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Abstract. Qualitative and quantitative properties of the Cornish-Fisher-Expansion in the context of
Delta-Gamma-Normal approaches to the computation of Value at Risk are presented. Some qualitative
deficiencies of the Cornish-Fisher-Expansion – the monotonicity of the distribution function as well as
convergence are not guaranteed – make it seem unattractive. In many practical situations, however, its
actual accuracy is more than sufficient and the Cornish-Fisher-approximation can be computed faster
(and simpler) than other methods like numerical Fourier inversion. This paper tries to provide a balanced
view on when and when not to use Cornish-Fisher in this context.
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1 Introduction

Financial institutions are facing the important task
of estimating and controlling their exposure to mar-
ket risk, which is caused by changes in prices of
equities, commodities, exchange rates and inter-
est rates. A new chapter of risk management
was opened when the Basel Committee on Bank-
ing Supervision proposed that banks may use inter-
nal models for estimating their market risk (Basel
Committee on Banking Supervision; 1995). Its im-
plementation into national laws around 1998 al-
lowed banks to not only compete in the innovation
of financial products but also in the innovation of
risk management methodology.

Many alternatives exist for the statistical and
computational decisions to be made for the compu-
tation of Value at Risk (VaR), which is a quantile
of a portfolio’s loss distribution over a given time
horizon. One of the more basic model assumptions
is that the change in a firm’s portfolio value over a

specified horizon can be modeled as

V = θ + ∆⊤X +
1

2
X⊤ΓX, (1)

where θ, ∆, and Γ are a scalar, a vector, and a ma-
trix of parameters, respectively, derived from the
current portfolio positions. X is assumed to be
a Gaussian vector, conditional on the current in-
formation. This model has been the work-horse
for quick, online computations of VaR since its use
by RiskMetrics (Longerstaey; 1996), despite doubts
about the suitability of the two model assumptions
– Gaussian innovations and nearly quadratic price
functions – in specific situations.

Several methods have been proposed to com-
pute a quantile of the distribution defined by the
model (1), among them Monte-Carlo simulation
(Pritsker; 1996), Johnson transformations (Zan-
gari; 1996a; Longerstaey; 1996), Cornish-Fisher
expansions (Zangari; 1996b; Fallon; 1996), the
Solomon-Stephens approximation (Britton-Jones
and Schaefer; 1999), moment-based approximations
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motivated by the theory of estimating functions (Li;
1999), saddle-point approximations (Feuerverger
and Wong; 2000), and Fourier-inversion (Rouvinez;
1997; Albanese et al.; 2000). What makes the
Normal-Delta-Gamma model especially tractable is
that the characteristic function of the probability
distribution, i.e., the Fourier transform of the prob-
ability density, of the quadratic form (1) is known
analytically.

Pichler and Selitsch (1999) compare five differ-
ent VaR-methods: Johnson transformations, Delta-
Normal, and Cornish-Fisher-approximations up to
the second, fourth and sixth moment. The sixth-
order Cornish-Fisher-approximation compares well
against the other techniques and is the final recom-
mendation. Mina and Ulmer (1999) compare John-
son transformations, Fourier inversion, Cornish-
Fisher approximations, and Monte Carlo simula-
tion (“Partial Monte Carlo”). Johnson transforma-
tions are concluded to be “not a robust choice”.
Cornish-Fisher is “extremely fast” compared to
Partial Monte Carlo and Fourier inversion, but
not as robust, as it gives “unacceptable results”
in one of the four sample portfolios. Feuerverger
and Wong (2000) compare two saddle-point meth-
ods and show their advantages over a plain-vanilla
Monte-Carlo simulation.

The contribution of this paper is to collect more
than anecdotal evidence on the theoretical and em-
pirical properties of the Cornish-Fisher expansion
to allow a better decision on when and when not to
use Cornish-Fisher in favour of Fourier inversion,
saddle point methods, or partial Monte Carlo in
this context.

Section 2 recalls results on the family of distribu-
tions defined by (1). Section 3 recollects the main
ideas of the derivation of the Cornish-Fisher ex-
pansion. The qualitative properties discussed in
section 4 include monotonicity, tail behavior, and
convergence. The quantitative results of section 5
include worst-case errors of Cornish-Fisher approx-
imations on a certain subset of the family defined
by (1) as well as approximation errors on real-world
sample portfolios.

2 Delta-Gamma-Normal Mod-

els

Equation (1), V = θ + ∆⊤X + 1
2X⊤ΓX, defines

the class of Delta-Gamma-Normal models. X is as-
sumed to be (conditionally) Gaussian with mean 0
and covariance matrix Σ. The change in the portfo-
lio value, V , can be expressed as a sum of indepen-
dent random variables that are quadratic functions
of standard normal random variables Yi by means
of the solution of the generalized eigenvalue prob-
lem

CC⊤ = Σ,

C⊤ΓC = Λ.

This implies

V = θ +
m

∑

i=1

(δiYi +
1

2
λiY

2
i ) (2)

= θ +
m

∑

i=1

{

1

2
λi

(

δi

λi
+ Yi

)2

− δ2
i

2λi

}

(3)

with X = CY , δ = C⊤∆, Λ = diag(λ1, . . . , λm),
and m is the number of risk factors used. Packages
like LAPACK (Anderson et al.; 1999) contain rou-
tines directly for the generalized eigenvalue prob-
lem. Alternatively, C and Λ can be computed in
two steps:

1. Compute some matrix B with BB⊤ = Σ. If
Σ is positive definite, the fastest method is
Cholesky decomposition. Otherwise an eigen-
value decomposition can be used.

