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The correct Kriging variance estimated by bootstrapping

D. den Hertog∗ J.P.C. Kleijnen‡ A.Y.D. Siem§

4th May 2004

Abstract

The classic Kriging variance formula is widely used in geostatistics and in the design

and analysis of computer experiments. This paper proves that this formula is wrong. Fur-

thermore, it shows that the formula underestimates the Kriging variance in expectation.

The paper develops parametric bootstrapping to estimate the Kriging variance. The new

method is tested on several artificial examples and a real-life case study. These results

demonstrate that the classic formula underestimates the true Kriging variance.

Keywords: Kriging, Kriging variance, bootstrapping, design and analysis of computer

experiments (DACE), Monte Carlo, global optimization, black-box optimization

1 Introduction

Kriging is an interpolation technique that was originally invented in the field of geo-

statistics; see Cressie (1991). Next, Sacks, Welch, Mitchell and Wynn (1989) applied

Kriging to the design and analysis of computer experiments (DACE). Since then, many

others followed; see Jones, Schonlau and Welch (1997), Jones (2001), Koehler and Owen
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(1996), Santner, Williams and Notz (2003) and Stehouwer and den Hertog (1999). In

DACE, Kriging models are used as response surface models, which are also called meta-

models, compact models or surrogates; i.e. Kriging models the input/output behavior of

the underlying simulation model, which is treated as a black box.

The classic Kriging variance formula is used for three different goals. First, it is used to

select new input design points to obtain better Kriging models; see Sacks, Welch, Mitchell

and Wynn (1989). In Kleijnen and van Beers (2004) this approach is called application-

driven sequential design of experiments, but they use a type of cross-validation, instead of

the classic Kriging variance. Also in Jin and Chen (2002) such an approach is followed.

Second, the formula is used for the global optimization of time-consuming computer sim-

ulations (black-box functions), namely to select new input design points to find the global

optimum of the underlying computer simulation model; see Booker, Dennis, Frank, Ser-

afini, Torczon and Trosset (1999), Cox and John (1997), Sasena, Papalambros and

Goovaerts (2002) and Schonlau, Welch and Jones (1998). An overview of these methods

is given in Jones (2001). Third, the Kriging variance can be used as a quality measure of

a Kriging model since it quantifies the accuracy of the prediction. This can be used e.g.

as a criterion for the number of design points.

In this paper we show that the Kriging variance formula used in the literature (see e.g.

Cressie (1991), Jones (2001) and Sacks, Welch, Mitchell and Wynn (1989)) is wrong,

because it neglects the fact that certain correlation parameters (discussed in Section 2) are

estimated. Cressie (1991, p. 127) mentions that the classic variance formula is expected

to underestimate the true variance. Indeed, we show that it is an underestimator in

expectation. Furthermore, we present a bootstrap method to estimate the correct Kriging

variance. For a general discussion of bootstrapping we refer to Efron and Tibshirani

(1993). We apply our bootstrap method to both some artificial examples and a real-life

case study. We will see that the difference between the classic and the bootstrapped

Kriging variance can be very large. This is especially the case where the classic Kriging

variance is large. Because of the wide application of the Kriging variance, we expect that

our method may have substantial impact on the methods mentioned above.

This paper is organized as follows. In Section 2 we summarize some classic theory on

Kriging models, including the Kriging variance formula. In Section 3 we show what is

wrong with this formula. In Section 4 we present our new (bootstrap) method to estimate

the correct Kriging variance. In Section 5 we apply this method to several artificial,

academic examples. In Section 6 we treat a practical real-life case study from Sacks,

Welch, Mitchell and Wynn (1989). Finally, in Section 7 we summarize our conclusions
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and give recommendations for further research.

2 Kriging models

In this section we summarize some Kriging theory according to Sacks, Welch, Mitchell

and Wynn (1989). The response function y(x) is treated as a realization of a stochastic

process Y (x), where x denotes the d-dimensional input variable. This stochastic process

is assumed to consist of a regression part and a stochastic part:

Y (x) =
k∑

j=0

βjfj(x) + Z(x), (1)

where k+1 is the number of regression functions including f0(x) ≡ 1. Often, the regression

functions fj are left out except for f0(x), because they do not yield better Kriging models.

