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Abstract

The impact of stress-driven structural transitions and of film strain on the magnetic properties of
nm ferromagnetic films is discussed. The stress-induced bending of film–substrate composites
is analysed to derive information on film stress due to lattice mismatch or due to surface-
stress effects. The magneto–elastic coupling in epitaxial films is determineddirectly from
the magnetostrictive bending of the substrate. The combination of stress measurements with
magnetic investigations by the magneto-optical Kerr effect (MOKE) reveals the modification of
the magnetic anisotropy by film stress. Stress–strain relations are derived for various epitaxial
orientations to facilitate the analysis of the substrate curvature. Biaxial film stress and magneto–
elastic coupling coefficients are measured in epitaxial Fe filmsin situ on W single-crystal
substrates. Tremendous film stress of more than 10 GPa is measured in pseudomorphic Fe
layers, and the important role of film stress as a driving force for the formation of misfit
distortions and for inducing changes of the growth mode in monolayer thin films is presented.
The direct measurement of the magneto–elastic coupling in epitaxial films proves that the
magnitude and sign of the magneto–elastic coupling deviate from the respective bulk value.
Even a small film strain of order 0.1% is found to induce a significant change of the effective
magneto–elastic coupling coefficient. This peculiar behaviour is ascribed to a second-order
strain dependence of the magneto–elastic energy density, in contrast to the linear strain
dependence that is valid for bulk samples.
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1. Introduction

The important role of mechanical stress on magnetic anisotropy is well known from
experiments on the effect of externally applied stress on the magnetism ofbulk samples [1–4].
The goal of this review is to elucidate the correlation between mechanical stress and magnetic
properties of ultrathin films. Recent experiments indicated that the role of epitaxial misfit
between film and substrate material for film stress and magneto–elastic properties cannot be
simply extrapolated from the respective bulk behaviour. Some authors introduced surface
magneto–elastic coupling coefficients to account for the novel magneto–elastic properties.
Sun and O’Handley found that the magneto–elastic constants may differ substantially from
their respective bulk values near the surface region of a bulk sample [5].

Magneto–elastic coupling is the driving force for the well known effect ofmagnetostriction
in bulk samples. Magnetostriction describes the strain induced by the magnetization of bulk
samples. Ultrathin films, however, are rigidly bonded to a substrate, and are not free to change
their length due to magnetization. Instead, magneto–elastic or magnetostrictive stresses evolve,
and the resulting magnetostrictive strain depends on the rigidity of the substrate.

The magnetostrictive strain of Ni was found to shift to more negative values for decreasing
film thickness [6,7]. Permalloy, which is known to exhibit almost no magnetostriction in bulk
samples showed a negative magnetostriction for films thinner than 7 nm, possibly inhibiting its
use in spin-valve or magnetoresistive sensor applications [8]. Epitaxial film stress was found
to change the sign and magnitude of the magneto–elastic coupling coefficients in nm epitaxial
films [9, 10]. This short overview of the peculiar magneto–elastic coupling in ultrathin films
shows that, in general, bulk magneto–elastic properties do not apply, and magneto–elastic data
have to be measured for the film of interest. A versatile method that allows us to measure both
film stressandmagneto–elastic coupling from the curvature of a film–substrate composite is
described. Film growth is intimately connected with the issue of lattice mismatch between
film and substrate material. It is shown that an apparent thickness dependence of the magneto–
elastic coupling coefficients can be ascribed to a strain-dependent correction of the respective
bulk constants except for very thin films below 10 nm. It is proposed that for a film thickness
below 10 nm additional so-calledsurface correctionsof the magneto–elastic coupling have to
be considered.

Although the magnetostrictive strains of the 3d-ferromagnetic elements Fe, Co, and Ni
are rather small and reach only minute values of order 10−5 for Fe, the physical implications of
the underlying principle of magneto–elastic coupling and magnetic anisotropy are profound.
Tiny energy changes of onlyµeV per atom are a typical magnitude for anisotropy energies but
nevertheless important magnetic properties like the direction of the easy axis of magnetization
or the coercivity are governed by the magnetic anisotropy. Kittel introduced 50 years ago that
the magnetostriction of bulk samples can be ascribed to a strain dependence of the magnetic
anisotropy energy [11]. Thus, the study of magneto–elastic coupling is ultimately connected
to an understanding of the relevant physical processes that determine magnetic anisotropy
on an electronic level [12–14]. Only the advances in computational power and experimental
techniques made it possible to study magnetostrictive effects even in monolayer thin films and
some examples of the recent progress are presented.

The intimate relation between magnetism and lattice strain is well known from the
discussion of magneto–volume instabilities [15] and especially from the so-calledInvar effect.
Invar originally described the almost negligible thermal expansion (α < 1× 10−6 K−1) of
ferromagnetic FeNi alloys upon heating below the Curie temperature [16]. Phenomenological
models ascribe the almost nil thermal expansion of Invar to an increasing population of an
energetically higher lying low-spin state, that has a smaller atomic volume and leads to a
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cancellation of the positive thermal expansion with increasing temperature [17].
Magnetostriction is not necessarily small. Clark found a ‘giant’ room-temperature

magnetostriction of order 10−3 in the rare-earth iron compound TbFe2 [18] that led to the
application of highly magnetostrictive alloys for sensor and actuator applications [19,20].

This review concentrates on the issue of stress due to epitaxial misfit and its effect on
the peculiar magneto–elastic coupling in ultrathin films. In the following section, the tensor
character of strain and stress is taken into account to derive the stress–strain relations for
various crystal orientations. Section 3 introduces the concept ofmagneto–elastic couplingand
magnetostrictive stresswhich is more appropriate in the discussion of ultrathin films that are
bonded to a substrate and therefore cannot show magnetostriction as known from bulk samples.
Surface effects and strain dependence of the magneto–elastic coupling are discussed before a
short compilation of recentab initio calculations on magneto–elastic coupling concludes the
chapter. Direct and indirect experimental techniques to investigate magneto–elastic coupling
are briefly described in section 4, before stress measurements with samples that are clamped at
only one end along their width to a manipulator, so-calledcantileveredsamples, are discussed
in section 5. The impact of stress-driven structural changes on magnetism is corroborated
by examples of epitaxial growth of Fe on W single crystal substrates, that are presented in
section 6. Experimental evidence for strain-induced changes of the magneto–elastic coupling
follows in section 7.

This review focuses on the relation between film strain and film stress which is necessary in
order to compare experimental results of film stress with the expectations from lattice mismatch
arguments and bulk magneto–elastic properties. Consequently, other important aspects of
epitaxial growth and magnetism are not covered, and the reader is referred to the following
reviews. At sub-monolayer coverages of epitaxial growth, surface-stress effects dominate
the stress behaviour, and the role of surface stress for epitaxial growth has been reviewed by
Ibach [21]. The strain analysis of epitaxial films from low-energy electron diffraction (LEED)
experiments has been reviewed by Jona and Marcus in a series of publications [22–26]. The
role of lattice mismatch for the formation of misfit dislocations has been reviewed by Matthews
and Blakeslee [27–29] and by van der Merwe [30–33] and in the book by Markov [34]. Growth
and properties of epitaxial films are covered in [35]. The magnetic properties of ultrathin films
were reviewed by Falicovet al [36], Gradmann [37] and Allenspach [38] and in the two
volumes ofUltrathin Magnetic Structures[39,40]. Reviews on the related topics of magneto-
optical effects [41], scanning tunnelling microscopy (STM) [42] and ferromagnetic resonance
of ultrathin metallic layers [43] were recently published in this journal.

2. Strain and stress in epitaxial growth

Film growth is always connected with the issue of lattice mismatchη, given by the difference
between the lattice constant of the film materialaF and the lattice constant of the substrateaS

asη = (aS− aF)/aF. It determines the strain in an epitaxial film. In this review we limit the
discussion to cases of epitaxy, where the unit cells of the substrate and the film differ only by
a scaling factor, that might be constant within all directions of the film plane (e.g. bcc film on
bcc substrate), or that might be different along two orthogonal directions within the film plane
(e.g. the Nishiyama–Wassermann growth mode of an fcc film material on a bcc(110) substrate).
The goal of this section is to derive equations for the perpendicular strain in the epitaxial film
and for the biaxial stress that results from the in-plane epitaxial strain. The magnitude of
the in-plane strainη and the perpendicular strainε⊥ is important for the discussion of the
magneto–elastic contribution to the magnetic anisotropy [14,44–56]. A strain analysis for the
cases of general epitaxy is given in the review by Jona and Marcus [22,25].
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First, we derive the equations for the elastic energy densities for cubic and hexagonal film
materials. It is instructive to calculate the elastic energy density in epitaxially strained films
as the magnitude of the strain energy is of key importance in the discussion of structural and
morphological changes in ultrathin films. We shall see that the strain energy can be as high as
several tenths of an eV which makes the elastic strain energy an important energy contribution
in epitaxial growth.

The starting point for our discussion is the expression for the elastic energy densityfel as
a function of the elements of the elastic stiffness tensorcijkl and the symmetric strain tensors
εij , εkl [57],

fel = 1
2cijklεij εkl . (2.1)

The subscriptsi, j, k, l run from 1 to 3, and it is understood that the right-hand side of (2.1)
is summed over all subscripts, which gives a total of 34 terms. Fortunately, the symmetry of
the elasticity tensorc and the strain tensorε allow for a considerable simplification that leads
to the so-called contractedVoigt notation. The first two subscripts and the last two subscripts
are contracted according to the following scheme [58] to obtain the much more convenient
matrix notation:

tensor notation: 11 22 33 23, 32 31, 13 12, 21
matrix notation: 1 2 3 4 5 6.

(2.2)

Note that the subscripts run from 1 to 6 in the matrix notation and that factors of two
are inserted in the definition of the off-diagonal elements [58], i.e.ε4 = 2ε23, ε5 = 2ε13,
ε6 = 2ε12. The factor two is due to the application of a symmetric strain tensorε [59]. We
stick to the compact matrix notation to derive the stress–strain relations. However, when we
calculate the directional dependence of the elastic properties in the next section, we have to
return to the tensor notation to perform the necessary transformations. The most significant
simplification of (2.1) follows from the symmetry of the crystal classes: only three independent
elastic constants are needed to describe the elastic properties of the cubic class, whereas four
elastic constants are required for the hexagonal class. The non-zero elements of the elastic
stiffness matrixcij are given for the cubic class:

ccubic
ij =


c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

 (2.3)

and for the hexagonal class [58]:

c
hexagonal
ij =


c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 1

2(c11− c12)

 . (2.4)

The same matrix positions are occupied in the contracted representation of the elastic
compliance matrixsij . The matrix elementssij are given in terms ofcij for both cubic and
hexagonal systems in the appendix. Values of the elastic properties of various ferromagnetic
elements and of some typical substrate materials are given in table 1.

Thus, we can finally quote the expressions for the elastic energy density of the cubic and
the hexagonal class, as obtained from expanding (2.1) in the matrix notationfelastic= 1

2cij εiεj ,
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Table 1. Elastic stiffness constantscij (GPa) and elastic compliance constantssij (TPa)−1

from [60,61]. Young’s modulusY (GPa) and Poisson’s ratioν for cubic and hexagonal elements.
Y andν are calculated from (2.15) for cubic elements for directions parallel to the crystal axes and
for hcp Co for directions within the basal plane.

Element c11 c12 c44 c13 c33 s11 s12 s44 s13 s33 Y ν

hcp Co 307 165 75.5 103 358 4.73−2.31 13.2 −0.69 3.19 211 0.49
fcc Co 242 160 128 8.81−3.51 7.83 114 0.40
bcc Fe 229 134 115 7.64−2.81 8.71 131 0.37
fcc Ni 249 152 118 7.53 −2.86 8.49 133 0.38
Si 165 63 79.1 7.73−2.15 12.7 129 0.28
MgO 293 92 155 4.01 −0.96 6.48 249 0.24
bcc Mo 465 163 109 2.63−0.68 9.20 380 0.26
bcc W 517 203 157 2.49−0.7 6.35 402 0.28

i, j = 1, 2, . . . ,6:

f cubic
elastic= 1

2c11(ε
2
1 + ε2

2 + ε2
3) + c12(ε1ε2 + ε2ε3 + ε1ε3) + 1

2c44(ε
2
4 + ε2

5 + ε2
6) (2.5)

f
hexagonal
elastic = 1

2c11(ε
2
1 + ε2

2) + 1
2c33ε

2
3 + c12ε1ε2 + c13(ε1ε3 + ε2ε3) + 1

2c44(ε
2
4 + ε2

5)

+1
4(c11− c12)ε

2
6. (2.6)

The elastic energy density of an epitaxial film can be calculated directly from (2.5) and
(2.6) if the film coordinate system is oriented parallel to the orthogonal crystal coordinate
system in which the elastic constantscij are defined. For cubic film materials, this is the case
for the (100)-orientation of both fcc and bcc elements, for hexagonal film materials, this is
the case for the (0001)-orientation, with thec-axis parallel to thez-direction. Expressions for
the elastic energy density for cubic films with (111)- or (110)-orientations, and for hexagonal
films with the (1120)-orientation are derived below.

As an example, we discuss the pseudomorphic growth of Fe on W(100). The in-plane
strainsε1 and ε2 are given by the epitaxial misfitη = 0.104 that follows from the lattice
constantsaFe= 2.866 Å andaW = 3.165 Å [62]. For this case of simple epitaxy, there are no
shear strains,ε4 = ε5 = ε6 = 0, and the strain perpendicular to the film surfaceε3 is found by
minimizing the elastic energy density (2.5) by varyingε3:

∂f cubic
elastic

∂ε3
= c11ε3 + c12(ε1 + ε2) = τ3. (2.7)

Note that the strain derivative of the elastic energy density with respect toεi gives the
stressτi in the directioni. Setting the stress perpendicular to the filmτ3 = 0 gives the vertical
strainε3:

ε3 = −c12

c11
(ε1 + ε2) = − ν

1− ν (ε1 + ε2). (2.8)

The assumption of zero stress in the direction perpendicular to the film plane is reasonable
as the film atoms are free to move along the film normal to minimize their elastic energy. This
degree of freedom to minimize the elastic energy is not available for atomic displacements
parallel to the film plane in the case of pseudomorphic growth. Here, the strong bonds to the
substrate fix the lateral positions of the film atoms at sites that correspond to a continuation
of the substrate. However, once the elastic energy becomes too large and the pseudomorphic
growth is replaced by the introduction of misfit distortions, the in-plane pseudomorphic registry
between film atoms and substrate atoms is no longer given and the in-plane strains are not known
a priori.
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In (2.8), we have introduced Poisson’s ratioν. The in-plane strains induce a perpendicular
strain ε3 that is not simply given byν, but is rather a function ofν. For Fe(100)-films,
c11 = 229 GPa,c12 = 134 GPa,ν = c12/(c11 + c12) = 0.37 and for pseudomorphic Fe films
on W(100), the perpendicular strain follows as:ε3 = −0.119. The in-plane tensile strain of
η = 10.4% should result in a 11.9% contraction perpendicular to the film. The corresponding
relative change of the atomic volume is given by the sum of the diagonal elements of the strain
tensor [58],1V/V = (ε1 + ε2 + ε3) = 0.083. The epitaxial misfit strain induces an increase
of the atomic volume of the Fe atoms by more than 8%. The implications of a misfit-induced
perpendicular strain and of the resulting change of the atomic volume are of great interest in the
current discussion of epitaxial growth in view of the epitaxial path [26] and for the theoretical
aspects of magnetism [15].