2. Solve the (standard) symmetric eigenvalue
problem for the matrix B⊤ΓB:

Q⊤B⊤ΓBQ = Λ

with Q−1 = Q⊤ and set C := BQ.

The moment generating function of δjYj + 1
2λjY

2
j

can be computed directly (by completion of the
square):

Ees(δjYj+
1
2 λjY 2

j ) =
1√

1 − λjs
exp{1

2
δ2
j s2/(1−λjs)}.
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Since this is holomorph in a neighborhood of 0, it
also holds for complex arguments, so the character-
istic function of V , φ(t) = EeitV , is

φ(t) = eiθt
∏

j

1√
1 − iλjt

exp{−1

2
δ2
j t2/(1 − iλjt)},

(4)
which can be re-expressed in terms of Γ and B

φ(t) = eiθt det(I − itB⊤ΓB)−1/2

× exp{−1

2
t2∆⊤B(I − itB⊤ΓB)−1B⊤∆}, (5)

or in terms of Γ and Σ

φ(t) = eiθt det(I − itΓΣ)−1/2

× exp{−1

2
t2∆⊤Σ(I − itΓΣ)−1∆}. (6)

(See (Feuerverger and Wong; 2000) for proofs.)
Numerical Fourier-inversion of (4) can be used to

compute an approximation to the cumulative dis-
tribution function (cdf) F of V . (The α-quantile is
computed by root-finding in F (x) = α.) The cost
of the Fourier-inversion is O(N log N), the cost of
the function evaluations is O(mN), and the cost of
the eigenvalue decomposition is O(m3). The cost of
the eigenvalue decomposition dominates the other
two terms for accuracies of one or two decimal dig-
its and the usual number of risk factors of more
than a hundred. Instead of a full spectral decom-
position, one can also just reduce B⊤ΓB to tridi-
agonal form B⊤ΓB = QTQ⊤, where T is tridiago-
nal and Q is orthogonal. Reduction of a symmet-
ric matrix to tridiagonal form is usually done by
the Householder method (Press et al.; 1992, section
11.2, p.470), which has operation counts 2m3/3 for
the computation of T only and 4m3/3 for both T
and Q. Then, (5) transforms to

φ(t) = eiθt det(I − itT )−1/2

× exp{−1

2
t2∆⊤BQ(I − itT )−1Q⊤B⊤∆}. (7)

In the Householder method, Q is the product of
basic rotations: Q = P1 · . . . · Pn. Since Q itself
is not needed but only Q⊤B⊤∆, the actual cost of
the reduction to tridiagonal form is 2m3/3 plus an
O(m2)-term from the application of the rotations
P⊤

j to the vector B⊤∆. The computation of both

(I − itT )−1Q⊤B⊤∆ and det(I − itT ) are O(m)-
operations (Press et al.; 1992, section 2.4, pp.50).

Yet another route is to reduce ΓΣ to Hessenberg
form ΓΣ = QHQ⊤ or to do a Schur decomposi-
tion ΓΣ = QRQ⊤. A matrix H is in upper Hessen-
berg form if all elements below the first subdiagonal
are zero. Reduction to Hessenberg form for non-
symmetric matrices is the analogue of reduction to
tridiagonal for symmetric matrices. The operation
count of the computation of H is ∼ 5m3/6 for large
m (Press et al.; 1992, section 11.5, pp.482). A ma-
trix with only real eigenvalues, like ΓΣ, can be fur-
ther reduced to triangular form R, which is called
the Schur decomposition. Reduction to triangular
form for nonsymmetric matrices is the analogue of
reduction to diagonal form for symmetric matrices.
The computation of φ is exactly like in (7), with T
replaced by H or R. The solution of linear systems
and the computation of determinants are O(m2)-
operations for Hessenberg and triangular matrices
(Anderson et al.; 1999, section on nonsymmetric
eigenproblems).

In summary, the computation of the characteris-
tic function needs O(m3) operations, be it directly
via (6) or via one of the decompositions. The crit-
ical number of characteristic function evaluations
(N), above which the complete spectral decompo-
sition + fast evaluation via (4) is faster than the re-
duction to tridiagonal or Hessenberg form + slower
evaluation via (7) remains to be determined empir-
ically for given m on a specific machine.

The advantage of the Cornish-Fisher approxima-
tion is that it can be computed without any ma-
trix decomposition. It is based on the cumulants,
which are the power series coefficients of the cumu-
lant generating function κ(s) = log EesV :

κ(s) = θ+
m

∑

j=1

{

1

2
δ2
j s2/(1 − λjs) −

1

2
log(1 − λjs)

}

.

(8)
The cumulants can be read off (8), using the power
series representations of (1− s)−1 and log(1− s) at
s = 0:

κ1 = θ +
1

2

m
∑

j=1

λj

= θ +
1

2
tr(ΓΣ),
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and for r ≥ 2

κr =
1

2

m
∑

j=1

{(r − 1)!λr
j + r!δ2

j λr−2
j }

=
1

2
(r − 1)! tr((ΓΣ)r) +

1

2
r!∆⊤Σ(ΓΣ)r−2∆.