The stochastic part Z(x) is assumed to have zero mean and constant process variance (say)

σ2. The covariance between Z(w) and Z(x), with w and x elements of the input space,

is given by

V (w, x) = σ2R(w, x),

where R(w, x) denotes the correlation between Z(w) and Z(x). Given is a set of com-

puter simulation input data S = [x1, ..., xn]T and a set of corresponding output data

ys = [y(x1), ..., y(xn)]T . We assume ys is a realization of the stochastic vector Ys =

[Y (x1), ..., Y (xn)]T , defined by (1). Further, we assume a scalar output, as most of the

Kriging literature does.

Now consider the linear predictor

ŷ(x) = cT (x)ys.

Kriging chooses these weights c(x) such that they minimize

MSE[ŷ(x)] = E[cT (x)Ys − Y (x)]2 (2)

under the constraint

E[cT (x)Ys] = E[Y (x)]; (3)

in other words, c(x) gives the so-called ”Best Linear Unbiased Predictor” (BLUP).

Before we proceed, we introduce some further notation. We write

f(x) = [f0(x), . . . , fk(x)]T
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for the k + 1 regression functions in (1), and

F =




fT (x1)
...

fT (xn)


 (4)

for the values of these regression functions in the n design points. Furthermore, let R be

the correlation matrix with elements

Rij = R(xi, xj), for i = 1, . . . , n and j = 1, . . . , n;

i.e., Rij is the correlation between Z(xi) and Z(xj). Let

r(x) =
[
R(x1, x), . . . , R(xn, x)

]T
(5)

be the vector with correlations between Z(xi) and Z(x).

Classic Kriging assumes that c(x) is independent of the output data. Then we can

rewrite the MSE in (2) as (see Santner, Williams and Notz (2003))

MSE[ŷ(x)] = σ2[1 + cT (x)Rc(x)− 2cT (x)r(x)]. (6)

Under the same assumption the constraint (3) can be rewritten as (see again Santner,

Williams and Notz (2003))

FT c(x) = f(x). (7)

To minimize the MSE in (6) with respect to c(x) under the constraint (7), Lagrange

multipliers λ(x) are used. This gives the following system of equations:

 0 FT

F R





 λ(x)

c(x)


 =


 f(x)

r(x)


 .

Solving this system of equations for c(x) and λ(x) gives

λ(x) = (FT R−1F )−1(FT R−1r(x)− f(x))

c(x) = R−1(r(x)− Fλ(x)),
(8)

which yields the Kriging predictor:

ŷ(x) = cT (x)ys

= fT (x)β̂ + rT (x)R−1(ys − F β̂),
(9)

where

β̂ = (FT R−1F )−1FT R−1ys (10)

is the generalized least-squares (GLS) estimate of β in (1).
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The MSE of the predictor–also known as the Kriging variance–becomes (see also

Lophaven, Nielsen and Sondergaard (2002)):

MSE[ŷ(x)] = σ2(1 + uT (x)(FT R−1F )−1u(x)− rT (x)R−1r(x)), (11)

where u(x) = FT R−1r(x) − f(x). Note that the Kriging variance is in fact a Mean

Squared Error.

Until now, we have not discussed the form of the correlation function R(w, x). Most

publications assume that the correlation structure is stationary ; i.e. R(w, x) = R(w− x).

Usually a parametric family of correlation functions is chosen. A popular choice is the

exponential family

Rθ,p(w, x) =
d∏

j=1

exp(−θj |wj − xj |pj ). (12)

In this paper, we will use (12) with pj = 2, as done in Sacks, Welch, Mitchell and Wynn

(1989); then (12) is called the Gaussian correlation function.

Furthermore, we assume that the stochastic process Z(x) is Gaussian. Then, its log

likelihood is a function of the process variance σ2, the regression parameters β, and the

correlation parameters θ. The maximum likelihood estimator (MLE) β̂ of β equals the

GLS estimator, and is given by (10); the MLE σ̂2 of σ2 is given by

σ̂2 =
1
n

(ys − F β̂)T R−1(ys − Fβ̂). (13)

To find the MLE θ̂ of θ, we should solve (see Sacks, Welch, Mitchell and Wynn (1989))

min
θ
|R|1/nσ̂2. (14)

Solving (14) is achieved by some numerical optimization procedure; we use the Matlab

toolbox DACE provided by Lophaven, Nielsen and Sondergaard (2002).

