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The Correlation Structure for a Class of Scene-Based
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Abstract—We analyze the autocorrelation structure for a class simplify the construction of the model [5], [10]. Scene-based
of scene-based MPEG video models at the groups-of-pictures models often differ in thpersistencef the autocorrelations that
(GOP) (course grain) and frame (fine grain) levels assuming ,.e manifested by the intra- and/or interscene components. Such

an arbitrary scene-length distribution. At the GOP level, we diff b trivial thev h ianificant i
establish the relationship between the scene-length statistics Iferences are by no means trivial, as they have signiticant im-

and the short-range/long-range dependence (SRD/LRD) of the Plications on the design and dimensioning of video buffers.
underlying model. We formally show that when the intrascene Most scene-based models have been developed for compres-

dynamics exhibit SRD, the overall model exhibits LRD if and sjon schemes in which all the frames in the video sequence are
only if the second moment of the scene length is infinite. Our encoded in a uniform manner using the same mode(s) of com-

results provide the theoretical foundation for several empirically ion. Thi Its imo U¢BR i1 which
derived scene-based models. We then study the impact of traffic pression. This resufts imomogeneo sequences in whic

correlations on the packet loss performance at a video buffer. Two the fluctuations are primarily attributed to scene dynamics. In
popular families of scene-length distributions are investigated: contrast, the MPEG algorithm applies different encoding tech-
Pareto and Weibull. In the case of Pareto distributed scene lengths, niques to produce three types of compressed framheB,(and
itis observed that the performance is rather insensitive to changes py 1t giffer significantly in their bit rate characteristics. The
in the buffer size even as the video model enters the SRD regime lete MPEG is obtained by interl ina f f
For Weibull distributed scene lengths, we observe that for small CF’mP ete Sequ_ence IS obtaine y_'n erieaving Irames o
buffers the loss performance under a frame-level model can be differenttypes according to a groups-of-pictures (GOP) pattern,
larger than its GOP-level counterpart by orders of magnitude. which specifies the sequence Bfand B frames between two
In this case, the reliance on GOP-level models will result in very successivé frames. The GOP pattern is applied repeatedly to a
optimistic results. video sequence, resulting lreterogeneousame sizes and sig-
Inde_x Terms—Buffer design, MPEG, traffic correlations, video nificant periodicity in the traffic pattern.
modeling. An important aspect of a video model is the form of its au-
tocorrelation function (ACF). Traffic correlations, in general,
|. INTRODUCTION are believed to have profound impact on the queuing perfor-
mance at a buffering node. Supported by extensive statistical

I N 'Il'HIS ;;aper, WE 'nVZSt'thel tr;ﬁ iorrr]elatuin .Strucw.rebr%rvidence, some researchers have further argued that network
a class of scene-based models that characterize€ variablg lffic, including VBR video, exhibits persistent correlations

rate (VBR) MPEG-coded video streams. Scene-based mOdt‘ﬁét can only be captured through LRD models [1], [4], [6],

form_ an 'mportaf‘t_fam"y of video models in which scene d_y 17]. Other researchers, while acknowledging the presence of
namics are explicitly incorporated. These models are partigu- D in network traffic, argue that fofinite buffers, long-term

larly cap_able of capturing the multiple—time-scale_ v_ariations iQorrelations have minor impact on the queuing performance [7],
a V.BR video source "’.‘”d’ consequently, on provplng accur , [20]. Hence, they argue, the traffic can be sufficiently repre-

estimates of the queuing performance at a buffering node [1 nted by Markovian models, which are typically easier to ana-
Several of these models have been proposed in the literature. ¥a than LRD models '

ﬁ?c?dels, and we try to answer some of the important questions
Mated to the impact of correlations on the design of video
buffers. The goal of this paper is neither to provide a new video
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[ lc Variable-size Il. GOP-LEVEL AUTOCORRELATIONS
amera

Frames

In this section, we investigate the ACF for a scene-based

VBR Encoder Network v?deo model at'the GOP level. While the GOP nqtion. is spe-
cific to MPEG video, our “GOP-level” analysis applies, in gen-
eral, to VBR sequences in which frame sizes are homogeneous,

Rate Control i.e., produced by the same compression approach. For example,
Fig. 1. Video buffer for smoothing the traffic at the sender. it applies to JPEG and H.261 video sequences, among others.