Now, the elastic energy density can be expressed as a function of the in-plane strainsε1

andε2:

f cubic
elastic= 1

2c11(ε
2
1 + ε2

2)−
c2

12

2c11
(ε1 + ε2)

2 + c12ε1ε2. (2.9)

Inserting the values forcij from table 1 and takingε1 = ε2 = 0.104 we calculate an elastic
energy density for the pseudomorphic Fe film of 2.1 GJ m−3. This amounts to a considerable
strain energy per Fe atom of 200 meV/atom, which is more than a factor of 10 000 larger
than the magnetic anisotropy of Fe ofK1 = 4 µeV/atom [63]. This is a very high energy
contribution due to the strained growth and we will see that the elastic strain energy is so large
that only three layers grow pseudomorphically before misfit distortions are introduced in the
film to reduce the strain energy. The introduction of misfit distortions can be detected by stress
measurements that are discussed in section 6. To derive the expression for the film stress, we
have to calculate the partial derivative of the elastic energy with respect to the in-plane strain:

τ1 = ∂f cubic
elastic

∂ε1
=
(
c11− c

2
12

c11

)
ε1 +

(
c12− c

2
12

c11

)
ε2. (2.10)

The in-plane stress is isotropic andτ1 = τ2 = 21 GPa. This is a tremendous film stress that
is more than a factor of ten higher than the yield strength of CrNi-steel. We will see in section 7
that a stress of 10 GPa is measured for the first three monolayers that grow pseudomorphically.
Whether the discrepancy between the calculated stress and the measured stress by a factor of
two is due to the questionable application of bulk elasticity data for Fe monolayers, or whether
the non-layer-by-layer like growth mode of Fe on W(100), as found in scanning tunnelling
microscopy (STM) experiments [64], causes the film stress to be lower than expected remains
to be investigated.

The presented application of continuum elasticity to discuss monolayer properties is
certainly a severe simplification and one has to worry what the minimum film thickness is
where continuum elasticity applies [65]. An indirect hint toward the minimum thickness of the
applicability of continuum elasticity might be taken from the results of electron spectroscopy
experiments that suggest that at least the electronic structure of ultrathin films is very similar
to that of bulk samples when the film thickness exceeds five layers [66–68]. Assuming that
within the 3d metal film the bonds are predominantly formed by the 3d and 4s electrons [69,70],
a bulklike electronic d-band structure should be a necessary requirement for the application
of bulk atomic distances and elastic properties in ultrathin films.Ab initio calculations of
the strain dependence of the total energy of several monolayer thin slabs are currently under
way [71] and should elucidate the contributions of surface-stress and interface effects on the
elastic properties of monolayers. Electronic surface and interface states have been clearly
identified in electron spectroscopy [72,73] and their possible impact on the elastic properties
should not be neglected. In addition, the surface stress of the film–substrate composite has been
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identified in experimental and theoretical investigations as an important factor that determines
the stress in the (sub)monolayer range [21]. In conclusion, we suggest that it is physically
sound to apply continuum elasticity models to ultrathin films that are at least 5–7 layers thick.
Deviations from bulk behaviour have to be expected in the first monolayers. However, anab
initio description of the atomic origin of forces at surfaces and interfaces is still in its infancy
and no comprehensive account of valid physical concepts can presently be presented [21].

2.1. Directional dependence of elastic properties

Unfortunately, many interesting film–substrate combinations do not result in cubic (100)-films
that are discussed in section 2 and the directional dependence of the elastic properties has
to be considered. This is most easily done by taking advantage of the tensor character of
both elastic constants and strains. We present expressions for the elastic energy density, the
strainε3 as a function of the in-plane strains,ε1 andε2, the in-plane stresses,τ1 andτ2, as a
function of the in-plane strains and of both Young’s modulusY and Poisson’s ratioν for cubic
(100)-, (110)- and (111)-films, and for hexagonal (0001)- and (1120)-films. We will see, for
example, thatY might change by almost 50% for different directions within the (110)-plane.
Thus, a derivation of the appropriate directional dependence is clearly called for to allow for
a comparison between experimental results and the prediction of continuum elasticity.

There are two ways to take the directional dependence of the elastic properties into account.
(i) Transformation of the strain tensor: a primed film coordinate system is set up in which the
film strainsε′1 andε′2 describe the epitaxial misfit strain in the film plane, andε′3 describes the
strain perpendicular to the film plane. A transformation matrix with elementsaij is derived
by expressing the primed film directions as a function of the crystal directions. Finally, the
crystal strains are expressed as a function of the film strains, and (2.5) and (2.6) can be used
with the strainsεi replaced with the appropriate expressions in terms of theε′j . The partial
derivative of the elastic energy density with respect to the film strains gives the film stresses
in the film coordinate system. The benefit of this approach is that only the strain tensor has to
be transformed, which can be easily done by the respective matrix multiplicationε = aTε′a
that uses the transposeaT of the transformation matrixa. The disadvantage is that one does
not obtain the directional dependence of the elastic constants directly. (ii) Transformation
of the elastic stiffness or of the elastic compliance tensor: for this approach, one transforms
the elastic stiffness constantscijkl or the elastic compliance constantssijkl by the appropriate
tensor transformation with the transformation matrixa. The primed elastic constants of the
film system can then be expressed as a function of the elastic constants of the crystal system:

c′ijkl = aimajnakoalpcmnop, i, j, . . . , p = 1, 2, 3. (2.11)

Each primed elastic constant is given by 34 terms. The strains do not need to be transformed
and can be taken directly from the film system. The benefit of this approach is that one can
derive the directional dependence of single elastic constants and of composite elastic properties
like Young’s modulusY and Poisson’s ratioν directly. Once these transformations have
been performed we can return to the contracted matrix notation which allows a very concise
description of the elastic properties:

τ ′i = c′ij ε′j , (2.12)

ε′i = s ′ij τ ′j , i, j = 1, 2, . . . ,6. (2.13)

Note that for the cases of simple epitaxy that we study here, no shear strains are found in
the film system,ε′4 = ε′5 = ε′6 = 0, andε′3 is obtained by settingτ ′3 = 0. Expanding (2.13) for
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ε′1 and rearranging the terms gives

τ ′1 =
1

s ′11

ε′1−
s ′12

s ′11

τ ′2. (2.14)

Comparing (2.14) with the definition of Young’s modulusYand Poisson’s ratioν [59]
τ1 = Yε1 + ντ2 shows thatY ′ andν ′ can be expressed by the elastic compliances in the film
system:

Y ′ = 1

s ′11

ν ′ = − s
′
12

s ′11

. (2.15)

To perform the tensor transformation of the elastic compliance of the cubic system, the
directions in whichY andν are needed are specified by the direction cosinesa11 = l1, a12 = l2,
a13 = l3 anda21 = m1, a22 = m2, a23 = m3. These direction cosines are given with respect
to the crystal axesx, y andz. With reference to (2.14), the vectorl is parallel to the strain
ε′1, whereas the direction ofm is perpendicular toε′1 and gives the direction ofτ ′2 as the
Poisson-type contribution toτ ′1 [21,58,74]:

cubic: 1/Y ′ = s ′11 = s ′1111= a1,ma1,na1,oa1,ps
cubic
mnop

= s11− 2(s11− s12− 1
2s44)(l

2
1l

2
2 + l21l

2
3 + l22l

2
3) (2.16)

cubic: ν ′ = − s
′
12

s ′11

= − s12 + (s11− s12− 1
2s44)(l

2
1m

2
1 + l22m

2
2 + l23m

2
3)

s11− 2(s11− s12− 1
2s44)(l

2
1l

2
2 + l21l

2
3 + l22l

2
3)
. (2.17)

The important result of (2.16) is that the amount of elastic anisotropy for cubic elements
depends on the directional factor(l21l

2
2 + l21l

2
3 + l22l

2
3) and on the magnitude of the anisotropy

term (s11− s12− 1
2s44). The larger the anisotropy term, the larger the correction tos11, and

a pronounced elastic anisotropy results. To illustrate the different degrees of anisotropy for
various elements, we plot in figure 1 a three-dimensional representation of the directional
dependence ofY .

Only for W is the anisotropy term≈0, and an almost isotropicY results. For the other
elements, pronounced anisotropies result, andY is large along the〈111〉-directions for elements
with a positive anisotropy term (Fe), orY is large along the〈100〉-directions for elements with
a negative anisotropy term (Mo), respectively. Figure 1 clearly shows thatY is not isotropic
within the(100)-plane of cubic materials, but the following derivation of the elastic properties
along selected directions reveals thatY/(1 − ν), which determines the biaxial rigidity,is
isotropic in(100)-planes. A cross section ofY along a(111)-plane reveals an isotropicY ,
however, the value ofY is not simply given by 1/s11, as calculated in the next section.

For hexagonal elements, the different symmetry of the compliance tensor results in a
different expression for the transformation:

hexagonal: 1/Y ′ = s ′11 = s ′1111= a1,ma1,na1,oa1,ps
hexagonal
mnop

= s11(1− l23) + s33l
4
3 + (s44 + 2s13)l

2
3(1− l23). (2.18)

To account for the elastic anisotropy of the hexagonal elements, only the direction cosine
l3 between thec-axis and the direction under consideration matters.Y is isotropic in the basal
plane, therefore figure 1(d) shows rotational symmetry around thec-axis.

2.2. Elastic properties of various epitaxial orientations

Young’s modulus, Poisson’s ratio, the stress–strain relations, the elastic energy density in terms
of the in-plane strainsε1 andε2 and the strain ratioε3/(ε1 + ε2) are given for some frequently
used film orientations.
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(d)(c)

(a) (b)

Figure 1. Anisotropy of Young’s modulusY , calculated from (2.16) and (2.18). The distance from
the surface of the bodies to the centre of the bodies representsY along that direction. (a) bcc Fe.
(b) bcc Mo. (c) bcc W. (d) hcp Co. Note the pronounced anistropy for Fe and Mo versus the almost
isotropicY of W. For hcp Co,Y is isotropic in the basal plane, and a rotational symmetry around
thec-axis results.

2.2.1. Cubic (100)-films. The in-plane strains are oriented along the directions of the crystal
axes of the film material and no tensor transformations are necessary to obtain the stress–strain
relations in the technical and in the compliance notation:

τ1 = Yε1 + ντ2 ε1 = s11τ1 + s12τ2 τ1 = c11ε1 + c12ε2 + c12ε3 (2.19)

τ2 = Yε2 + ντ1 ε2 = s11τ2 + s12τ1 τ2 = c12ε1 + c11ε2 + c12ε3. (2.20)

Solving these equations for the stressesτi gives:

τ1 = Y

1− ν2
(ε1 + νε2) τ1 = 1

(1− ( s12
s11
)2)

1

s11

(
ε1− s12

s11
ε2

)
(2.21)

τ2 = Y

1− ν2
(ε2 + νε1) τ2 = 1

(1− ( s12
s11
)2)

1

s11

(
ε2 − s12

s11
ε1

)
. (2.22)

Comparing the coefficients ofε1 andε2 reveals thatY = 1/s11 = (c11 + 2c12)(c11 −
c12)/(c11 + c12) andν = −s12/s11 = c12/(c11 + c12). The compliancessij can be expressed in
terms of the elastic stiffness constantscij , as derived in the appendix. In the case of isotropic
in-plane strain induced by the lattice mismatchη, ε1 = ε2 = η, and the simple relation
τ = Y/(1− ν)η results.

The strain ratio between the strainε3 normal to the film plane and the in-plane strains
follows from the conditionτ3 = 0, as discussed in section 2:

ε3

ε1 + ε2
= − ν

1− ν =
s12

s11 + s12
= −c12

c11
. (2.23)
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Figure 2. The grey-shaded areas show various film orientations. The un-primed crystal coordinate
system and the primed film coordinate system are indicated. (a) Cubic-(110), (b) cubic-(111), (c)
hexagonal-(0001), (d) hexagonal-(1120).

The elastic energy density for cubic elements with an (100)-orientation that are only
strained in-plane, with all shear strainsε4 = ε5 = ε6 = 0, has been derived in (2.9):

f
cubic(100)
elastic = 1

2c11(ε
2
1 + ε2

2)−
c2

12

2c11
(ε1 + ε2)

2 + c12ε1ε2. (2.24)

As we need the expressions for the elastic energy densities of the various film orientations for
the discussion of the magneto–elastic coupling, we derive in the following the stress–strain
relations from the transformations of the elastic energy density.

2.2.2. Cubic (110)-films. The (110)-orientation requires that the appropriate tensor
transformation is performed, as one of the orthogonal in-plane directions does not coincide
with a crystal axis. First, the transformation matrixa is derived from an analysis of the surface
geometry in figure 2(a).

To obtain the elements of the transformation matrixa, the primed film directions,x ′, y ′, z′,
have to be expressed as a function of the crystal directionsx, y, z as unit vectors. The relations
are arranged in form of a matrix, and the elements ofa follow directly:

x y z

x ′ −1√
2

1√
2

0

y ′ 0 0 1
z′ 1√

2
1√
2

0

aij =
 −1√

2
1√
2

0
0 0 1
1√
2

1√
2

0

 . (2.25)

Now, the tensor transformation for the strain can be performed,

ε = aTε′a

εij =
 1

2(ε
′
1 + ε′3)

1
2(−ε′1 + ε′3) 0

1
2(−ε′1 + ε′3)

1
2(ε
′
1 + ε′3) 0

0 0 ε′2

 , (2.26)

and the values ofε are expressed in terms of theε′ in the expression of the elastic energy
density of (2.5):

f
(110)
elastic= 1

4c11(ε
′2
1 + 2ε′22 + 2ε′1ε

′
3 + ε′23 ) + 1

4c12(ε
′2
1 + 4ε′1ε

′
2 + 2ε′1ε

′
3 + 4ε′2ε

′
3 + ε′23 )
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+1
2c44(ε

′
3− ε′1)2. (2.27)

Searching for the minimum of the elastic energy density with respect toε′3 by setting
∂felastic/∂ε

′
3 = 0 gives the perpendicular strain

ε′3 = −
(c11 + c12− 2c44)ε

′
1 + 2c12ε

′
2

c11 + c12 + 2c44
. (2.28)

Finally, ε′3 is expressed in terms of the in-plane film strainsε′1 andε′2, and the in-plane
film stressesτ ′1 andτ ′2 are calculated from the partial derivatives of the elastic energy density.

f
(110)
elastic=

4(c11 + c12)c44ε
′2
1 + 8c12c44ε

′
1ε
′
2 + (c2

11− 2c2
12 + c11(c12 + 2c44))ε

′2
2

2(c11 + c12 + 2c44)
(2.29)

τ ′1 =
∂f

(110)
elastic

∂ε′1
= 4(c11 + c12)c44ε

′
1 + 4c12c44ε

′
2

c11 + c12 + 2c44
(2.30)

τ ′2 =
∂f

(110)
elastic

∂ε′2
= 4c12c44ε

′
1 + (c2

11− 2c2
12 + c11(c12 + 2c44))ε

′
2

c11 + c12 + 2c44
. (2.31)

Note the different prefactors for the in-plane strains that result in an anisotropic film stress
even for isotropic strainε′1 = ε′2.

