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Abstract

Background: Genome-wide ligation-based assays such as Hi-C provide us with an

unprecedented opportunity to investigate the spatial organization of the genome.

Results of a typical Hi-C experiment are often summarized in a chromosomal contact

map, a matrix whose elements reflect the co-location frequencies of genomic loci.

To elucidate the complex structural and functional interactions between those

genomic loci, networks offer a natural and powerful framework.

Results: We propose a novel graph-theoretical framework, the Corrected Gene

Proximity (CGP) map to study the effect of the 3D spatial organization of genes in

transcriptional regulation. The starting point of the CGP map is a weighted network,

the gene proximity map, whose weights are based on the contact frequencies

between genes extracted from genome-wide Hi-C data. We derive a null model for

the network based on the signal contributed by the 1D genomic distance and use it

to “correct” the gene proximity for cell type 3D specific arrangements. The CGP map,

therefore, provides a network framework for the 3D structure of the genome on a

global scale. On human cell lines, we show that the CGP map can detect and

quantify gene co-regulation and co-localization more effectively than the map

obtained by raw contact frequencies. Analyzing the expression pattern of metabolic

pathways of two hematopoietic cell lines, we find that the relative positioning of the

genes, as captured and quantified by the CGP, is highly correlated with their

expression change. We further show that the CGP map can be used to form an

inter-chromosomal proximity map that allows large-scale abnormalities, such as

chromosomal translocations, to be identified.

Conclusions: The Corrected Gene Proximity map is a map of the 3D structure of the

genome on a global scale. It allows the simultaneous analysis of intra- and inter-

chromosomal interactions and of gene co-regulation and co-localization more

effectively than the map obtained by raw contact frequencies, thus revealing hidden

associations between global spatial positioning and gene expression. The flexible

graph-based formalism of the CGP map can be easily generalized to study any

existing Hi-C datasets.
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Introduction

Most cell types in the human body have an identical one-dimensional (1D) genome,

(i.e. a linear sequence of nucleotides), yet their genomes have different underlying 3D

architectures [1]. Their different ways of packing DNA molecules into cell nuclei, in

particular via the formation of loops or domains [2, 3] in association with the nuclear

lamina and nuclear organelles [4, 5], lead to different spatial configurations of genomic

elements in 3D. The spatial proximity between genomic elements plays a central role

in gene regulation and cell fate determination [6–8], and its disruption can lead to dys-

regulation and cause diseases including cancer [9, 10]. Over the last decade, genome-

wide ligation-based assays, such as Hi-C, have provided an unprecedented opportunity

to investigate the 3D organization of the genome, and thus the spatial proximity be-

tween any genomic elements of interest [11–13]. Results of a typical Hi-C experiment

are summarized in a chromosomal contact map [11]. By binning the genome into

equally sized bins, the contact map is a matrix whose elements reflect the population-

averaged co-location frequencies of genomic loci originated from the bins. The contact

frequency can be viewed as a measurement for the probability of a Hi-C ligation be-

tween genomic loci, which could be used as a proxy for spatial proximity: the greater

the frequency, the smaller the distance in space.

A natural representation for a genome-wide contact map is a graph or network. Indeed,

networks have been used to represent the global structure of 3D genomes [14, 15]. Never-

theless, it is not entirely clear what is the best null model for those weighted graphs. Ana-

lysis of Hi-C, and indeed related 3C based technologies, have realized that the contact

frequency observed between a pair of genes in the contact map is a mixture of two com-

ponents [11, 16]. The first component, the 1D component, is related to their genomic dis-

tance, i.e., the distance between the genes due to the fact that they are positioned

sequentially on the 1D DNA strand. More specifically, two genes that are next to each

other on the 1D DNA strand are expected to have a higher contact frequency as com-

pared with two genes that are farther apart. The second component, the 3D component,

depends on cell specific arrangements of genes in 3D. While many Hi-C analyses have

used the idea of separating these components [17, 18], this separation has been imple-

mented at a local level, meaning that each individual pair of loci is analyzed independently

of the other ones, mainly in the context of enhancer-target predictions [19]. As most hu-

man cells have effectively the same 1D genome sequence, it is the 3D component that

provides a cell type specific role in gene regulation. Our idea is to derive an appropriate

null model for the 1D component and to provide a network framework for the 3D struc-

ture of the genome on a global scale.

