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The corneal subbasal nerve plexus 
and thickness of the retinal layers 
in pediatric type 1 diabetes and 
matched controls
Aline Götze1, Sophie von Keyserlingk2, Sabine Peschel1, Ulrike Jacoby2, Corinna Schreiver2, 

Bernd Köhler3, Stephan Allgeier3, Karsten Winter4, Martin Röhlig5, Anselm Jünemann1, Rainer 

Guthoff6, Oliver Stachs1 & Dagmar-C. Fischer2

Optical coherence tomography (OCT) of the retina and corneal confocal laser scanning microscopy 

(CLSM) of the subbasal nerve plexus (SBP) are noninvasive techniques for quantification of the ocular 
neurodegenerative changes in individuals with type 1 diabetes mellitus (T1DM). In adult T1DM patients 
these changes are hardly related to T1DM only. Instead, ageing and/or lifestyle associated comorbidities 
have to be considered as putative confounding variables. Therefore, we investigated pediatric T1DM 
patients (n = 28; 14.2 ± 2.51 y; duration of disease: 5.39 ± 4.16 y) without clinical signs of diabetic retina 
disease, neuropathy, vasculopathy or nephropathy and compared our findings with those obtained in 
healthy controls (n = 46; 14.8 ± 1.89 y). The SBP was characterized by the averaged length, thickness, 
and tortuosity of nerve fibers as well as the number of branching and connecting points. OCT was 
used to determine the total thickness of the retina (ALL) and the thickness of each retinal layer. Both 

methods revealed signs of early neurodegenerative changes, e.g. thinning of distinct retinal layers at 

the pericentral ring and shortening of corneal nerve fibers that are already present in pediatric T1DM 
patients. Standardization of instruments and algorithms are urgently required to enable uniform 

comparison between different groups and define normative values to introduce in the clinical setting.

Type 1 diabetes mellitus (T1DM) is one of the most common metabolic disorders in childhood and a�ects nearly 
15 million children worldwide1. On the long run, children with T1DM experience an increased risk of compli-
cations and comorbidities, i.e. vascular, renal, neurological and ophthalmological diseases Since the onset of the 
disease in the vast majority of T1DM patients occurs during childhood, these patients are at risk to su�er from 
diabetes-related complications already at young adulthood2.

Contrasting with the rather high sensitivity of the retina towards metabolic changes, virtually all forms of 
retinopathies remain asymptomatic for a long time3. �ere is increasing evidence that retinal neurodegeneration 
precedes diabetic retinopathy (DR) with �rst signs of microaneurysms3–7.

Optical coherence tomography (OCT) was introduced as a powerful tool for imaging and quantitative analysis 
of the retina8. OCT provides a cross-sectional view of the retina that allows discrimination and characterization of 
individual layers within the retina. Very recently, OCT revealed distinct but signi�cant thinning of retinal layers 
in adults as well as adolescents and young adults su�ering from T1DM3,9.

Diabetes can impair corneal sensitivity and diabetic neuropathy may also in�uence the subbasal nerve plexus 
(SBP) of the cornea10,11. Furthermore, it is already known that the condition of the SBP worsens not only with 
duration of the disease but also when glycemic control is insu�cient and during the progression of diabetic pol-
yneuropathy (DPN)12–14. In fact, confocal laser scanning microscopy (CLSM) revealed signi�cant changes of the 
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SBP in diabetic patients regardless of concomitant DPN7,14–19. However, quantitative analysis of CLSM images is 
still a challenging task as it requires sophisticated so�ware tools to describe the SBP in terms of nerve �ber length, 
density, connectivity and tortuosity7,14,19–21.

However, there are still many open questions regarding the noted changes at the level of the SBP and retinal 
layers in T1DM patients relative to controls, since the signi�cance of the OCT and CLSM �ndings is limited9. 
Whereas a wide variety of comorbidities have to be considered as putative confounding variables in adult T1DM 
patients, this is less relevant in pediatric T1DM patients. Consequently, cross-sectional studies in children and 
adolescents can open the window and may contribute to our understanding of neurodegenerative eye diseases. 
We hypothesize that in otherwise healthy pediatric T1DM patients, signs of neurodegenerative disease are already 
detectable with OCT and/or CLSM. In the present study, we report the results of a cross-sectional study obtained 
by applying both techniques simultaneously in a large cohort of pediatric T1DM patients and healthy controls 
matched for sex and age.