Although the cost of computing the cumulants
needed for the Cornish-Fisher approximation is also
O(m3), this method can be faster then the eigen-
value decomposition for small orders of approxima-
tion and relatively small numbers of risk factors2.

Monte-Carlo simulation of the quadratic form (1)
(usually called partial Monte-Carlo) costs O(m2)
operations per sample. If Γ is sparse, it may cost
even less. The number of samples needed is a func-
tion of the desired accuracy. It is clear from the
asymptotic costs of the three methods that partial
Monte Carlo will be preferable for sufficiently large
m.

While Fourier-inversion and partial Monte-Carlo
can in principal achieve any desired accuracy, the
Cornish-Fisher approximations provide only a lim-
ited accuracy as shown in the next sections.

3 Cornish-Fisher-, Gram-

Charlier-, and Edgeworth-

Expansions

The Cornish-Fisher expansion can be derived in two
steps. Let Φ denote some base distribution and
φ its density function. The generalized Cornish-
Fisher expansion (Hill and Davis; 1968) aims to
approximate an α-quantile of F in terms of the
α-quantile of Φ, i.e., the concatenated function
F−1◦Φ. The key to a series expansion of F−1◦Φ in
terms of derivatives of F and Φ is Lagrange’s inver-
sion theorem (Whittaker and Watson; 1920, p.133).
It states that if a function s 7→ t is implicitly defined
by

t = c + s · h(t) (9)

for some constant c and h is analytic at the point
t = c, then any analytic function f(t) can be devel-

oped into a power series in a neighborhood of s = 0
(t = c):

f(t) = f(c) +
∞
∑

r=1

sr

r!
Dr−1[f ′ · hr](c), (10)

where D denotes the differentation operator. For
a given probability c := α, f := Φ−1, and h :=
(Φ − F ) ◦ Φ−1 this yields

Φ−1(t) = Φ−1(α)

+
∞
∑

r=1

(−1)r sr

r!
Dr−1[((F − Φ)r/φ) ◦ Φ−1](α).

(11)

Setting s = 1 in (9) implies Φ−1(t) = F−1(α) and
with the notations x := F−1(α), z := Φ−1(α) (11)
becomes the formal expansion3

x = z+
∞
∑

r=1

(−1)r 1

r!
Dr−1[((F−Φ)r/φ)◦Φ−1](Φ(z)).

With a := (F − Φ)/φ this can be written as

x = z +
∞
∑

r=1

(−1)r 1

r!
D(r−1)[a

r](z) (12)

with D(r) = (D + φ′

φ )(D + 2φ′

φ ) . . . (D + r φ′

φ ) and

D(0) being the identity operator. Equation (12),
which expresses the F -quantile x in terms of the
Φ-quantile z, is the generalized Cornish-Fisher ex-
pansion.

The second step is to choose a specific base dis-
tribution Φ and a series expansion for a. The clas-
sical Cornish-Fisher expansion is recovered if Φ is
the standard normal distribution, a is (formally)
expanded into the Gram-Charlier series, and the
terms are re-ordered as described below.

The idea of the Gram-Charlier series is to de-
velop the ratio of the moment generating function
of V (M(t) = EetV ) and the moment generating

2If a large number r of cumulants is needed, it is better to do a spectral decomposition (of B⊤ΓB to diagonal) or a
Schur decomposition (of ΓΣ to triangular) once and then compute the higher cumulants with O(m) operations each. If r

is small but m is large, it is better to do a reduction of B⊤ΓB to tridiagonal or a reduction of ΓΣ to Hessenberg form and
again compute the higher cumulants with O(m) operations each.

3The infinite sum converges, if s = 1 is in the convergence radius of the power series (11). Conditions for this convergence
will be looked at in section 4.
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function of the standard normal distribution (et2/2)
into a power series at 0:

M(t)e−t2/2 =
∞
∑

k=0

cktk. (13)

(The power series coefficients ck are called the
Gram-Charlier coefficients. They can be derived
from the moments by multiplying the power series
for the two terms on the left hand side.) Compo-
nentwise Fourier inversion yields the corresponding
series for the probability density

f(x) =
∞
∑

k=0

ck(−1)kφ(k)(x) (14)

and for the cumulative distribution function (cdf)

F (x) = Φ(x) −
∞
∑

k=1

ck(−1)k−1φ(k−1)(x). (15)

φ und Φ are now the standard normal density and
cdf. The derivatives of the standard normal den-
sity are (−1)kφ(k)(x) = φ(x)Hk(x), where the Her-
mite polynomials Hk form an orthogonal basis in
the Hilbert space L2(R, φ) of the square integrable
functions on R w.r.t. the weight function φ. The
Gram-Charlier coefficients can thus be interpreted
as the Fourier coefficients of the function f(x)/φ(x)
in the Hilbert space L2(R, φ) with the basis {Hk}:
f(x)/φ(x) =

∑∞
k=0 ckHk(x). In terms of the gener-

alized Cornish-Fisher expansion (12), (15) becomes

a(z) = −
∞
∑

k=1

ckHk−1(z).