In this paper, we present a novel mathematical framework that effectively extracts the

3D component of the gene contact frequency for an entire genome and embeds it into

a graph that we have called the “Corrected Gene Proximity (CGP)” map. Similar to some

existing approaches, our procedure can be thought of as a “signal separation” procedure

that is able to extract the 3D component from the mixture of 1D and 3D frequency

components that constitutes the experimental Hi-C data. But, unlike previous analyses

that focus on addressing the statistical significance of pairs of loci – for instance, to de-

termine whether pairs of loci are candidates for enhancer-promoter contacts – the

CGP map serves as a map of the 3D structure of the genome on a global scale. With

such a global framework, we are able to analyze intra- and inter- chromosomal
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interactions together and perform analysis that aims to understand the global structure

of the genome. Our results show that the CGP map can detect and quantify gene co-

regulation and co-localization more effectively than the map obtained by raw contact

frequencies and reveal hidden associations between global spatial positioning and gene

expression.

Results

The corrected gene proximity map

Starting from a genome-wide Hi-C contact map, we extracted the contact frequencies

between all protein-coding genes, forming a square matrix W (see Methods for details).

This matrix can be viewed as the adjacency matrix of a network in which nodes repre-

sent genes and the weight of each edge corresponds to the contact frequency between

the two genes it connects. We called this weighted network the “gene proximity map”

since its weights represent spatial proximity as detected by Hi-C: the higher the weight,

the smaller the distance between two genes.

As we described earlier, the weights in the network can be thought of as a combin-

ation of the 1D and 3D components of the gene contact frequency. To extract the 3D

component, we began by developing a null model for the 1D component, i.e., a model

for the spatial positioning of genes based exclusively on their distance on the 1D gen-

ome. We shall use E to denote the weight matrix for this null model. Specifically, we

assume that the (i, j)-th element Eij, the expected number of contacts between genes i

and j, takes the form:

Ei j ¼ k ik j f ðdi jÞ

where f ðdi jÞ∝

(

f intraðdÞ; i f gene i and j are located at the same chromosome and separated by genomic distance d

f inter; i f gene i and j are located at di f ferent chromosome
:

ð1Þ

There are two cases here: both gene i and gene j locate on the same chromosome; or

they are on different chromosomes. For the first case, fintra(d) is a cell type specific

function, numerically estimated from the genome-wide Hi-C contact map, that maps

the genomic distance d between a pair of genes to an average contact frequency over

all pairs of genomic loci that are separated by d. On the other hand, for any pairs of

genes that belong to two different chromosomes, we assume they have equal chances

to interact. So finter is a constant that is computed from the average contact frequency

of all inter-chromosomal interactions (see Methods for details). We further impose the

following set of constraints:

X

j
Eij ¼

X

j
W ij; ∀i: ð2Þ

These constraints ensure that the total number of contacts mapped to gene i empiric-

ally is the same as the number of contacts assigned to it by the null model. By imposing

these constraints, ki can be solved using an iterative scheme (see Methods for details).

Intuitively, ki can be viewed as the “visibility” of gene i, which is a biological parameter

related to gene size, chromatin accessibility, gene location in the nucleus, etc. Genes

that are long and located in the center of the nucleus will normally have higher visibil-

ity than short genes and genes located on the periphery of the nucleus. Overall,
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Equation (1) implies that the expected number of contacts between two genes depends

on their genomic distance as well as the product of their intrinsic visibility. Highly vis-

ible genes are therefore more likely to be in contact with others.

Having defined the null model, which accounts for the 1D component of the contact

frequency, we can define the CGP map, denoted by B, as the difference between the ob-

served gene proximity matrix and the developed null model:

B ¼ W−E:

In other words, the CGP map quantifies the corrected spatial proximity between

genes by eliminating the gene contact frequency component due to the 1D genomic

distance from the results of Hi-C experiments. This is motivated by the conventional

definition of modularity matrix in network theory, which is defined as the difference

between the adjacency matrix and a matrix explaining the expected connectivity pat-

tern of the network, and is shown to be powerful for detecting network communities

[20]. Importantly, in our analysis, W is the adjacency matrix of the gene proximity

Fig. 1 Schematic for the construction of the CGP map. Given a 3D human genome organization in which

the brown and green circles represent two protein-coding genes i and j respectively, the corresponding

genome-wide Hi-C contact map quantifies the contact frequencies between all possible pairs of genomic

loci. Using the correspondence between genes and genomic loci, the gene proximity matrix W is obtained

by extracting the contact frequencies between all pairs of genes. A null model, denoted as E, is derived

from the 3D genome as well as the gene proximity map, representing the estimated gene proximity

hidden in the gene contact frequencies, which is based exclusively on the positions of genes on the 1D

DNA strand, i.e., the genomic distance. The CGP map, denoted as B, is extracted from the gene proximity

map W by subtracting the null model E. Matrix element Bij captures the corrected spatial proximity

between genes i and j
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network and B can be thought of as a generalized modularity matrix for the network

(see Supplementary Materials for details). Figure 1 shows a schematic of the construc-

tion of the CGP map. In our analysis, all genome-wide Hi-C contact maps had been

corrected by the ICE technique [21]. Importantly, our framework can be applied to Hi-

C maps corrected by any other software tools such as HOMER [22], Hi-Cdat [23] and

HiC-Pro [24]. In the following, we demonstrate that the CGP map (B) can capture the

correlation between spatial arrangement and co-regulation of genes in 3D better than

the raw gene proximity map (W).