Results
A total of 28 patients (18 males) with a mean age of 14.2 ± 2.51 years and 46 healthy volunteers (18 males) with 
a mean age of 14.8 ± 1.89 years consented to participate and CLSM of the eye was performed. Out of these, a 
subgroup of 26 patients (16 males) and 30 controls (14 males) received an additional OCT. Anthropometric and 
clinical data are given in Table 1. While anthropometric characteristics and age were fairly comparable between 
patients and controls, o�ce blood pressure (BP) was signi�cantly higher in patients compared to controls. Insulin 
was administered via multiple daily insulin injections (MDI) to 16 (15) patients and via continuous subcutaneous 
insulin infusion (CSII) to 12 (11) patients undergoing CLSM and OCT, respectively. Categorization of patients 
according to therapy revealed no di�erences with respect to the (i) distribution of boys and girls, (ii) duration of 
disease, (iii) daily insulin dosage, and (iv) glycemic control in terms of actual and mean HbA1c (Supplemental 
Table 1). In all participants, visus was 1.0 or better and corneal sensitivity was well preserved (data not shown). 
At the time of enrolment, patients had neither clinical signs of diabetic vasculopathy, nephropathy or neuropathy 
nor mentioned such symptoms during the interview.

OCT and analysis of the retina. Typical images taken from the retina of a T1DM patient and a healthy 
control together with segmentation of the retinal layers by means of OCT are shown in Fig. 1. In healthy controls, 
the thickness of the retinal layers at all prede�ned sites of measurement turned out to be independent of age and 
sex. �erefore, these two variables were not considered for interpretation of the results. Total retinal thickness, 
as well as the thickness of individual retinal layers at the fovea and throughout the peripheral region, was quite 
similar in patients and controls (Supplemental Table 2). By contrast, within the pericentral ring, signi�cant thin-
ning of the retinal nerve �ber layer (RNFL), the ganglion cell layer (GCL), and total retinal thickness (ALL) was 
noted in T1DM patients compared to controls (Fig. 2). �e thickness of the retinal layers was not associated with 
HbA1c or duration of disease. Concerning the insulin regimen, patients on CSII revealed signi�cantly thinner 
foveal GCL, inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), and ALL com-
pared to those on MDI (Table 2). Furthermore, in patients on CSII, foveal OPL and ALL was even signi�cantly 
thinner compared to healthy controls. By contrast, in patients on MDI, none of these parameters was signi�cantly 
di�erent to healthy controls. However, OPL at the pericentral ring was signi�cantly thinner in patients on MDI 
compared to those using CSII (Table 2).

Within the study population, the foveal thickness of RNFL, GCL, IPL and INL were strongly associated among 
themselves as well as with the total thickness of the retina (each R ≥ 0.74 and p < 0.001). Within the pericentral 
and peripheral area, the thickness of the GCL and IPL (each R ≥ 0.82 and p < 0.001) were strongly associated. 
�e thickness of the outer nuclear layer (ONL), the OPL or the retinal pigment epithelium (RPE) turned out to be 
independent of the dimension of the inner retinal layers.