Plugging this into (12) gives an infinite collection of
terms that coincides with the terms in the classical
Cornish-Fisher expansion. The way these terms are
re-grouped is motivated by the central limit theo-
rem as follows.

Assume that V is already normalized (κ1 = 0,
κ2 = 1) and consider the normalized sum of in-
dependent random variables Vi with the distribu-
tion F , Sn = 1√

n

∑n
i=1 Vi. The moment generating

function of the random variable Sn is

Mn(t) = M(t/
√

n)n = et2/2(

∞
∑

k=0

cktkn−k/2)n.

Multiplying out the last term shows that the k-th
Gram-Charlier coefficient ck(n) of Sn is a polyno-
mial expression in n−1/2, involving the coefficients
ci up to i = k. If the terms in the formal Cornish-
Fisher expansion

x = z+
∞
∑

r=1

(−1)r 1

r!
D(r−1)

[

(

−
∞
∑

k=1

ck(n)Hk−1

)r
]

(z)

(16)
are sorted and grouped with respect to powers of
n−1/2, the classical Cornish-Fisher series

x = z +
∞
∑

k=1

n−k/2ξk(z) (17)

results, where ξk(z) is the collection of all terms
that belong to the k-th power of n−1/2.

It is a relatively tedious process to express the
adjustment terms ξk directly in terms of the cumu-
lants κr, see (Hill and Davis; 1968). Lee developed
a recurrence formula for the k-th adjustment term
ξk in the Cornish-Fisher expansion, which is imple-
mented in the algorithm AS269 (Lee and Lin; 1992,
1993):4

ξk(H) = akH∗(k+1)

−
k−1
∑

j=1

j

k
(ξk−j(H)− ξk−j) ∗ (ξj − ajH

∗(j+1)) ∗H,

(18)

with ak = κk+2

(k+2)! . ξk(H) is a formal polynomial

expression in H with the usual algebraic relations
between the summation “+” and the “multiplica-
tion” “∗”. Once ξk(H) is multiplied out in ∗-powers
of H, each H∗k is to be interpreted as the Hermite
polynomial Hk and then the whole term becomes
a polynomial in z with the “normal” multiplica-
tion “·”. ξk denotes the scalar that results when
the “normal” polynomial ξk(H) is evaluated at the
fixed quantile z, while ξk(H) denotes the expression
in the (+, ∗)-algebra.

The Gram-Charlier series, resorted with respect
to powers of n−1/2, is called Edgeworth series:

Mn(t) = et2/2
∞
∑

k=0

n−k/2hk(t), (19)

4We write the recurrence formula here, because it is incorrect in (Lee and Lin; 1992).
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where hk(t) are the Cramér-Edgeworth polynomi-
als in t (of degree 3k) (compare (Skovgaard; 1999)).
Componentwise Fourier inversion yields again the
analogous Edgeworth series for the density fn and
the cdf Fn of the sum Sn:

f(x) =
∞
∑

k=0

n−k/2hk(− d

dx
)φ(x).

4 Qualitative Properties of

the Cornish-Fisher Expan-

sion

The qualitative properties of the Cornish-Fisher ex-
pansion are:

+ If Fm is a sequence of distributions converg-
ing to the standard normal distribution Φ, the
Edgeworth- and Cornish-Fisher approxima-
tions present better approximations (asymp-
totically for m → ∞) than the normal approx-
imation itself.

− The approximated functions F̃ and F̃−1◦Φ are
not necessarily monotone.

− F̃ has the “wrong tail behavior”, i.e., the
Cornish-Fisher approximation for α-quantiles
becomes less and less reliable for α → 0 (or
α → 1).

− The Edgeworth- and Cornish-Fisher approxi-
mations do not necessarily improve (converge)
for a fixed F and increasing order of approxi-
mation, k.

Figure 1 shows the true and the approximated
quantile functions F−1 for the distribution of −Y 2,
where Y is standard normal. It illustrates the three
qualitative deficiencies of the Cornish-Fisher ap-
proximation:

− The approximated quantile function F̃−1 is not
monotone for the orders 8 and 16.

− All approximations of F−1 diverge from the
true function when the probability converges
to zero, i.e., in the “far tail”.

− The approximation with the highest order
shown, 16, is the least reliable.

Convergence for Fm → Φ

The most prominent use and motivation of the
Edgeworth- and Cornish-Fisher expansions is in the
context of the central limit theorem, when Fm is the
distribution of the normalized sum of independent
random variables. It is clear from (17) and (19) that
the Edgeworth and Cornish-Fisher approximations
present higher order approximations to Fm than the
normal approximation itself. Necessary and suffi-
cient for convergence in the central limit theorem
is Lindeberg’s condition. I.e., the distribution of V
need not converge to normal for increasing number
of risk factors if the contribution to the variance of
V by a few components δiYi + 1

2γiY
2
i is dominant.

Monotonicity

The Cornish-Fisher expansion approximates the
monotone function F−1 ◦ Φ by polynomials. It is
clear that a necessary condition for monotonicity
of F is that the degree of the polynomial is odd,
which is the case when the highest order of the
Cornish-Fisher expansion, k, is even. The practi-
cal consequence is that, if management asks for the
99%-VaR as well as the 95%-VaR, the risk man-
ager may face the embarassing situation that the
approximated 95%-VaR is larger than the approxi-
mated 99%-VaR.