As an example we discuss the elastic properties of pseudomorphically strained Fe
monolayers on W(110). Here the lattice mismatchη is isotropic,η = ε′1 = ε′2 = 0.104,
and the Fe film is under tensile strain to accommodate the larger atomic distances on the
W surface. Taking the elastic constants of bulk Fe, as given in table 1, a perpendicular
compressive strain ofε′3 = −0.068 results. The in-plane stress along [110],τ ′1 = 38.9 GPa, is
41% larger than the in-plane stress along [001],τ ′2 = 27.5 GPa. The elastic energy density of
the pseudomorphically strained Fe(110) film is 3.36 GJ m−3, which gives a tremendous strain
energy per Fe atom of 0.32 eV/atom. As discussed in section 6, the measured stress in the
pseudomorphic region is 65 GPa along [001] and 44 GPa along [110], respectively. These
results indicate a considerable discrepancy between measured film stress and calculated stress,
even for a coverage above 0.5 monolayers. However, the calculated stress anisotropy is also
found in the experiments. We refer to the pronounced stress anisotropy later when we discuss
the growth of elongated Fe islands for 1.5 ML Fe on W(110), see figure 13. The large strain
energy of more than 0.3 eV/atom leads to the formation of misfit distortions already in the
second layer of Fe, as discussed in section 6. The role of the film strains for the magnetic
anisotropy is also discussed there.

2.2.3. Cubic (111)-films. Figure 2(b) indicates a film coordinate system, that leads to the
following transformation matrix,

x y z

x ′ −1√
2

1√
2

0

y ′ −1√
6

−1√
6

√
2
3

z′ 1√
3

1√
3

1√
3

aij =


−1√

2
1√
2

0

−1√
6

−1√
6

√
2
3

1√
3

1√
3

1√
3

 , (2.32)

from which the relations between the crystal strains and the film strains follows as

εij =
 1

2ε
′
1 + 1

6ε
′
2 + 1

3ε
′
3 − 1

2ε
′
1 + 1

6ε
′
2 + 1

3ε
′
3

1
3(−ε′2 + ε′3)

− 1
2ε
′
1 + 1

6ε
′
2 + 1

3ε
′
3

1
2ε
′
1 + 1

6ε
′
2 + 1

3ε
′
3

1
3(−ε′2 + ε′3)

1
3(−ε′2 + ε′3)

1
3(−ε′2 + ε′3)

2
3ε
′
2 + 1

3ε
′
3

 . (2.33)
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The elastic energy density is

f
(111)
elastic= c11((

1
2ε
′
1 + 1

6ε
′
2 + 1

3ε
′
3)

2 + ( 2
3ε
′
2 + 1

3ε3)
2)

+c12((
1
2ε
′
1 + 1

6ε
′
2 + 1

3ε
′
3)

2 + 2( 1
2ε
′
1 + 1

6ε
′
2 + 1

3ε
′
3)(

2
3ε
′
2 + 1

3ε3))

+2c44((− 1
2ε
′
1 + 1

6ε
′
2 + 1

3ε
′
3)

2 + 4(− 1
3ε
′
2 + 1

3ε
′
3)), (2.34)

and the strainε′3 perpendicular to the film that is induced by the in-plane strains is given by:

ε′3 = −
(c11 + 2c12− 2c44)

c11 + 2c12 + 4c44
(ε′1 + ε′2). (2.35)

The elastic energy density is given terms of the in-plane strains

f
(111)
elastic=

1

4
(c11 + c12 + 2c44)(ε

′2
1 + ε′22 )−

(c11 + 2c12− 2c44)
2

6(c11 + 2c12 + 4c44)
(ε′1 + ε′2)

2

+1
6(c11 + 5c12− 2c44)ε

′
1ε
′
2, (2.36)

and the in-plane stresses follow as

τ ′i =
(

1

2
c11 +

1

2
c12 + c44− 1

3

(c11 + 2c12− 2c44)
2

c11 + 2c12 + 4c44

)
ε′i

+

(
1

6
c11 +

5

6
c12− 1

3
c44− 1

3

(c11 + 2c12− 2c44)
2

c11 + 2c12 + 4c44

)
ε′j (2.37)

with i = 1, j = 2 andi = 2, j = 1.

2.2.4. Hexagonal (0001)-films.The expression for the elastic energy density was derived in
(2.6) and no transformations are necessary for this orientation where the direction of the film
coordinate system is indicated by figure 2(c):

f
(0001)
elastic = 1

2c11(ε
2
1 + ε2

2) + 1
2c33ε

2
3 + c12ε1ε2 + c13(ε1ε3 + ε2ε3). (2.38)

Here,ε4 = ε5 = ε6 = 0 was set due to the limitation to cases of simple epitaxy. The
perpendicular strain follows as

ε3 = −c13

c33
(ε1 + ε2), (2.39)

the elastic energy density as function of the in-plane strains is

f
(0001)
elastic =

1

2
c11(ε

2
1 + ε2

2) + c12ε1ε2 − c2
13

2c33
(ε1 + ε2)

2 (2.40)

and the in-plane stress is given by

τi =
(
c11− c

2
13

c33

)
εi +

(
c12− c

2
13

c33

)
εj , (2.41)

with i = 1, j = 2 andi = 2, j = 1.

2.2.5. Hexagonal (11̄20)-films. Figure 2(d) shows that one film direction is parallel to the
c-axis, with the other film direction running in the basal plane. The transformation matrix can
be written as

a =
−

√
3

2
1
2 0

0 0 1
1
2

√
3

2 0

 (2.42)



822 D Sander

and the elastic energy density follows

f
(1120)
elastic = 1

2c11(ε
′2
1 + ε′23 ) + c12ε

′
1ε
′
3 + c13(ε

′
1 + ε′3)ε

′
2 + 1

2c33ε
′2
2 . (2.43)

The strain perpendicular to the film plane is

ε′3 = −
c12ε

′
1 + c13ε

′
2

c11
(2.44)

and the elastic energy density can be expressed as function of the in-plane strains

f
(1120)
elastic =

1

2

(
c11− c

2
12

c11

)
ε′21 +

1

2

(
c33− c

2
13

c11

)
ε′22 +

(
c13− c12c13

c11

)
ε′1ε
′
2 (2.45)

and the in-plane stresses follow as

τ ′1 =
(
c11− c

2
12

c11

)
ε′1 +

(
c13− c12c13

c11

)
ε′2 (2.46)

τ ′2 =
(
c13− c12c13

c11

)
ε′1 +

(
c33− c

2
13

c11

)
ε′2. (2.47)

As an example, we discuss the growth of Co on W(100). The Co surface cell indicated
in figure 2(d) is rotated byπ/4 with respect to the W [001]-direction to fit the W surface
cell with in-plane strains ofε′1 = 0.03 andε′2 = 0.09. This epitaxial orientation results in a
strain perpendicular to the film plane ofε′3 = −0.047 and induces in-plane film stresses of
τ ′1 = 11 GPa andτ ′2 = 31 GPa.

3. Magneto–elastic coupling

In the last section it was shown that the elastic energy density depends on the orientation of the
strains with respect to the cubic axes. In ferromagnetic materials further terms contribute to
the energy density. These terms depend on the orientation of the magnetizationM, as specified
by the direction cosinesαi between the direction of magnetization and the cubic axes. For
example, the work done by magnetizing a crystal in an external magnetic fieldH is given by∫
HdM and depends on the direction in which the sample is magnetized. This effect is due to

the so-called magneto–crystalline anisotropy which has its origin in the spin–orbit coupling of
the valence electrons of the sample. However, in addition to this directional dependence of the
magnetic anisotropy, the magnetic properties depend on the overlap of wavefunctions which
leads to a strain dependence of the magnetic anisotropy. A well known example for the strain
dependence of magnetism is the effect of magnetostriction, which describes the change of the
dimensions of a sample due to the magnetization process. Obviously, a sample can lower its
energy by changing its lengthl in the magnetization process until elastic forces balance the
magnetostrictive stress. The resulting magnetostrictive strainsλ = 1l/l are of order 10−5 for
Fe [63] but can reach values as high as 10−3 for FeTb alloys [75].

Following Kittel [11] and Lee [2], the starting point in the discussion of strain-dependent
magnetic properties is the magneto–elastic energy densityfme, with

f cubic
me = B1(ε1α

2
1 + ε2α

2
2 + ε3α

2
3) +B2(ε4α2α3 + ε5α1α3 + ε6α1α2) + · · · (3.1)

for a cubic system. The direction cosines of the magnetization with respect to the cubic axes
are given byαi , the strainsεi are measured along the cubic axes. Equation (3.1) describes
how the magnetization direction interacts with the strains to result in a magneto–elastic energy
density that is given by the so-called magneto–elastic coupling coefficientsB1 andB2. The
dots indicate that higher-order terms inαi , that are discussed, for example, by Becker and
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Döring [76] or Carr [77], have been neglected. Higher-order terms inεi will be introduced
later, when we discuss the deviation of the magneto–elastic coupling in ultrathin epitaxial films
from the respective bulk values.

According to Kittel [11], the magneto–elastic coupling coefficients can be regarded as
strain derivatives of the magnetic anisotropy energy density and calculations of the magnetic
anisotropy can be exploited to determine the magneto–elastic coupling coefficients from first
principles.Ab initio calculations of the anisotropy energy as a function of strain determine the
magneto–elastic coupling coefficients directly. This approach has been employed to calculate
the magneto–elastic coupling in Co monolayers [78], and to derive the magnetostriction of bulk
Ni from fully relativistic calculations [13], and to exploit the magneto–elastic coupling in Ni
monolayers [14]. A discussion of magneto–elastic coupling based on symmetry considerations
is given in the articles by Mason [79,80], Döring and Simon [81] and in the book by Trémolet
de Lacheisserie [82].

The expression for the magneto–elastic energy densityfme in (3.1) is a function of the
strainεi . The most important consequence of the strain dependence offme is that magneto–
elasticstressesare inherently connected with the concept of magneto–elastic coupling. The
observation of magnetostriction in bulk samples is a consequence of the magneto–elastic
stress that acts to strain the sample until it is balanced by the restoring elastic forces. The
driving force for this magnetostrictive strain is the minimization of the total energy of the
sample in the magnetization process. A lowering of the sum of elastic and magneto–elastic
energy by a non-zero strain is always possible as the magneto–elastic energy contribution
depends linearly on the strains in the approximation given above. For bulk Fe,B1 is
negative (B1 = −0.253 meV/atom) and Fe expands upon magnetization along a cubic axis
(λ100 = 24× 10−6). A positiveB1 is found for Ni, and consequently Ni contracts upon
magnetization along a cubic axis. Most experimental data on the magneto–elastic coupling
coefficients are obtained from measurements of the magnetostrictive strainsλ of bulk samples,
and theBi are calculated from (3.2).

Before we discuss the magneto–elastic coupling in epitaxial films we recall how the
expressions for the magnetostrictive strain in bulk samples are derived. To determine the
so-called magnetostriction of bulk samples one has to find the strainsεi that minimize the
sum of the the magneto–elastic energy density,fme (3.1), and of the elastic energy density,
felastic(2.5) [2, 11, 83]. This minimization procedure is equivalent to the condition, that the
magnetostrictive stresses, as obtained by the partial derivatives offme with respect to the
strains, are cancelled by the elastic stresses that evolve due to the strain in the sample. The
relations between the magnetostrictive strains and the magneto–elastic coupling coefficients
are used to define the relations between the so-called magnetostriction constantsλ100, λ111 and
B1, B2 [2,11,83]:

λ100= −2

3

B1

(c11− c12)
, λ111= −1

3

B2

c44
. (3.2)

The prefactors23 and1
3 enter, because one defines the magnetostriction constantsλ100(λ111)

as the relative change in length that one measures along [100] ([111]) due to the magnetization
along [100] ([111])starting from an ideal demagnetized state. This demagnetizedstate
is assumed to be characterized by an isotropic distribution of the magnetization directions
along the easy axes. For both Fe and Ni, this introduces factors ofα2

i (demag) = 1
3 and

αiαj (demag) = 0 in (3.1) of the demagnetized reference state. The magneto–elastic coupling
coefficientsB1 andB2 can then be calculated from the magnetostrictive strains and from
the elastic constantscij of bulk samples. To avoid the experimental uncertainty of an ideal
demagnetized state as the reference, magnetostriction experiments of bulk samples are usually
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Table 2. Room temperature values ofλ100 andλ111 from [63], with the relations given in [2]. Data
for fcc Co are extrapolated from measurements on PdCo alloys [91,92]. TheBi are calculated with
(3.2). λA , . . . , λD are room-temperature values from [89], theBi are calculated from (3.4). AllBi
in MJ m−3, all λ in 10−6.

Element B1 B2 λ100 λ111 B3 B4 λA λB λc λD

bcc Fe −3.43 7.83 24.1−22.7
fcc Co −9.2 7.7 75 −20
fcc Ni 9.38 10 −64.5 −28.3
hcp Co −8.1 −29 28.2 29.4−50 −107 126 −105

performed by measuring the change of the magnetostrictive strain while the magnetization
is rotated between two well-defined directions. Several authors derive procedures of how
to orient the strain measurement direction in certain crystal planes and the direction of
magnetization to obtain the magnetostriction constants [84–86]. This simplest description
of anisotropic magnetostriction in cubic materials requires only two constants, and the use of
higher-order terms in the direction cosines of magnetizationαi in (3.1) isnot necessary due
to the small magnitude of these terms that do not exceed the experimental uncertainty of the
magnetostriction measurement [63,84–87].

The description of the anisotropic magnetostriction in hexagonal crystals up to the
second order in the direction cosine of magnetization requires four magneto–elastic coupling
coefficients, or four magnetostriction constants,λA, . . . , λD. Mason has derived the
expressions for the magnetostrictive strain in an hexagonal crystal as a function of the
direction of magnetization using four magnetostriction constants based on a phenomenological
description that took the symmetry of the hexagonal system into account [80]. Experimental
procedures to determine the four magnetostriction constants are given by Bozorth [88] and
Hubertet al[89]. For example,λC describes the strain in thec-direction when the magnetization
is rotated from the basal plane to thec-direction,λA is the strain measured in the basal plane,
when the magnetization is rotated from the basal plane to thec-direction [89]. Bruno has
calculated the relation between the magnetostriction constants and the coefficients of a Néel
model [90]. He gives the following expression for the magneto–elastic energy density of the
hexagonal system:

f hex
me = B1(α

2
1ε1 + 2α1α2ε6 + α2

2ε2) +B2(1− α2
3)ε3

+B3(1− α2
3)(ε1 + ε2) +B4(α2α3ε4 + α1α3ε5). (3.3)

This expression gives the change in the magneto–elastic energy density due to the strains
εi and due to a magnetization along the directionαi directly, as the demagnetized reference
state has already been included. The magneto–elastic coupling coefficients can be calculated
from the measured magnetostriction constants and the elastic constantscij of hcp-Co:

B1 = −(c11− c12)(λA − λB), B2 = −c13(λA + λB)− c33λC

B3 = −c12λA − c11λB − c13λC, B4 = c44(λA + λB + λC− 4λD).
(3.4)

The values of the magneto–elastic coupling coefficients are given together with the
magnetostriction constants in table 2.

In the discussion of magneto–elastic coupling in bulk samples,B andλ are often used
synonymously. However, for ferromagnetic films the equivalence between the magneto–elastic
coupling and the magnetostrictive strain is not given. In contrast to a bulk ferromagnetic
sample, the in-plane strains in a film are fixed due to the strong film–substrate interaction, and
cannot freely adjust to minimize the energy of the system. Instead, magnetostrictivestresses
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Figure 3. Magneto–elastic coupling in bulk samples and in film–substrate composites. (a) The
magneto–elastic coupling induces a magnetostrictive strain1L/L in bulk samples. (b) The bonding
to the substrate induces a magnetostrictive stress that induces a bending of the film–substrate
compound. The magneto–elastic coupling coefficientB can be calculated from the radius of
curvatureR.

are induced in ferromagnetic films. The differences in the magneto–elastic description of bulk
samples and ultrathin films films is shown in figure 3.