CLSM OCT and CLSM

Patients 
(10 f/18 m)

Controls 
(28 f/18 m)

Patients 
(10 f/16 m)

Controls 
(16 f/14 m)

Age [year] 14.2 ± 2.54 14.8 ± 1.89 14.5 ± 2.23 14.5 ± 1.98

Height [SDS] 0.06 ± 0.88 0.58 ± 1.20 0.15 ± 0.89 0.66 ± 1.20

Weight [SDS] 0.23 ± 0.93 0.46 ± 1.00 0.31 ± 0.97 0.59 ± 0.94

BMI [SDS] 0.25 ± 0.92 0.26 ± 0.84 0.30 ± 0.96 0.37 ± 0.80

BPsys [SDS] 1.94 ± 1.17* 1.27 ± 1.16* 1.95 ± 1.20 1.39 ± 1.18

BPdias [SDS] 0.89 ± 0.74* 0.36 ± 0.88* 0.90 ± 0.76 0.50 ± 0.97

Duration of disease [year] 4.23 (1.2–15.5) 4.44 (1.2–15.5)

Mean daily insulin dosage [IU/kg] 0.38 ± 0.15 0.39 ± 0.14

Actual HbA1c [%] 8.73 ± 2.00 8.96 ± 1.86

Mean HbA1c [%] 8.64 ± 1.53 8.73 ± 1.51

Table 1. Anthropometric and clinical characteristics of patients and controls. Results are given as 
mean ± standard deviation and as median (min, max) for all participants undergoing CLSM and for the 
subgroups undergoing OCT and CLSM. *Signi�cant di�erence between patients and controls.
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CLSM and characteristics of the SBP. �e SBP was analyzed in all participants and representative images 
were shown in Fig. 3. Corneal nerve �ber length (CNFL), corneal nerve single �ber length (CNSFL), and corneal 
nerve �ber thickness (CNF�) were signi�cantly lower and corneal nerve �ber tortuosity (CNFTo) is signi�cantly 
higher in patients compared to healthy controls. Corneal nerve �ber density (CNFD), corneal nerve �ber branch 
density (CNBD), and the number of corneal nerve connecting points (CNCP) did not di�er between groups 
(Fig. 4 and Table 3). In healthy controls, none of these parameters describing the SBP were related to age or sex. 
By contrast, in T1DM patients, CNFTo was signi�cantly higher in females compared to males (0.086 µm−1 (range: 
0.083–0.090 µm−1) vs. 0.083 µm−1 (range: 0.076–0.094 µm−1); p < 0.01). Furthermore, CNCP tended to be lower 
in female compared to male T1DM patients (60.75 mm−1 (range: 10.57–111.5 mm−1) vs. 87.99 mm−1 (range: 
29.7–159.0 mm−1); p < 0.05). Although none of the parameters describing the SBP was associated with the HbA1c 
or duration of disease, the di�erence might, at least partially, re�ect that duration of disease was slightly longer in 
female compared to the male patients (5.19 years vs. 2.79 years; p = 0.10). �e parameters describing the SBP were 
similar in patients on MDI and CSII (data not shown). In healthy controls, CNFL was strongly associated with 
CNFD, CNBD (each R = 0.95 and p < 0.001) and CNCP (R = 0.65, p < 0.001), while CNF� and CNFTo were 
virtually independent of either one of these parameters used to describe the SBP. By contrast, in T1DM patients, 
CNF� is related to CNFL (R = 0.411, p < 0.05) and CNCP (R = 0.544; p < 0.005). Furthermore, CNFL decreases 
reciprocally to tortuosity (R = −0.61; p ≤ 0.001).

Correlation analysis of OCT and CLSM data. Within healthy controls, data obtained by OCT and CLSM 
were not associated at all. By contrast, in T1DM patients, the thickness of the RNFL at the peripheral area as well 
as the thickness of the INL at the pericentral area turned out to be signi�cantly associated with CNFD and CNCP, 
respectively (Fig. 5). Although neuronal changes at the level of the retina and cornea turned out to be unrelated to 
glycemic control and duration of disease, CNFTo increases whereas foveal INL and pericentral RNFL thickness 
each decreases with insulin basal dosage rise (Fig. 6).

Discussion
Within this cross-sectional study, we sequentially applied OCT and CLSM to pediatric T1DM patients and 
healthy age-matched controls. Besides separate interpretation of OCT and CLSM data relative to the underlying 
disease, our approach enabled us to analyze the association of both in healthy and diseased children. �is is espe-
cially interesting, as early signs of DR or DPN are rarely seen in pediatric T1DM patients with current pediatric 
daily care.