3 The classic Kriging variance formula

The derivation of the MSE in (6) assumed that the weight vector c(x) does not depend

on the output data vector. Actually, this assumption is false: c(x) does depend on the

data, namely on R, see (8). Given the chosen Gaussian correlation family Rθ,p(w, x)–see

(12) with pj = 2–this correlation structure is parameterized by θ. This θ is estimated by

θ̂ via (14), so it depends on the output data.

Because c(x) depends on ys, the reasoning in Section 2 fails at equations (6) and

(7). We do not know the accuracy of the approximation in (6). In the literature, (9) is

called the ’Best Linear Unbiased Predictor’. However, this predictor is neither linear nor
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unbiased. Therefore, Santner, Williams and Notz (2003) calls (9) the Empirical Best

Unbiased Linear Predictor (EBLUP). Also the final expression for the Kriging variance

(11) does not hold anymore.

It seems difficult to evaluate the magnitude of the approximation error. As we said in

Section 1, Cressie (1991) expects that (11) is a lower bound of the true Kriging variance,

but no arguments are given. We present the following explanation. A well-known equation

in mathematical statistics is

var(W ) = EV [var(W |V )] + varV [E(W |V )], (15)

where V and W are stochastic variables. Now we take V = θ̂ and W = ŷ − Y (x).

Substitution into (15) gives

var(ŷ − Y (x)) = Eθ̂

[
var(ŷ − Y (x)|θ̂)

]
+ varθ̂

[
E(ŷ − Y (x)|θ̂)

]
. (16)

Note that MSE[ŷ(x)] = var(ŷ − Y (x)) + (E[ŷ − Y (x)])2 is the true Kriging variance and

that MSE[ŷ(x)|θ̂] = var(ŷ − Y (x)|θ̂) +
(
E[ŷ − Y (x)|θ̂]

)2

is the classic Kriging variance.

Since the second term on the righthand side in (16) is positive, we get

MSE[ŷ(x)] = var(ŷ − Y (x)) + (E[ŷ − Y (x)])2

≥ Eθ̂

[
var(ŷ − Y (x)|θ̂)

]

= Eθ̂

[
MSE[ŷ(x)|θ̂]

]
,

where in the last step we used the fact that ŷ(x) is unbiased if θ̂ is known. So, the ”average”

Kriging variance is indeed an underestimator of the true Kriging variance. Note that there

may be realizations of θ̂ such that the Kriging variance is not an underestimator for the

true Kriging variance.

4 Bootstrap Kriging variance

Parametric bootstrapping is a well-known method to estimate the distribution of intricate

functions of stochastic variables or functions with parameterized distribution; see Efron

and Tibshirani (1993). In our case, we want to estimate the distribution of the prediction

error ŷ − Y (x) to estimate the value of MSE[ŷ(x)].

Note that the distribution type of Ys and Y (x) are known: Ys is multivariate Gaus-

sian, and Y (x) is a Gaussian process. Therefore we apply parametric bootstrapping–not

distribution-free bootstrapping. However, the parameters (namely the means and covari-

ances of Y (x)) are unknown.
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To estimate these parameters, we first select a parametric family of correlation func-

tions; in our case this is the Gaussian family given by (12) with pj = 2. Next, we estimate

the family’s parameters θ, the mean β, and the process variance σ2 from the input/output

data (xi, y(xi)). In Kriging this is usually done by using the maximum likelihood criterion,

which gives θ̂, β̂ and σ̂2; see (10), (13) and (14).

Parametric bootstrapping assumes that (12) with θ = θ̂ is the correct correlation

function, that β̂ is the true mean, and that σ̂2 is the true variance of the stochastic

process Y (x). Given these estimated mean and covariance of the Gaussian process Y (x),

the distribution from which the bootstrap draws values (say) y∗, is known. This bootstrap

is repeated B times, which gives y∗b with b = 1, . . . , B.

Since MSE[ŷ(x)] is a function of x, which is a continuous variable, we cannot simulate

MSE[ŷ(x)] for all x in the design space. We can proceed in three ways, which we present

in the next three subsections.