Tail Behavior

Let p denote the cut-off Cornish-Fisher expan-
sion, i.e., the polynomial intended to approximate
F−1◦Φ. This is equivalent to saying that the distri-
bution of V is approximated by the distribution of
p(Z), where Z is standard normal. Assume that p is
monotone, so that p−1 is well defined. If d denotes
the degree of the polynomial, p(z) behaves like czd

and p−1(x) like (x/c)1/d (for z → ∞). Then the
probability density of p(Z) is

f̃(x) = φ(p−1(x))[p−1(x)]′

∼ e−
1
2 (x/c)(2/d) 1

cd
(x/c)1/d−1

(20)

for x → ∞. For one-factor problems with λ1 > 0
the density of V has (up to a constant factor) the
tail given by (20) with d = 2. Clearly, the tail

6
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Figure 1: Cornish-Fisher approximations of the quantile function of the negative of a χ2
1 variate (one

risk factor, γ = −1, δ = 0). The number in the legend is the highest cumulant used.

behavior of the approximation deviates more and
more from the true tail behavior for d → ∞.

Note that saddle-point methods are superior in
this regard, since their accuracy increases in the
tail (Barndorff-Nielsen and Klüppelberg; 1999).

Convergence in the Approximation

Order k

The key theorem for the convergence of power se-
ries is Cauchy-Hadamard’s theorem, which states
that a power series

∑∞
k=0 ak(z − z0)

k converges in
the circle around z0 with the radius

r =
1

lim sup k
√

|ak|
and diverges outside of that circle. The conver-
gence in the interior of the circle is absolute, that
is, it also holds for re-sorted series. If f has a singu-
larity at z1 and the Taylor series is developed at the

point z0 (i.e., ak = 1
k!

dk

dzk f(z0)), then the theorem
implies r ≤ |z1 − z0|, .

Since the moment generating function M(t) of
V has poles at t = 1/λi, the convergence radius
of the series (13) is at most 1/|λ|max. Application
of the convergence theorem for characteristic func-
tions implies that the Gram-Charlier-series for the
cdf (15) cannot converge weakly. (Otherwise (13)
should converge uniformly on closed intervals of the
imaginary axis.)

The Edgeworth expansion (19) can be inter-
preted as Tayler series expansion of the function

ft(τ) = e−t2/2M(tτ)1/τ2

in τ (with τ = 1/
√

n). Since the moment gener-
ating function M has poles at 1/λi, the function
τ 7→ ft(τ) has poles at 1/(tλi). The Edgeworth
series for n = 1 (τ = 1) does not converge if the
convergence radius of the Taylor series expansion
of τ 7→ ft(τ) is less than 1, which is the case for
t > 1/|λ|max. This leads to the following result.

Proposition 1 The Edgeworth series for the mo-
ment generating function (19) (with n = 1) con-
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verges pointwise on the imaginary axis and the
corresponding Edgeworth series for the distribution
function converges weakly for a distribution F from
the family defined by (1) if and only if F is a nor-
mal distribution (Γ = 0). The same holds for the
Gram-Charlier series (13) and (15).

The Cornish-Fisher expansion for a given normal
quantile z and for a distribution F depends on the
value and all derivatives of the Edgeworth approx-
imation for F at the point z. Since the Edgeworth
expansion does not converge for all non-normal F
from the delta-gamma-normal family, it is plausi-
ble that the Cornish-Fisher expansion also fails to
converge for a large subclass of the family. (A pre-
cise characterization of the set of convergence seems
difficult because of the two-step derivation of the
Cornish-Fisher expansion.)

Even a converging series ãk → a = (F − Φ)/φ
instead of the Edgeworth expansion may not lead
to a converging generalized Cornish-Fisher expan-
sion (12), however. (12) does not converge if the
convergence radius of the power series (11) is less
than one. For a fixed probability level α, (11) is a
Taylor series expansion of the inverse of the func-

tion s(x) = Φ(x)−α
Φ(x)−F (x) at s = 0 (x = Φ−1(α)). Since

Φ(x)−F (x) usually changes sign one or more times,
s is not globally invertable. Let s−1 denote the
inverse of s in that neighborhood of x = Φ−1(α)
where s is monotone. Among the reasons, why the
generalized Cornish-Fisher expansion may not con-
verge, are:

1. The neighborhood where s−1 is defined may
not contain the interval (−1, 1]. This is the
case for α = 0.25 and the normalized χ2

1 distri-
bution (γ1 = 1, δ2

1 = 1
2 , θ1 = − 1

2 ), for example.

2. If all eigenvalues λi are non-zero, the cdf F of
V has a singularity at

x0 :=
m

∑

i=1

(θi −
1

2
δ2
i /λi).

(F is C∞ except in x0, where the highest con-
tinuous derivative has order [(m− 1)/2]. Con-
sequently, the generalized Cornish-Fisher ex-
pansion cannot converge if s−1(−1, 1) ∋ x0.
This is the case for α < Φ(−0.75) and the nor-
malized χ2

1 distribution, for example.