Within our patient cohort, OCT revealed signi�cant thinning of the RNFL, the GCL, and ALL at the peri-
central ring. �ese �ndings were not related to HbA1c or duration of disease. Our results correspond with very 
recent reports and support the current notion that retinal neurodegeneration occurs early and prior to vascular 
retinopathy3–5,22–26. Neuronal apoptosis and the loss of ganglion cell bodies are considered to be mainly respon-
sible for the thinning of the inner retinal layers5,6,26. In line with this, our data also point to the higher vulnera-
bility of the RNFL and GCL relative to the other retinal layers, especially in the absence of any signs of diabetic 
vascular retinopathy. Interestingly, patients on CSII therapy presented with signi�cantly thinner foveal retinal 

Figure 1. Representative images from a T1DM patient (le�) and control (right). Automatically generated 
thickness maps and segmented boundaries of ganglion cell layer and the inner plexiform layer were presented.
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layers than those using MDI therapy despite comparable daily basal insulin dosages, glycemic control and disease 
duration. Whether this �nding is due to sampling bias, the incidence of diabetic ketoacidosis or related to the 
insulin preparation, i.e. pharmacological properties and half-life of insulin applied as bolus (MDI) or continu-
ously (CSII), remains to be elucidated. In streptozotocin-induced diabetic rats, insulin reduces retinal apoptosis 
thereby preserving morphology of the tissue6. Although CSII compared to MDI has been associated with better 
glycemic control, we obtained evidence that retinal thinning at the fovea is more pronounced in patients on CSII, 
whereas the pericentral OPL was apparently more a�ected in patients on MDI. Additional studies are required 
to verify these �ndings.

Figure 2. Signi�cant di�erences (each p < 0.05) of the pericentral thickness of the RNFL (A), the GCL (B) and 
ALL (C) in patients (black circles) and controls (blue circles).
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Within our patient cohort, we noted signi�cant inverse associations between basal insulin dosage and either 
the thickness of the pericentral RNFL or the thickness of the foveal INL. Apart from e�ects related to the insu-
lin regimen, glycemic variability is more pronounced in pediatric T1DM patients on MDI compared to CSII27. 
Hyperglycemic episodes are capable to activate alternative pathways �nally leading to microvascular complica-
tions27,28. However, retinal neurodegeneration is an early event and most likely precedes microvascular damage, 
i.e. apoptosis of retinal neural cells impairs the blood-retinal barrier with subsequent development of microan-
giopathy and �nally thickening of the retinal layer29–32. Longitudinal studies are required to investigate the time 
course of retinal changes relative to the progression of the disease and the degree of glycemic variability in detail. 
Furthermore, data from morphological and functional investigations are required for better interpretation of the 
clinical relevance of morphological changes.

Similar to OCT, CLSM revealed signi�cant neuronal changes in our T1DM patients. Besides a reduction of 
CNFL, CNSFL, and CNF�, an increased CNFTo was noted and CNFTo increases as either CNFL or CNCP 
decrease. �ese �ndings are in agreement with those seen in adult DM patients and point to neurodegenerative 
changes early during the time course of the disease7,9,12,14,15,18,19,33. To the best of our knowledge, the SBP has been 
investigated thus far only in a very small group of pediatric DM patients34. Although the anthropometric and clin-
ical characteristics regarding the duration of disease and glycemic control of pediatric patients enrolled in either 
study are fairly comparable, the results are not. Most likely, these di�erences are due to di�erent experimental 

CSII (5 f/6 m) MDI (6 f/9 m) p

Foveal thickness of the

 GCL [µm] 15.33 (10.00–21.67) 18.67 (14.00–42.67) 0.038

 IPL [µm] 20.00 (17.67–26.33) 25.00 (20.33–38.33) 0.035

 INL [µm] 17.67 (12.67–24.67) 20.33 (17.00–32.67) 0.021

 OPL [µm] 25.67* (16.33–32.33) 29.33 (21.33–36.33) 0.038

 ALL [µm] 270.7* (232.0–302.0) 290.0 (256.7–327.3) 0.024

pericentral thickness of the

 OPL [µm] 34.58 (30.08–40.50) 32.58 (28.42–35.08) 0.029

Table 2. �ickness of the foveal retinal layers and of the pericentral OPL in patients on MDI and CSII therapy. 
Data are given as median and range. ALL, total thickness of retina; GCL, ganglion cell layer; IPL, inner 
plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer. *p < 0.05 compared to controls.