4.1 A fixed test set

Suppose we know beforehand that we want to estimate the value of MSE in a finite set of

test values x1
t , ..., x

nt
t , for which we will estimate the value of the MSE. Then, we sample

y∗ from a multivariate normal distribution

y∗ ∼ Nn+nt(FM β̂, σ̂2R(θ̂)), (17)

where

FM =




fT (x1)
...

fT (xn)

fT (x1
t )

...

fT (xnt
t )




,

which extends (4). In other words, we sample in the n ”old” points x1, . . . , xn and in

the nt ”new” points x1
t , . . . , x

nt
t simultaneously, because all ”old” and ”new” data points

are assumed to be a realization of the same Gaussian stochastic process (1) so they are

correlated.

Next, we repeat the sampling from (17) B times (as mentioned above), where the

b-th sample consists of ”old” input/output data y∗s;b = [y∗b (x1), . . . , y∗b (xn)]T and ”new”

input/output data y∗t;b = [y∗b (x1
t ), . . . , y

∗
b (xnt

t )]T . Based on each ”old” dataset y∗s;b, we

estimate β, σ2 and θ. The estimates β̂, σ̂2 and θ̂ determine a Kriging model based on
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y∗s;b. Using this model, we predict the output values in the ”new” input data points,

and calculate the squared errors in these test points. The average, based on B bootstrap

realizations of these squared errors per input point x, is an estimator of MSE[ŷ(x)].

Obviously, in the ”old” points MSE[ŷ(x)] is zero. More formally, from the B samples we

compute the estimate M̂SE[ŷ∗(x)] for x = x1
t ,...,x

nt
t as follows:

M̂SE[ŷ∗(xj
t )] =

1
B

B∑

b=1

(
ŷ∗b (xj

t )− y∗b (xj
t )

)2

,

where ŷ∗b (xj
t ) is the value of the Kriging model in point xj

t , fitted with the ”old” in-

put/output dataset of the b-th sample: y∗s;b = [y∗b (x1), . . . , y∗b (xn)]T and y∗b (xj
t ) is the j-th

element of the ”new” input/output dataset of the b-th sample: y∗t;b = [y∗b (x1
t ), . . . , y∗b (xnt

t )]T .

We summarize our bootstrap procedure as follows:

Algorithm:

Estimate the distribution of Y (x) from the n original data points.

Repeat B times

Sample Y ∗(x) in the n ”old” data points and in the nt ”new” test points simulta-

neously.

Fit a Kriging model from the n bootstrapped ”old” data points.

Calculate the Kriging predictions in the nt ”new” test points.

Calculate the squared prediction error in the test points.

End

For all nt test points

Calculate the sample mean of the squared ’prediction errors’ in the test point.

End

In practice, we might omit finding the MLE’s β̂∗b , σ̂2∗
b , and θ̂∗b (b = 1, . . . , B) of the B

Kriging models, and simply take the MLE’s of the original data, β̂, σ̂2, and θ̂, instead.

The bootstrap MLE’s will not differ much from the original MLE. This saves computation

time.

To demonstrate one iteration of this algorithm, we present an example that shows

how one bootstrap sample may look. We take the test function f1 : [0, 10] 7→ R and

f1(x) = −0.0579x4 + 1.11x3 − 6.845x2 + 14.1071x + 2; see Figure 3. From this function

we generate a dataset of n = 4 equidistant input points and the corresponding output

values. We compute the MLE of the parameters β, σ2, and θ of the Gaussian process
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with the Matlab Toolbox DACE, which gives β̂ = 1.2114, σ̂2 = 48.7939 and θ̂ = 1.0800.

These MLE estimates fix the parameters of the underlying Gaussian process, which is

to be bootstrapped. Then we sample Y ∗(x). This sample is represented by the balls

in Figure 1. Furthermore, we estimate a Kriging model from the bootstrapped n ”old”

data points; see the solid line in Figure 1. With this information we can calculate the

prediction error in each of the test points.

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

x

y

Kriging model based on bootstrapped "old" data
bootstrap sample ("old" and "new")

Figure 1: Example of one Bootstrap sample and the corresponding Kriging model for f1.