Without loss of generality, we present our ideas in the context
. . . . . of MPEG video.

of video buffers. Fig. 1 depicts one scenario for which our cgnsider an MPEG-coded video sequence. Ket be a
analysis is directly applicable (other scenarios exist as welyndom variable (rv) that models the “size” of thth GOP in
In here, variable-size video frames are generated on the fly gpg sequence (i.e., the number of bits in that GOP).4;die a
are fed into a fixed-bandwidth channel. For constant-qualifyjscrete rv that models the length of thk scene (measured in
video, the variations in the frame sizes can be quite significagle number of GOP’s). We assume that scene lengths are i.i.d.
They can be reduced using rate-controlled encoding at thgh common probability mass functioi, and cumulative
expense of variable quality. To limit its impact on video qualityyisiribution functionZ,. Let S be a generic rv that describes
rate control is applied in conjunction with sender-based traffige |ength of an arbitrary scene. Intuitively, GOP’s that belong
shaping (buffering). Therefore, the encoder still generaigs ihe same scene are relatively close in size, while GOP’s
variable-size frames (i.e., near-VBR stream) that are fed if@|onging to different scenes may have significantly different

the buffer. Depending on the network bandwidtt) (the buffer g, ag. Accordingly, we modeX,, by the sum of two random
may occasionally overflow, causing further degradation in ”l%mponents:

video quality at the receiver. One of our objectives here is to
study the impact of traffic correlations on the performance at X,%2Y, + Z, 1)
this buffer.

The contributions of this paper are as follows. First, we deri\gnere “a.s.” refers to equality in tremost surelysense. The
the GOP-level ACF for a general class of scene-based modgl§; accounts for the average impact of scene dynamics on the
with an arbitrary scene-length distribution and frame-size Stgy rate. In essence, it represents the average GOP size within a
tistics. The only restrictions we impose on this class are that i@'ﬁ/en scene. If two GOP'sand; belong to the same scene, then
terscene and intrascene variations are mutually independent @né-s y- . GinerwiseY: andY: are i.i.d. The rvZ. represents
that scene lengths constitute an i.i.d. process. Such assumpt'tﬂgsdiﬁejrence between the éize of thth GOP and the mean
are satisfied by many existing scene-based models (for whiglhp size in the underlying scene. By constructiBf¥,] = 0.

the ACF has not been previously reported). From the deriveg 4ssume thdt,, andZ,, are mutually independent.
ACF, we establish the relationship between the scene-length disthe  random processe$Y,: n = 1,2, ---} and
tribution of a model and its SRD/LRD structure. Our resultsinr> . . _ | 9 ..} constitute two sequvenvces' of auto-

dicate that when the intrascene dynamics exhibit SRD (as oftgf}re|ated and identically distributed rv's. We assume that both
the case), the overall video model is LRD only if the second M@ cesses are second-order stationary, and we denote their cor-

ment of the scene length is infinite. Using the explicit relatioFbsponding ACF's at lag by py (k) andp(k), respectively.

between the ACF and the scene length distribution, one can g€xthermore. we let2 and o2 be the variances of; and

termine an appropriate fit for this distribution without the neeg;l, respectively. The above formulation encompasses several

to directly measure scene lengths. _ scene-based models, including the ones in [5], [9], [10], [15],
Based on our generic GOP-level MPEG model, we |ntrodw[>f6] and [18].

a frame-level counterpart that incorporates the three types o\ow consider the random proceSX,:n = 1,2, ---}. Its
MPEG frames. We derive the ACF for this frame-level modehcr 4t jagk is given by ’ T
Our results indicate that due to the repetitive application of the

