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ABSTRACT

Context. We investigate the hydrodynamics of the core helium flash close to its peak. Past research concerned with the dynamics of
this event is inconclusive. However, the most recent multidimensional hydrodynamic studies suggest a quiescent behavior and seem
to rule out an explosive scenario.
Aims. Depending on initial conditions, turbulence models, grid resolution, and dimensionality of the simulation, previous work indi-
cated that the core helium flash could lead either to the disruption of a low-mass star or to a quiescent quasi-hydrostatic evolution. We
attempt to clarify this issue by simulating the evolution with advanced numerical methods and detailed microphysics.
Methods. Assuming spherical or axial symmetry, we simulate the evolution of the helium core of a 1.25 M⊙ star with a metallicity
Z = 0.02 during the core helium flash at its peak with a grid-based hydrodynamical code.
Results. We find that the core helium flash neither rips the star apart, nor significantly alters its structure, since convection plays a
crucial role in keeping the star in hydrostatic equilibrium. In addition, our simulations indicate the presence of overshooting, which
implies new predictions concerning mixing of chemical species in red giants.
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1. Introduction

In stars of mass 0.7 M⊙ ≤ M ≤ 2.2 M⊙, the onset of helium burn-
ing constitutes a major event – the core helium flash. The pre-
flash stellar core contains a white dwarf-like degenerate structure
with a central density of about 106 g cm−3, and an off-center tem-
perature maximum resulting from plasma- and photo-neutrino
cooling. When helium burning commences in this degenerate
core, the liberated nuclear energy cannot be used to expand and
cool the layers close to the temperature maximum. Instead it
causes further heating and a strong increase in the nuclear en-
ergy release. Only when convection sets in can part of the ex-
cess energy be transported away from the burning regions, in-
hibiting a thermonuclear explosion. By the end of the flash, the
core has expanded to densities of the order of 104 g cm−3, he-
lium burning continues quiescently in the center, and the star has
settled onto the horizontal branch. While standard stellar evo-
lution calculations have been successful in reproducing obser-
vations of stars on the main sequence and the red giant branch
(RGB), we recognize several discrepancies concerning the post-
flash phases. In particular, we recall the lack of understanding
about the horizontal-branch morphology, low-luminosity carbon
stars, and hydrogen-deficient stars. Since all of these (and other)
problems appear after the RGB phase, it is plausible to sus-
pect that the helium flash may be treated incorrectly in standard
(hydrostatic) stellar evolution calculations.

The conceptual problems associated with the helium core
flash arise from the extremely short timescales involved in
the event. While the pre-flash evolution proceeds on a nuclear
timescale of ∼108 yrs, typical e-folding times for the energy

release from helium burning can become as short as hours at
the peak of the flash. These short times are comparable to con-
vective turnover times, i.e. the common assumptions used for
the treatment of convection in stellar evolution codes (instanta-
neous mixing, time-independence) are no longer valid. In addi-
tion, the assumption of hydrostatic equilibrium no longer needs
to be fulfilled. Early attempts to avoid these assumptions by
modeling one-dimensional hydrodynamic flow (Edwards 1969;
Zimmermann 1970; Villere 1976; Wickett 1977) remained in-
conclusive. The results ranged from a confirmation of the stan-
dard picture to a complete disruption of the star.

Cole & Deupree (1980, 1981) performed a two-dimensional
hydrodynamic study of the core helium flash. However, their
study was limited by the computational resources available at
that time to a rather coarse computational grid (23 × 4 zones),
a diffusive first-order difference scheme (weighted donor cell),
and a short time evolution (105 s compared to the duration of
the core helium flash of 1011 s from the onset of convection).
At the radius of the off-center temperature maximum, they ob-
served a series of thermonuclear runaways where heat transport
by convection and conduction was sufficiently efficient to limit
the rise in temperature. Each runaway modified the convective
flow pattern and generated some inward transport of heat across
the off-center temperature inversion. During the simulation, the
time interval between runaways continuously shortened, and
the maximum temperature steadily increased until it eventually
exceeded 109 K.

Deupree & Cole (1983) and (Deupree 1984a,b) confirmed
these findings using two-dimensional models with an improved
angular resolution (6◦ instead of 20◦), and three-dimensional
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Fig. 1. Theoretical evolutionary track of a 1.25 M⊙ star with a metallic-
ity Z = 0.02 in the H-R diagram. The core helium flash begins at the
the tip of the red giant branch indicated by the arrow.

simulations (with 8 × 8 angular zones in a 80◦ × 80◦ cone,
i.e. 10◦ angular resolution). Cole et al. (1985) performed stel-
lar evolution calculations of the core helium flash using a model
for convective overshooting based on these hydrodynamic sim-
ulations. They found that the evolution of the core helium
flash was unchanged except for the last week prior to its peak.
Furthermore, the possibility of the mixing of core material into
the hydrogen shell was suggested by numerical experiments
where point source explosions were enforced (Deupree 1984b,
1986; Deupree & Wallace 1987). These results raised the hope
that some problems concerning abundance anomalies and mass
loss could be solved by understanding the core helium flash.

The results of the hydrodynamic simulations, though varying
in details, indicated a dynamic flash that could disrupt the star
(Deupree 1984a) or at least lead to a significant loss of the enve-
lope (Cole & Deupree 1981). The simulations were critized by
Iben & Renzini (1984) and Fujimoto et al. (1990) because (i) the
radial grid was too coarse; (ii) the gravitational potential was
“frozen in” (i.e. time-independent); and (iii) because a “closed”
outer boundary was used. The last two assumptions tend to un-
derestimate the expansion of the core, and hence overestimate
the violence of the flash.

Since the work of Deupree the computational capabilities
have grown tremendously and methods to simulate hydrody-
namic flow have improved considerably. The limitations of early
studies concerning grid resolution and numerical treatment, the
main points of critique, can therefore be reduced considerably.
At the same time, we still do not know the extent or circum-
stances (stellar mass and composition) in which hydrodynamic
core helium flash evolution differ from canonical stellar evo-
lution calculations. Therefore, it appears necessary to have a
new and fresh look into the dynamics of the core helium flash.
Deupree (1996) re-examined the problem, already more than
a decade ago, concluding that the flash does not lead to any
hydrodynamic event. Quiescent behaviour of the core helium
flash is also favored by three-dimensional simulations done by
Dearborn et al. (2006) and Lattanzio et al. (2006), in which the
energy transport due to convection, heat conduction, and radia-
tion appears able to transport most of the energy generated dur-
ing the flash quiescently from the stellar interior to the outer
stellar layers, implying no hydrodynamic event, and hence a
quasi-hydrostatic evolution.