4.2 A variable test set

Suppose that we do not know beforehand in which points we shall estimate the Kriging

variance. Or suppose that we know the estimated Kriging variance for some input data,

and later on we want to estimate the variance in other points too. Then, it is still possible

to bootstrap the Kriging variance in these points provided that the bootstrapped data

is saved in the computer’s memory. This is necessary because the values that we wish

to bootstrap are correlated with the data already bootstrapped (both the ”old” and the

”new”). More precisely, if we want to bootstrap from Y2 = [Y (xnt1+1), . . . , Y (xnt2 )]T and

we already have bootstrapped the values y∗(x1), . . . , y∗(xnt1 ) from Y1 = [Y (x1), . . . , Y (xnt1 )]T ,

then we must take these realizations into account when bootstrapping Y2.

Let [Y T
1 , Y T

2 ]T be multivariate Gaussian distributed with mean:

µ =


 µ1

µ2
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and covariance:

Σ =


 Σ11 Σ12

ΣT
12 Σ22


 .

Let y∗1 = [y∗(x1), . . . , y∗(xnt1 )]T be a bootstrapped realization of Y1. Then (see e.g.

Mittelhammer (1996)), the conditional distribution of Y2 given y∗1 is as follows:

Y2|y∗(x1), . . . , y∗(xnt1 ) ∼ N (µ2 + ΣT
12Σ

−1
11 (y∗1 − µ1), Σ22 − ΣT

12Σ
−1
11 Σ12) (18)

We summarize our procedure for this test set as follows:

Algorithm:

Estimate the distribution of Y (x) from the n original data points.

Repeat B times

Sample Y ∗(x) in nt2−nt1 ”new” input data points, given y∗b in the nt1 bootstrapped

points and the n ”old” data points.

Fit a Kriging model from the n ”old” bootstrapped data points.

Calculate the Kriging predictions in the nt2 − nt1 ”new” input test points.

Calculate the squared prediction error in the new input test points.

End

For all nt2 − nt1 new test points

Calculate the sample mean of the ’prediction errors’ in the test point.

End

4.3 Adding new points one-at-a-time

Suppose we do not know beforehand in which points we want to estimate the Kriging

variance and we want to add points one at a time: This happens e.g. if we are interested

in finding the x for which the Kriging variance is maximal. Then we could use the

approach in Subsection 4.2. However, this method becomes very time-consuming as the

number of test points gets large, because of the calculation of Σ−1
11 in (18), which grows

with every iteration. Therefore, we now estimate the Kriging variance in an arbitrary test

point–independently of estimated Kriging variances in other test points.
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Let x0
t be a test point, in which we want to estimate the Kriging variance. We sample

Y ∗(x0
t )|y(x1), . . . , y(xn) (see (18)); i.e. we sample from

y∗(x0
t )|y(x1), . . . , y(xn) ∼ N (fT (x0

t )β̂+rT
θ̂
(x0

t )R
−1(θ̂)(y∗s−F β̂), σ̂2−σ̂2rT

θ̂
(x0

t )R
−1(θ̂)rθ̂(x

0
t ))),

(19)

where rθ̂ is as in (5).

We summarize this procedure as follows:

Algorithm:

Estimate the distribution of Y (x) from the n original data points.

Repeat B times

Sample Y ∗(x) in the n ”old” input points.

Fit a Kriging model from these n ”old” input points.

End

For all test points x0
t (not necessarily fixed beforehand)

Repeat B times

Sample Y ∗(x0
t ), given y∗b in the n bootstrapped ”old” input points using (19).

Calculate the Kriging prediction in x0
t .

Calculate the prediction error in x0
t .

End

Calculate the sample mean of the ’prediction errors’ in the test point.

End

This algorithm has the advantage that we do not have to save the information on other test

points. Furthermore, we do not have to calculate Σ−1
11 repeatedly. This saves computation

time, and makes our procedure more applicable in practice.

A drawback of this approach is that the bootstrapped Kriging variances are computed

separately. Consequently, we obtain bumpy plots for the bootstrapped Kriging variance;

see Figure 2. But, by using confidence intervals (see Subsection 5.2), we can still control

the accuracy of the bootstrapped Kriging variances.

5 Artificial Examples

5.1 Selecting four examples

We perform bootstrap procedures for some artificial test functions. The advantage of

these functions is that we know everything about them, so these experiments may give

11
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Figure 2: Example bootstrapped Kriging variance by calculating the variances one-at-a-time.

more insight. Also, we do not have to wait hours for a computer run evaluating the

function.