CGP better encodes important functional and structural properties of the genome

We investigated whether the CGP map can unravel functional properties of the genome

such as gene co-expression. We used RNA-seq data and Hi-C data of 12 cell lines, in-

cluding 10 cancer cell lines recently published by the ENCODE consortium [25], and

two hematopoietic cell lines (GM12878 and K562) in which we have deeply sequenced

Hi-C data [26] (see Methods for details). For each cell line and each chromosome, we

used the RNA-seq data to build a co-expression matrix C (see Methods for details).

Then, for each of the 23 chromosomes, we computed the Pearson correlation coeffi-

cient between C and two matrices: the CGP map B and the gene proximity map W.

Figure 2 shows the results for GM12878 and K562 cell lines. For all 23 chromosomes:

the correlation between B and C remains positive, whereas the correlation between W

and C is low and alternates between positive and negative. Note that a normalized

Fig. 2 Pearson correlation coefficients between the gene co-expression matrix and three different matrices

based on spatial positioning of genes: the CGP map (blue bars), the raw gene proximity map (green bars),

and the normalized gene proximity map (yellow bars) for each of the 23 chromosomes in GM12878 cell

line (top panel) and K562 cell line (bottom panel)
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version of the gene proximity map ~W , similar to the normalized contact map intro-

duced in [11], exhibits the same behavior as W. This analysis demonstrates that the

CGP map is indeed better, information-wise, than the raw gene proximity map at

explaining gene co-expression in the genome. Similar patterns can be observed in most

of the other 10 cell lines (Fig. S1).

A common technical issue in contact map analysis is the diminishing read counts and

thus statistical power as separation between loci increases. We investigated to what extent

the CGP map could be limited by the issue. In particular, we checked whether the distant

pairs dilute the correlation as observed in Fig. 2. As shown in Fig. S1B, by removing the

distant pairs, we found that the correlation between co-expression matrix and the CGP

map decreases, suggesting the distant pairs contribute to the signal of CGP.

It is well known that a genome could be divided into the so-called A/B compartments,

in which compartment A tends to be active whereas compartment B consists of hetero-

chromatin [2, 11]. Therefore, it is instructive to further examine whether the CGP map

can capture such information. Motivated by the use of eigenvectors of the modularity

matrix for community detection on networks, we formulated the problem as a classifica-

tion problem and used the components of the leading eigenvectors of the CGP matrix as

features (see Methods for details). We found that the CGP matrix works reasonably well

in predicting to which compartment a gene belongs (AUC= 0.86, Fig. S2).

CGP captures the interplay between gene spatial positioning and co-regulation

It has long been observed that co-expressed genes, or functionally related genes are

likely to be next to each other on the 1D genome [27]. Recent studies further suggest

that they are also spatially clustered in the nucleus [28]. Nevertheless, to what extent

spatially clustered genes are co-expressed, and to what extent the tendency is attributed

to various spatial organizations like compartments and TADs are not well character-

ized. Here, we quantify the interplay between the spatial positioning of genes and gene

co-regulation by phrasing it as an optimization problem using the CGP map. More spe-

cifically, we assume the expression states of genes to be either ON (xi = + 1) or OFF

(xi = − 1), and explore how the two states are distributed on the gene proximity net-

work (see Methods for details). We define an objective function:

Q ¼
1

P

ijW ij

X

ij
Bijxix j: ð3Þ

Here, Q quantifies to what extent gene co-expression pattern is related to the under-

lying spatial proximity between genes. If there is no particular relationship between the

spatial positioning of genes and their regulation, Q is close to 0 as genes with different

expression states are randomly distributed in 3D (Bij ≈ 0). On the other hand, if a large

fraction of co-expressed genes are proximal (Bij > 0), the overall value of Q is high

(Fig. 3a). A similar objective function has previously been used to solve the classic net-

work bisection problem [29].

As shown in Fig. 3b, in all 12 cell lines, the value of Q is much higher than 0. To

show the statistical significance of the result, we looked at the distribution of Q in an

ensemble of gene configurations where the spatial locations of genes are randomly

redistributed. As expected, the values of Q generated from the random configurations

appear to follow a Gaussian distribution with zero mean. In all tested cell types, the
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empirical expression profile yields a substantially greater function value, which is always

positive, than the permuted profiles. The separation between the values of Q for the

empirical configuration and random configurations is a measure of the tendency in

which active genes tend to be proximal in space. We confirmed CGP indeed provides a

better measure for such a tendency by repeating the analysis with a modified objective

function computed using raw gene proximity map. Specifically, we found that the raw

gene proximity map is less efficient at capturing the interplay between the spatial posi-

tioning of genes and co-regulation (Fig. S3).