Fig. 2. Temperature distribution as a function of radius. The dashed line
gives the distribution obtained from stellar evolutionary calculations,
while the solid line shows the mapped and stabilized distribution used
as initial condition in the hydrodynamic simulations. CVZ marks the
convection zone.

We present a completely independent investigation of the
core helium flash by means of one-dimensional and two-
dimensional hydrodynamic simulations using state-of-the-art
numerical techniques, a detailed equation of state, and a time-
dependent gravitational potential. The hydrodynamic calcula-
tions cover about 8 h of the evolution close to the peak of the
core helium flash. We note that the present investigation was in-
stigated by a similar, technically obsolete study performed by
Kurt Achatz (Achatz 1995) in the context of his diploma the-
sis. The results of this latter study have unfortunately never been
published.

The paper is organized as follows. In Sect. 2, we discuss
briefly the stellar input model for the simulations along with
some results from hydrostatic core helium flash calculations. In
Sect. 3, the hydrodynamics code and the numerical methods are
introduced, while the results of our one and two-dimensional
(1D and 2D, respectively) hydrodynamic runs are presented in
Sects. 4 and 5, respectively. Finally, our conclusions are given in
Sect. 6.

2. Initial stellar models and hydrostatic calculations

Table 1 summarizes some properties of our initial model, which
was obtained from stellar evolutionary calculations with the
“Garstec” code (Weiss & Schlattl 2000, 2007). It corresponds
to a star with a mass of 1.25 M⊙ and a metallicity Z = 0.02
at the peak of the core helium flash (LHe ∼ 109 L⊙), computed
with the hydrostatic stellar evolution code. During this violent
episode, the star is located at the tip of the red giant branch in
the H-R diagram (Fig. 1), hence being a red giant consisting of
a small central helium core with a radius r ∼ 1.9 × 109 cm,
surrounded by a hydrogen burning shell and a huge convective
envelope with a radius r ∼ 1013 cm. Figure 2 shows the tem-
perature distribution inside the helium core, which is character-
ized by an off-center temperature maximum Tmax, from where
the temperature steeply drops towards smaller radii and follows
a super-adiabatic gradient towards larger radii (convection zone).
The radius rmax of the temperature maximum coincides with the
bottom of the convection zone. The almost discontinuous tem-
perature stratification near Tmax (temperature inversion), where
the temperature rises from 7 × 107 K to 1.7 × 108 K, results
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Table 1. Some properties of the initial model: total mass M, stellar population, metal content Z, mass MHe and radius RHe of the helium core
(X(4He) > 0.98), nuclear energy production in the helium core LHe, maximum temperature of the star Tmax, and radius rmax and density ρmax at the
temperature maximum.

Model M Pop. Z MHe RHe LHe Tmax rmax ρmax

[M⊙] [M⊙] [109 cm] [109 L⊙] [108 K] [108 cm] [105 g cm−3]

M 1.25 I 0.02 0.47 1.91 1.03 1.70 4.71 3.44

Fig. 3. Left panel: pressure (in 1022 dyn cm−2) and density (in 105 g cm−3) distribution of the mapped and stabilized initial model. The pressure
and density distribution of the original stellar evolution model cannot be distinguished from the corresponding profiles of the stabilized model on
this scale. Right panel: chemical composition of the initial model.

from an interplay between neutrino cooling and heating by nu-
clear burning. Figure 3 shows the density and pressure stratifica-
tion of the model. One recognizes that the temperature inversion
is correlated with a drop in density. A detailed view reveals that
the steep increase in temperature corresponds to a decrease in
the density by 11%, an increase in the ion pressure by 70%, and
a drop in the electron pressure by 9%, respectively. Even at the
peak of the core helium flash, the helium core is still strongly de-
generate: compared with the electron pressure, the ion pressure
is lower by a factor of 6, while the radiation pressure is smaller
by almost 3 orders of magnitude.

The stellar model contains the chemical species 1H, 3He,
4He, 12C, 13C, 14N, 15N, 16O, 17O, 24Mg, and 28Si. However,
we are not interested in the detailed chemical evolution of the
star. It is therefore unnecessary to consider all of these species in
our hydrodynamic simulations, since the triple-α reaction dom-
inates the energy production rate during the core helium flash.
In our hydrodynamic simulations, we therefore adopt only the
abundances of 4He, 12C, and 16O. The remaining composition
is assumed to be adequately represented by a gas with a mean
molecular weight equal to that of 20Ne (Fig. 3). The apparent
peak in 12C abundance at the position of the temperature max-
imum results from a non-instantaneous treatment of convective
mixing.

The stellar evolutionary model is one-dimensional, hydro-
static, and was computed on a Lagrangian grid of 2294 zones.
Since only the helium core of the model (without its very cen-
tral part; see Sect. 3.6) is of interest to us, we consider only the
initial data for 2 × 108 cm ≤ r ≤ 1.2 × 109 cm, and interpolate
all relevant quantities (e.g. density, temperature, composition)
onto our Eulerian, lower resolution computational grid using

polynomial interpolation (Press et al. 1992). Due to the interpo-
lation errors and subtle differences in the input physics, the in-
terpolated model is no longer in perfect hydrostatic equilibrium.
To balance perfectly also the gravitational and pressure forces in
the interpolated model, we use an iterative procedure in the first
hydrodynamic timestep to minimize the numerical fluxes across
zone boundaries. The entire process produces a small tempera-
ture decrease with respect to the temperature profile of the orig-
inal model (Fig. 2). Depending on the radial resolution of the
Eulerian grid, the differences do not exceed a few percent. The
resulting changes in the density and pressure profiles are negli-
gible due to the strong electron degeneracy of the gas. The main
cause of the slight destabilization of the mapped initial stellar
model is the use of different equations of state in both codes. The
hydrodynamic code employs the equation of state by Timmes &
Swesty (2000), whereas the “Garstec” code relies on the OPAL
equation of state by Rogers et al. (1996). At a given density, tem-
perature, and composition in the helium core during the flash,
these equations of state provide pressure values that differ typi-
cally by 1%, the difference being most apparent in regions where
the matter is highly degenerate.

