 6 and 39.)

[108] R. Mihalcea and P. Tarau. Textrank: Bringing order into text. In Proceedings of the 2004 conference

on empirical methods in natural language processing, 2004. (Cited on page 38.)

[109] A. Montresor, F. De Pellegrini, and D. Miorandi. Distributed k-core decomposition. In PODC,

pages 207–208, 2011. (Cited on pages 6, 22, and 30.)

[110] A. Montresor, F. De Pellegrini, and D. Miorandi. Distributed k-core decomposition. IEEE Trans-

actions on Parallel and Distributed Systems, 24(2):288–300, 2013. (Cited on pages 6 and 30.)

[111] F. Morone, K. Burleson-Lesser, H. Vinutha, S. Sastry, and H. A. Makse. The jamming transition is

a k-core percolation transition. Physica A: Statistical Mechanics and its Applications, 516:172–177,

2019. (Cited on pages 6 and 41.)

[112] F. Morone, G. Ferraro, and H. A. Makse. The k-core as a predictor of structural collapse in

mutualistic ecosystems. Nature Physics, 10 2018. (Cited on pages 6 and 40.)

[113] G. Nikolentzos, P. Meladianos, S. Limnios, and M. Vazirgiannis. A degeneracy framework for graph

similarity. In IJCAI, pages 2595–2601, 2018. (Cited on pages 6, 39, and 40.)

[114] M. P. O’Brien and B. D. Sullivan. Locally estimating core numbers. In ICDM, pages 460–469, 2014.

(Cited on pages 6, 26, and 27.)

[115] P. Parchas, F. Gullo, D. Papadias, and F. Bonchi. The pursuit of a good possible world: Ex-

tracting representative instances of uncertain graphs. In Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data, pages 967–978, 2014. (Cited on page 31.)

[116] P. Parchas, F. Gullo, D. Papadias, and F. Bonchi. Uncertain graph processing through representative

instances. ACM Trans. Database Syst., 40(3):20:1–20:39, 2015. (Cited on page 31.)

[117] R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks. Physical review

letters, 86(14):3200, 2001. (Cited on page 35.)

[118] S. Pei and H. A. Makse. Spreading dynamics in complex networks. Journal of Statistical Mechanics:

Theory and Experiment, 2013(12):P12002, 2013. (Cited on page 35.)

[119] S. Pei, L. Muchnik, J. S. Andrade Jr, Z. Zheng, and H. A. Makse. Searching for superspreaders of

information in real-world social media. Scientific reports, 4:5547, 2014. (Cited on pages 6 and 35.)

[120] M. Pellegrini, M. Baglioni, and F. Geraci. Protein complex prediction for large protein protein

interaction networks with the core & peel method. BMC Bioinformatics, 17(12):372, Nov 2016.

(Cited on pages 6 and 40.)

51

[121] Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin. Efficient probabilistic k-core computation on

uncertain graphs. In 2018 IEEE 34th International Conference on Data Engineering (ICDE), pages

1192–1203, 2018. (Cited on pages 6, 12, and 33.)

[122] E. M. Phizicky and S. Fields. Protein-protein interactions: methods for detection and analysis.

Microbiological reviews, 59 1:94–123, 1995. (Cited on page 4.)

[123] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. K-nearest neighbors in uncertain graphs.

Proceedings of the VLDB Endowment, pages 997–1008, 2010. (Cited on page 31.)

[124] F. Rousseau and M. Vazirgiannis. Main core retention on graph-of-words for single-document

keyword extraction. In ECIR ’15: Proceedings of the 37th European Conference on Information

Retrieval, pages 382–393, 2015. (Cited on pages 6 and 38.)

[125] D. Samu, A. K. Seth, and T. Nowotny. Influence of wiring cost on the large-scale architecture of

human cortical connectivity. PLOS Computational Biology, 10(4):1–24, 04 2014. (Cited on pages 6

and 41.)

[126] A. E. Sarıyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V. Çatalyürek. Incremental k-core

decomposition: algorithms and evaluation. The VLDB Journal, 25(3):425–447, Jun 2016. (Cited

on page 6.)

[127] A. E. Saŕıyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and U. V. Çatalyürek. Streaming algorithms

for k-core decomposition. Proceedings of the VLDB Endowment, 6(6):433–444, Apr. 2013. (Cited

on pages 6, 12, and 24.)

[128] A. E. Sariyüce and A. Pinar. Peeling bipartite networks for dense subgraph discovery. In Proceedings

of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM, pages

504–512, 2018. (Cited on pages 6, 18, and 19.)

[129] A. E. Sariyüce, C. Seshadhri, and A. Pinar. Local algorithms for hierarchical dense subgraph

discovery. Proc. VLDB Endow., 12(1):43–56, Sept. 2018. (Cited on pages 6 and 27.)