Fig. 3 a An illustration of the CGP-based objective function Q: Q is maximum if ON genes and OFF genes

are perfectly separated on the 3D genome; Q is close to zero if ON and OFF genes are randomly

positioned. b Q computed from the empirical gene expression profile and randomized profiles. The

horizontal axis shows the value of the objective function and the vertical axis is the probability density

function. The 12 subplots correspond to 12 individual cell lines: A549, CAKI2, G401, NCI-H460, PANC-1, RPMI-

7951, SJCRH30, SK-MEL-5, SK-N-DZ, T-47D, GM12878 and K562 respectively. In each subplot, the red square

indicates the value for the empirical profile, the histogram shows the distribution for values obtained from

an ensemble of randomized profiles. c For cell lines GM12878 and K562, an additional ensemble of

randomized profiles was generated by shuffling gene indices within TADs alone. The resultant distribution

is shown in brown. d Optimization of Q using a Monte Carlo procedure. Starting from the empirical gene

expression profile, there is room for increasing Q for each of the cell lines tested

Ye et al. BMC Bioinformatics          (2020) 21:222 Page 7 of 18



We further explored to what extent the tendency is attributed to characterized spatial

structures. For instance, it is well known that the genome is organized into A/B com-

partments. We therefore generated another ensemble by shuffling the genes in A/B

compartments separately. We found that although the resultant distribution of Q is sig-

nificantly higher than the null distribution (Figure 3c, P = 1.2 × 10−21 in GM12878 and

P = 3.1 × 10−19 in K562), it is very much lower than the empirical Q. The analysis sug-

gests that the compartment organization alone cannot account for the co-localization

of expressed genes.

Genes within a compartment are further organized. Spatial structures of particular

interest are the topologically associating domains [30, 31]. Topologically associating do-

mains (TADs) are domains of self-interacting chromatin that have emerged as a funda-

mental structural unit in genome organization [32]. To investigate to what extent

TADs contribute to the value of Q, we generated two more ensembles: One by shuf-

fling the genes in TADs separately; the other one by permuting the TADs first and then

shuffling the genes within the permuted TADs (Figure 3c). Since the permuted TADs

are essentially random blocks with the same size distribution as the original TADs, the

distribution of Q generated by this model in CGP quantifies the effect of genes from

forming TADs in contrast to the effect of genes from simply being close in 1D

sequence.

The different ensembles shown in Figure 3c take into account different levels of

spatial organization. Since the null ensemble refers to a case in which genes are distrib-

uted with no regard to spatial structure, the separation between the null and the distri-

bution of Q in the compartment-preserving ensemble or TAD-preserving ensemble

correspond to the relative contribution of compartments or TADs. The observation

that the empirical Q is higher than the distribution of TAD-preserving ensemble sug-

gests genes are further organized within TADs in order to make co-expressed members

proximal to each other. A natural question is, to what extent the co-expressed genes

are organized favoring spatial proximity? To do this, we introduced a Monte Carlo pro-

cedure to iteratively search for the maximal value of Q (see Methods for details). More

specifically, the positions of ON and OFF genes are swapped in order to increase the

value of Q. As shown in Figure 3d, in all the tested CGP maps, given a fixed number of

expressed genes, it is possible to further increase the value of Q from the empirical

value, meaning that the empirical values are far from optimal.

Change of CGP is highly correlated with gene expression change

We further investigated whether there exists a correspondence between changes in ex-

pression profile and spatial configurations among different cell types. To do this, we fo-

cused on two hematopoietic cell lines: GM12878 and K562, where the latter is a cell

line derived from a patient with chronic myeloid leukemia (CML). We considered two

sets of genes based on differential expression: the first set contains the most up-

regulated genes in GM12878 as compared with K562 (100 genes with the largest ex-

pression fold-change); the second set consists of the most down-regulated ones (100

genes with the smallest expression fold-change). We should expect that the first set of

genes to be clustered more tightly in GM12878 than in K562, while the second set

should be clustered more tightly in K562. Moreover, we would like to compare the
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effect measured on the CGP map with the one measured on the raw gene proximity

map. We defined a quantity, “tightness”, denoted by T, to measure to what extent a set

of genes is tightly positioned (i.e., the average spatial distance between genes is small)

in 3D (see Methods for details). When computing T using the CGP, we found that the

up-regulated genes in GM12878 are close together in GM12878 (high tightness) but

farther apart (low tightness) in K562, while the down-regulated genes are more tightly

clustered in K562 than in GM12878 (Figure 4, left panel). The right panel in Figure 4

shows that the result is not visible, when we obtain T using the gene proximity map

alone. It contradicts our expectation in that the up-regulated genes, on average, have

fewer contact frequencies between themselves than the down-regulated genes in a cell.