Therefore, the concept of magnetostriction should be avoided in the description of
ferromagnetic films. Instead, the use of magneto–elastic couplingB, which gives the
magnetostrictive stress, is preferred. In the following, we briefly compile the expressions
for the magneto–elastic coupling in cubic and hexagonal systems. The relations betweenB

andλ are given for completeness.
In the case of ferromagnetic films, that are bonded to a substrate, the above quoted

relations between magnetostrictive strain and magneto–elastic coupling coefficients donot
apply. Whereas the minimization of the elastic and magneto–elastic energy contribution
of bulk samples is performed by treating the six strain components as variables to find the
minimum of the energy expression, the bonding to the substrate leaves the strain component
perpendicular to the film plane as the only variable. The magneto–elastic coupling induces
magnetostrictivestressesin the film, but the amount of observable magnetostrictive strain in the
film plane depends on the experimental conditions, e.g. thickness and rigidity of the substrate.
Consequently, only for the strain componentε3 is it meaningful to talk about magnetostrictive
strain. The minimization of elastic and magneto–elastic energies gives for a cubic system
ε3 = −(ε1 + ε2)c12/c11 − B1α

2
3/c11. The change ofε3 due to magnetization along [001],

α3 = 1, with an isotropic distribution of the magnetization as a reference state, can be defined
as the magnetostriction of films that are clamped to a substrate:

λfilm
100 = −

2

3

B1

c11
. (3.5)

Note that due to the bonding to the substrate,c12 does not enter this expression [78], in
contrast to the discussion of bulk samples above.

3.1. Surface effects and strain dependence of the magneto–elastic coupling in ultrathin films

With decreasing thickness the relative number of film atoms that are bonded at the surface
and interface of the film increases. The atomic environment of these interface atoms differs
from that of bulk atoms. At the surface, bonding partners are missing, at the interface, bonds
are formed between different atomic species. Thus, the symmetry of a surface layer might
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differ from the symmetry of the bulk, and additional magneto–elastic coupling coefficients
might be necessary to take this so-called surface effect into account. A comprehensive
discussion of the magneto–elastic coupling in view of symmetry considerations is presented
in [82] and surface contributions to the bulk magneto–elastic coupling coefficients have been
defined by Tŕemolet de Lacheisserie [93]. The bulk and surface magneto–elastic coupling
coefficients have been derived in a Néel model [94] of interaction between nearest-neighbour
atom pairs [95]. The interaction energy in a Néel model depends on the distance between
two atoms and on the orientation of the magnetic moments of the atoms with respect to the
vector joining the two atoms. This is a rather crude model for the itinerant magnetism of the
3d-metals, and the outcome of such calculations has to be taken as qualitative result rather
than a quantitative prediction, as the authors admit [95]. Based on serious difficulties in
applying a Ńeel model to surface magnetic anisotropies, doubts have been formulated about
the applicability of the Ńeel model to the discussion of anisotropy issues [96]. Fully relativistic
calculations do not rely on the conceptual limitations of localized moments and pair interactions
and are capable of investigating magnetic anisotropy and magneto–elastic coupling from first
principles [12–14,78,97,98]. The implication of theseab initio calculations for an atomistic
understanding of the relevant processes are briefly discussed in section 3.2.

Experimental evidence for the deviation of magneto–elastic coupling in the surface layer
of a ferromagnetic sample was initially presented by Sun and O’Handley [5]. They measured
the influence of an externally applied strain on the anisotropy of various amorphous alloys
by measuring the spin polarization of secondary electrons. It was found that the magnitude
of the magneto–elastic coupling near the surface is more positive and leads to a deviation
from the respective bulk values by factors of 2–3. Later, this so-called surface contribution to
the magneto–elastic coupling was ascribed to a surface magneto–elastic coefficientBS. This
surface term describes a correction of the bulk magneto–elastic coupling coefficients that is
independent of the film thicknesst and contributes to the effective magneto–elastic coupling
viaBeff = Bbulk +BS/t [99].

Experimental data on the thickness dependence of the magneto–elastic coupling in
ferromagnetic multilayers have been reviewed by Szymczak andŻuberek [6] and Szymczak [7].
Their data are compiled in terms of a surface magnetostriction and reveal a substantial decrease
by more than a factor of three of the magnitude of the magnetostriction to more negative
values with decreasing film thickness. A linear relation between the magnetostriction and the
reciprocal film thickness was found.

Strain is a further important parameter that influences the magnetic anisotropy, as indicated
in the linear strain–anisotropy relation of the magneto–elastic energy density above in (3.1).
In ultrathin films the misfit between film and substrate is often as high as several per cent and
strain-dependent corrections to the magneto–elastic coupling coefficient should be considered
[100–102]. The strain correction in its simplest formBeff

1 = B1 +Dε was successfully applied
to account for the stress dependence of the magneto–elastic coupling in epitaxial Fe(100)-
films of 100 nm thickness [9] and will be shown to describe the magneto–elastic coupling in
epitaxially strained nm Fe-films in section 7. The strain correction toB1 is found to change the
magnitude and sign of the magneto–elastic coupling even for moderate strains in the sub-per
cent range. A similar dependence of the magneto–elastic coupling on strain was found in
bulk samples. Externally applied stresses in the GPa range have been reported to modify the
saturation magnetostriction of amorphous glasses [103,104].

The role of alloy formation for the magneto–elastic coupling has been studied for CoPd
alloys and multilayers [91, 92, 105–108]. The data for the Co-rich CoPd bulk alloy are often
used as a reference for the magnetostriction constants of fcc Co,λfcc Co

100 = 120× 10−6 and
λfcc Co

111 = −100× 10−6 [91,92]. The authors find that the magneto–elastic coupling in Co–Pd
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multilayers is not governed by the magnetostrictive properties of Co, but by those of the CoPd
alloy. They ascribe this effect to the electron hybridization between Co and Pd and to the
possibility of alloy formation at the the Co–Pd interface [92,108].

Finally, a further mechanism that might induce magneto–elastic coupling that deviates
from bulk behaviour is the influence of film morphology on the magnitude of the magneto–
elastic coupling. Kim and Silva reported an increase of the magnetostriction in ultrathin
permalloy films from essentially zero to negative values of order−2× 10−6 for a film thinner
than 7 nm [8]. The deviation from the bulk behaviour was correlated with the measured increase
of the surface roughness, although additional influence of residual stress was not excluded.

In conclusion, this discussion of some aspects of the peculiarities of the magneto–elastic
coupling in ultrathin films reveals that, in general, a novel magneto–elastic behaviour has to be
expected. Physical models that go beyond the simple strain dependence of the magneto–elastic
energy density presented in (3.1) and (3.3) are called for and surface magneto–elastic coupling
may also become significant relative to bulk magneto–elastic coupling.

3.2. First principles calculations of magneto–elastic coupling

The tiny relative changes of length of bulk Fe, Co, or Ni samples due to magnetization processes
of order 10−5 indicate that the underlying physical processes are characterized by rather small
magneto–elastic energy contributions. To get a rough estimate for the corresponding energy
contributions, we recall from section 2 that a strain of 10% leads to an increase of the elastic
energy of 0.2 eV/atom. Thus, the four-orders-of-magnitude-smaller magnetostrictive strain
can be roughly estimated to change the elastic energy contributions of order 20µeV/atom.
Calculating magneto–elastic effects requires us to determine the total energy of the system
with the highest possible precision. Energy changes smaller thanµeV/atom have to be traced
reliably. The physical reason for the smallness of these effects in the ferromagnetic 3d-elements
is that in contrast to the ferromagnetic 4f-elements the orbital moment of the 3d-electrons is
almost completely quenched by the crystal field and the spin–orbit interaction removes this
quenching only in part, leading to small magnetic anisotropy energies [83]. Nevertheless,
a linear strain dependence of the magneto–crystalline anisotropy and the magnetostriction
of bulk samples have been determined in recent first principles calculations. Some of this
work is briefly discussed in this section to indicate that the phenomenological approach of a
strain-dependent contribution to the anisotropy is justified by first principles calculations.

Wu et al [12] have calculated the total energyE of bcc Fe, fcc Co, and fcc Ni slabs
as a function of the length of thec-axis using the full potential linearized augmented-wave
(FLAPW) method. The magneto–crystalline anisotropy energy was calculated from the
expectation value of the angular derivative of the spin–orbit coupling with the spin oriented
θ = 45◦ from the normal axis [109]. Their results are presented in figure 4. This torque
method gives the magneto–crystalline anisotropyEMCA as the energy difference between the
magnetization oriented in plane,θ = 90◦, and out-of-plane,θ = 0◦: EMCA = E(θ =
90◦) − E(θ = 0◦). Thus a positive magneto–crystalline anisotropy energy indicates an easy
axis of magnetization that is oriented parallel to the perpendicularc-axis. This dependence of
the magnetic anisotropy on the sign ofEMCA will be discussed later when the anisotropy of
monolayers is discussed.

Figure 4 shows the calculated total energies given by solid circles for bcc Fe (a), fcc Co
(b) and fcc Ni (c) on the left axis. The magneto–crystalline anisotropy energyEMCA is given
by open circles on the right axis. The data are plotted against the length of thec-axis for a
constant volume deformation. The solid curves through the data points of the total energy are
parabolic fits to the data. Thex-value of the minimum of the parabola indicates the calculated
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Figure 4. Calculated total energy (left axis, solid circles) and magneto–crystalline anisotropy
energy (right axis, open circles), from [12]. The data are plotted for bcc Fe (a), fcc Co (b) and fcc
Ni (c) as a function of the length of thec-axis. These first-principles calculations indicate a linear
dependence of the magneto–crystalline anisotropy on the lattice parameterl, as indicated by the
straight line through the open data points.

equilibrium lattice constant along thec-direction.
For our discussion of magneto–elastic coupling, the most important result presented in

figure 4 is the linear dependence of the magneto–crystalline anisotropy energy on the length
of thec-axis, as indicated by the linear fits to the open data points. Thus, a linear relation,

EMCA = k1l + k2 (3.6)

between the magneto–crystalline anisotropy and the length of a lattice parameterl is found
in first-principles calculations. The constantsk1, k2 can be traced back to magneto–elastic
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Figure 5. Calculated total energy (left axis) and magnetic anisotropy energy (right axis) of a
pseudomorphic Co monolayer on Cu(100), from [78]. The data are plotted as a function of the
interlayer distancedCo−Cu. Two parabolic total energy curves (A: scalar-relativistic, B: relativistic
for perpendicular spin quantization axis) are presented, a linear dependence of the magnetic
anisotropy energy MAE on the perpendicular layer distance is indicated by a linear fit to the
data.

coupling coefficients and magneto–crystalline anisotropies, respectively [13,78]. The authors
calculate the magnetostriction constantλ100 from the linear fit to the data [12]. The calculated
value ofλ100of Fe is almost a factor of three larger than the experimental value of 21×10−6, the
value for Co, 102× 10−6, is within the range of experimental data, the calculated value for Ni
is 50% larger than the experimental value of−49×10−6. The authors ascribe the discrepancy
between calculated and measured magnetostriction data to the issue of the constant volume
distortion mode they adopted.

Qualitatively, the sign of the calculated magnetostriction constant can be extracted from
the slope of the magneto–crystalline anisotropy energy as a function of the length of thec-
axis. A positive slope of this curve in figure 4(a) and (b) indicates that the energy difference
between the in-plane and perpendicular spin orientation,E(→)−E(↑), becomes larger for an
increase of thec-axis length. A perpendicular spin orientation is energetically favourable for
the expanded lattice, as indicated by the more positive energy difference, therefore the system
will expand upon magnetization along thec-axis, as calculated for Fe and Co. A negative
slope indicates that a lattice contraction is energetically favourable, as calculated for Ni in
figure 4(c).

Shick et al have calculated the magnetic anisotropy energy and the magneto–elastic
coupling of a pseudomorphic Co monolayer on a Cu(100) slab [78]. In contrast to the
calculations presented above, now the in-plane lattice constant of the Co monolayer is fixed,
while the vertical Co–Cu interlayer distance is varied. Their results on the total energy and
the magnetic anisotropy energy of a Co monolayer on Cu(100) are presented in figure 5.

Note, that at the minima of the parabolic energy curves the magnetic anisotropy energy
is negative (−0.36 eV), indicating an easy magnetization direction in the film plane. The
authors discuss the linear dependence of the magnetic anisotropy energy in view of surface
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Figure 6. Calculated total energy shift due to small tetragonal
and trigonal distortions of Ni, from [13]. The minima of the
curves directly indicate the magnitude of the magnetostrictive
strainsλ100 (tetragonal curve) andλ111 (trigonal curve). Note
the small energy scale.

contribution to both magneto–crystalline anisotropy and magneto–elastic coupling energy,

E = −BV
1 (e⊥ − e0)− B

S
1

t
(e⊥ − e0) +

2K2

t
. (3.7)

Here, the difference between the out-of-plane and in-plane strain,e⊥ − e0, is defined with
respect to the bulk lattice constant of fcc Co ofafcc Co = 3.55 Å. The volume magneto–
elastic couplingBV

1 was calculated fromλ100 of a Co-rich PdCo alloy [91], 2K2 was obtained
from figure 5 as−0.47 meV per atom where(e⊥ − e0) = 0. Thus, the surface magneto–
elastic coupling coefficientBS

1 was calculated from the difference between the total and the
volume magneto–elastic energy. It was pointed out by the authors that these results resemble
a qualitative similarity between first-principles theory and the Néel model [78].

Hjortstamet al [13] calculated the magnetic anisotropy in tetragonal distorted Ni for
constant area and constant volume distortions. They found for both types of distortions a
linear dependence of the volume anisotropyKV on the tetragonal distortions given by the
ratio of the out-of-plane lattice and in-plane constantsc/a. Again, the magnetic anisotropy
energy is defined as the difference of the total energy between an in-plane orientation of the
magnetization and an out-of-plane orientation of the magnetization,KV = E(→) − E(↑).
They ascribe the linear dependence ofKV on thec/a-ratio to the magneto–elastic coupling [13]:

KV = 3
2λ100(c11− c12)(ε2 − ε1). (3.8)

Here, the magnetostriction constantλ100 and the elastic constantsc11, c12 of Ni are used
to characterize the magneto–elastic coupling. The in-plane strain of the lattice parametera

is given byε1, ε2 describes the strain along the perpendicular direction with lattice parameter
c. The authors calculatedc11 andc12 previously [110] and are therefore in the position to
calculateλ100 from their value ofKV at a given strain. Note, that the prefactor in front of the
strain differenceε2 − ε1 can equally be written as−B1, see (3.2). The calculated value of
λ100 is more than a factor of three larger than the experimental value. This deviation between
theory and experiment is ascribed to the smallness of the underlying energy changes [13].

In addition, theydirectly calculated the shift of the total energy of Ni due to extremely
small distortions of order 10−4 [13]. The result is presented in figure 6. The minima of the
curves directly indicate the magnitude of the magnetostriction constantsλ100, obtained from a
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tetragonal lattice distortions, and ofλ111, obtained from trigonal lattice distortions. Note that
in contrast to the calculations presented above, thex-scale is as small as the magnetostrictive
strains. Due to the smallness of the distortions, the resulting energy changes are only of the
order of several neV per atom. Clearly, an astonishing numerical accuracy is required to
perform these calculations. The calculated magnetostrictive strains are a factor of three larger
than the experimental values. But nevertheless, a direct calculation of magneto–elastic effects
seems feasible.