GOP pattern, the pseudo-periodic frame-level ACF never drops A El(X, — m)(Xppi —m)]

off to zero. The nonzero-convergence result can be extended to px (k)= 3

other types of media streams that are interleaved in a determin- X ) )

istic manner (e.g., the interleaving of audio and video packets — ElYoYoir] +ozpz(k) —m 2)
in MPEG-2). o3 + 03

Lastly, we study the impact of correlations in a scene-based
model on the packet loss performance due to buffer overflawherem 2 E[X.] = E[Y1]. Consider the tern¥[Y,,Y;, 4] for
at the encoder. Two popular families of scene-length distribé-= 1, 2, -- -, and an arbitrary:.. The relationship betweer,
tions are examined: Pareto and Weibull. In each family, we vaandY,, 1 depends on whether GOP/sandn + & belong to
the level of correlations in the model and observe the resultitite same scene. L& be the forward recurrence time that is
impact on the packet loss rate. We make several important associated with the scene lengthThe pmf ofS is given by
marks on this impact as inferred from both GOP- and frame-
level models and with the assumption of finite- and infinite-

buffer capacities. fal@) = Pr[S =] = TS_]’ i=12--. (3
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Sincen is chosen arbitrarily, the two GOP’s belong to the samedeo model is SRD if and only i > 3. Two video sequences
scene ifS > k. Otherwise, they belong to different scenes (andere examined in [5]Star WarsandFilm. Their corresponding

are, thus, independent). Consequently n values were determined to be 2 and 3.8, respectively, implying
oo that Frater'snodelfor the first sequence exhibits LRD!
E[Y,Ynii] = Z E[Y,Yuix|S = 4] - Pr[S = j] In typical scene-based modeling studies, the scene-length
= distribution is obtained by directly fitting the empirical scene
k oo lengths. The ACF in this case is obtained empirically using
=m? Z f:(5) + E[Y7] Z £:(9) synthetic sequences. Due to the small number of long scenes
i1 i (typically, in the order of few tens), accurate fitting of the
—m2Fy(k) + E[Y2)(1 — F(k)) (4) tail of the empirical scene-length distribution is not feasible,

despite the importance of this tail in determining the SRD/LRD
whererF; is the CDF ofS. Accordingly, (2) can be written as  structure of the model. We remedy this issue by providing an
alternative modeling approach for the scene-length distribution.
_ o1 = Is(k)] + 0% pz(k)

px (k) = . 5 i (5) lgnoring the noise process, we have(k) = Pr[$ > k]. Thus,
oy T 0z forj =1, 2, -, we have
In the absence of the noise procdss,: » = 1, 2, ---}, (5) A ‘ o Pr[Ss >3]
reduces tgx (k) = Pr[S > k], i.e., the ACF is simply given Pr[S =j]=px(j - 1) — px(j) = W ®)

by the complementary distribution 6f. _ _ .

Equation (5) can be used to construct a simple test for tH@m which we obtain the scene-length pmfin terms of the ACF:
LRD/SRD of a video model with a given scene-length distribu- ) ) .
= 1| = > 11 — > ]

tion. Recall that a process exhibits LRD behavior if its ACF has Pri§=g] = PrS 2 j] = PrlS 2 j + 1]

an infinite sum. Taking the sum gfy (k) from k = 0 to oo, we =E[S]lpx(G—1) = 2px() +px(G+ D] (9)
have To obtainE[S] we setj = 1in (8), which results in
. o} E[S]+ 0% > pulk) o R = I T
> px(k) = Q) px(0) = px(1) 1 =px(1)
(o3 +0%)

k=0 Accurate modeling of the scene length can proceed by first ob-
taining an adequate fit for the empirical ACF (which can be done
relatively with high accuracy), and then using this fit to derive

the corresponding scene-length distribution based on (9).