Given that the maximum temperature in the helium core is
T ∼ 1 × 108 K, the stellar model reaches a peak in nuclear en-
ergy production rate during the core helium flash within 104 yrs.
The rate at which the nuclear energy production rises is highly
non-linear. From the onset of the core helium flash at a he-
lium luminosity of LHe ∼ 101 L⊙, it takes almost 30 000 yrs to
reach LHe ∼ 104 L⊙, whereas it requires only 40 yrs to reach
LHe ∼ 1010. The first core helium flash is followed by four
subsequent mini flashes (Fig. 4) identified as thermal pulses by
Thomas (1967) until the degeneracy in the helium core is lifted
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Fig. 4. Temporal evolution of the helium luminosity LHe (solid) versus
the hydrogen luminosity LH (dash-dotted) of model M during the core
helium flash.

completely and the star settles down onto the horizontal branch
quiescently burning helium in its core.

Since the computed model is a Pop I metal-rich star, it does
not experience any hydrogen entrainment during the core helium
flash (Fujimoto et al. 1990; Schlattl et al. 2001).

3. Input physics and numerics

3.1. Thermal transport

The energy flux density due to thermal transport is given by

fcond = −Kcond∇T, (1)

where Kcond is the total conductivity (erg K−1 cm−1 s−1) and ∇T
the temperature gradient.

In the helium core, which is partially degenerate, thermal
transport due to both radiative diffusion and electron conduction
is important, while heat transport by ions is negligible, i.e.

Kcond = Kγ + Ke. (2)

The radiative conductivity is given by

Kγ =
4ac

3

T 3

κγρ
, (3)

where κ, a, and c are the Rosseland mean of the opacity, the
radiation constant, and the speed of light, respectively. For the
opacity, we use a formula defined by Iben (1975), which is based
on the work of Cox & Stewart (1970a,b). It takes into account the
radiative opacity due to Thomson scattering, free-free (Kramers
opacity), bound-bound, and bound-free transitions.

For the thermal transport by electron conduction, we con-
sider contributions due to electron-ion and electron-electron col-
lisions (Yakovlev & Urpin 1980; Potekhin et al. 1997).

3.2. Neutrino emission

The evolutionary time covered by our hydrodynamic simulations
is too short for neutrino cooling to be of importance. The neu-
trino losses computed from the analytic fits of Itoh et al. (1996)
provide a cooling rate ǫ̇ < 102 erg g−1 s−1, or a corresponding

decrease in the maximum temperature by |∆T | < 10−1 K during
the longest simulations that we performed. Hence, cooling by
neutrinos was neglected.

3.3. Equation of state

The equation of state employed in our hydrodynamic code
includes contributions due to radiation, ions, electrons, and
positrons. The total pressure is therefore given by

P = Pγ + Pion + Pe + Pp, (4)

where

Pγ =
a

3
T 4 (5)

is the radiation pressure of a black body of temperature T , a is
the universal radiation constant, and

Pion =
∑

i

ℜ
ρXi

Ai

T = ℜρT
∑

i

Yi (6)

is the pressure of a non-relativistic Boltzmann gas of density ρ
which consists of a set of ions of abundance Yi = Xi/Ai (where
Xi and Ai are the mass fraction and the atomic mass number of
species i, respectively). The pressure of an arbitrarily degenerate
and relativistic electron-positron gas Pe + Pp is based on table
interpolation of the Helmholtz free energy (Timmes & Swesty
2000).

3.4. Nuclear burning

The energy generation rate by nuclear burning is given by

ε̇nuc =
∑

i

∆mic
2

mu

Ẏi (7)

where

∆mi = Mi − Aimu, (8)

is the mass excess of a nucleus of mass Mi, and mu is the atomic
mass unit.

Abundance changes are described by a nuclear reaction net-
work consisting of the four α-nuclei 4He, 12C, 16O, and 20Ne,
coupled by seven reactions (including the triple-α reaction). We
used the reaction rate library of Thielemann (private communi-
cation), which provides the product of the Avogadro number NA

and the velocity averaged cross section 〈σv〉 in terms of the fit
formula

NA〈σv〉 =

nl
∑

l=1

exp

[

c1l + c2lT
−1 + c3lT

−1/3 + c4lT
1/3

+ c5lT + c6lT
5/3 + c7l ln T

]

, (9)

with rate dependent coefficients cil (1 ≤ i ≤ 7). Up to three sets
of coefficients (i.e. 1 ≤ nl ≤ 3) are used. The total reaction rate
due to all one-body, two-body, and three-body interactions has
the form (Müller 1998):

Ẏi =
∑

j

ciλ jY j +
∑

j,k

ci( j, k)ρNA〈σv〉 j,kY jYk

+
∑

j,k,l

ci( j, k, l)ρ2N2
A〈σv〉 j,k,lY jYkYl, (10)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810169&pdf_id=4


M. Mocák et al.: The core helium flash revisited. I. 269

where the weight factors ci inhibit multiple counts in the sums
over the nuclei j, k, l. The following nuclear reactions were
considered:

He4 + C12 → O16 + γ

He4 + O16 → Ne20 + γ

O16 + γ → He4 + C12

Ne20 + γ → He4 + O16

C12 + C12 → Ne20 + He4

He4 + He4 + He4 → C12 + γ

C12 + γ → He4 + He4 + He4.

Mathematically, this produces a nuclear reaction network con-
sisting of seven non-linear first-order differential equations of
the form given by Eq. (10) and a temperature equation

∂T

∂t
= ε̇nuc

∂T

∂ε
, (11)

where ε is the specific internal energy.

The effects of electron screening according to Dewitt et al.
(1973) were included for the triple-α reaction rate, and in the
weak screening regime only.