Figure 3. �e typical mosaic image of the SBP of a patient (A), healthy control (B) and schematic 
representation of skeletonized images used for characterization of the SBP in patients (C) and healthy controls 
(D).
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settings, the local variability of the SBP, the number and localization of image stacks taken per eye and subsequent 
processing of the data20,21,35–37.

�e strong correlation between neurodegenerative changes at the level of retina and cornea, the absence of any 
clinically relevant signs of DR or DPN together with the missing association between neurodegenerative changes 
and duration of disease or glycemic control point to a rather high vulnerability and maladaptive response of these 
structures to diabetes-related metabolic changes29. Recently, we demonstrated an impaired endothelial vasodila-
tion secondary to local heating in pediatric T1DM patients by means of laser Doppler �uximetry for assessment 
of skin microcirculation38. �is e�ect was due to an impaired axon re�ex mediating neurogenic vasodilation38. Of 
note, this was seen in pediatric T1DM patients without any clinical signs of DR or DPN38.

Although we obtained evidence that subtle neurodegenerative changes are already detectable in pediatric 
T1DM patients, our study has limitations. Unfortunately, documentation of diabtic ketoacidosis is not part of the 
routine diagnostic pipeline in our outpatient clinic and OCT became available for this study only a�er the start 
of the subject enrolment. Even though we requested all the subjects (that were already examined with CLSM) to 

Figure 4. Signi�cant di�erences between CNFL (A) p < 0.05), CNFTo (B) p < 0.01), CNSFL (C) p < 0.005) and 
CNF� (D) p < 0.005) in patients (black circles) and controls (blue circles).

Patients 
(10 f/18 m)

Controls 
(28 f/18 m) p

Results for

 CNFD [mm−2] 249 (84.0–503) 252 (126–641) 0.832

 CNBD [mm−2] 135 (27.9–302) 123 (52.4–397) 0.798

 CNCP [mm−2] 73.9 (10.6–159) 77.3 (22.6–153) 0.196

Table 3. Results of the CLSM in pediatric T1DM patients and healthy controls. CNFD, corneal nerve �ber 
density; CNBD, corneal nerve �ber branch density; CNCP, corneal nerve connecting points.
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undergo an additional OCT examination, 2 of the patients and 14 controls refused to participate. Due to this, we 
could investigate a rather small number of patients and describe morphological changes, only. Comorbidities are 
usually less relevant in pediatric patients and clinical signs of DR, DPN or vasculopathy were not detectable at all. 
However, to clearly link neurodegenerative changes to the time course of the disease, carefully designed longitu-
dinal studies along with a concomitant assessment of morphological and functional changes relative to long-term 
glycemic control and the therapeutic regimen are required.

Symptomatic DR or DPN are rarely seen in children with T1DM and daily care clinical techniques are not sen-
sitive enough to detect neuropathies at an early stage when improvement of therapy has the potential to prevent 
progression or even to promote nerve regeneration34,39–41. In this regard, our data indicate that OCT and CLSM 
both are valuable tools to detect early neurodegenerative changes. However, standardization of instruments, algo-
rithms and data processing is an immediate prerequisite to enable data comparison between di�erent groups. 
De�ning the normative values of various retinal and SBP parameters may further assist in the secure transition of 
these methodologies into the clinical setting.

Material and Methods
Study design. �e study received appropriate ethics committee approval from the institutional review board 
(Rostock University Medical Centre Ethics committee) in accordance with the Declaration of Helsinki. All exam-
inations were done in accordance with the relevant guidelines. Subjects and/or their parents gave written and 
informed consent for participating in the study. All participants received a voucher to appreciate for the addi-
tional time spent in the hospital environment.