We select the following functions:

• f1 : [0, 10] 7→ R and f1(x) = −0.0579x4 + 1.11x3 − 6.845x2 + 14.1071x + 2; see

Figure 3.

• f2 : [0.1, 0.9] 7→ R and f2(x) = x
1−x ; see Figure 4.

• f3 : [−1, 1] 7→ R and f3(x) = 3
10+sin

(
16
15x− 1

)
+sin2

(
16
15x− 1

)
+ 2

100 sin
(
40( 16

15x− 1)
)
;

see Figure 5.

• f4 : [−2, 2]× [−1, 1] 7→ R and f4(x, y) = x2(4− 2.1x2 + x4/3) + xy + y2(−4 + 4y2);

see Figure 6.

The one-dimensional functions f1 and f2 are also used in Kleijnen and van Beers (2004);

f1 is a multimodal function and f2 equals the expected waiting time in the steady state of

an M/M/1 queue. The function f3 is also used in Giunta and Watson (1998); it consists

of a ’smooth’ part and a ’noisy’ part where the ’smooth’ part is given by the first two

terms and the ’noisy’ part by the last term; the ’noisy’ part represents the numerical

noise often encountered in practice. Finally, f4 is a two-dimensional function with six

local minima, of which two are global minima; see Dixon and Szego (1978).

To perform the bootstrap experiments, we use the multivariate normal distribution

sampling routine in Matlab (used Matlab 6.5.).
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Figure 3: f1(x) = −0.0579x4 + 1.11x3 −
6.845x2 + 14.1071x + 2 (see Kleijnen and

van Beers (2004)).
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Figure 4: f2(x) = x
1−x (see Kleijnen and

van Beers (2004)).
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Figure 6: f4(x, y) = x2(4− 2.1x2 +x4/3)+

xy + y2(−4 + 4y2) (see Dixon and Szego

(1978)).
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5.2 Analysis of bootstrap experiments

For test function f1 we generate a dataset of four equidistant input points and calculate

the corresponding output values. We compute the MLE of the parameters β, σ2 and

θ of the Gaussian process with the Matlab Toolbox DACE, which gives: β̂ = 1.2114,

σ̂2 = 48.7939 and θ̂ = 1.0800. Next, we calculate both the classic Kriging variance and

the bootstrapped Kriging variance. Furthermore, we construct a 95% confidence interval

for the bootstrapped Kriging variance by using the Central Limit Theorem as follows:
(

M̂SE[ŷ∗(x)]− 1.96
σ̂SE [ŷ∗(x)]√

B
, M̂SE[ŷ∗(x)] + 1.96

σ̂SE [ŷ∗(x)]√
B

)

where σ̂SE [ŷ∗(x)] is the estimated standard deviation of the bootstrapped squared errors:

σ̂SE [ŷ∗(x)] =
1

B − 1

B∑

b=1

(
(ŷ∗b (x)− y∗b (x))2 − M̂SE[ŷ∗(x)]

)2

.

In Figure 7 the solid line shows the bootstrap Kriging variance for B = 50. The dotted

lines show the upperbound and the lowerbound of the pointwise 95% confidence interval

of this variance. The dashed line shows the classic Kriging variance (11).

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

x

va
ria

nc
e

Sim. var.
Krig. var.
lb conf. interv.
ub conf. interv.

Figure 7: Bootstrap and classic Kriging variances for f1 and B = 50.

We see that the bootstrap Kriging variance is larger than the classic variance almost

everywhere. However, the lowerbound of the confidence interval is smaller than the classic

Kriging variance. Therefore we cannot conclude that the bootstrapped Kriging variance

is significantly larger than the classic variance.

Therefore we carry out the same experiment with a larger number of bootstrap sam-

ples, namely B = 24000; see Figure 8. Now the bootstrapped Kriging variance is signifi-

14



0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

x

va
ria

nc
e

Sim. var.
Krig. var.
lb conf. interv.
ub conf. interv.

Figure 8: Bootstrap and Kriging variance for f1 and B = 24000.

cantly larger than the classic Kriging variance. Furthermore the peaks of the bootstrapped

Kriging variance are not all equally high, whereas the peaks of the classic Kriging variance

are.

In this example, the difference between the classic and the bootstrap Kriging variances

is not so big. In the next example, however, we will see that this difference can be much

bigger.