3.5. Evolutionary equations

The hydrodynamic and thermonuclear evolution of the core he-
lium flash was computed by solving the governing set of fluid
dynamic equations in spherical coordinates on an Eulerian grid.
Using vector notation, these equations have the form,

∂U

∂t
+ ∇ F = S (12)

with the state vector U

U ≡

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρ
ρu
ρe
ρYi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(13)

the flux vector F

F ≡

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρu
ρuu

(ρe + p)u + fcond

ρYiu

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(14)

and the source vector S

S ≡

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
−ρ∇Φ

−ρu · ∇Φ + ρǫ̇nuc

ρẎi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(15)

with i = 1, . . . ,Nnuc, where Nnuc is the number of nuclear species
considered in the nuclear reaction network, and ρ, p, u, and Φ
are the density, pressure, velocity, and gravitational potential, re-
spectively. The term fcond describes energy transport by thermal
conduction (see Sect. 3.1), and ǫ̇nuc and the Ẏi are the nuclear
energy generation rate and the change in the mass fraction of
species i due to nuclear reactions, respectively (see Sect. 3.4).
The total energy density ρe = ρε + ρuu/2, where e is the specific
total energy and ε is the specific internal energy.

3.6. Code

The numerical simulations were performed with a modified ver-
sion of the hydrodynamic code Herakles (Kifonidis et al. 2003,
2006), which is a descendant of the code Prometheus developed
by Bruce Fryxell and Ewald Müller (Müller et al. 1991; Fryxell
et al. 1991). The hydrodynamic equations were integrated to sec-
ond order accuracy in space and time using the dimensional
splitting approach of Strang (1968), the PPM reconstruction
scheme (Colella & Woodward 1984), and a Riemann solver for
real gases according to Colella & Glaz (1984). The evolution of
the chemical species was described by a set of additional con-
tinuity equations (Plewa & Müller 1999). Source terms in the
evolutionary equations due to self-gravity and nuclear burning
were treated by means of operator splitting. Every source term
was computed separately, and its effect was accounted for at the
end of the integration step. The viscosity tensor was not taken
into account explicitly, since the solution of the Euler equa-
tions with the PPM scheme corresponds to the use of a sub-grid
scale model that reproduces the solution of the Navier-Stokes
equations reasonably well (Sitine et al. 2000; Meakin & Arnett
2007b). Thermal transport was treated in a time-explicit fashion
when integrating the evolutionary equations. Self-gravity was
implemented according to Müller & Steimnetz (1995), while the
gravitational potential was approximated by a one-dimensional
Newtonian potential derived from the spherically averaged mass
distribution. The nuclear network was solved with the semi-
implicit Bader-Deufelhard method that utilizes the Richardson
extrapolation approach and sub-stepping techniques (Bader &
Deuflhard 1983; Press et al. 1992) allowing for long effective
timesteps.

The code was vectorized and enabled the adjustment of the
vector length to the memory architecture. Therefore, an optimal
performance with both vector and super-scalar, cache-based ma-
chines could be achieved.

A program cycle for two-dimensional runs consisted of two
hydrodynamic timesteps and proceeds as follows:

1. the hydrodynamic equations were integrated in the
r-direction (r-sweep), including the effects of heat conduc-
tion. The time-averaged gravitational forces were computed,
and the momentum and the total energy were updated to ac-
count for the gravitational source terms. Subsequently, the
equation of state was called to update the thermodynamic
state due to the change in the total energy;

2. Step (1) was repeated in θ-direction (θ-sweep);
3. the nuclear network was solved in all zones with significant

nuclear burning (T > 108 K). Subsequently, the equation of
state was called to update the pressure and temperature;

4. in the subsequent timestep, the order of Step (1) and (2)
was reversed to guarantee second-order accuracy in the time
integration, and Step (3) was repeated with the updated
quantities;

5. the size of the timestep for the next cycle was determined.

For one-dimensional runs, Step (2) and Step (4) were omitted.
When using spherical coordinates, the CFL stability condi-

tion on the timestep was most restrictive near the origin of the
grid. However, inside a region beneath the off-center tempera-
ture maximum, there were no significant non-radial motions to
be expected during the evolution of the core helium flash except
in the immediate vicinity of the temperature inversion, where
convective overshooting may occur. Hence, removing the center
of the computational grid did not generate any numerical bias,
but conserved considerable amounts of computational time. In
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Table 2. Some properties of the 1D simulations: number of radial grid
points (Nr), radial resolution (∆r in 106 cm), time up to the thermonu-
clear runaway ttrn, and maximum evolution time tmax (both in s).

Run Nr ∆r ttrn tmax

hefl.1d.1 180 5.55 40 700 42 500
hefl.1d.2 270 3.77 14 600 16 250
hefl.1d.3 360 2.77 12 300 15 600

the radial direction, we used a closed (i.e. reflective) outer and
inner quasi-hydrostatic boundary obtained by means of polyno-
mial extrapolation, which significantly suppressed any artificial
velocity fluctuations resulting from an imbalance of gravitational
and pressure forces in the boundary zones. For two-dimensional
runs, the boundary conditions in the angular direction were also
reflective.

After interpolation and stabilization, the initial model in the
two-dimensional simulations had to be perturbed explicitly to
trigger convection, because an initially exactly spherically sym-
metric model remains that way forever when evolved in spheri-
cal coordinates with our code. We imposed a random flow field
with a maximum (absolute) velocity of 10 cm s−1, and random
density perturbations with ∆ρ/ρ ≤ 10−2.

4. Results of 1D simulations

We performed several one-dimensional simulations using
model M, which differed only in their grid resolution (see
Table 2), in order to assess, whether a thermonuclear runaway
could be avoided without a convective flow.

Figure 5 demonstrates that heat conduction and adiabatic ex-
pansion alone fail to stabilize the model, i.e. one-dimensional
hydrodynamic simulations result in a thermonuclear runaway.
Initially, the maximum temperature increases only slowly, but
starts to rise rapidly after a time ttrn (Table 2) up to a value
T ∼ 109 K. For instance, from the temperature evolution of
model hefl.1d.3, one can determine that a local hot spot with a
temperature of 2.3× 108 K will runaway after about 80 s (Fig. 6).
The time at which the runaway is triggered depends on the grid
resolution, being longer in models with lower resolution (Fig. 5).

In every case, a thermonuclear flame with T ∼ 109 K even-
tually forms and propagates outwards with subsonic velocity de-
pending on the grid resolution. Since our two-dimensional (more
realistic) simulations do not show such a behavior, we refrain
from further discussion of the one-dimensional simulations.

5. Results of 2D simulations

In Table 3, we summarize some characteristic parameters of our
two-dimensional simulations which are based on model M.