Pediatric T1DM patients being treated at the university between October 2012 and December 2013 were 
invited to participate. Healthy age-matched controls were recruited from di�erent schools in Rostock. Inclusion 
criteria: age 6–18 years, duration of disease at least 12 months, C-peptide below 0.3 nmol/l, stable therapeutic 
regimen with either multiple daily insulin injections (MDI) or continuous subcutaneous insulin infusions (CSII, 
pump therapy) for at least 3 months. Exclusion criteria: any case of febrile illness during the last three months, 
chronic auto-in�ammatory disease (e.g. Crohn’s disease, rheumatoid arthritis), hepatitis, HIV, glucocorticoid 
treatment, liver-, renal-, or cardiac failure, hereditary dyslipidemia, neurological diseases including idiopathic 
small �bre neuropathy, clinical evidence of diabetic peripheral neuropathy, limited ability to cooperate, preg-
nancy, tumoral diseases or ophthalmological diseases especially myopia of more than 6 diopters, corneal and 
retinal disorders.

Methods
All participants were seen in our outpatient clinic. Demographic and clinical data were gathered by interview 
and chart review (i.e. duration of disease, mode of therapy, mean daily insulin dosages, mean HbA1c during 
the last year). A trained physician measured weight and height using electronic scales and a �xed stadiometer. 
O�ce blood pressure (BP) was measured according to the updated Task Force Report on high blood pressure 
by using an oscillometric device (Dinamap 1846SX; Critikon, Tampa, USA). Calculations of individual age- 
and sex-related standard deviation scores (SD scores) for height, weight, BMI and BP were done as previously 
described42,43.

Figure 5. Correlations between CNFD and the peripheral RNFL thickness (A) and between CNCP and the 
pericentral INL thickness (B) in T1DM patients. A, R = 0.52, p < 0.01; B, R = 0.54, p < 0.01.



www.nature.com/scientificreports/

8SCIENTIFIC REPORTS |  (2018) 8:14  | DOI:10.1038/s41598-017-18284-z

Laboratory and clinical data. In patients, the actual HbA1c expressed as a percentage of total hemoglobin 
and blood glucose levels were determined in the institute laboratory. �e mean HbA1c during the last 12 months 
and the actual mean insulin dosage per day and body weight were calculated.

Ophthalmological status. All of the patients underwent a complete ophthalmologic examination, i.e. 
determination of visual acuity, intraocular pressure and slit-lamp examination in mydriatic fundoscopy. Patients 
and controls underwent OCT (Spectralis; Heidelberg Engineering GmbH, Heidelberg, Germany) for analysis 
of the retina, corneal esthesiometry and CLSM (HRTII + RCM; Heidelberg Engineering GmbH, Heidelberg, 
Germany) for analysis of the SBP. All ophthalmological tests were performed by the same experienced ophthal-
mologist (SP) for all study participants.

Optical coherence tomography and analysis of the retina. Unilateral spectral-domain OCT was 
performed by the same experienced ophthalmologist (SP) for all study participants essentially as described pre-
viously44. All examinations were done in triplicate and the average of the results was used for subsequent analy-
sis. �is approach allowed mapping the macula thickness and for subsequent quantitative image analysis three 
circular segments centered at the fovea were separated automatically according to the ETDRS grid, i.e. a central, 
pericentral and a peripheral ring with outer diameters of 1 mm, 3 mm and 6 mm, respectively45. Furthermore, the 
pericentral and peripheral areas were subdivided into quadrants (temporal, superior, nasal and inferior). Within 
each sub�eld, the retinal thickness (ALL), the retinal nerve �ber layer (RNFL), the ganglion cell layer (GCL), the 

Figure 6. Foveal INL thickness (A), pericentral RNFL thickness (B) and CNFTo (C) relative to the basal insulin 
dosage in T1DM patients. A, R = −0.48, p < 0.05; B, R = −0.43, p < 0.05; C, R = 0.55, p < 0.005.