We performed the same analysis at the level of pathways. More specifically, we inves-

tigated how the spatial configuration of the genes constituting a pathway changes when

their expression changes. For each of the 186 metabolic pathways in KEGG database,

we calculated the difference in tightness between K562 and GM12878 cell lines. A posi-

tive (negative) difference indicates that genes in the pathway are tightly (loosely) posi-

tioned in K562 but loosely (tightly) positioned in GM12878. At the same time, we

performed the Gene Set Enrichment Analysis (GSEA) and identified pathways that are

enriched with genes that are up-regulated in GM12878 with respect to K562. As shown

in Figure 5 (outset), we found that these up-regulated pathways are consistently more

compact in GM12878 than in K562, which illustrates that, for these pathways to be

expressed in GM12878 but not in K562, their genes tend to be spatially reorganized to

achieve closer proximity. One example of such pathways is the regulation of autophagy,

whose inhibition has been reported as a new strategy to induce cell death of drug-

sensitive and drug-resistant CML cells [33]. This is probably due to the fact that autoph-

agy genes are poorly expressed in K562 cells as compared with GM12878 cells and are

Fig. 4 Gene set tightness for two groups of genes in GM12878 and K562 cell lines. The first group contains

100 most up-regulated genes in GM12878 as compared with K562 whereas the second group consists of

100 most down-regulated genes. From left to right, the gene set tightness is computed from the CGP map

(B) and the gene proximity map (W), respectively. In both panels, the blue and yellow bars represent

GM12878 and K562 cell lines, respectively. The gene set tightness quantifies to what extent a set of genes

are spatially close together in the cell nucleus. A high tightness means the genes are spatially in closer

proximity than expectation whereas a low tightness implies that genes are far apart
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therefore more sensitive to the inhibition of autophagy. Importantly, the figure shows that

this effect is not visible when performing the same analysis using raw contact frequencies,

as it fails to identify the correlation between the change in relative positioning of genes in

3D and the change in gene expression between cell lines (Figure 5, inset).

CGP reveals critical inter-chromosomal interactions in the nucleus

The CGP map offers a natural framework to study the inter-chromosomal proximity

between genes. Based on the values in the CGP matrices, we analyzed the 20 closest

inter-chromosomal gene pairs in each of the K562 and GM12878 cell lines (Supplemen-

tary Materials Table S1). We observed that the pairs identified in two cell lines involve

quite different sets of chromosomes, naming chr11-chr17 in GM12878 whereas chr9-

Fig. 5 (Outset) Pathway tightness change, from cell lines GM12878 to K562, for all 186 metabolic pathways

in the KEGG database. From top to bottom the pathways are sorted according to the tightness change

computed from the CGP. The red bars represent the 17 pathways found to be statistically enriched with

differentially expressed genes (up-regulated) in GM12878 with respect to K562. The horizontal axis shows

the pathway tightness change. A negative value indicates that the pathway genes are in closer proximity in

GM12878 but far apart in K562. A positive difference means the opposite. (Inset) Names and pathway

tightness change of the 17 statistically enriched pathways. From top to bottom the pathways are ranked

according to the tightness change computed from the CGP (red bars). The yellow bars represent the

tightness change computed from the gene proximity map. The horizontal axis is the same as that in

the outset

Ye et al. BMC Bioinformatics          (2020) 21:222 Page 10 of 18



chr13-chr22 in K562. This difference might due to the large-scale chromosomal re-

arrangement in the cancer cell line K562.

Apart from spatial proximity at gene level, it is interesting to investigate spatial prox-

imity at chromosomal level. To do this, we applied a size-reduction technique [34] that

merges genes belonging to the same chromosome in the CGP map together to form a

reduced inter-chromosomal proximity map. Starting from the CGP matrix B, the corre-

sponding “inter-chromosomal proximity matrix” B̂ was obtained by merging the rows

and columns according to the gene-chromosome correspondence (see Methods for de-

tails). We took CML as a case study here and compared the inter-chromosomal prox-

imity map between GM12878 and K562 cell lines in order to obtain some insights on

the role of abnormal chromosomal rearrangements in the diseased cell. Figure 6 sum-

marizes the global change of spatial organization of the genome between K562 and

GM12878 at the chromosome level. A positive change between a pair of chromosomes

indicates that they are closer in 3D in K562 than in GM12878 and a negative change

means the opposite. Weighted blue and red links illustrate the extent and direction of

proximity changes: blue represents negative changes while red represents positive

changes. The network recapitulates a number of known facts that are consistent with