Finally, the close relationship between the electronic structure and the magnetic interface
anisotropy has been studied in first principles calculations [97,111–116]. The band filling was
recognized as an important parameter that determines the magnetic anisotropy of Co/Ni and
Co/Pd multilayers [112] and of free-standing Fe [114] and Co monolayers [117]. Kyunoet al
have performed first principles calculations on the magneto–elastic anisotropy of fcc Pd/Co
multilayers, unsupported Co monolayers, and bulk fcc Co [98]. They suggest that a large
local density of states of| m |= 2 character, as they found for Pd/Co multilayers, favours a
perpendicular easy axis of magnetization, in agreement with experimental results [45].

Recent theoretical investigations offer an electronic picture of the origin of the strain
dependence of the magnetic anisotropy [12, 109]. The hybridization of the d states of the
ferromagnetic material with the substrate has been identified to be the main driving force for the
magnetostriction along the film normal in fcc Co(100) monolayers on Cu and Pd substrates. The
effects of strain and interdiffusion on the magnetic anisotropy of Cu/Ni/Cu(001) sandwiches
has been studied in first-principle calculations [14]. These theoretical investigations all indicate
the key role of hybridization between electronic states to account for the magnetic anisotropy
and its strain dependence.

In conclusion, one has to be aware of the limitations of simple phenomenological models
presented above, in the discussion of magnetic anisotropy and magneto–elastic coupling in
monolayers. First-principle theory suggests that there is more to magneto–elastic coupling
than a mere strain dependence of the anisotropy energy. In general, the magneto–elastic
coupling in monolayers should also depend on the nature of the substrate atoms, and not only
on the strain in the film.

4. Experimental techniques to investigate magneto–elastic coupling

Various techniques that can be used to determine the magneto–elastic coupling in bulk samples
and in ferromagnetic films are discussed in the books by Bozorth [1], du Trémolet de
Lacheisserie [82] and in the review article by Lachowicz and Szymczak [118]. We briefly
compile direct and indirect methods that have been applied in the study of magneto–elastic
effects and conclude with a more comprehensive analysis of the venerable bending beam
technique that allows us to measure both magneto–elastic couplingand film stress in one
experiment.

For bulk samples strain gauge techniques have been used to measure the change in length of
the sample during a magnetization process. From the relative change of length measured along
a certain direction for magnetization along another direction all magnetostriction constants
of cubic and hexagonal systems have been determined, and procedures for the appropriate
orientation of the sample plane, the measuring direction and the magnetization direction are
given in the literature [84–89,119,120].

Alternatively, the bulk sample can be made part of a plate capacitor, and magnetostrictive
changes of the sample length can be measured with high sensitivity by monitoring the resulting
change in capacity of the set-up. To achieve ultimate sensitivity and to keep the influence of
stray capacities low, a three-terminal capacitor method is used [121–123]. Even the smallest
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magnetostrictive strains ofparamagnetictransition metals of order 10−10 have been measured
for cm-long samples [122].

The magnetostrictive strain of bulk samples has been measured with fibre-optic techniques
[124,125]. The sample has been used as a shutter in a fibre-optic path of light. Thus a periodic
magnetostrictive strain modulated the light intensity [126]. The distance between the end of an
optic fibre and the magnetostrictive sample was measured with an interferometric technique, the
reported sensitivity was 10−6 for a cm-long sample [127]. The dependence of a tunnel current
between a tunnelling tip and a magnetostrictive sample on the distance between tip and sample
has been used to measure magnetostriction in a feedback-loop mode of operation [128, 129].
However, the tunnelling experiment is extremely susceptible to vibrational and electronic noise
and didnotexceed the sensitivity of capacitance or optical interferometric techniques [128].

For bulk samples in the form of ribbons and wires theWiedemann effecthas been shown
to allow a very accurate determination of the saturation magnetostriction of elastically and
magnetically isotropic samples [82]. The basic idea of the Wiedemann effect is to measure the
torsion that is induced in a wire when the wire is magnetized along its length by an external
field and a current is run along the axis of the wire. The current induces a circular magnetic
field, oriented perpendicular to the wire axis. The magnetization of the wire will be deflected
by the effective magnetic field. A magnetostrictive strain is induced in the cross section of the
wire, and the wire will twist [82]. Pidgeon has measured the torsion of Ni and Co wires as a
function of the longitudinal field and for different currents through the wires to determine the
magnetostriction constants of polycrystalline Ni and Co as early as 1919 [130]. The same effect
was used to measure the torsional magnetostrictive strain in amorphous metal ribbons [131]
and with a high sensitivity of 10−13 in thin-walled Ni tubes [132].

These direct methods directly evaluate the magnetostrictive strain or the magnetostrictive
torsion to determine the magnetostriction constants. In the following indirect methods the
samples are exposed to an externally applied stress by pressing, stretching or bending the
samples. The effect of this externally imposed strain of the sample on the magnetic properties
like initial susceptibility, the shape of the magnetization curve, or the ferromagnetic resonance
is analysed to derive the magneto–elastic coupling coefficients. The main idea of these indirect
methods is to exploit the contribution of the magneto–elastic coupling as described in (3.1) to
the magnetic anisotropy. Straining the sample will change the effective anisotropy due to the
magneto–elastic coupling.

The effect of tensile stresses on the initial susceptibility of amorphous alloys has been
investigated to derive the saturation magnetostriction constant [103, 133–135]. In these
experiments the measured proportionality between the reciprocal initial susceptibility and
the applied stress is analysed to derive the magnetostriction constant. The simple idea
behind these experiments is that the anisotropy of these amorphous alloys is mainly due
to the magneto–elastic coupling. Thus, straining (ε > 0) an amorphous sample with a
negative magnetostriction constant will increase the effective anisotropy and lower the initial
susceptibility. The appearance of the whole magnetization curve is affected by the strain
that one imposes on the sample [5, 102, 136, 137]. Thus, in general, the measurement of the
magnetization curve can be analysed to calculate the effective magneto–elastic coupling of
the sample from the effect of strain on the initial susceptibility, or on the effective anisotropy.
However, certain models of what contributes to the effective anisotropy are needed.

The contribution of the magneto–elastic anisotropy to the effective anisotropy of
amorphous samples can also be probed in the small-angle magnetization–rotation (SAMR)
method. Here, a constant magnetic field acts along the axis of a ferromagnetic film or wire,
while a smaller perpendicular ac-magnetic field tries to deflect the magnetization direction by
a small amount of order 1◦ away from the axis. The deflection of the magnetization direction is
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usually detected inductively by a pick-up coil with a lock-in amplifier. The signal of the sense
coil is measured for different externally applied stresses imposed on the sample by stretching
the ferromagnetic wire [138,139], ribbon [103,140], or film–substrate composite [141,142].

Finally, the ferromagnetic resonance (FMR) method [43] can be used to determine the
magneto–elastic properties of ferromagnetic samples. The idea of these measurements is to
measure the shift in the resonance field as a function of the externally applied stress to a bulk
samples [143,144]. This method has been applied to 640 nm thick polycrystalline Ni films by
measuring the shift in the resonance field while bending the film–substrate composite [145].
The authors claim that the shift of the resonance field has to be measured with a sensitivity of
10−6 T to achieve a sensitivity of 10−7 for the determination of the magnetostriction constants.
A method for determining both magnetostriction and elastic modulus ofµm Ni films by FMR
has been described for a triangular polymer beam as a substrate [146]. A related technique
is Brillouin-light-scattering (BLS) [147, 148]. The shift in frequency of visible light due to
inelastic scattering at spin-waves is measured with ultrahigh resolution spectrometers. The
analysis of the spectra allows to determine all magnetic anisotropy contributions in ultrathin
films [50].

5. Stress measurements with cantilevered substrates

Experimental techniques that measure film stressdirectly exploit the bending moment that is
exerted by the film stress onto the substrate. Measurements of film stress therefore usually
rely on an analysis of the substrate curvature that results from the bending moments due to
film stress. The film stress can be caused, for example, by epitaxial misfit between film and
substrate [149–152], solid-state reactions between film and substrate [153], ion implantation
[154], or by the magneto–elastic coupling in a ferromagnetic film during a magnetization
process [82,155–159]. The magnetostrictive bending of a highly magnetostrictive Terfenol-D
film deposited on aµm thin Si microcantilever has been proposed as a magnetometer [160].
The intrinsic stress of polycrystalline films has been reviewed by Doerner and Nix [161],
Abermann [162], Koch [163], and for epitaxial films by Koch [152]. The mechanical properties
of thin films have been discussed by Hoffman [164], Kinosita [165] and Nix [166, 167]. The
relaxation of intrinsic film stress during heat treatments was investigated by measuring the
change of radius of curvature of the film–substrate composite with scanning and multiple
beam optical techniques [168, 169]. The contribution of surface and interface stress effects
to the stress-induced bending during film and multilayer growth was analysed with optical
deflection techniques [170, 171]. In addition, changes of the surface stress of the substrate
due to adsorption [172–175], surface reactions [176], film growth [177–180] or surface
reconstruction [181–183] can be monitored with sub-monolayer sensitivity [21].

The cantilevered substrate–film composite can be used as a magnetometer, as an external
deflecting fieldB acting on the total magnetic moment of the filmmtotal gives rise to a torque
ET = EB × Emtotal [184–187]. If the film magnetization is oriented along the sample length
(or perpendicular to the film plane) and the deflecting field is perpendicular to the film plane
(along the sample length), the resulting torque induces a bending of the substrate. Miniaturized
versions of torque magnetometers have been described recently as very sensitive magnetic
field sensors [188] and for capacitive torque magnetometry [189]. A measurement of the field-
induced substrate curvature gives the total magnetic moment of the film directly in absolute
units. The quantitative results of the bending beam magnetometry is superior to the commonly
used magneto-optic Kerr-effect (MOKE) measurements [190, 191], that give only a signal
proportional to the magnetization of the sample. However, rather stringent requirements apply
to the proper orientation between the deflecting field and direction of magnetization to make
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the beam magnetometer work. In contrast to MOKE, at least one additional set of magnets is
necessary to produce the deflecting field with the proper orientation.

Film stressand magneto–elastic coupling has been measuredin situ by monitoring the
substrate curvature during film growth and during magnetization processes [9, 10, 184–187,
192–194]. These combined measurements on film stress and magneto–elastic coupling reveal
the important role of film stress for the modified magneto–elastic coupling in strained films.
A discussion of this topic follows in section 7.

5.1. Film stress-induced substrate bending

A rigorous treatment of the substrate curvature based on elastic energy considerations has been
given by Marcus [195] and Ibach [21]. Fukuda has solved the differential equations of elasticity
to discuss the bending of 300 mm Si wafers during thermal treatment [196,197]. We present
a physical transparent derivation of the curvature analysis that is based on the discussion of
two-dimensional curvatures of thin plates as worked out, for example, by Timoshenko and
Woinowsky-Krieger [198].

It has to be kept in mind that for applications of interest in this review, the film thickness
tF is smaller than 100 nm and amounts to maximal 0.1% of the substrate thicknesstS, that is
usually of order 100µm. Secondly, the minute forces that act in the film lead to very small
changes of the curvature of the substrate. Typically, the radius of curvatureR of the substrate
is of order 100 m for epitaxial misfit-induced film stress or even orders of magnitude larger
in the case of magnetostrictive bending. Thus, the end of a 10 mm long substrate will be
deflected by only 500 nm when the substrate is curved with a radius of curvature of 100 m.
The deflection of the end of the substrate amounts to less than 1% of the substrate thickness
and the approximations of the theory of small deflections of thin plates [198] are assumed
to apply. For the derivation of the film stress from a measurement of the curvature of the
substrate we can safely consider the film stress to be constant through the film thickness, and
no appreciable stress relaxation occurs due to the bending. Note that a radius of curvature
of R = 100 m induces only a negligible strain on the substrate surface of less than 10−6 for
tS = 100µm. An appreciable stress relief in the films becomes important fortF/tS > 0.01,
as shown by R̈oll [199].

A stress acting in the surface or in a film tends to bend the substrateandtends to compress
or dilate the substrate. Both effects can be treated separately, as proposed by Brenner and
Senderoff [200] and by von Preissig [201], according to the schematic presented in figure 7.
Imagine a film stressτF = F/AF, (AF: cross section of the film), acting on the surface of the
substrate, figure 7(a). The straining action of the stress will cause the substrate to change its
length, as indicated in figure 7(b). The bending moment of the film stress is given byF × r,
figure 7(c). The bending moments induce a biaxial curvature and the strain of the substrate
εS changes through the substrate thicknesstS, figure 7(d). The superposition of the straining
and bending effects presented in figure 7(e) reveals that the neutral axis moves away from the
middle of the substrate. A detailed calculation of the force and moment equilibrium shows that
the neutral layer shifts23 of the substrate thickness away from the stress loaded surface [200].
This separation of the straining and bending effects is very beneficial, as the curvature–stress
relations for biaxial stress can be deduced very easily for substrates with isotropic elastic
properties, like W. Most crystalline substrates however, are highly anisotropic. The directional
dependence of Young’s modulusY and of Poisson’s ratioν has to be considered as discussed in
section 2. The following expressions hold for cubic (100) and (111) and for hexagonal (0001)
substrate orientations, provided thatY andν are inserted for the respective orientation.

The relations between the biaxial bending momentsMx andMy and the radii of curvature
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Figure 7. Stress-induced substrate curvature. The stresses acting in the grey-shaded film give rise
to a film forceF that induces a straining action (a)–(b) anda bending action (c)–(d). The resulting
substrate strainεS is sketched as a function of the substrate thicknesstS in (e).

Rx andRy are taken from the theory of plates [198]:

Mx

w
= YSt

3
S

12(1− ν2
S)

(
1

Rx
+ νS

1

Ry

)
My

l
= YSt

3
S

12(1− ν2
S)

(
1

Ry
+ νS

1

Rx

)
.

(5.1)

The width and the length of the substrate are given byw andl, respectively. The subscript
S denotes substrate properties, the substrate length is oriented along thex-axis, the width
along they-axis. The bending momentsM are given by the film stressesτ . Performing the
separation of the bending and straining action of the film stresses, the bending moments are
simply given byMx = τxwtFtS/2 andMy = τyltFtS/2, and the expressions for the biaxial film
stress as a function of the radii of curvature follow as:
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(5.2)

Equation (5.2) gives the in-plane stress componentsτx andτy as a function of the experimentally
determined radii of curvaturesRx andRy , measured alongtwo directions on a substrate with
isotropic elastic properties. Note, that the elastic properties of the film donot enter the
expressions as we assumed a very small thickness ratiotF/tS. In general, two curvatures
need to be determined to derive the in-plane stress of a film. However, if the stress is isotropic,
τx = τy , the well known modified Stoney relation followsτ = YSt

2
S/(6(1− νS)RtF). Stoney

did not consider the two-dimensional character of the bending problem when he analysed the
bending of a 0.3 mm thin steel ruler due to the electrodeposition ofµm Ni films and his result
did not show the(1− νS) in the denominator [202]. Thus, for isotropic stress acting on an
elastically isotropic substrate one measurement of the radius of curvature suffices to determine
the film stressτ .

Using the modified Stoney equation and the elastic properties of a W(100) substrate given
in table 1, it follows that even a strong epitaxial stress of 10 GPa in a 0.5 nm thin film induces
only a minute bending with a large radius of curvature of order 200 m for a 0.1 mm thin W
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substrate. Thus, the resulting bending is really very small, and the approximations for small
deflections of thin plates do apply.