[130] A. E. Sariyuce, C. Seshadhri, A. Pinar, and U. V. Catalyurek. Finding the hierarchy of dense

subgraphs using nucleus decompositions. In Proceedings of the 24th International Conference on

World Wide Web, WWW ’15, pages 927–937, 2015. (Cited on pages 16 and 17.)

[131] S. Sarkar, A. Bhagwat, and A. Mukherjee. Core2vec: A core-preserving feature learning frame-

work for networks. In IEEE/ACM 2018 International Conference on Advances in Social Networks

Analysis and Mining, ASONAM 2018, pages 487–490, 2018. (Cited on page 43.)

[132] C. Schmidt, H. D. Pfister, and L. Zdeborová. Minimal sets to destroy the k-core in random networks.

Physical Review E, 99(2):022310, 2019. (Cited on pages 6 and 33.)

[133] S. B. Seidman. Network Structure and Minimum Degree. Social Networks, 5:269–287, 1983. (Cited

on pages 6, 20, and 33.)

[134] N. Shailaja Dasari, D. Ranjan, and M. Zubair. Park: An efficient algorithm for k-core decomposition

on multicore processors. Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big

Data 2014, pages 9–16, 01 2015. (Cited on pages 6 and 28.)

52

[135] M. Shanahan, V. Bingman, T. Shimizu, M. Wild, and O. Güntürkün. Large-scale network or-

ganization in the avian forebrain: a connectivity matrix and theoretical analysis. Frontiers in

Computational Neuroscience, 7:89, 2013. (Cited on pages 6 and 41.)

[136] K. Shin, T. Eliassi-Rad, and C. Faloutsos. Corescope: Graph mining using k-core analysis - patterns,

anomalies and algorithms. In ICDM, pages 469–478. IEEE, 2016. (Cited on pages 6 and 34.)

[137] K. Shin, T. Eliassi-Rad, and C. Faloutsos. Patterns and anomalies in k-cores of real-world graphs

with applications. Knowl. Inf. Syst., 54(3):677–710, 2018. (Cited on pages 6, 34, and 35.)

[138] M. Sozio and A. Gionis. The community-search problem and how to plan a successful cocktail

party. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery

and data mining - KDD ’10, pages 939–948, 2010. Exported from https://app.dimensions.ai on

2019/04/27. (Cited on page 37.)

[139] P. Strouthopoulos and A. N. Papadopoulos. Core discovery in hidden graphs. CoRR (to appear in

Data and Knowledge Engineering), abs/1712.02827, 2017. (Cited on pages 6 and 13.)

[140] Y. Tao, C. Sheng, and J. Li. Finding maximum degrees in hidden bipartite graphs. In Proceedings

of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD ’10, pages

891–902, New York, NY, USA, 2010. ACM. (Cited on page 13.)

[141] N. Tatti and A. Gionis. Density-friendly graph decomposition. In WWW, pages 1089–1099, 2015.

(Cited on pages 6 and 15.)

[142] J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global geometric framework for nonlinear

dimensionality reduction. science, 290(5500):2319–2323, 2000. (Cited on page 42.)

[143] A. Tixier, F. D. Malliaros, and M. Vazirgiannis. A graph degeneracy-based approach to keyword

extraction. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language

Processing, pages 1860–1870. Association for Computational Linguistics, 2016. (Cited on pages 6

and 38.)

[144] A. Tixier, K. Skianis, and M. Vazirgiannis. Gowvis: a web application for graph-of-words-based text

visualization and summarization. Proceedings of ACL-2016 System Demonstrations, pages 151–156,

2016. (Cited on pages 6 and 38.)

[145] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. Doulion: counting triangles in massive

graphs with a coin. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 837–846. ACM, 2009. (Cited on page 34.)

[146] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of the facebook social graph,

2011. cite arxiv:1111.4503Comment: 17 pages, 9 figures, 1 table. (Cited on page 33.)

[147] M. P. van den Heuvel and O. Sporns. Rich-club organization of the human connectome. Journal of

Neuroscience, 31(44):15775–15786, 2011. (Cited on pages 6 and 41.)

[148] T. Verma, F. Russmann, N. Araújo, J. Nagler, and H. Herrmann. Emergence of core-peripheries in

networks. Nature Communications, 7, 2016. (Cited on pages 6 and 33.)

[149] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.

(Cited on page 42.)

53

[150] J. Wang and J. Cheng. Truss decomposition in massive networks. Proceedings of the VLDB En-

dowment, 5(9):812–823, May 2012. (Cited on pages 6, 14, and 15.)