the genome of cells affected by CML. First, there is a red connection between chromo-

some 9 and 22, resembling the Philadelphia chromosome, a reciprocal translocation be-

tween chromosome 9 and chromosome 22 [35]. Second, chromosome 3 and 10 are

linked by a red line, indicating this pair are closely located in the K562 cell line. This

behavior was recently characterized as a rare chromosomal translocation in leukemia

patients [36]. Both aforementioned translocations have been observed in the K562 cell

line in a recent study [37]. As shown in Figure 6, chromosome 17 appears to move

away from several chromosomes including 1, 11, 14 and 19. This could be attributed to

an abnormality described as the single most important cytogenetic abnormality for the

prognosis of leukemia [38]. In short, we found the inter-chromosomal proximity map,

derived from the CGP map, captures the relative spatial organization of chromosomes

between cell types. With no surprise, the critical chromosomal abnormalities cannot be

effectively identified using the gene proximity map W (Figure S4).

Discussion

In this study, we have proposed a network framework for studying the 3D structure of

the genome on a global scale. As recognized by previous studies, the gene contact fre-

quency signal consists of the 1D component and 3D component, where the 1D compo-

nent is the expected number of contacts between genes based exclusively on their

genomic distance. At the heart of our approach is a mathematical framework that sepa-

rates the 1D component of the genome and embeds the 3D component into the CGP

map. Since all cells in the human body essentially have an identical 1D genome, the ex-

tracted CGP map therefore encodes cell specific arrangements of genes in 3D, which

reflects the cell type specific role in genome functions. Compared with the gene prox-

imity map, the CGP map can be viewed as a “signal-separated” version that models the

underlying spatial positioning of genes in 3D.

We have shown that the CGP map can reveal genome functional properties, such as

co-expression, more efficiently, while preserving genome structural information, e.g.,
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compartments, contained in the Hi-C result. We have found that the change of gene

expression in relation with spatial positioning can be effectively captured by the CGP.

Moreover, by using a size-reduction procedure, the CGP map can effectively identify

critical differences in inter-chromosomal interactions between cell types. Though it is

well known that co-expressed genes have a tendency to be spatially close together in

the 3D genome, the three-dimensional placement of genes in proximity to shared tran-

scriptional machinery within the nucleus can be thought of as a cell type specific pro-

gram. We have formulated an optimization framework to quantify the interplay

between gene expression and spatial proximity based on the CGP, and in particular to

analyze to what extent a particular spatial structure plays a role for the tendency. In

fact, the tendency that co-expressed genes are spatially close together in the genome

suggests certain selective advantages. For instance, it is possible that bringing genes to-

gether makes a more efficient use of the transcription machinery.

Network modeling serves as a flexible framework to organize biological data [39].

The CGP map is based on a network analysis framework. Over the last decades,

Fig. 6 Change in relative spatial positioning of chromosomes between GM12878 and K562 cell lines. The

23 nodes correspond to 23 chromosomes. The node size is proportional to the number of genes in the

chromosome. Weighted blue and red links illustrate the extent and direction of proximity changes. The

thickness and color of an edge between nodes i and j represent the magnitude and sign of the inter-

chromosomal corrected proximity difference from GM12878 to K562. A thick blue (red) edge means that

the inter-chromosomal proximity is substantially smaller (greater) in K562 as compared with GM12878. The

network is fully connected, many edges are not shown because their weights (change in corrected

proximity) are too small
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network approaches, e.g., protein-protein interaction network analysis, have been

widely used in studying the structure of many biological entities such as proteins [40–

42]. This has inspired scientists to use these tools to analyze a different but conceptu-

ally related problem, that of the structure of the whole genome. Recent studies have

shown that network theory has many useful applications in the study of Hi-C contact

maps, e.g., the similarity between the spectral properties of two contact maps quantifies

the reproducibility of two Hi-C experiments [43]. More recently, network modularity

has been used in intra-chromosomal contact maps to identify TADs [44, 45]. In fact,

the developed CGP map can be thought of as a mathematical generalization of the

modularity matrix in network theory [46]. In this study, we have restricted our analysis

to protein-coding genes. It has been shown that non-coding RNAs can exploit the 3D

organization of the genome for their function, for instance, Xist in X activation [47].

Our framework can also be easily generalized to include non-coding elements. Apart

from expression data, we could easily include other genomic features such as transcrip-

tion factor binding sites, mutation rates, and histone modifications onto the network as

the properties of nodes. A variety of biological problems can then be set up in the

CGP. For instance, examining the clustering of RNA polymerase binding sites in the

network is closely related to the search of transcription factories [48]. A size-reduction

approach like the one shown to reduce the gene proximity network into an inter-

chromosomal proximity network could be employed to study the hierarchical

organization of the 3D genome, for instance, chromosome territories [49].