We first discuss in some detail one specific simula-
tion hefl.2d.3, which serves as a standard to which we com-
pare the results of our other simulations. Thereafter, we discuss
some general properties of all 2D simulations. Every simulation
covered approximately 3 × 104 s (∼8 h) of the evolution near
the peak of the core helium flash. They were performed on an
equidistant spherical grid encompassing 95% of the helium core
mass (X(4He) > 0.98) except for a central region with a radius of
r = 2 × 108 cm, which was removed in order to allow the use of
longer timesteps. This radius is sufficiently smaller than the ra-
dius of the temperature inversion (r ∼ 5 × 108 cm) and therefore
its presence does not influence the convection zone.

Fig. 5. Evolution of the temperature maximum Tmax in the one-
dimensional models hefl.1d.1 (solid), hefl.1d.2 (dashed), and hefl.1d.3
(dash-dotted), respectively.

Fig. 6. Temperature stratification across the helium core in
model hefl.1d.3 during the runaway at t1 = 12 270 s (dotted),
t2 = 12 352 s (dashed), t3 = 12 392 s (dash-dotted), and t4 = 12 762 s
(dash-dot-dotted), respectively. The solid line corresponds to the
initial model (t0), and the arrow indicates the direction of the flame
propagation.

5.1. Simulation hefl.2d.3

After the beginning of the simulation, the initial velocity pertur-
bations started to grow in a narrow layer just outside the tem-
perature maximum (r ∼ 5 × 108 cm), i.e. in the region heated
by nuclear burning. Later on at t ∼ 800 s, several hot bub-
bles appeared, which rose upwards with maximum velocities of
∼4 × 106 cm s−1. They were typically about 0.2% hotter than the
angular-averaged temperature at a given radius. The 4He mass
fraction of all hot bubbles was about 0.4% less than the corre-
sponding angular-averaged value, since helium was depleted in
the bubbles by the tripleα reaction. Consequently, 12C and 16O
(produced in helium burning) were enhanced by ∼0.7% in the
bubbles.

During the first 700 s of the evolution, the off-center max-
imum mean temperature 〈T 〉max rose at a rate of ∼1000 K s−1,
until it reached a value ∼1.67 × 108 K. At this moment, from
the region at the 〈T 〉max, the bubbles emerged and caused its de-
crease by ∼2.6 × 106 K in just 570 s corresponding to a tem-
perature drop rate of 4540 K s−1 (Fig. 7). This phase marked the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810169&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810169&pdf_id=6


M. Mocák et al.: The core helium flash revisited. I. 271

Table 3. Some properties of the 2D simulations: number of grid points in radial (Nr) and angular (Nθ) direction, radial (∆r in 106 cm) and angular
grid resolution (∆θ), characteristic length scale lc of the flow (in 108 cm), characteristic rms velocity vc of the flow (in 106 cm s−1) averaged over the
width of the convection zone R ∼ lc, Reynolds number Rn associated with the numerical viscosity of our code (Porter & Woodward 1994), damping
timescale due to the numerical viscosity tn, typical convective turnover time to = 2 R/vc, and maximum evolution time tmax (in s), respectively.

Run Grid ∆r ∆θ lc vc Rn tn to tmax

hefl.2d.1 180 × 90 5.55 2◦ 4.7 1.29 1900 11 000 730 30 000
hefl.2d.2 270 × 180 3.70 1◦ 4.7 1.79 8900 36 000 525 30 000
hefl.2d.3 360 × 240 2.77 0.75◦ 4.7 1.84 21 000 83 000 510 30 000

Fig. 7. Left panel: temporal evolution of the horizontally averaged temperature maximum 〈T 〉max (solid), and the global temperature maximum Tmax

(dotted) in model hefl.2d.3. The dashed line corresponds to the temporal evolution of the maximum temperature in the stellar evolutionary calcula-
tions of model M. Right panel: the rms convection velocity vcnv in simulation hefl.2d.3 averaged over 6000 s (solid) versus the convection velocity
predicted by the mixing length theory vmlt (dashed).

onset of convection (Fig. 8), where a fraction of the thermonu-
clear energy released via helium burning started to be trans-
ported efficiently away from the burning regions by mass flow,
thereby inhibiting a thermonuclear runaway.

As soon as the bubbles had formed, they rose upwards and
started to interact and merge, i.e. the convective layer began to
grow in radius. About ∼1300 s after the start of the simulation,
the entire convection zone was covered by an almost station-
ary flow pattern of almost constant total kinetic energy roughly
equal to 1045 erg. At this time, vortices dominated the flow pat-
tern. They extended across the entire convective region (width
R ∼ 3 Hp), and were of approximately similar angular size,

one vortex covering about 40 degrees (diameter ∼5 × 108 cm).
Usually we found about four such vortices with two dominant
up-flows of hot gas at both θ ∼ 60◦ and θ ∼ 120◦ (see, e.g.
Fig. 8). These large vortices were rather stable, surviving until
the end of our simulations. Typical convective flow velocities
were vcnv ∼ 1.8 × 106 cm s−1, well below the local sound speed
cS ∼ 1.7 × 108 cm s−1, i.e. a vortex required about 500 s for one
rotation. The persistence of vortices is not typical for turbulent
convection.

The dominance of the large scale structures (vortices) was a
consequence of the imposed axial symmetry, which eliminated
the vortex folding term in the vorticity evolution equation of the
flow (Pope 2000; Meakin & Arnett 2007a).

The Mach number M of the convective flow was ∼0.01. Is
PPM suited for this type of subsonic flow? This question, which
is beyond the scope of the present study, needs to be investigated.
It is known that the artificial viscosity of standard Riemann
solver methods exhibit an incorrect scaling with the flow Mach
number as M → 0 (Turkel 1999), i.e. the inherent artificial

viscosity of PPM may be too high for simulating flows at low
Mach numbers (e.g. M ∼ 0.01) adequately.

However, Meakin & Arnett (2007a) demonstrated that the
PPM method operates well even at these low Mach numbers.

Energy transport by convection within the vortices is concen-
trated into a few narrow upward drafts, compensated partially,
but only to a small extent, by down-flows. The vortices transport
energy mostly along their outer edges. Matter in their centers
does not interact at all with the regions of dominant nuclear en-
ergy production.