5 Quantitative Properties of

the Cornish-Fisher Expan-

sion

5.1 Worst-Case Errors

Consider an approximation method (α, ϑ) 7→
Q(α, ϑ), where α is the probability level, ϑ =
(θ, ∆,Γ) a triple of parameters, and Q(α, ϑ) the
corresponding approximated quantile. The crite-
rion considered here is the “worst-case error relative
to the standard deviation of the portfolio”:

e(α) := sup
{

|Q(α, ϑ) − qα(ϑ)|
∣

∣

s.t. µ(ϑ) = 0, σ(ϑ) = 1
}

, (21)

where qα(ϑ) is the true quantile, µ(ϑ) the expec-
tation, and σ(ϑ) the standard deviation of the dis-
tribution of V with parameters ϑ = (θ, ∆,Γ). The
alternative criterion “relative error” has the prob-
lem that the true quantile may be close to zero (due
to a well-hedged portfolio, for instance).

The worst-case view may seem exaggerated and
far from practice, as (1) the Cornish-Fisher approx-
imations in fact achieve much higher accuracy near
the normal distribution than at the worst case and
(2) well-diversified firm-wide portfolios typically are
relatively close to the normal distribution. Risk-
management systems, however, are usually applied
at all levels of aggregation, i.e., also at the trading
desk level. At these levels, a few risk factors may
dominate the picture. We argue, moreover, that the
essence of risk measurement is to provide estimates
of bounds on what can go wrong. In this sense, ap-
proximation methods for risk measurement should
be judged based on what accuracy they can very
likely guarantee.

The distribution of V is close to normal if in the
decomposition (2)

1. δi is large compared to λi, for all i, since
then each individual of the independent ran-
dom variables is close to normal, or

2. there is a large number of i where λi is large
compared to δi, but all those λi are approxi-
mately of the same size, because then the cen-
tral limit theorem applies.

8



Since the Cornish-Fisher approximations are espe-
cially good near the normal distribution, the worst-
case will likely occur when the exposure to one or
two risk factors dominates all others. Thus the
worst-case error on the problems with one or two
risk factors provides an interesting lower bound on
the worst-case error on the whole family of distri-
butions.5

The analysis of the one-dimensional sub-family is
simplified by the fact that the density and cdf of a
non-central χ2

1 are known analytically:

P{(Z +a)2 ≤ x} = Φ(
√

x−a)−Φ(−
√

x−a) (22)

for x ≥ 0, and 0 otherwise. (Z is standard-
normal.) The density of the non-central χ2

1 with
non-centrality parameter a is consequently

f(x; a) =
1

2
√

x
(φ(

√
x − a) + φ(−

√
x − a))

=
1√
2πx

e−(x+a2)/2 cosh(a
√

x)

(23)

for x ≥ 0 and 0 otherwise.
This implies the cdf for a one-dimensional delta-

gamma-normal-variate (excluding the trivial case
where both δ and λ are zero):

P{θ + δZ +
1

2
λZ2 ≤ x} =



















Φ(y − a) − Φ(−y − a) λ > 0, x ≥ θ − δ2

2λ

1 − Φ(y − a) + Φ(−y − a) λ < 0, x ≥ θ − δ2

2λ

Φ(x−θ
δ ) λ = 0

0 otherwise

(24)

with y :=
√

2
λ (x − θ + δ2

2λ ) and a := δ/λ. The den-

sity for the one-dimensional delta-gamma-normal-
variate is

f(x; θ, δ, λ) =











2
|λ|f(y2; a) λ 6= 0, x ≥ θ − δ2

2λ

φ(x−θ
δ )/δ λ = 0

0 otherwise.

(25)
We parameterize the family of probability dis-

tributions by λ ∈ [−
√

2,
√

2]. θ := −λ/2 and

δ :=
√

1 − λ2/2 ensure mean 0 and standard devi-
ation 1. The true 0.01-quantile increases monoton-
ically from about −3.984σ to −0.707σ. This means
that the worst-case error (on the one-dimensional
sub-family) of the normal-quantile approximation –
taking the normal-quantile but computing the vari-
ance from δ and λ - is about 1.658σ, realized for a
short-gamma position.

Figure 2 shows the approximation error of the
Cornish-Fisher approximations using up to the sec-
ond, fourth, eighth, and sixteenth cumulant, re-
spectively. It shows that the higher order approxi-
mations have increasing accuracy near the normal
distribution, but become less reliable far from the
normal distribution.

Figure 3 shows the worst-case error on the one-
and two-dimensional sub-families for increasing or-
der of approximation. The one-dimensional sub-
family obviously is not rich enough to expose the
weaknesses of the Cornish-Fisher approximation.

5.2 A Real-World Example

The data provided by the Bankgesellschaft Berlin
contain

• volatilities (standard deviations) and correla-
tions of daily risk factor changes and

• aggregated sensitivities (first and second
derivatives of the portfolio value function w.r.t.
the risk factors) for two portfolios

on two dates. 928 risk factors are in use. Before
doing the eigenvalue decomposition, empty (zero)
rows and columns in Γ are eliminated in order to
reduce the dimension. The last two columns of ta-
ble 1 contain the setup costs for the Fourier in-
version and Cornish-Fisher approximation, respec-
tively, using standard methods of the statistical
software package R (Ihaka and Gentleman; 1996,
development version May 2001) on an Athlon with
750MHz. Both computations are suboptimal, so
the times are to be taken as an upper bound on
what can be achieved.