www.nature.com/scientificreports/

9SCIENTIFIC REPORTS |  (2018) 8:14  | DOI:10.1038/s41598-017-18284-z

inner nuclear layer (INL), the inner plexiform layer (IPL), the outer plexiform layer (OPL), the outer nuclear layer 
(ONL), the retinal pigment epithelium (RPE) and the photoreceptor layer (PR) were discriminated. For each 
layer, the thickness was measured fully automatically at the localizations indicated using the algorithm provided 
by the manufacturer. Subsequently, data derived for each of the quadrants from the pericentral and peripheral 
ring were averaged. �us, per layer three values re�ecting the thickness at the fovea, the pericentral and peripheral 
area were obtained.

Corneal esthesiometry. Corneal esthesiometry was carried out using the Cochet-Bonnet esthesiometer 
(Luneau Ophthalmology, France). �e nylon mono�lament had a diameter of 0.12 mm and a fully extended 
length of 60 mm. �e central, superior, inferior, nasal, and temporal cornea was touched once on each eye, begin-
ning at a �lament length of 60 mm. If a positive answer was not detected the �lament length was shortened in 
steps of 5 mm each time and the procedure was repeated until there was a positive response. Corneal sensation 
was calculated as the mean obtained from the �ve corneal areas on each eye.

In vivo confocal laser-scanning microscopy and analysis of the corneal subbasal nerve 
plexus. For unilateral in vivo examination of the cornea, the Heidelberg Retina Tomograph (HRT II) in com-
bination with the Rostock Cornea Module (RCM) was used essentially as described previously46,47. Both eyes 
were anesthetized (Proparacaine 0.5% eye drops; Ursapharm, Saarbrücken, Germany) and covered with Vidisic 
gel (Bausch & Lomb/Dr. Mann Pharma, Berlin/Germany; refractive index 1.35). To prevent eye movements, the 
patients were asked to �xate one spot with the unexamined eye.

Imaging in the central region (at or close to the corneal apex and more than 0.5 mm apart from the inferior 
whorl) was performed using a dedicated scan modality at the level of basal cells, SBP, Bowman’s membrane and 
anterior stroma described earlier47. At least three scans per region and patient were recorded. �e total duration 
of in vivo CLSM was about 15 minutes per patient. Subsequently, the SBP layer was detected automatically in each 
recorded depth scan and a mosaic image of the SBP was generated and submitted to quantitative image analy-
sis21,47,48. �e following SBP parameters were determined: corneal nerve �ber length (CNFL), de�ned as the total 
length of all nerve �bers per unit area (mm/mm2); corneal nerve �ber density (CNFD), de�ned as the number of 
nerve �bers per unit area (n/mm2); corneal nerve branch density (CNBD), de�ned as the number of branching 
points per unit area (n/mm2); average weighted corneal nerve �ber tortuosity (CNFTo), re�ecting variability of 
nerve �ber directions and de�ned as absolute nerve �ber curvature/nerve �ber length (per µm); corneal nerve 
connection points (CNCP), de�ned as the number of nerve �bers crossing the area boundary (connections/
mm2); average corneal nerve single-�ber length (CNSFL), de�ned as the average length of nerve �bers (µm); and 
average weighted corneal nerve �ber thickness (CNF�), measured as mean thickness perpendicular to the nerve 
�ber course (µm)21,47,49.

Statistical analysis. For statistical analysis, the SPSS So�ware package, version 22.0 (SPSS GmbH, Munich, 
Germany), was used. Normal distribution was evaluated by the Kolmogorov-Smirnov test and comparison 
between groups was done using Student’s t-test or Mann-Whitney U test, if appropriate. For computation of 
correlations, Spearman’s rho test was used. All p-values are two-sided and a p-value below 0.05 was considered 
signi�cant. Data are given as mean ± standard deviation (sd) or median and range, where appropriate.

Data availability statement. �e datasets generated during and/or analyzed during the current study are 
available from the corresponding author on reasonable request.
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