The horizontally averaged value of the maximum temper-
ature, barring some additional temperature fluctuations due to
convection, increased slightly following the onset of convection
during the entire subsequent evolution at an approximate rate
40 K s−1 (see Fig. 7).

This rate appears to be about 60% lower than the rate mea-
sured in the stellar evolutionary calculations (∼100 K s−1): this
could be the result of either an initially lower value of the tem-
perature maximum, after the stabilization phase, at the begin-
ning of the simulation (see Sect. 2), or more dynamic convective
motion, since the mean convective velocities vcnv exceed the ve-
locities predicted by mixing length theory, vmlt, on average by a
factor of four (Fig. 7).

Convection distributes the energy in such a way that the tem-
perature gradient ∇ never exceeds ∇ad significantly in model M.
Although, the value of ∇ established at the beginning of the sim-
ulation deviates slightly after some time from the gradient at
later times, it remains close to the adiabatic temperature gradi-
ent ∇ad (the relative difference being less than 1%). In this re-
spect, there is no indication of any significant deviation from the
situation obtained in stellar evolutionary calculations.
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Fig. 8. Snapshots of the onset of convection at 1020 s (upper panels), and of the evolved convection at 29 000 s (lower panels) in model hefl.2d.3,
showing the temperature contrast ∆T = 100 × (T − 〈T 〉θ)/〈T 〉θ (left panels), the velocity field (middle panels), and the 12C contrast ∆12C =
100 × (12C − 〈12C〉θ)/〈

12C〉θ (right panels), respectively. 〈〉θ denotes a horizontal average at a given radius.

The apparent spike in the initial 12C distribution at the lo-
cation of the temperature maximum (Fig. 3) is a result of a
non-instantaneous treatment of the convective mixing in stellar
evolutionary calculations. It turns out that a non-instantaneous
treatment of mixing is not required during the core helium flash
since simulation hefl.2d.3 indicate that the spike is smeared out
immediately after convection commences. This implies that the
assumption of instantaneous mixing is a good approximation lo-
cally, despite the strong temperature dependence of the energy
production rate.

5.1.1. Energy fluxes

Figure 9 displays the individual contributions of various energy
fluxes, time-averaged over almost 12 convective turnover times
(see Table 3), i.e. only the average effect of convection should

be apparent. The derivation of these quantities is explained in
Appendix A. All energy fluxes, F, describe the amount of energy
transported per unit of time across a sphere of a given radius.

Most of the nuclear energy production in the convection
zone occurs in a relatively narrow shell about the location of
the temperature maximum. This energy is transported away by
both convection and thermal transport due to heat conduction
and radiation. The convective (or enthalpy) flux, FC, varies from
−0.2 × 1042 erg s−1 up to 1.6 × 1042 erg s−1. The kinetic flux,
FK, reaches a value of at most 1 × 1042 erg s−1, and is mostly
positive in the convection zone, i.e. the motion has a predomi-
nantly upward direction. This implies that the fast, narrow, up-
wardly directed streams dominate over the slower and broader
downward flows. The ratio of the extreme values of FC and FK

is almost 2:1, i.e. nuclear energy is stored predominantly in the
internal energy of the rising hot gas.
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Fig. 9. Snapshots of various energy fluxes and source terms in model hefl.2d.3 (time averaged from t = 18 000 s to t = 24 000 s): a) convective
flux FC (solid), and the energy flux due to the thermal transport FR (dash-dotted); b) kinetic flux FK (solid), acoustic flux FP (dash-dot-dotted),
and sum of the kinetic and convective flux FC + FK (dashed); c) source terms due to work done by buoyancy forces PA, and d) due to volume
changes PP. The vertical lines enclose the nuclear burning zone (T > 108 K).

Both convective and kinetic energy flux transport more than
90% of the generated nuclear energy upward through the con-
vection zone, the value is dropping to zero towards its border.
Part of the heat released in the nuclear processes is in fact trans-
ported downwards towards the inner edge of the temperature in-
version. Almost none of the nuclear energy reaches the surface
of the helium core, either by convection or by conduction, i.e. all
the energy released is deposited within the core causing its ex-
pansion. Energy transport due to heat conduction and radiation
is everywhere negligible compared with other contributions. The
viscous flux, FV, is negligible as well, and losses due to friction,
PV, influence only the dynamics significantly close to the bor-
ders of the convection zone (Achatz 1995).

For completeness, we also consider the flux and source terms
of the kinetic energy (see Appendix A), which allow us an ad-
ditional insight into the operation of convection. The radial pro-
file of the source term PA, corresponding to the work done by
buoyancy forces, indicates that the vertical convective flows are
accelerated due to their density fluctuations in the entire re-
gion of dominant nuclear burning (burning zone) above Tmax.
Corresponding pressure fluctuations (causing expansion due to

a pressure excess, respectively compression due to a pressure
deficit) powered by the volume work PP show that the gas within
the burning region expands, which effectively again implies that
an acceleration occurs. Due to the importance of PP in the con-
vection zone, the acoustic flux FP, which transports pressure
fluctuations, reaches a value comparable to that of the kinetic
flux FK, its value being negligible elsewhere.

5.1.2. Turbulent entrainment, temperature inversion
and the growth of the convection zone

Turbulent entrainment (Fernando 1991; Meakin & Arnett
2007b), commonly referred to as overshooting, is a hydrody-
namic process that permits mixing and heating in regions that are
convectively stable according to the Schwarzschild or Ledoux
criterium. Turbulent entrainment, i.e. penetration beyond the for-
mal convective boundaries, occurs at both edges of the convec-
tion zone, and is driven by down-flows and up-flows. We study
the entrainment by monitoring the temperature changes and the
12C concentration at the (formal) edges of the convection zone.
12C is the most suitable element for investigating the extent of
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Fig. 10. Angular averaged 12C distribution (dashed) and temperature stratification (thick) at the inner (left panel) and outer edge (right panel) of
the convection zone in model hefl.2d.3 at t = 30 000 s. The vertical dotted lines mark the initial boundaries of the convection zone at t = 0 s.

convective mixing, because at the beginning of the simulations,
it is mostly absent outside the convection zone, and therefore can
be enhanced there only due to overshooting.