Figure 9 shows the results for f2. Again, we choose four points equidistant. Now we

choose B = 5000. We get β̂ = 3.0692, σ̂2 = 13.2505, and θ̂ = 21.1043. The figure shows

that the bootstrap Kriging variance is again significantly larger than the classic Kriging

variance.

For f3 we again select equidistant input data, which gives β̂ = 0.2244, σ̂2 = 0.0155

and θ̂ = 27.0005. The results for B = 25000 are shown in Figure 10. This figure again

shows that the bootstrap Kriging variance is significantly larger than the classic variance.

For f4 we choose a dataset of 20 input points. We choose a ”maximin non-collapsing”

Latin Hypercube Design (LHD); see van Dam, den Hertog, Husslage and Melissen (2004).

This gives β̂ = 1.5316, σ̂2 = 2.1994, θ̂1 = 0.8058, and θ̂2 = 3.2232. The bootstrap variance

for B = 8000 is given in Figure 11. Figure 12 shows the difference between the lowerbound

of the confidence interval of the bootstrapped variance and the classic variance, which

shows that the bootstrapped variance is significantly larger than the classic variance.
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Figure 9: Bootstrap and classic Kriging variances for f2 and B = 5000.
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Figure 10: Bootstrap and classic Kriging variances for f3 and B = 25000.
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Figure 11: Bootstrap Kriging variance for f4 and B = 8000.
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Kriging variance and the classic Kriging variance for f4 and B = 8000.

17



6 Case study: a circuit-simulator

The real-life dataset taken from Sacks, Welch, Mitchell and Wynn (1989) consists of data

of a circuit-simulator. The dataset consists of n = 32 runs. The dataset has d = 6 input

variables. In Sacks, Welch, Mitchell and Wynn (1989), the experimental region is the unit

cube [−0.5, 0.5]6. We, however, want to avoid ”extrapolation” as much as possible, so we

take [−0.46, 0.31]×[−0.39, 0.45]×[−0.47, 0.38]×[−0.43, 0.46]×[−0.47, 0.47]×[−0.49, 0.41],

which is determined by the minimum and maximum values of every original input variable

in the 32 data points. All 32 input values still fall inside our reduced experimental region.

Because this case study involves a six-dimensional input, it is not possible to make

the type of plots we made in Section 5. Instead, we generate a test set of 200 input

data points. We do this by generating a Latin Hypercube Sample (LHS), originated by

McKay, Conover and Beckman (1979). We use the LHS procedure of the Matlab Toolbox

DACE. In these 200 input data points we calculate the bootstrap Kriging variance for

B = 20000, its 95% confidence interval and the classic Kriging variance. This gives

β̂ = −0.8207, σ̂2 = 0.2611 and θ̂ = (0.0005, 0.2422, 9.5035, 0.6036, 1.1714, 1.9215). Then,

we calculate the difference between the bootstrap and the classic Kriging variances, the

difference between the lowerbound of the 95% confidence interval of the bootstrap and

the classic Kriging variances, and the classic Kriging variance for every point of the test

set. This gives the three boxplots in Figure 13. These plots show that in all test points

the bootstrapped variance is significantly larger than the classic Kriging variance. We

also made the same boxplots with a different test set originating from another realization

of the same LHS; this gave similar results.

7 Conclusions and Further Research

We have proven that the ”average” classic Kriging variance formula used in most of the

literature underestimates of the true Kriging variance. To estimate the correct Kriging

variance we introduced a parametric bootstrapping method. Several artificial examples

and a real-life case study demonstrated that the classic Kriging variance formula often

underestimates indeed.

The difference between the classic and the bootstrap Kriging variances can be rather

big, as we saw for the second test function (f2). This may have a substantial impact

on the three types of applications of the Kriging variance formula that we discussed in

Section 1, namely

• selecting new input design points to obtain better Kriging models.
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Figure 13: Boxplots of the difference between bootstrap and classic variance and the lower-

bound of the 95% confidence interval of the bootstrap variance and the classic variance in

200 test points.

• selecting new input design points to find the global optimum of an underlying

computer-simulation model (black-box function).

• measuring the quality of a Kriging model.

For further research we would therefore recommend to study the effect of using the boot-

strap Kriging variance–instead of the classic Kriging variance formula–to these application

areas of the Kriging variance.
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