Methods

Hi-C data source and pre-processing

The ENCODE Hi-C data were released by the ENCODE consortium [25]. Ten cell lines are

used in the analysis, including T47D, A549, Caki2, G401, NCI-H460, Panc-1, RPMI-7951,

SJCRH30, SK-N-DZ and SK-MEL-5. For each cell line, two replicates are separately used.

The ENCODE Hi-C data are processed by the tool cworld (https://github.com/dekkerlab/

cworld-dekker). Hi-C data of K562 and GM12878 cell lines were reported in [11]. For EN-

CODE Hi-C contact maps, a bin size of 40 kb is used, whereas the bin size of K562 and

GM12878 Hi-C contact maps is 25 kb. The whole-genome contact maps of all cell lines stud-

ied have been iteratively corrected for uniform coverage by the ICE algorithm [21].

Construction of the gene proximity network

The gene proximity network is obtained by extracting elements from the genome-wide

Hi-C contact map. Denote W as the weighted network, whereas i and j index two genes.

The matrix element Wij is determined by mapping the genomic coordinates of genes i

and j to the corresponding genome-wide contact map. If each gene is located within a sin-

gle bin in the contact map (bin sizes of 25 kb or 40 kb were used in this study), Wij is

chosen to be the corresponding contact frequency between the two bins in the contact

map. If either gene spans across multiple bins, the maximum contact frequency among

the bins is chosen to represent the minimum distance between genes. The normalized

gene proximity map ~W is defined by dividing each entry in the gene proximity map by

the expected number of contacts between those two genes, i.e., ~W ij ¼
W ij

Eij
.
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Null model for the 1D component of the gene contact frequency signal

Given a gene proximity network, which is derived from the genome-wide Hi-C contact

map for a cell line, a corresponding null model for the 1D component of the gene con-

tact frequency is defined. To define the null model, a cell type specific function f(d) that

maps the genomic distance d between a pair of genes to a real value f is estimated from

the genome-wide Hi-C contact map. In this study, d is measured in the unit of the bin

size of the contact map.

If gene i and gene j are on the same chromosome, separated by a genomic distance d,

f(dij) is defined as fintra(d), which is then estimated by the average of the contact fre-

quencies over all pairs of genomic loci that are separated by d in the genome-wide Hi-

C contact map, with the employment of a local smoothing approach similar to the one

used in [50]. fintra(d) is therefore a monotonically decreasing function, which means

that genes next to each other on the chromosome are more likely to interact whereas

genes far apart are less likely to interact. On the other hand, if gene i and gene j are on

different chromosomes, f(dij) is finter, a constant estimated by the average of all inter-

chromosomal interactions between genomic loci in the genome-wide contact map. This

reflects the idea that all the genes locating on one chromosome have equal chances to

interact with all the genes on the other.

Given the estimated function f(d), the expected number of contacts between gene i

and gene j is defined by Equation (1). To obtain the values for ki, Equations (1) and (2)

are rewritten in the form:

X

j
k ik j f dij

� �

¼
X

j
W ij: ð4Þ

This system of nonlinear equations is then solved by an iterative procedure described

in [44] where ki is initialized as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

jW ij

q

, and after successive iterations and

normalization, converged to the solution of Equation (4).

The code for the entire pipeline for generating the CGP map from Hi-C data is avail-

able at http://www.paccanarolab.org/cgp/.

Gene expression data

Gene expression data of all cell lines used in this study were downloaded from the EN-

CODE portal (https://www.encodeproject.org/). The gene co-expression matrix C of a

cell line is computed via the corresponding gene expression data: the (i, j)-th entry in C

is the product of the (logarithm) expression value of genes i and j. Genes with zero ex-

pression level are manually set to have very small (negative) values. So, a positive value

indicates that two genes have similar expression states (either both active or both in-

active) whereas a negative value implies they have opposite states (one active, one

inactive).

In the gene expression and CGP interplay analysis, genes are binarized into ON and

OFF states for each individual cell line. In particular, a Gaussian mixture model cluster-

ing algorithm is applied on the (logarithm) gene expression profile in order to identify

two gene clusters. The cluster with the higher average expression value is considered as

ON genes whereas the other cluster corresponds to OFF genes.
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Genome compartment data

The genome compartment data of GM12878 and K562 cell lines were downloaded

from [11]. The compartments were defined based on the first principal component of

the normalized contact matrix: positive and negative entries correspond to A and B

compartment, respectively. All genes were then assigned to either A or B compartment

based on their genomic coordinates. Predicting the compartment label of a gene was

formulated as a binary classification problem. In particular, the components of the 50

leading eigenvectors of the CGP matrix were used as features. An ensemble of bagged

decision trees was trained to solve this binary classification problem. The optimal

model parameters, e.g., the maximum number of splits and the number of learners,

were tuned via a standard 10-fold cross-validation. All the model learning procedures

were implemented in MATLAB R2018a using the Statistics and Machine Learning

Toolbox.