At t = 30 000 s, close to the end of simulation hefl.2d.3, the
temperature inversion is located at r = 4.65 × 108 cm (Fig. 10).
It is therefore about 70 km closer to the center of the star than
it was at the beginning of the simulation (4.72 × 108 cm). Its
shape remains almost unchanged and discontinuous during the
whole simulation, and its propagation speed can be estimated
from the heating rate δT/δt ∼ 2760 K s−1 and the local gradient
δT/δr ∼ 12 K cm−1 at the steepest point of the inversion:

v ≃ −(δT/δt) / (δT/δr) ∼ −2.3 m s−1. (16)

This speed is significantly higher than the propagation speed due
to heat conduction alone. We note that the energy flux carried by
the heat conduction is seven orders of magnitude smaller than
the energy flux carried by the convection. Assuming that the con-
vective energy flux at the position of the temperature inversion
(Fc ∼ 0.2 × 1042 erg s−1) is used up completely to heat the lay-
ers beneath the temperature inversion, a typical heating rate of
Ṫ = Ė/Cinv ∼ 1250 K s−1 can be derived, which is by roughly
50% lower than the value inferred from the simulation. Cinv, the
heat capacity of the layers including the temperature inversion
is ∼1.6 × 1038 erg K−1. This implies that turbulent entrainment
leads to a strong heating of the inner neutrino-cooled center of
the star that occurs on timescales relatively short compared with
stellar evolutionary timescales. This heating was studied by both
Deupree & Cole (1983) and Cole et al. (1985), who derived qual-
itatively similar results. In one-dimensional stellar evolution cal-
culations, the temperature inversion moves outwards with time.

Assuming that the estimated propagation speed of the tem-
perature inversion remains constant, it would reach the center
of the helium core and lift the electron degeneracy there within
24 days. This scenario would exclude the occurrence of mini-
flashes after the main core helium flash, which are observed in
stellar evolutionary calculations (Fig. 4).

Sweigart & Gross (1978) found that in stars with higher mass
and helium abundance, the flash occurs closer to their center,
which implies that in these stars can the temperature inversion
reach the center of the helium core due to the turbulent entrain-
ment even faster.

We also found that turbulent entrainment influenced the
outer boundary of the convection zone. In the initial model, this

boundary was located at r = 9.2 × 108 cm and corresponded to
a discontinuous change in the distribution of elements (Fig. 3),
which is in stellar evolution models a consequence of the as-
sumed instantaneous mixing. In these models, all species in the
convectively unstable region are mixed instantaneously across
the entire convection zone, while the regions that are assumed to
be convectively stable do not experience any mixing at all.

The distribution of 12C at the end of our simulation hefl.2d.3
is depicted in Fig. 10. Compared with that of the initial model,
there is a clear shift of the carbon discontinuity, at the outer edge
of the convection zone, to a larger radius (r = 9.7 × 108 cm).
In hydrodynamic simulations, the gas overshoots naturally from
the convectively unstable to the formally convectively stable re-
gion because of its inertia. At the boundaries of the convection
zone, the overshooting appears to destroy the stability, accord-
ing to the Schwarzschild criterium, transforming the originally
convectively stable region into a convectively unstable one. This
allows the boundary to propagate further when a subsequent load
of gas will try to overshoot at a later time. We estimated that the
propagation speed of the outer boundary of the convection zone
was about 14 m s−1. With a propagation speed of this magni-
tude, the convection zone would reach the hydrogen-rich layers
surrounding the helium core at a radius r = 1.9 × 109 cm and
trigger a hydrogen injection flash (Schlattl et al. 2001) within
10 days. Expected hydrodynamic phenomena due to the extra
hydrogen mixing into the helium burning shell via this extended
convection zone could alter the structure of the star significantly.
Additional nucleosynthesis could also be triggered because hy-
drogen entrainment will result in a production of neutrons and
possibly also to a production of some s-process elements.

The hydrogen injection flash in Pop I stars is in contradiction
with the canonical stellar evolutionary calculations where stars
fail to inject hydrogen to the helium core during the core helium
flash, unless their metallicity is close to zero (Fujimoto et al.
1990).

Since the turbulent entrainment at the inner convective
boundary involved just three radial grid zones in the longest sim-
ulations that we performed, the estimated propagation velocity
must be interpreted with caution and be considered as an order
of magnitude estimate. The turbulent entrainment at the outer
convective boundary involved eighteen numerical zones in the
radial direction: the estimated propagation velocity has higher
confidence level.
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Fig. 11. Left panel: evolution of the total energy production rate in solar luminosity L⊙ for models hefl.2d.1 (dotted), hefl.2d.2 (dashed), and
hefl.2d.3 (dash-dotted), respectively. Right panel: mean temperature distribution near the temperature inversion for models hefl.2d.1 (dotted),
hefl.2d.2 (dashed), and hefl.2d.3 (dash-dotted) at a t = 30 000 s, respectively. The initial distribution is shown by the solid line.

5.1.3. Two-dimensional models with different resolution

We found only minor differences between the properties of
model hefl.2d.3 and those of the corresponding models com-
puted with a different grid resolution.

First, the initial mapping process generated different inter-
polation errors for different grid resolutions. However, the major
source of discrepancy in this phase of the calculation was the sta-
bilization itself. The iterative procedure that minimized the nu-
merical fluxes across zone boundaries (to retain the model in hy-
drostatic equilibrium) tends to decrease the temperature stronger
in models of lower resolution.

Another source of discrepancy was caused by the numeri-
cal diffusion, which was obviously stronger in models of lower
resolution. Therefore, model hefl.2d.1 suffered more from nu-
merical diffusion than either model hefl.2d.2 or hefl.2d.3, which
is evident from Fig. 11. The temperature inversion, which at
the beginning is almost discontinuous, is smoothed out faster
in model hefl.2d.1. We note, that the temperature inversion is
situated at smaller radii in models of higher resolution, since
the typical flow velocities are higher in better resolved models
(Table 3), i.e. the turbulent entrainment is more effective, and
the temperature inversion propagates at higher speed.

Nevertheless, models hefl.2d.2 and hefl.2d.3 appear to be
well resolved since differences between them are minor. The
temporal evolution in their total nuclear energy production rates,
for instance, are in almost perfect agreement (Fig. 11). The
temperature fluctuations in the two-dimensional models are
suppressed stronger in models of higher resolution. More in-
tense temperature fluctuations observed in models which we
calculated with grid resolutions even lower than that of the
model hefl.2d.1, did not lead to an explosion.