The O(m3)-contributions to the cost of the
Fourier inversion are two matrix multiplications

5The numerical computation of the worst case error e(α) for higher numbers of risk factors m >> 1, a given probability
level α, and Cornish-Fisher approximation Q appears to be intrinsically difficult, as the function Q(α, θ, δ, Λ) − qα(θ, δ, Λ)
has many local optima.
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Figure 2: The approximation error for the 1%-quantile on the one-dimensional sub-family of distribu-
tions. The number in the legend is the highest cumulant used. γ = 0 is the normal distribution. “CF 2”
is the normal approximation.

case relevant nonzero computing time in seconds
risk factors gammas spectral decomp. 4 cumulants

1 113 731 0.05 0.03
2 111 697 0.05 0.03
3 218 650 0.30 0.14
4 209 607 0.25 0.13

Table 1: Dimensions and actual computing times of the four real-world sample portfolios. The third column contains
computing times for the matrix multiplication B⊤ΓB and the eigenvalue decomposition of the matrix B⊤ΓB. Since
the estimate of Σ usually only changes once per day, the decomposition BB⊤ = Σ can be done offline and is not
counted towards the initial costs of the Fourier inversion. The computation of the four cumulants (fourth column)
uses four matrix multiplications (instead of a reduction to Hessenberg form).
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Figure 3: The worst-case error for the 1%-quantile on the one- (dotted) and two-dimensional (solid)
sub-families of distributions for increasing order of approximation.

(B⊤ΓB, BLAS routine DGEMM6) and a reduc-
tion to a tridiagonal matrix (B⊤ΓB = QTQ⊤, LA-
PACK routine DSYTRD). The O(m3)-operations
needed for the Cornish-Fisher approximation up
to the k−th cumulant are either k matrix mul-
tiplications or one matrix multiplication and one
reduction to Hessenberg form (LAPACK routine
DGEHRD). Table 2 shows that the computation
of the first four cumulants is not significantly
faster than the initial decomposition needed for the
Fourier inversion.7

The final table 3 shows the 99%-VaR (after nor-
malization to σ = 1) for the four cases, computed
with the Cornish-Fisher approximation using up to
the fourth cumulant as well as a Fourier inversion.
The numbers for skewness and curtosis suggest that
the distributions are very close to normal. A QQ-
Plot against normal confirms this. The actual ac-
curacy of about 2 ·10−6 is obviously more than suf-

ficient.

6 Conclusion and Open Ques-

tions

In order to put the errors of the Cornish-Fisher ap-
proximations into perspective, look at the differ-
ent error sources in the context of Delta-Gamma-
Normal approaches to the computation of VaR:

1. random fluctuations that influence the esti-
mate of the covariance matrix Σ,

2. deviations from model assumptions of (condi-
tional) Gaussian risk factor changes,

3. differences between the real price function and
its quadratic approximation, and

6DSYMM is not significantly faster than DGEMM.
7Most vector-vector (BLAS1) and matrix-vector (BLAS2) routines are memory-bound instead of CPU-bound on current

machines. Some (blocked versions of) algorithms can benefit better from cache hierarchies than others, which explains why
the algorithm with the highest operations count actually is the fastest on this machine.
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problem floating point MFLOPS time in
operations nanoseconds

DGEMM 2 m3 800 2.5m3

DSYTRD 4/3 m3 200 6.7m3

DGEHRD 10/3 m3 250 13.3m3

FI (2 DGEMM + 1 DSYTRD) 5.3m3 457 11.7m3

CF4 (1 DGEMM + 1 DGEHRD) 5.3m3 336 15.8m3

CF4 (4 DGEMM) 8m3 800 10.0m3

CF4 (4 SGEMM), 3DNow! 8m3 1850 4.3m3

Table 2: Estimated computing times using ATLAS (Whaley et al.; 2000) version 3.2.1 and LAPACK (Anderson et al.;
1999) version 3.0 on an Athlon with 750MHz. The first three lines contain the operation counts and timing for the
building block routines. “FI” denotes the initial cost for the Fourier inversion and “CF4” the initial cost for computing
the first four cumulants. The last line is not really comparable, as “3DNow!” yields only single precision and does not
fully support IEEE arithmetic.

case skewness curtosis VaRFI VaRCF4−VaRFI VaRCF4−VaRCF4′

1 0.093 0.012 2.238191 1.663802e-06 4.174439e-14
2 0.092 0.012 2.238394 1.841259e-06 4.396483e-14
3 0.017 0.001 2.309548 -1.618836e-06 -3.552714e-15
4 0.019 0.001 2.306958 -2.322726e-06 -4.440892e-16

Table 3: Skewness, Curtosis, 99%-VaR, and Differences. Column 3 contains the 99%-VaR, normalized to σ = 1.
The difference between the Fourier inversion and the Cornish-Fisher approximation is in column 5. The last column
contains the difference between the Cornish-Fisher approximations when the cumulants are computed from (∆, Γ, Σ)
and (δ, λ), respectively. It indicates the size of the error introduced by the eigenvalue decomposition.

4. approximation errors of the Delta-Gamma-
Normal method (Cornish-Fisher, Fourier in-
version, partial Monte Carlo, . . . ).