It is easy to show that

~ 1 E[S?]
E[S] = §+2E[S]' (7)
From (6) and (7), we arrive at the following result:
Proposition 1: The video modefX,,: n = 1,2, ---}is GOP-level modeling is sufficient for evaluating the queuing
long-range dependent if and only if at least one of the followingerformance when the buffer size is relatively large. In this case,

I1l. FRAME-LEVEL AUTOCORRELATIONS

conditions is satisfied: the drastic differences between the three types of MPEG frames
1) The second moment of the scene length is infinite. ~ are absorbed by the buffer. However, when the buffer is small
2) The noise procesZ,: n = 1, 2, ---} is LRD. (e.g., drains in less than a GOP time), these differences will
have profound impact on performance, and a frame-level model

A. Examples is needed to study this impact. In this section, we extend our

1) Pareto Distribution: Some studies have reported the a[generic GOP-level model to characterize the frame-level varia-
propriateness of the Pareto distribution for modeling the scefifd?S, and we derive the resulting ACF.
duration [9], [13]. The complementary form of this distribution COnsider the process¥,,: n =1, 2, - - -} that represents the
is given byPr[S > k] = (w/k)® for k > w, wherew anda GOP sequence. Lgty be its marginal distribution. A GOP pat-
are two positive parameters. Assuming that the noise proces$f& is characterized by two parameters: fhi-/ frame dis-
SRD, then forl < a < 2, E[S?] is infinite and the model is t@nce (V) and thel-to-P frame distancef). Not all MPEG
LRD. A similar result has been provided for the superpositicifduences involve a repetitive GOP pattern. In fact, some en-

of ON/OFF sources in which the ON periods of one or morePders allow a new GOP to start before the completion of the
sources are Pareto distributed with< « < 2 [2]. previous one, typically in response to a large frame (i.e., the start

2) Frater's Scene-Length Distributiontn [5], Frateret al. of a high-action scene). However, for tractability purposes, we

introduced a model for JPEG video in which the scene duratig@strict our work to MPEG sequences that conform to repetitive
has the following distribution: GOP’s, and many sequences do so in practice.

Denote the size of théth frame in the MPEG sequence
S k=1,2 - by U,.. Suppose that this frame belongs to itile GOP. If the
kn 402 MPEG sequence starts with a complete GOP (i.e., the first
whereq, b, andn are three positive constants. The noise proceBame is/), thenr = [k/N]. However, this makes the process
was ignored. It is straightforward to show th&fS?] is finite {l/,: n = 1, 2, - --} nonstationary, precluding any analysis of
for n > 3, and is infinite otherwise. In other words, Frater'she correlation structure. Instead, we will allow the first GOP

f(B) 2 PrS = k] = —
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Fig. 2. Bit-rate variations in frame-level modeéV(= 6, M = 3).

Lecture

to be incomplete by randomly selecting the first frame in thr 1 ‘ ‘
sequence from any location in the GOP pattern, and continuit
thereafter according to that pattern. This will have no effec
on the long-term behavior of the model, but will ensure it
stationarity. Accordingly[k/N| < r < [k/N] + 1.

We use the following model fol/,:

° ° o o
(2] ~ o« (<=
3 : : :

e
. . . 1

o
&
L

cpX,., ifthe kth frame is aP frame (11)

crX,., ifthe kth frame is ard frame
A
0 2 {
cpX,., ifthe kth frame is aB frame.

o
IS
T

The constantgy, c¢p, andcp are obtained empirically as fol-
lows: cr = (Ia,'ng/Xa,'ng)y cp = (Pa,'ng/Xa,'ng)y and cCp = )
(Bavg/Xavg), Wherel ., , Py.q, andB,,, are the average (em- %2
pirical) frame sizes fod, P, and B frames, respectively; and