6. Summary

We have presented one- and two-dimensional (i.e. axisymmet-
ric) hydrodynamic simulations of the core helium flash close
to its peak covering about eight hours of evolution time. We
found no hydrodynamic events that deviated significantly from
the predictions of stellar evolutionary calculations. After an ini-
tial adjustment phase the 2D models reached a quasi-steady state
where the temperature and nuclear energy production rate were
increasing only slowly.

Convection played a crucial role in keeping the star in hy-
drostatic equilibrium. Based on our two-dimensional simulation
of the highest grid resolution (model hefl.2d.3), convection fol-
lowed the predictions of mixing length theory approximately,
although the temperature gradient of our dynamically evolved
2D models deviated slightly from that of the initial model ob-
tained from (1D) stellar evolutionary calculations (the rela-
tive difference was lower than 1%). The maximum tempera-
ture 〈T 〉max in our best resolved model hefl.2d.3 rose at a rate
of about 40 K s−1, which was about 60% lower than the rate
predicted by stellar evolutionary calculations. The mean convec-
tive velocity exceeded the velocities predicted by mixing length
theory by up to factor of four.

We note here, that in general, the velocities found in two-
dimensional hydrodynamical simulations tend to exceed those
in their three-dimensional (3D) counterparts where the velocities
tend to agree with the predictions of mixing length theory better
(Meakin & Arnett 2007b).

During the early evolution (t < 1000 s) of our 2D simula-
tions, the size of the convective region did not deviate from that
of the initial (hydrostatic) model. However, after a stable convec-
tive pattern was established, our 2D simulations showed that the
convective flow, consisting of four quasi-stationary large scale
(∼40 degrees angular width) vortices, started to push the inner
and outer boundary of the convection zone, initially determined
by the Schwarzschild stability criterium, towards the center of
the star at a velocity of 2.3 m s−1, and towards the stellar surface
at a velocity of 14 m s−1, respectively. This produced a rapid
growth in the radial extent of the convection zone on dynamic
timescales. The boundary velocities may depend on the grid res-
olution and/or on the dimensionality of the flow. Therefore, they
should be considered as order of magnitude estimates only. We
plan to address this issue in a forthcoming paper.

Our 2D simulations further suggested that it is unlikely that
the core helium flash is followed by subsequent core helium
mini-flashes, which are observed in (1D) stellar evolutionary cal-
culations, since the inner convective boundary can reach the cen-
ter of the core in less than one month. On the other hand, the
injection of hydrogen from the stellar envelope into the helium
core is likely to happen within 10 days, which contradicts the
predictions of the canonical evolution of low-mass Pop I stars.
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Since our 2D axisymmetric simulations are probably unable
to capture accurately an intrinsic three-dimensional behaviour
of the convective flow, we have started to develop 3D simula-
tions of the core helium flash. In addition, we plan to extend
our 2D simulations to time intervals of several days instead of
hours. The results of these long-term 2D simulations and of the
first well resolved 3D simulations of the core helium flash will
be presented elsewhere.
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Appendix A: Energy fluxes

An analysis of the vertical energy transport investigates the im-
portance of the different physical processes occurring in the con-
vection zone. To separate the various contributions to the total
energy flux (Hurlburt et al. 1986; Achatz 1995), one integrates
the hydrodynamic equation of energy conservation

∂t(ρe) + ∂i(vi(ρe + p) − v jΣi j − K∂iT ) = −ρvi∂iΦ,
i, j = 1, 2, 3

(A.1)

(with e = ε + vivi/2 being the specific total energy density) over
angular coordinates (θ, φ), and separates both the specific en-
thalpy (ε + p/ρ) and the kinetic energy (vivi/2) into a horizontal

mean and a perturbation ( f ≡ f + f ′). This results in

∂tE + ∂r(FC + FK + FR + FV + FE) = 0 (A.2)

with1

E =

∮

ρe r2dΩ (A.3)
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The various terms Fi indicate the total energy transported per
unit time across a sphere by different physical processes. They
are the convective (or enthalpy) flux FC, the flux of kinetic en-
ergy FK, the flux by heat conduction and radiation FR, and the
viscous flux FV. Finally, FE collects all terms causing a spher-
ical mass flow, i.e. the model expansion or contraction, while
FC and FK represent the deviations from this mean energy flow
(vortices). The FC and FK are the major contributors to the heat
transport by convection, while FV is usually negligibly small.

1 The gravitational potential Φ was assumed to be constant for
simplicity.

In a similar way, we can also formulate a conservation equa-
tion for the mean horizontal kinetic energy, which provides fur-
ther insight into the effects of convective motions. Using the
other hydrodynamic equations

∂t(ρ) + ∂i(ρvi) = 0 (A.9)

∂t(ρvi) + ∂ j(δi j p + ρviv j − Σ ji) = −ρ∂iΦ, (A.10)

i, j = 1, 2, 3 (A.11)

and ∂t(ρvivi/2) = vi∂t(ρvi) − vivi∂tρ/2, one finds

∂tEK+∂r(FK+FP+FV+FE,K)=PA+PP+PV+PE,K. (A.12)

In terms of FK and FV as introduced above, one obtains

EK =

∮

ρ

2
vivi r2dΩ (A.13)

FP = −

∮

vr p′ r2dΩ (A.14)

FE,K = 4πr2vrρ ·
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ρ
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)

(A.15)

PA = −

∮

vrρ
′∂rΦ r2dΩ (A.16)

PP =

∮

p′∂ivi r2dΩ (A.17)

PV = −

∮

∂iv j · Σi j r2dΩ (A.18)

PE,K = 4πr2 ·
(

p ∂ivi − vrρ ∂rΦ
)

, i = 1, 2, 3 (A.19)

where the Pi terms are source or sink terms of the kinetic energy.
They are separated into the effect of buoyancy forces (PA), fric-
tion forces (PV), and the work due to density fluctuations (PP,
volume changes). By analyzing the individual Pi, one can de-
termine which process brakes or accelerates convective motion.
The acoustic flux FP, describes the vertical transport of den-
sity fluctuations. FE,K and PE,K describes the effect of expansion
(volume work, and work against the gravitational potential), sim-
ilar to FE in Eq. (A.8).
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