Simple Monte-Carlo simulation shows that the
error in the 99%-VaR to expect from fluctuations
in the estimate of Σ is about 0.1σ for the “per-
fect case”: V = θ + ∆⊤X and X is normally dis-
tributed. (σ is the standard deviation of V and
0.1σ is the square root of the expected squared er-
ror of the 99%-VaR-estimate that is based on the
equally weighted estimator of the sample variance
with 250 trading days horizon.) The expected er-
ror is about 0.3σ for the specific ”Delta-Gamma-
Normal case” V = 0.5 + 1

2

√
2X − 1

2X2 where X is
normal. It makes no sense to strive for an accuracy
in the fourth step that is much higher than 2 deci-
mal digits, if the expected error in the first step is
already 0.1σ, even in the best case. According to
figure 2, the Cornish-Fisher approximation (up to
the fourth cumulant) achieves an accuracy of 0.1σ
on a relatively large neighborhood of the normal
distribution.

Deviations from normality can in principal lead
to large errors in the second step, but do not in
practice, since risk factors are chosen by the mod-
eler (risk manager). If a certain derivative security
is by market convention expressed as a function of
some underlying with very non-normal increments,
some other, “more normal” risk factor is usually
chosen by the risk manager and the nonlinearity
is put into the price function (the “mapping”). In
the case that risk factor innovations are in fact t-
distributed with three degrees of freedom, but as-
sumed normal, the error in the 99%-VaR is about
0.3σ (for a linear price function).

Using the Markov inequality, it can be shown
that the ratio between the 1%-quantile and the
standard deviation of a distribution with mean 0
can maximally be 10. A 99%-VaR of about 9.95σ
actually appears in the following sample portfolio.
A portfolio with normally distributed fluctuations
is held. Additionally, digital put options with ex-
piry date at the VaR horizon on an independent,
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normally distributed risk factor are sold:

V = w1(p − 1{X1≤K}) + w2X2.

p is the premium for the digital put option. K is
the strike of the digital put and assumed to be the
standard normal p-quantile. X1 and X2 are inde-
pendent standard normal. w2

1p(1 − p) + w2
2 = 1

ensures that the standard deviation of V is 1. Let-
ting tend p to 0.01 from above and w2 → 0, the
99%−VaR approaches

√
99σ. This shows that – in

the worst-case view – this error source is the most
critical and is about one magnitude higher than the
worst-case error of the Cornish-Fisher approxima-
tion.

The conclusion is that the Cornish-Fisher ap-
proximation is a competitive technique if the
portfolio distribution is relatively close to nor-
mal. It achieves a sufficient accuracy potentially
faster than the other numerical techniques (mainly
Fourier inversion, saddle-point methods, and par-
tial Monte-Carlo) over a certain range of practical
cases. One should beware, however, of the many
qualitative short-comings and its bad worst-case
behavior.

If one takes the worst-case view and cares about
the corner cases – as we believe one should in
the field of risk management – the potential errors
from the quadratic approximation are much larger
than the errors from the Cornish-Fisher expan-
sion. Hence a full-valuation Monte-Carlo technique
should be used anyway to frequently check the suit-
ability of the quadratic approximation. This will
also take care of the “bad” cases for the Cornish-
Fisher approximation.

From a more theoretical point of view, there are
several open questions. (1) Although we collected
evidence that the two steps leading to the Cornish-
Fisher expansion do not converge in many cases,
the exact characterization of the set of parame-
ters (θ, ∆,Γ) for which the Cornish-Fisher approx-
imation converges, is open. (2) The worst-case er-
rors on the one- and two-dimensional sub-families
provide only lower bounds for the worst-case er-
ror on the whole family. It would be nice to have
an upper bound. (3) The reason for the non-
convergence of the Edgeworth expansion is that
the tails of the considered probability densities are
much “fatter” than the tail of the normal distribu-
tion. A generalized Cornish-Fisher expansion with

a base distribution that has comparable tail behav-
ior (“semi-heavy tails”) could potentially lead to
a converging expansion. (4) There are many al-
ternative techniques described in the probability
and statistics literature, like Ruben’s series expan-
sion in terms of Gamma distributions (Mathai and
Provost; 1992), alternative series representations
(Abate and Whitt; 1999b), saddlepoint approxi-
mations (Daniels; 1987; Rogers and Zane; 1999;
Feuerverger and Wong; 2000), and continued frac-
tions (Abate and Whitt; 1999a).

References

Abate, J. and Whitt, W. (1999a). Comput-
ing Laplace transforms for numerical inversion
via continued fractions, INFORMS J. Comput.
11(4): 394–405.

Abate, J. and Whitt, W. (1999b). Infinite-series
representations of Laplace transforms of proba-
bility density functions for numerical inversion,
J. Oper. Res. Soc. Japan 42(3): 268–285.

Albanese, C., Jackson, K. and Wiberg, P. (2000).
Fast convolution method for VaR and VaR gradi-
ents, http://www.math-point.com/fconv.ps.

Anderson, E., Bai, Z., Bischof, C., Blackford, S.,
Demmel, J., Dongarra, J., Croz, J. D., Green-
baum, A., Hammarling, S., McKenney, A. and
Sorensen, D. (1999). LAPACK Users’ Guide,
third edn, SIAM. http://www.netlib.org/

lapack/lug/.

Barndorff-Nielsen, O. and Klüppelberg, C. (1999).
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