[151] K. Wang, X. Cao, X. Lin, W. Zhang, and L. Qin. Efficient computing of radius-bounded k-cores.

In 2018 IEEE 34th International Conference on Data Engineering (ICDE), pages 233–244, 2018.

(Cited on pages 6 and 19.)

[152] N. Wang, D. Yu, H. Jin, C. Qian, X. Xie, and Q. Hua. Parallel algorithm for core maintenance in

dynamic graphs. In 2017 IEEE 37th International Conference on Distributed Computing Systems

(ICDCS), volume 00, pages 2366–2371, June 2017. (Cited on pages 6 and 29.)

[153] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu. I/O efficient core graph decomposition at web

scale. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pages 133–144.

IEEE, 2016. (Cited on pages 6, 22, 23, and 25.)

[154] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu. I/o efficient core graph decomposition: Application

to degeneracy ordering. IEEE Transactions on Knowledge & Data Engineering, 31(1):75–90, Jan.

2019. (Cited on pages 6, 23, and 25.)

[155] T. White. Hadoop: The Definitive Guide. O’Reilly, 4th edition, 2015. (Cited on page 29.)

[156] C. I. Wood and I. V. Hicks. The minimal k-core problem for modeling k-assemblies. The Journal

of Mathematical Neuroscience (JMN), 5(1):14, Jul 2015. (Cited on pages 6 and 41.)

[157] H. Wu, J. Cheng, Y. Lu, Y. Ke, Y. Huang, D. Yan, and H. Wu. Core decomposition in large

temporal graphs. In BigData, pages 649–658. IEEE, 2015. (Cited on pages 6, 12, 24, and 31.)

[158] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A block-centric framework for distributed computation

on real-world graphs. Proceedings of the VLDB Endowment, 7(14):1981–1992, 2014. (Cited on

pages 26 and 31.)

[159] M. L. Yiu, E. Lo, and J. Wang. Identifying the most connected vertices in hidden bipartite graphs

using group testing. IEEE Transactions on Knowledge & Data Engineering, 25:2245–2256, 10 2013.

(Cited on page 13.)

[160] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen, S. Venkatara-

man, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica. Apache spark: A unified

engine for big data processing. Commun. ACM, 59(11):56–65, Oct. 2016. (Cited on page 29.)

[161] L. Zdeborová, P. Zhang, and H.-J. Zhou. Fast and simple decycling and dismantling of networks.

Scientific reports, 6:37954, 2016. (Cited on pages 6 and 33.)

[162] F. Zhang, W. Zhang, Y. Zhang, L. Qin, and X. Lin. Olak: An efficient algorithm to prevent

unraveling in social networks. Proceedings of the VLDB Endowment, 10(6):649–660, Feb. 2017.

(Cited on pages 6 and 39.)

[163] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. Finding critical users for social network

engagement: The collapsed k-core problem. In Proceedings of the Thirty-First AAAI Conference

on Artificial Intelligence, pages 245–251, 2017. (Cited on pages 6 and 39.)

54

[164] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. When engagement meets similarity: Efficient

(k,r)-core computation on social networks. Proceedings of the VLDB Endowment, 10(10):998–1009,

June 2017. (Cited on pages 6 and 17.)

[165] G.-Q. Zhang, G.-Q. Zhang, Q.-F. Yang, S.-Q. Cheng, and T. Zhou. Evolution of the Internet and

its cores. New Journal of Physics, 10(12):123027+, Dec. 2008. (Cited on pages 6 and 33.)

[166] Y. Zhang and S. Parthasarathy. Extracting analyzing and visualizing triangle k-core motifs within

networks. In ICDE ’12: Proceedings of the 2012 IEEE 28th International Conference on Data

Engineering, pages 1049–1060, 2012. (Cited on pages 6, 14, and 36.)

[167] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin. A fast order-based approach for core maintenance. In

2017 IEEE 33rd International Conference on Data Engineering (ICDE), pages 337–348, April 2017.

(Cited on pages 6, 24, and 25.)

[168] R. Zhuo-Ming, L. Jian-Guo, S. Feng, H. Zhao-Long, and G. Qiang. Analysis of the spreading

influence of the nodes with minimum k-shell value in complex networks. Acta Physica Sinica,

62(10):108902, 2013. (Cited on pages 6 and 35.)

[169] V. Zlatić, D. Garlaschelli, and G. Caldarelli. Networks with arbitrary edge multiplicities. EPL

(Europhysics Letters), 97(2):28005, 2012. (Cited on page 36.)

[170] Z. Zou and R. Zhu. Truss decomposition of uncertain graphs. Knowledge and Information Systems,

50(1):197–230, Jan. 2017. (Cited on pages 6 and 14.)

55