Normalized Time-Varying Coefficients

=3
w
T
o
o

0ir c(r 4
X,ug is the average size of a GOP. Note that+ (N/M — TR, NN VO SO N 1Y P S S
Dep + (N — N/M)cg = 1, ensuring that the sum of frame % 500 1000 1500 2000 2500
sizes in the'th GOP is equal t&,.. According to this modelB GOP index r)

frames (alsoP frames) that belong to the same GOP have the

) : : Fig. 3. Time-varying coefficients;(j), cr(7), andes(j).
same size. So if theth frame is of typeB, thenl/;, represents

the averagesize of B frames within the corresponding GOP. TABLE |

An example of the resulting sample path based on this model is SAMPLE MEAN AND STANDARD DEVIATION
shown in Fig. 2. OF THE TIME-VARYING COEFFICIENTS(LectureTRACE)
_ It should be em_phas_,lzed that the_ above frame-level mod_el is Frame Type (7) | Average cr(r) | Std. of or(r)
indeed an approximation. In real video sequences, the ratio of T 0.5348 0.0412
the average size of, sal/,frames in a GOP and the size of that P 0.2378 0.0215
GOP varies from one GOP to another. However, this variation is B 0.0568 0.0067

observed to be relatively small as illustrated in Fig. 3, which de-
picts _the time-varying coefficients (r), cp(r), andeg(r) as a tively. It readily follows thatE[U;] = ¢;m, E[Up] = cpm, and
function ofr for the MPEG coded sequenktecture[14]. Here, E[Ug] = Also, var (U )é 2 2.9 v )é 2
cr(r), T € {I, P, B}, is the ratio of thaveragesize of type-T N 2’3 = CpMm. X’MQ T —2012 =cjoy,var(Up) =0y =
frames in therth GOP and the size of that GOP. The samplér?x @ndvar(Up) = o5 = cpo . Letpy (k) be the ACF of
mean and standard deviation for each of these coefficients af&: * = 1. 2, ---} atlagk
shown in Table I. While a more elaborate frame-level charac- - 2

. . . . . . E[U1U1+k] —m
terization is possible, the attractiveness of (11) is that the coef- pu (k) = 5
ficientscy, cp, andeg can, in principle, be estimateapriori. oy
Furthermore, a detailed frame-level characterization would nv%ere S Ap
lend itself to the type of analysis presented in this paper. m=

According to the model in (11), the marginal distributionS(gg( +m?) [, N ) N\ , m2
Cr + M -1 Cp + N — M

[U1] = m/N ando? £ var(U,) is given by

for the sizes of the three frame types are given in terms of — Bl T N2

fx asfollows: fi(z) = fx(z/c1), fr(z) = fx(z/cp), and

fe(z) = fx(z/cp). LetU;, Up, andUp be three generic rv's Recall that according to our model, the first frame of an MPEG
that indicate the sizes of arbitrafy P, and B frames, respec- streamis selected randomly from tNeframes of a GOP. There-
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after, the MPEG sequence proceeds according to the repetitive if tmod N #20 butkmod M =0
GOP pattern. Considdr[U; Uy 4] for & > 1: =2¢crep + 2(N/M — 1)epep + (N — 2N/M)c,
N if £ mod M # 0. (13)
E[UUi] =Y E[UyUp /Ty = i Pr[T} =] N _ [
P Furthermore, itis easy to verify that,_, >".", n(4, k) = 1.

. . . We now return h roblem of rminin
whereT; is a discrete rv that reflects the location (and CO%[l]fl]1+:/Tl ZEtL;]. Thtgre ta re; t V\plyoo(t:)aes n tg Cog;tger. I:irsgt

sequently, the type) of théh frame in the GOP Bgtﬁern. Thewhenz‘ 4k < N, Frames 1 and + & must belong to the
sample space d; isQy = {1, 2, - --, N}. Thus[; =i means same (first) GOP, hence

that the type of thgth frame is the same as the type of the frame '