The application of (5.2) requires a free two-dimensional bending of the substrate. In
most cases however, the substrate is clamped along the width to a sample manipulator and the
bending is suppressed along the width of the sample near the clamping. In the case of a small
length-to-width ratio of a clamped sample, the resulting curvature is almost one-dimensional
and can be described by settingRy = ∞ in (5.2):

τ (1 dim.)
x = YSt

2
S

6(1− ν2
S)tF

1

Rx
. (5.3)

Equation (5.3) is easily extended to crystalline substrates that have anisotropic elastic
properties. One has to calculateYS for a direction along the sample length, andνS for the
direction along the sample width, as derived in section 2.

Ibach performed experiments to derive the dimensionality of the bending for isotropic
substrates with different length-to-width ratios under isotropic stress [21]. Wattset al
performed finite-element modelling of the issue of clamping for anisotropic magnetostrictive
stress [203]. Both works show that already for a length-to-width ratio of two, the error in the
calculated stress is only of order 5% when the formulae for free two-dimensional bending are
applied to a sample that is clamped at one end. This error gives rise to a small uncertainty
in the determination of theabsolutestress value, but it does not influence the comparability
of results obtained for the same length-to-width ratio. However, it is certainly important to
quote the the length-to-width ratio and the dimensions of the deposited film to facilitate a
comparison between the data obtained under different experimental conditions. In conclusion,
for length-to-width ratios larger than two, no detrimental error is expected from the application
of the formulae for two-dimensional bending, even for clamped substrates.

5.2. Magneto–elastic coupling and magnetostrictive bending

Although the measurement of magnetostrictive bending has a long tradition since the early
work by Klokholm [155], theevaluationof the curvature data to obtain the magnetostriction
constants has been subject of series of publications [93, 158, 204–209] due to the erroneous
formulae used in the early work. The magnetostrictive bending has been analysed in these
works by energy minimization procedures or by a detailed treatment of the force and moment
equilibrium condition. In the following, we extend the bending moment approach to the
analysis of the magnetostrictive induced curvature of a film–substrate composite. In contrast
to most of the papers cited above, we make explicit use of the concept ofmagnetostrictive
stress. Thus, we derive the relations between the curvature and themagneto–elastic coupling
without having to deal with the misleading term magnetostriction that does not apply to films
that are bonded to a substrate, for reasons given in section 3.

The magneto–elastic coupling in ferromagnetic films gives rise to a change of the energy
density of the film that depends on the orientation of the film magnetization with respect to the
crystal axis. In contrast to the magneto–crystalline anisotropy, this magneto–elastic anisotropy
depends also on the film strain. A magnetization of a cubic film along itsx-axis gives rise to an
energy contribution ofB1ε1, see (3.1). The film might be strained due to epitaxial misfit, and
ε1 can be considered as the misfit strain, which depends on the epitaxial growth and may be as
large as 10–20%. This strain remains essentially unchanged during the magnetization process,
as the film is rigidly bonded to the substrate, and the radius of curvature of the substrate is
so large, that no appreciable strain relaxation occurs. It is assumed for the moment, that the
magneto–elastic coupling coefficientsBi are constants and do not depend on the film strain. As
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Figure 8. The magneto–elastic energy densityfme (left axes) and the magnetostrictive stress
τme = ∂fme/∂ε (right axes) for (a) fme = B1ε, and (b) fme = B1ε + Dε2. Plotted for Fe:
B1 = −3.44 MJ m−3, D = 1100 MJ m−3 [9, 194]. Note that a constant magnetostrictive stress
results in (a), whereas in (b), the magnetostrictive stress is zero forε = 0.0016 (inset (b)).

we shall see later, this assumption is not necessarily justified for strained films and, in general,
one has to take the strain dependence of theBi into account. This can be done by introducing
an effective magneto–elastic couplingBeff

1 = B1 +Dε1 [9, 100]. The important point is that
the magneto–elastic coupling leads automatically to magnetostrictive stresses that are given
by the strain derivative of the magneto–elastic energy density.

The relation between magneto–elastic energy density and magnetostrictive stress is
illustrated in figure 8. The negativeB1 = −3.4 MJ m−3 of bulk Fe leads to a lower
magneto–elastic energy density for positive strains, as indicated by the negative slope of
figure 8(a). Bulk Fe can lower its energy by expanding upon magnetization, as known from
its positiveλ100 = 24× 10−6. Alternatively, one can describe this tendency to expand upon
magnetization with a compressive stress, indicated byτ1 = ∂fme/∂ε = B1 = −3.4 MPa,
and plotted on the right axes of figure 8. This magnetostrictive stress is compensated
by the elastic stressτ elastic = −B1 and the magnetostrictive strain follows directlyε1 =
−s11B1 = −B1(c11+c12)/((c11−c12)(c11+2c12)) in agreement with the energy minimization
calculations [2, 11]. The expression fors11 was taken from the appendix. In its simplest
form, fme = B1ε the magneto–elastic energy density leads to a constant magnetostrictive
stress, no matter how large the initial strain is. Taking the strain dependence ofBeff

1 into
account, a quadratic dependence of the magneto–elastic energy density on the film strain
results, figure 8(b). It follows that the magnetostrictive stress is now a linear function of the
film strain, and there isno magnetostrictive stress at the zero crossing of the stress curve in
the inset of figure 8(b). A ferromagnetic film with that peculiar strain will not induce any
magnetostrictive stress, as if the magneto–elastic coupling was zero. Such a zero crossing of
the magnetostrictive stress was observed and is discussed below.

If the film magnetization direction is switched from parallel to the sample length to
parallel to the sample width, the magnetostrictive stress changes its orientation accordingly.
An anticlastic curvature results as a magnetostrictive stress is induced exclusively along the
magnetization direction. From (5.2) it follows thatRy = −Rx/v for the stressτy = 0 for a
magnetization along thex-direction. A biaxial curvature with opposite signs of the radii of
curvature results. The substrate is bent to a saddle-like surface.

In most experimental situations the resulting changes in curvature is observed along the
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sample length in thex-direction and from (5.2):
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Here, the superscriptslength and width describe the direction of magnetization. The
magnetostrictive stresses are equal for magnetization along the length and along the width.
The curvatures for saturation magnetization along the length and width are identical,R

length
x =

Rwidth
y for an isotropic elastic substrate, and the same holds for the perpendicular curvatures

Rwidth
x = Rlength

y . Some simplification of (5.4) is possible, and the final result is:
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. (5.5)

A compressive magnetostrictive stress,B1 < 0, induces a negative curvature for this choice
of the coordinate system. The magneto–elastic coupling coefficientB1 for cubic film can be
determined by measuring the change of radius of curvature of the film substrate composite that
results when the magnetization is switched from the direction along the sample length to the
sample width. The elastic propertiesYS, νS have to be calculated for the surface orientation,
and (5.5) holds for substrate surfaces with an at least threefold rotational symmetry around the
surface normal. Again, the approximations of small deflections of thin plates are assumed to
apply. Consequently, the so-called pole effect that leads to an apparent increase of the flexural
rigidity of the sample by the formation of magnetic poles at the surface of the film for strong
curvatures with large deflections [158,210] can be neglected for the small deflections that are
of interest here.

Equation (5.5) is the same result that is obtained by more rigorous and lengthy energy
minimization procedures [158, 209]. Previously, the result has been expressed in terms ofλ

and the elastic properties of the film [158,187,209]. Note, that for the special case considered
here,YF/((1 + νF)(c

F
11− cF

12)) = 1 and the different notations are seen to be equivalent with
B1 = − 3

2λ100(c11− c12), see (3.2).

6. Stress-driven structural changes and their impact on magnetism

To investigate the intimate relation between film stress, stress-induced structural changes, and
magnetism it is very advantageous to measure both film stressand magnetic propertiesin
situ. The combination of the cantilevered substrate to measure film stress during growth with
the magneto-optic Kerr effect (MOKE) [190, 191] reveals the correlation between stress and
magnetism with sub-monolayer sensitivity [186].

We use a simple optical deflection technique, sketched in figure 9(a), to measure the stress-
induced bending of our≈100µm thin single-crystal substrates. The laser and the position
sensitive detector, a split photodiode, are mounted on a platform that is rigidly connected to
the atmospheric side of a window flange of the ultra-high vacuum (UHV) chamber. The laser
light is reflected from the substrate surface through the window onto the split photodiode. Any
change of the radius of curvature of the sample leads to a deflection of the reflected beam that is
detected with high sensitivity by the resulting asymmetry of the photo currents between the two
parts of the diode [153]. Two optical deflection set-ups are used. One is mounted at the film
preparation part of our UHV chamber to measure film stress during film growth and another one,
attached to a window at the lower magnetism part of the vacuum chamber shown in figure 9(b),
measures changes of the substrate curvature during magnetization processes to determine the
magneto–elastic coupling coefficients [186]. The schematic cross section of the lower part of
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Figure 9. (a) Schematic of the optical deflection set-up. 1: sample, 2: UHV window, 3: position
sensitive detector on a piezo-electric translator, 4: laser, 5: platform with gimbal mount for
convenient laser alignement. After [211]. (b) Cross section through the magnetism part of the
UHV chamber. The sample can be positioned at 1 in a vertical magnetic field of up to 0.1 T
produced by an internal electromagnet 2, while the magnetization is checked with the transversal
Kerr effect (light path A). In position 3, the external magnet 4 is used for in-plane and out-of-plane
magnetization in fields of up to 0.4 T. Internal pole pieces 5 direct the magnetic flux towards the
sample. Longitudinal and polar Kerr-effect measurements are performed (light path B). After [186].

the vacuum chamber in figure 9(b) shows two sets of magnets that are employed to magnetize
the sample. A large external electromagnet produces fields of up to 0.4 T along the sample
width and anin situstainless-steel capsuled and water cooled magnet produces fields of up to
0.1 T along the sample length. The external magnet is mounted on a turntable and can be rotated
together with its UHV pole pieces for an out-of-plane magnetization. The magnetization of
the film is checked by transversal, longitudinal and polar Kerr-effect measurements. The
magnetization-induced bending of the film–substrate composite is measured simultaneously
with the Kerr-effect measurements.

In the following, the role of film stress for the high coercivity measured in sesquilayers of
Fe on W(110) is discussed before the modified magneto–elastic coupling in nm epitaxial Fe
films is analysed in view of strain-induced corrections ofB1 in section 7.

The high sensitivity of optical deflection techniques [211–214] allows us to measure the
minute bending with a radius of curvature of order 200 km induced by the magnetization
of three Fe monolayers on a 100µm thick W substrate [215]. Thus, in addition to the
correlation between film stress and coercivity [151], the important role of stress for the modified
magneto–elastic coupling in monolayers can be investigateddirectly [9,179,187,194]. These
measurements on the magneto–elastic coupling in nm thin epitaxial Fe films show that the
magnitude and sign ofB1 deviates from the respective bulk value. Thein situ correlation
of these measurements with the film stress indicates a strain-dependent correction of the
magneto–elastic coupling coefficientB1. The following results on film stress and magnetism
of Fe monolayers on W(110) and on W(100) were obtained in one ultra-high vacuum chamber
that combined stress measurement capabilities with various electromagnets for MOKE and
magnetostrictive bending experiments [186].

6.1. Stress and stress relaxations of Fe monolayers on W(110) and their impact on magnetism

The magnetism of Fe monolayers on W(110) was studied intensively in the past [37] and is
characterized by a pronounced in-plane anisotropy with an easy axis of magnetization along
[110] for an Fe thickness of up to 100 Å [216]. In thicker films, the easy axis of magnetization
reverts to [001] as found in bulk Fe. The magnetic properties of Fe monolayers on W(110)
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show a peculiar behaviour in the so-called sesquilayer coverage region where one-and-a-half
monolayers (ML) cover the W substrate. Initially, a gap of ferromagnetic order was reported for
coverages between 1.2 and 1.47 ML [217]. The loss of ferromagnetic order was ascribed to an
antiferromagnetic coupling between double-layer islands. Later, a nanoscale spatial switching
of magnetic anisotropy between the in-plane in the monolayer region, and perpendicular in the
double-layer region was proposed [218, 219]. The perpendicular easy axis of magnetization
of the double-layer islands was proposed to be of magneto–elastic origin [218]. In other
experiments [151,220] a high coercivity was found in the sesquilayer region that was ascribed
mainly to the pinning of the domain wall movement at the second-layer islands, with a small
contribution to the coercivity arising from the stress variation in the film, that will be discussed
in some detail below.

The magnetic behaviour of sesquilayer Fe films at a coverage of 1.5 ML, that consist of nm
size patches of the second Fe layer on top of the underlying first Fe layer, seems to be extremely
susceptible to the structural and morphological properties of the film. Therefore, a detailed
analysis of the film stress in the sesquilayer region is presented. The large lattice mismatch
η = (aW − aFe)/aFe = 0.104,(aW = 3.165 Å, aFe = 2.866 Å [62]), leads to a tremendous
epitaxial strain of more than 10% in the first layer of Fe that grows pseudomorphically. Low-
energy electron diffraction (LEED) [221,222] and photoelectron diffraction experiments [223]
reveal that the Fe atoms of the first layer grow in positions that continue the bcc(110) bulk
structure of the W substrate in spite of the large lattice mismatch. Assuming the validity
of continuum elasticity even in the monolayer range, the resulting epitaxial stress in the Fe
film can be calculated as described in section 2. We recall that a tremendous anisotropic film
stress ofτ110 = 38.9 GPa andτ001 = 27.5 GPa which leads to a high strain energy per Fe
atom in the pseudomorphic layer of 0.32 eV/atom. Thus, stress-induced structural changes
can be expected and were analysed in stress measurements during film growth [151,179,186].
The beginning formation of misfit distortions already in the second layer of Fe was found to
contribute to the high coercivity of sesquilayer Fe films [151].

Remember from (5.2) that the radii of curvature have to be measured along two directions
to determine the biaxial stress components. Biaxial stress measurements were performed on
two W(110) crystals that were cut with their long edge oriented along the W[110]-direction
and along the W[001]-direction, respectively. The radii of curvature were measured on two
differently cut crystals along [110] and along [001] during film growth, as shown in figure 10(a).
Quite surprisingly, the growth of Fe induces compressive stress in the submonolayer range
along [001], but tensile stress along [110]. An anticlastic curvature of the W crystal results,
figure 10(b). This result indicates that strain arguments, that predict tremendous tensile stress,
are of diminished importance in the submonolayer range. Here, surface-stress effects govern
the stress behaviour [179, 224, 225]. Only for coverages above 0.5 ML does a tensile stress
set in along both directions. The slope of the curves in figure 10(c) indicate an anisotropic
tensile stress of 65 GPa along [110] and of 44 GPA along [001]. For simplicity, we assume
a Fe-monolayer thickness of 2 Å, which is the average of the experimental data of the Fe–
W distance (1.94 Å [222], 2.07 Å [223]). These stress values are more than 60% larger
than the continuum elasticity predicts. However, one has to remember that the stress in the
first monolayer is measured and it is certainly a rough estimate to employ bulk elasticity to
monolayers and neglecting the important contribution of surface-stress effects. The kink in the
curve at 1.2 ML is the direct experimental evidence for the stress relief due to the beginning
formation of misfit distortions in the film. Curvature measurements indicate the structural
change in the film with high sensitivity. The stress measurements of figure 10 suggest, that the
second and third Fe layers grow practically stress free, as indicated by the almost horizontal
slope of the curve in that coverage region. A constant isotropic stress of order 13 GPa is
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Figure 10. Stress measurement during the growth of Fe on W(110) at 300 K. (a) The substrate
curvature is monitored during film growth on two differently oriented crystals. Note the opposite
sign of the curvatures in the submonolayer range, that lead to an anticlastic deformation of the
substrate shown in (b). (c) Both curvature data of (a) have to be combined with the Poisson ratio
of W (ν = 0.28) to obtain the stress components. The film stress is given by the slope of the
curves, values are quoted for the anisotropic monolayer region, and the isotropic stress from 4 ML
to 10 ML. The kink in the curve at 1.2 ML indicates the formation of misfit distortions. The inset
shows the opposite sign of the Fe-induced stress in the submonolayer range. After [179].

measured for the fourth up to the tenth monolayer.
LEED [221] and STM [226–228] reveal the atomic nature of the misfit distortions that are

formed in the Fe film at 1.2 ML as additional lines of Fe atoms that are first inserted along the
[001] direction in the second layer. The first Fe layer is expected to remain pseudomorphically
strained. In the third Fe layer, a periodic two-dimensional distortion line network evolves that
is identified in the LEED and STM image of 3 ML Fe on W(110) presented in figure 11 [224].