Monte Carlo optimization

A Monte Carlo approach was used to investigate if the empirical expression is optimal

with respect to the structure of the weighted gene proximity network. Starting with the

empirical gene expression profile, for each step, we randomly picked a pair of genes

and swapped their location in the network. The swapping was kept if the value of the

objective function was increased and ignored otherwise.

Gene set tightness

Given a set of genes p, an unnormalized tightness measure (i.e., how well these genes

are closely positioned in 3D) can be calculated by summing over elements in the CGP

map for every pair of genes:

bp ¼
X

i; j∈p
Bij: ð5Þ

To estimate the statistical significance of bp and obtain a normalized tightness, 5000

randomized gene sets are generated. A random counterpart for gene set p is obtained

by selecting np (the number of genes in p) genes uniformly at random from all genes.

By calculating the overall corrected proximity for each of the randomized counterparts,

a null distribution for the overall corrected proximity of p is estimated. The tightness

of p is then defined as the deviation of bp from the null distribution, i.e., Tp = (bp − μp)/

σp, where μp and σp are the mean and standard deviation of the null distribution. A very

positive Tp suggests that the genes in p are substantially closer to each other than aver-

age, whereas a very negative Tp indicates that the physical distance between those genes

is dramatically greater than that of randomly selected genes.

Inter-chromosomal proximity map

Starting from the CGP matrix B, the corresponding inter-chromosomal proximity matrix

B̂ is obtained by merging the rows and columns according to the gene-chromosome cor-

respondence. The element B̂αβ , which represents the inter-chromosomal proximity be-

tween chromosome α and chromosome β (α ≠ β), is computed as follows

Ye et al. BMC Bioinformatics          (2020) 21:222 Page 15 of 18



B̂αβ ¼
X

i∈α; j∈β
Bij� ð6Þ

B̂ is therefore a 23-by-23 square matrix where the main diagonal are all zeros and the

inter-chromosomal proximity elsewhere. This matrix is then normalized with respect

to its Frobenius norm, i.e., ~B ¼ B̂=kB̂kF ; so that ~B derived from different cell types are

comparable.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03545-y.

Additional file 1: Figure S1. Pearson correlation coefficients between the gene co-expression matrix and three

different matrices based on spatial positioning of genes: the CGP map (blue bars), the raw gene proximity map

(green bars), and the normalized gene proximity map (yellow bars) for each of the 23 chromosomes for 10 EN-

CODE cell lines. Figure S2. (A) ROC curve for the gene compartment classification using leading eigenvectors of

the CGP matrix for GM12878 and K562 cell lines. The horizontal axis is the false positive rate (1 − specificity) and

the vertical axis is the true positive rate (sensitivity). The red dot indicates the optimal operating point. Components

of the top 50 leading eigenvectors were used as features for the classification model. (B) Effect of the number of ei-

genvectors used in the gene compartment label classifier. The horizontal axis represents the number of eigenvec-

tors in the CGP matrix used for model construction, ranged from 1 to 50. The vertical axis is the average AUROC of

the resultant model over the 10-fold cross validation. The red circles and blue squares (almost completely coincide)

represent the GM12878 and K562 cell lines respectively. Using the first leading eigenvector alone does not yield a

good classification result. By additionally incorporating the second and third eigenvectors, the AUROC witnesses a

dramatic increase (from 0.57 to 0.70). On the other hand, using more than 10 eigenvectors does not provide a sub-

stantial performance improvement any more. Figure S3. Objective function based on the empirical gene expres-

sion profile and randomized profiles, computed using the raw gene proximity map. The histogram for randomized

profiles is normalized to have zero mean. A main difference between the plots generated from the CGP and the

raw gene proximity map is that for cell lines RPMI-7951, SJCRH30 and SK-N-DZ, the value of the gene proximity

map-based objective function generated from the empirical expression profile is mixed with the values generated

from randomized profiles. Figure S4. Change in relative spatial positioning of chromosomes between cell lines

GM12878 and K562. The layout of this network is in the same way as Figure 6 in the main text, but the inter-

chromosomal proximity matrix here was computed using the gene proximity map instead of the corrected proxim-

ity measure. As compared to Figure 6, the connections between chromosomes 3 and 10, and between chromo-

somes 9 and 22, are no longer easily identified. Table S1. Top 20 inter-chromosomal gene interactions in cell lines

GM12878 and K562 respectively. These pairs of genes were selected based on the fact that they are located on dif-

ferent chromosomes and have the largest values in the corresponding CGP map.
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