The stress measurements reveal that the introduction of misfit distortions relaxes the film
stress almost completely in the second Fe layer. The STM analysis shows that distortion lines
are spaced on a nm-scale in the Fe film. Consequently, the resulting spatial variation of the
film strain can be expected to be very complicated. For example, the strain of Fe islands of
the second layer might already be relaxed, whereas the underlying first layer remains strained
by more than 10%. Thus, stress variations of order 40 GPa seem possible on a nm-scale once
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Figure 11. Distortion network of 3 ML Fe on W(110). Growth temperature 300 K. The LEED
image (a) shows additional diffraction spots that are arranged in a diamond area around the bcc(110)-
diffraction spots. (b) The STM image shows elongated islands of the third layer (grey), and patches
of the fourth layer (lighter grey) with an regular arrangement of distortion lines in lighter grey.
After [224].

the critical thickness for the introduction of misfit distortions of order 1.2 ML is reached. One
has to expect that this nanoscale strain variation might influence the magnetic properties of
so-called sesquilayers (1.5) of Fe considerably via the magneto–elastic coupling.

The magnetic anisotropy of the sesquilayer films can be expected to differ substantially
from the pseudomorphically strained first layer, or from the stress-relaxed thicker Fe films.
To estimate the influence of varying strains on the anisotropy it is necessary to know
both film strainand the magneto–elastic coupling coefficientsB1 andB2 in the monolayer
range. The magneto–elastic energy density of a cubic film can be described byfme =
B1(ε1α

2
1 + ε2α

2
2 + ε3α

2
3) + B2(ε4α2α3 + ε5α1α3 + ε6α1α2), see (3.1). The cubic strainsεi

have to be expressed in terms of the in-plane film strainsε1,F = ε2,F by performing the same
tensor transformation as presented in section 2. The directions cosinesαi of the magnetization
direction with respect to the cubic axes have to be calculated for the different magnetization
states for which the magneto–elastic anisotropy has to be calculated. Inserting the expression
for the vertical film strainε3,F as a function of the in-plane strains, see section 2, and denoting
the in-plane film strainsε0, the following magneto–elastic contributions to the in-plane and
out-of-plane anisotropy of cubic (110) films result:

kin-plane
me = fme(M001)− fme(M110) =

(c11 + 2c12)

c11 + c12 + 2c44
(B1− B2)ε0

kout-of-plane
me = fme(M001)− fme(M110) = (c11 + 2c12)

c11 + c12 + 2c44
(B1 +B2)ε0

kout-of-plane
me = fme(M110)− fme(M110) = 2

(c11 + 2c12)

c11 + c12 + 2c44
B2ε0.

(6.1)

Equation (6.1) describes the difference of the anisotropy energy for different magnetization
directions that are indicated byMijk as a function of the in-plane film strainε0, and the
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Figure 12. Coercivity of Fe/W(110), measured at 140 K on a film with
a mesa-shaped thickness variation. (a) Sketch of the film thickness
as determined by Auger-electron spectroscopy versus the sample
position. (b) Note the pronounced maxima of the coercivity at the two
sample positions where the thickness crosses the sesquilayer range.
After [151].

magneto–elastic coupling coefficientsBi . The elastic constants of the filmcij enter, as the
perpendicular film strain has been expressed in terms of the in-plane strain. The fraction of
the elastic constants is of order unity, the exact value for Fe is(c11 + 2c12)/(c11 + c12 + 2c44) =
0.838. A positive value ofk is caused by a smaller energy contribution for the second
magnetization direction which indicates a magneto–elastic anisotropy contribution that favours
the magnetization direction that is indicated in the second term.

One might wonder whether the pseudomorphic strain of≈10% in the monolayer of Fe
favours a perpendicular film magnetization. To check the magneto–elastic contribution to
the anisotropy, we consult the expression given in (6.1), as the easy axis of magnetization
in ultrathin Fe films on W(110) is known to be [110]. Inserting the values for bulk Fe,
B2 = 7.62 MJ m−3 gives the tremendous anisotropy energy density offme = 1.28 MJ m−3.
This strain-induced anisotropy is a factor of 25 larger than the magneto–crystalline anisotropy
of Fe (K1 = 0.05 MJ m−3 [63]) and justifies the consideration of strain-induced changes of the
easy axis of magnetization. The positive value ofk shows that a tensile film strain will indeed
favour a perpendicular magnetization of the film,provided thatB2 does not change its sign in
the monolayer range. To derive a crude estimate as to whether the magneto–elastic anisotropy
will lead to a perpendicular anisotropy, one has to compare the sum of stray-field energy
density1

2µ0M
2
S = 1.93 MJ m−3 and surface anisotropyKS/t1 ML = 5 MJ m−3 [229] with the

strain-induced anisotropy offme = 1.28 MJ m−3. The bulk value ofB2 is not sufficient to
induce a perpendicular film magnetization, its value has to be more than five times larger to
compensate the stray field and the surface anisotropy energy contributions [218]. However,
one has to be aware of the limitation of such a crude phenomenological model in the monolayer
range.

Our results on the modified magneto–elastic coupling in Fe(100) monolayers on W(100),
that are presented in the next section, indicate that the magneto–elastic coupling coefficients
cannot be assumed to remain at their bulk values for monolayer films. Rather, the sign and
magnitude ofB1 were found to change [10,187]. In conclusion, the lack of experimental data on
B1 andB2 of strained Fe monolayers inhibits a quantitative discussion of the magneto–elastic
contribution to the peculiar magnetic behaviour of sesquilayer Fe films. A rough estimate of
the contribution of the inhomogeneous stress field to the coercivity of the sesquilayer Fe films
is derived below.

However, the film morphology is another important factor that determines the magnetic
anisotropy [230–232]. The film morphology in the sesquilayer region is characterized by a
local varying film thickness between one and two layers. This spatial variation of the film
thickness is found to induce the high coercivity of 1.5 ML Fe that is discussed next.

Figure 12 shows a plot of the variation of the coercivity of an Fe film on W(110) in the
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Figure 13. (a) Kerr hysteresis loop of 1.5 ML measured at 190 K. (b) STM image of 1.4 ML Fe on
W(110). Patches of the second Fe layer (lighter grey) are seen on the first Fe layer (darker grey).
The lines running from the upper left to the lower right are monoatomic steps of the W-substrate.
After [224].

thickness range 0.8–2 ML. The sample was moved in front of the evaporator to obtain this
mesa-shaped film thickness variation over a length of 8 mm, as shown in figure 12(a). The
coercivity of the film was measured as a function of position by scanning the laser beam of
the Kerr experiment over the length and taking subsequent Kerr loops at 140 K. Pronounced
maxima of the coercivity were found where the film thickness crossed the sesquilayer range.
Figure 13(a) shows a magnetization curve of a single 1.5 ML Fe film. Note that the coercivity
is larger than 0.2 T at 190 K. At 140 K, we could not overcome the even larger coercivity at
the lower temperature. The STM image of figure 13(b) shows the morphology of an Fe film
at a coverage of 1.4 ML. Second-layer Fe islands (grey) are shown on the first Fe monolayer
(darker grey) that covers the W-crystal homogeneously. The lateral dimensions of the Fe
patches are anisotropic with a larger extension along [001] of the order of 20 nm, whereas
in the perpendicular direction, a width of the patches of the order of 10 nm is observed.
The elongated shape of pseudomorphically strained Fe patches might be partially ascribed to
the anisotropic film stress that is calculated and measured to be≈40% smaller along [001].
Therefore, a smaller strain energy in the patch results for an extension along [001] versus
an extension along [110]. Additional contributions to an anisotropic growth might arise from
anisotropic Fe diffusion on (110) surfaces, that was investigated at high temperatures by Reuter
et al [233,234].

To explain the high coercivity at the sesquilayer coverage of 1.5 ML, one has to realize that
the magnetization process proceeds via the propagation of 180◦ Néel walls in the Fe film. We
arrive at this conclusion as the lower coercivity of the 1 ML and 2 ML films, see figure 12(b),
indicates the presence of nucleation centres of domains with reversed magnetization. The
spatial variation of the layer thickness from one to two layers over distances that are larger
than the domain wall width leads to a strong pinning of the domain walls in the patches of the
second layer. There, the domain wall energyγ is increased due to the larger film thicknesst :
γ = 4

√
2KSAt [151]. The in-plane surface anisotropy is given byKS = 0.6 mJ m−2 [229],

the exchange interaction isA = 10−11 J m−2, andt denotes the film thickness. A maximum
coercivity ofHC 6 2KS/(πµ0MSt) = 0.59 T, (MS : saturation magnetization), can be
estimated [151]. This increase of the coercivity is due to the enhanced exchange interaction
in the two-layer patches. A similar pinning mechanism was proposed to account for the high
coercivity in ultrathin Co films, sandwiched between Au [231].

A rough estimate of the influence of the inhomogeneous stress field of the sesquilayer film
concludes this section. The stress measurements of figure 10(c) indicate that the introduction
of misfit distortion relaxes the film stress almost completely in the second layer. Thus, the film
strain can be estimated to vary by 10%. If we ascribe tentatively the large in-plane anisotropy
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Figure 14. Stress during Fe growth on W(110) at 1000 K. Note the sharp kink in the curve after
the completion of the first monolayer. The deposition of more Fe does not increase the film stress
anymore. After termination of growth, a partial stress relaxation is observed forτ [001]. The final
stress value corresponds to the stress induced by the first ML. After [215].

of the pseudomorphic Fe layer to the the distortion of the (110)-surface with respect to the cubic
(100)-surface which has a significant lower in-plane anisotropy, one concludes that the nominal
strain of

√
2− 1 = 41% of the atoms in a (110) film inducesKS = 0.6 mJ m−2. Assuming

further a linear relation between the in-plane anisotropy and the lattice deformation [235],
the strain variation of 10% induces a coercivity of 0.59 T/4.1 = 0.14 T. Thus, the stress
contribution to the coercivity is smaller than the crystalline contribution discussed above, but
not necessarily negligible [151].

6.2. Stranski–Krastanov growth at higher temperatures and the in-plane reorientation of the
easy axis of magnetization

The growth of Fe on W(110) at room temperature leads to the formation of misfit distortions
in the second layer of Fe, as indicated by the kink in the stress curve presented in figure 10.
Note, that the horizontal section of the stress curves reveals a practically stress-free growth
of the second, third and fourth layer of Fe at room temperature. For higher coverages, an
isotropic tensile stress of 13 GPa is measured, see figure 10(c). However, if Fe is deposited at
a higher substrate temperature of 1000 K, only the pseudomorphically strained first monolayer
contributes to the measured film stress. The stress curves obtained from the analysis of the
curvature measurements performed at a substrate temperature of 1000 K are presented in
figure 14.

In contrast to room-temperature growth, the final stress value corresponds to the stress
induced by the first monolayer deposited at 1000 K. The reason for this effective reduction of
the film stress is given by the structural analysis of the film structure in figure 15. In sharp
contrast to the almost layer-by-layer growth of Fe on W(110) at room temperature, the growth at
higher temperature leads to the so-called Stranski–Krastanov growth: Fe islands are formed on
the pseudomorphically strained monolayer, that covers the W substrate homogeneously [236].
A double-LEED pattern results, see figure 15(a), with the diffraction pattern of a bcc(110) W
lattice constant, inner diffraction spots, and with a second, outer set of diffraction spots that
indicate a relaxed lattice constant of Fe. The STM image of figure 15(b) shows elongated
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Figure 15. LEED (a) and STM image (b) of annealed Fe films, deposited at room temperature
on W(110). (a) Two sets of bcc(110) diffraction spots indicate two lattice constants of the island
structure shown in (b). Elongated and strain-relaxed Fe islands (lighter grey) are shown on the first
pseudomorphically strained Fe monolayer (dark grey), that covers the W substrate. After [186].

Fe islands, that were observed either after growth at 1000 K, or after annealing a room-
temperature grown Fe film to 700–1000 K. The Stranski–Krastanov growth leads to Fe islands
of µm length and≈100 nm width, that are extended along [001]. The double-diffraction
image of figure 15(a) is ascribed to the superposition of the diffraction images from the strain-
relaxed Fe from the top of the islands and from the pseudomorphically strained Fe from the
Fe monolayer, that covers the W substrate between the islands. Scanning Auger microscopy
proved that one Fe monolayer is thermally stable and remains on the W surface between the
islands [234] up to the desorption temperature of 1400 K [237].

The driving force for the structural transition from layer-by-layer growth to island growth
can be ascribed to the reduction of the strain energy in the Fe film, as corroborated by
the practically stress-free growth at higher temperature, in contrast to the significant stress
measured in Fe films that were deposited at room temperature. This stress-driven structural
transition leads to a change of the easy axis of magnetization of the Fe islands. MOKE
measurements on 1.7 nm thin Fe film were performed after deposition at room temperature,
upper panel of figure 16, and after annealing for several minutes to 700 K, lower panel of
figure 16. MOKE measurements were performed in the transversal, longitudinal, and polar
configuration to investigate the film magnetization along the in-plane [110], [001] and the
out-of-plane [110] direction, respectively.

The hysteresis curves of figure 16 show an in-plane reorientation of the easy axis of
magnetization due to the annealing of the film [186,238]. We ascribe this in-plane reorientation
of the easy axis of magnetization to the diminished importance of the so-called surface
anisotropy in the thick Fe islands. Annealing the film leads to an increase of the Fe thickness
in the Fe islands as compared with the nominally deposited amount of Fe. Therefore, the
contribution of the surface anisotropy that favours the in-plane [110] easy axis [216, 239],
loses its weight with the increased layer thickness, and the [100] easy magnetization direction
is observed, as in bulk Fe. Note, that in addition to the fading influence of the surface anisotropy,
the shape anisotropy of the elongated Fe islands favours an easy axis of magnetization along
[001] [215, 240] due to the large length-to-width ratios of the islands. Finally, the stress-
free growth of the Fe islands at higher temperatures indicates in conjunction with our LEED
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Figure 16. MOKE measurements on 1.7 nm Fe on W(110), after growth at room temperature,
upper panel, and after annealing the same film to 700 K for several minutes, lower panel. The
as-grown film shows an easy axis of magnetization along [110], whereas after annealing the the
easy axis reorients in-plane towards [001], as indicated by the rectangular magnetization curve.
After [186].

data that the Fe islands are under negligible in-plane strain. Thus, the film strainε0 as a
possible magneto–elastic driving force of the in-plane anisotropy, as indicated by (6.1), is
not operative in the islands and—neglecting possible surface and interface anisotropies—the
in-plane anisotropy is governed by the bulk crystalline anisotropy, favouring the [100] easy
magnetization direction.

In conclusion, stress-driven structural transitions like the formation of misfit distortions
or the change of the growth mode induce characteristic changes of the magnetic behaviour of
ultrathin Fe films on W(110). In the following section thedirect impact of film strain on the
magnetic properties is discussed for the strain-dependent magneto–elastic coupling in epitaxial
Fe films.

7. Strain-induced changes of the magneto–elastic coupling

The magneto–elastic coupling coefficients are known as material constants ofbulk materials.
In ultrathin films however, or within Å near the surface of a bulk sample, the magneto–
elastic coupling has been found to differ substantially in magnitude and even in sign from the
respective bulk value. A short compilation of the experimental data and phenomenological
models that support a stress and film thickness dependent correction of the magneto–elastic
coupling coefficients was presented in section 3. In this section, experimental data on the
modified magneto–elastic coupling in epitaxial Fe(100) films are presented that underline the
importance of film strain for the peculiar magneto–elastic coupling measured in nm thin Fe.

The application of tensile stresses in the GPa range was found to lower the saturation
magnetization of amorphous Co-rich alloys [103,104]. The magnetostriction of Co multilayers
was found to decrease to more negative values with decreasing film thickness [193], and
the magnitude of the magneto–elastic coupling was found to be more positive by factors of
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≈3 near the surface region of amorphous alloys [5]. Thus, Néel type models of surface
magnetostriction were developed [6], that lead to a reciprocal thickness dependence of the
magneto–elastic coupling. Both effects, Néel-type surface correctionsandstrain corrections
to the magneto–elastic coupling coefficients were introduced [100]. Recent measurements of
the magnetostrictive bending of epitaxial Fe films on MgO(100) by Kochet al clearly suggest
that the film stress is of utmost importance to account for the deviation of the magneto–elastic
coupling coefficient from its bulk value [9]. Further evidence for the important role of film
strain for the strain-dependent corrections of these coefficients is presented below.

Thein situcombination of the bending beam technique with magnetization measurements,
see section 5, enables the direct correlation between film stress and magnetostrictive bending.
The film stress is measured during growth from the curvature of the substrate, and assuming
linear elasticity theory to apply, the stress data can be converted into strain data with the
help of the equations given in section 2. Note, that the curvature signal that is measured
during film growth as a function of time, is proportional toτ × tF. Thus, the slope of the
position signal indicates the film stress in the growing layer. A plot of film stress versus film
thickness can be obtained from the curvature measurement. This analysis requires, that the
formation of misfit distortions does not alter the stress state of the underlying layers. This
assumption seems to be valid for the growth of Fe on W at room temperature, where no stress
relaxation due to a restructuring of the whole film is observed. At growth temperatures above
500 K however, a partial stress relaxation is observedafter termination of growth, indicating
thermally activated stress relaxation processes in the whole film [186]. Different structural
components have been identified in the Mössbauer analysis of Fe(110) films on W(110) by
different magnetic hyperfine fields [241]. The authors claim that their study of the magnetic
hyperfine fields in Fe layers indicate the structural stability of the first monolayer even in the
presence of misfit distortions in thicker films. This result supports our simplified approach,
that at room-temperature structural changes do not change the stress state of underlying layers
significantly, and the slope of the stress curve at a given thickness can be attributed to the stress
in that layer. At the end of this section we discuss an alternative to this layer-resolved stress
analysis that simply takes the final change of the film stress at the end of the growth process
into account to derive an average stress of the film.

The stress measurements during growth of Fe on W(100) presented in figure 17 indicate
that in contrast to the growth on W(110), the firstthreemonolayers grow pseudomorphically
strained, until the formation misfit distortions induce a kink in the curve. This upper limit of
the pseudomorphic growth of≈3 ML is in agreement with previous work on the magnetic and
structural properties of Fe monolayers on W(100) [242–244]. First STM investigations on the
growth of Fe on W(100) show an island growth of Fe [64], in contrast to the layer growth of
Fe observed on W(110) [217, 226]. Thus, the unexpectedly high layer thickness of≈3 ML
that can sustain the tremendous epitaxial misfit strain can be ascribed to the abundance of Fe
islands, that might allow for some strain relaxation at the islands edges.

The initial compressive stress in the first monolayer, as indicated by the negative slope of
the stress curve in figure 17(a) is ascribed to a surface-stress effect [179]. The positive slope in
the subsequent section corresponds to a tensile film stress of 10 GPA. This is only half of the
film stress that is expected from the misfit strain ofε = 10.4%, which is calculated to induce a
film stress ofτ = YFe/(1−νFe)ε = 21 GPa, see table 1. The discrepancy between the measured
stress and the calculated stress might be tentatively assigned to the island growth, which leads
to a smaller effective strain in the film due to the possibility of strain relaxation. Thus, we apply
continuum elasticity to calculate the average effective strain in each layer from the slope of
figure 17(a), the result is plotted in figure 17(b). The grey shaded area indicates the thickness
range where misfit distortions are formed, separating two constant-strain regimes, region I:
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Figure 17. Film stressτ and film strainε as a function of Fe film thickness. (a) Film stress during
the growth of Fe on W(100) at room temperature. The kink in the curve at 4 ML indicates the
end of pseudomorphic growth and the formation of misfit distortions. (b) The positive slope of
(a) indicates an initial strain of 5.3%, after the formation of misfit distortions, an almost constant
residual strain of 0.2% is calculated. (c) Simplified strain model: the first three layers are strained
by 5.3%, the higher layers are described by a constant strain of 0.2%. After [194].

pseudomorphic growth with aneffectivestrain of 5.3%, and region II: residual strain of 0.2%.
The striking point of this strain analysis is that the strain in the Fe layer drops in a very narrow
thickness range of only 0.5 nm to the almost constant residual strain of 0.2%. The result of two
almost constant strain values in the film is at variance with the usually assumed continuous
strain relaxation with increasing film thickness [166, 231, 245], that we used earlier [187]. A
similar, almost step-like decrease of the film strain within a narrow thickness range of only
≈2 ML was recently found in LEED studies on the growth of epitaxial Ni films [55]. This
direct strain measurement by LEED corroborates our strain analysis that is based on a stress
measurement.

The magneto–elastic coupling coefficientB1 was measured by analysing the
magnetostrictive bending of the film–substrate composite while the film magnetization was
switched along the sample length and the sample width in Fe [100] directions [186]. Equation
(5.5) was used to derive the values for the magneto–elastic coupling coefficient presented in
figure 18 as a function of film thickness.

In sharp contrast to the constant value ofB1 = −3.44 MJ m−3 of bulk Fe, a strong
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Figure 18. Effective magneto–elastic coupling coefficientBeff as a function of the Fe film thickness.
The magneto–elastic coupling has a zero-crossing at≈20 nm, being negative at higher film
thickness, and being positive at smaller thickness. Bulk Fe:B1 = −3.44 MJ m−3. The solid
curve is given by a strain-dependent correction ofBeff = B1 +Dε with D = 1000 MJ m−3. The
thickness information was replaced by the thickness dependence of the strain shown in figure 17(b).
After [215].

thickness dependence of the magneto–elastic coupling is shown in figure 18. Fe films
thicker than 20 nm induce compressive magnetostrictive stress, indicated by negative values
of Beff , films thinner than 20 nm induce tensile magnetostrictive stress, in contrast to the bulk
behaviour. At a thickness of 20 nm,no magnetostrictive stress is measured,Beff = 0. We
ascribe this apparent thickness dependence ofBeff to a strain-dependent correction ofB1,
Beff = B1 +Dε [9,10,100,102]. The film strain is known for each data point in figure 18 from
the analysis of figure 17 withε = 5.3% for films thinner than 1 nm, andε = 0.2% for thicker
films. It is assumed that each layern contributes to the effective magneto–elastic coupling
with the respective strain correction,Beff(N) = 1

N

∑n
i=1(B1 +Dεn), where the total number

of layers is given byN . Using a value forB1 = −3 MJ m−3 that is slightly smaller than the
bulk value ofB1 andD = 1000 MJ m−3 from [9], the solid curve in figure 18 results, which
describes the experimental data fortFe > 10 nm with fair agreement. This strain-dependent
correction ofB1 suggests a continuing increase ofBeff for the higher strained thinner films,
which was not found in the experiment. However,Beff remains positive for decreasing film
thickness down to 3 ML, which marks the limit of resolution of our magnetostrictive bending
experiment [215].

Unfortunately, no rigorous justification for the derivation of the thickness-resolved strain
from stress measurements can be presented. The reason is that the thickness-resolved
information on film strain is notdirectly accessible in experiments. Therefore, we present in
the following an alternative analysis of the film stress measurement [10]. Instead of exploiting
the slope of the curvature versus thickness curves one could consider only the change of the
substrate curvature measured between the beginning and the end of the film growth. This
analysis can be performed on one stress curve at different thicknesses because no stress
relaxation is observed at room temperature, as checked by interrupted growth experiments.
Performing the same analysis on separately prepared films of different thickness gives the
same stress versus thickness curve. The result is presented in figure 19(a). This analysis gives
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Figure 19. Simplified stress analysis. (a) Average film stress, left axis, and film strain, right axis,
of Fe(100) on W(100), grown at 300 K. (b) Effective magneto–elastic coupling,Beff data from
figure 18, as a function of film strain. A linear strain correction ofBeff is deduced from the slope
and the intercept of the linear curve forε < 0.6%. After [10].

a more gradual decrease of the film strain as compared with the step-like behaviour shown
in figure 17(b). The gradual decrease of the film strain allows us to plot the magneto–elastic
coupling coefficientBeff versus the film strainε to check whether a linear strain correction of
B1 is found. To this end, the thickness scale of figure 18 is converted to a strain scale using
the data of figure 19(a). Figure 19(b) shows the strain dependence ofBeff . A linear strain
dependence is found only for strains smaller than 0.6%, as indicated by the linear fit in this
strain regime. The slope of the solid curve givesD = 200± 30 MJ m−3 and the intercept of
the vertical axis givesB1 = −1.2± 0.2 MJ m−3 [10]. This simple linear correction fails to
describe the experimental data for strains larger than 0.6%, which translates to a film thickness
below 15 nm.

The deviation ofBeff from the linear strain correction models presented in figures 18
and 19(b) indicates the severe limitations of such phenomenological models in the monolayer
range. It remains to be investigated to what extent possible interface and surface effects are
responsible for the peculiar magneto–elastic behaviour of the first layers.

In any case, however, the magneto–elastic coupling in epitaxial Fe(100) films is found to
deviate both in magnitudeandsign from the respective bulk value. It is important to note, that
the large magnitude ofD induces significant corrections ofB1 even for small strains in the
sub-% range. Therefore, it should not be expected that bulk magneto–elastic constants apply
to epitaxially strained films, even when the strain is relatively small.

8. Conclusion and outlook

The analysis of the stress-induced bending of film–substrate composites has been compiled
for the determination of both epitaxially induced misfit stressandmagneto–elastic coupling
in monolayer thin films. Stress measurements with sub-monolayer sensitivity have proven the
diminished importance of strain arguments for the measured film stress in the sub-monolayer
range. It is proposed that the classical stress–strain relations have to be modified by the
inclusion of surface-stress effects to explain measured film stress that is of opposite sign as
expected from lattice mismatch arguments. These new experimental results remain a challenge
for ab initio calculations on adsorbate-induced stresses, and the relevant physical processes
that govern stress at sub-monolayer coverages are still not well established. With increasing
coverage, the curvature analysis has been demonstrated to be a simple tool to measure film
stress and to detect structural transitions like the formation of misfit distortions or the change
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of the growth mode from layer-by-layer growth to island growth with high sensitivity. Film
stress has been identified as an important driving force for structural transitions. Stress–strain
relations have been derived for various epitaxial orientation that allow a calculation of film
strain from a measurement of film stress.

Measurements of the magnetostrictive bending of ultrathin epitaxial Fe films indicate
that magnitude and sign of the magneto–elastic coupling coefficients deviate sharply from
the respective bulk values. The combined measurement of film stressand magnetostrictive
bending in one experiment has been shown to provide important insight into the dominant
role of epitaxial strain for the modified magneto–elastic coupling in ultrathin films. The
implications of modified magneto–elastic behaviour in ultrathin films are profound as one
has to accept from the experimental results thatbulk magneto–elastic coupling coefficients
do not apply to ultrathin films in general. One important consequence of this result is that
the strain-induced anisotropy which is phenomenologically treated in view of the magneto–
elastic coupling, cannot be predicted from bulk behaviour. Experimental data on the relevant
magneto–elastic coupling coefficients are clearly called for. It remains a challenge for future
experimental and theoretical work to investigate the electronic origin of the strain and possibly
thickness dependence of the relevant magneto–elastic coupling coefficients.

It remains to be experimentally confirmed whether the pronounced strain-dependence of
the magneto–elastic coupling coefficientB1, that is found to change magnitude and sign of the
effective magneto–elastic coupling in epitaxial Fe films, is also measured for other epitaxial
films. The stunning sequence of reorientations of the easy axis of magnetization in epitaxial Ni
films on Cu(100) with increasing film thickness from in-plane to perpendicular att = 7 ML to
in-plane again att = 60 ML [51] represents an ideal test for the discussion of magneto–elastic
effects. Adirectmeasurement of both, film stressandmagnetostrictive stress could clarify the
contribution of surface magneto–elastic corrections [53] versus strain-induced corrections of
the the magneto–elastic coupling in Ni monolayers.
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Appendix

The inverse matrices of (2.3) and (2.4) give the contracted compliance matrices for the cubic
and hexagonal class, respectively. For the cubic class:

scubic
ij =


s11 s12 s12 0 0 0
s12 s11 s12 0 0 0
s12 s12 s11 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s44

 (A.1)

s11 = (c11 + c12)

(c11 + 2c12)(c11− c12)

s12 = −c12

(c11 + 2c12)(c11− c12)
s44 = 1/c44,

(A.2)
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and for the hexagonal class:

s
hexagonal
ij =


s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s13 s13 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 2(s11− s12)

 (A.3)

s11 = (c11c33− c2
13)

(c11c33 + c12c33− 2c2
13)(c11− c12)

s12 = −(c12c33− c2
13)

(c11c33 + c12c33− 2c2
13)(c11− c12)

s13 = −c13

(c11c33 + c12c33− 2c2
13)

s33 = (c11 + c12)

(c11c33 + c12c33− 2c2
13)

s44 = 1/c44.

(A.4)

Note, that in contrast to the contracted matrix notation of thecij for thesij factors of two and
four are introduced [58]:

sijkl = smn m = 1, 2, 3, and n = 1, 2, 3,

2sijkl = smn m = 4, 5, 6, or n = 4, 5, 6,

4sijkl = smn m = 4, 5, 6, and m = 4, 5, 6.

(A.5)
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[95] Trémolet de Lacheisserie and McGrath O F K1995J. Magn. Magn. Mater.147160–6
[96] White R L and Clemens B M 1992Mat. Res. Soc. Symp.231453–8
[97] Kim M, Zhong L and Freeman A J 1998Phys. Rev.B 575271–5
[98] Kyuno K, Ha J-G, Yamamoto R and Asano S 1996Phys. Rev.B 541092–9
[99] Song O, Ballentine C A and O’Handley R C 1994Appl. Phys. Lett.642593–5

[100] O’Handley R C and Sun S W 1992J. Magn. Magn. Mater.104–1071717–20
[101] O’Handley R C and Sun S 1992Mat. Res. Soc. Symp. Proc.231485–90
[102] O’Handley R C, Oh-Sung Song and Ballentine C A 1993J. Appl. Phys.746302–7
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