in theith location of the GOP pattern. Because of the repetitiveE[UlUHk/T1 =i = n(i, K)E[X]] = n(i, k)[o3 +m?].
application of the GOP pattern, the proc¢®s: n =1, 2, ---} (14)
constitutes a deterministic Markov chain with transition probayhen: + & > N, Frames 1 andl+ k belong to different GOP’s
bilities pi; = Pr[l, = j/T,-1 = = 1if j = ¢+ 1and and possibly to different scenes. More specifically,the k)th
¢=1-,N-lorifi = Nandj = 1, and zero other- game helongs to theth GOP, where = [(i+%)/N] > 1. Thus
wise. Our previous assumption related to the type of the first

frame can now be stated formally by taking the initial distribu- ~ E[U Uy 44 /11 = ] =7n(é, k) E[X1X,1]

tlor)Aof the Markov chain to bg its stationary distribution, i.e., =ni, k)[o%px(r — 1) + m?]. (15)
m; = Pr[Iy =] =1/N forall ¢ € Qr. Hence

N A. Computation o [l/ U7 4]

1 .
Elththnl =5 z_:l ElhUi /Ty =1 (12) caeepp = 1,2, ---, N—1: From(12)and (13), and based
= on the previous discussion, we have
Before proceeding with the computation®BfU, Uy 4. /T1 =

- . N—k
], we need to define some related quantities. Let 1 .
] | EUUi] =5 3 (i, ok +m?)
gn (i, k) £ (t+k—1)mod N =1 N
N 1 :
am (2, k)é (i1 +k—1)mod M +N Z (0% px(r— 1) +m?)
where: € Qr andk is a positive integer. Note that because =Nk
is a multiple ofM, if g (i, k) = 0 thenga (i, k) = O aswell. - \yhere, as before; 2 [(i + k)/n]. Fork = 1,---, N and
Define the following two sets: i=N—k+1,---,N,r =2 Thus,
A T
Qp={1+M,14+2M,1+3M, ---, 1 +(N/M - 1)M} m2 & o2
A E[U U] =— > (i, k) + =
Qp = Qr — {1} — Qp N ~ N
Next, we define the following function(s, k): R al )
e Case 14 =1 o : <Z n(i, k) + px (1) Z i, k) |-
If g (1, k) = 0, thenp(1, k) 2 2. = AT
If gn(1,k) # O but ga(1,k) = 0, then Case ll: £k > N: Starting with (15), this case is further di-
A vided into two subcases.
n(1, k) = ¢rep. _ _ )
Case lI-A:k = pN forp = 1, 2, ---. In this case, Frames

If 91\4(17 k) 75 0, thenn(l, k) é CICB.
e Case 2:t € Qp

If g (i, k) = 0, thenn(i, k) £ ¢rep.

If gn (i, k) # 0 butgn (i, k) = 0, thenn(i, k) £ ¢3. 1, ,

If gar(i, k) # 0, thenn(i, k) a CPpeR. ElU U] = N ; n(i, B)ox px (p) +m’]
e Case 3:1i € Qp , =

If gn (2, k) = 0, thenn(z, k) 2 crcg. _ oxpx(p) +m

If gn(i, k) # 0 but gp(i, k) = 0, then N

. A
n(i; k) = cpeg. A Finally
If gar(i, k) # 0, thenn(i, k) = c%.

It can be shown that [(aggpx(p) +m?) <Z (i, k))/N] _ M2

1 and1 + £ differ exactly byp GOP’s, irrespective of the value
of ¢. Thus,r = [i/N] + p = 1 + p. Accordingly

n(t, k).

2 N
=1

%

N
S0, k) = + (/M — 1) + (N — N/M), pu(k) = o
=t : (16)

if kmod N =0 Case II-B: £ # pN andk > N: In this case, Frames 1

=2crcp + (N — N/M)c% 4 (N/M — 2)ch, and1 + & may differ by eitherp GOP’s or byp + 1 GOP’s,
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Shifted Exponentiat

wherep 2 [k/N] —1 = |k/N]|. More specifically, forl; = 12 ; ; ' . ‘ ; ;
1,2, .-, 4%, wherei* = N[k/N] — k, the first and(1 + k)th
frames differ byp GOP’s. Forly = ¢* + 1, ---, N, the two
frames differ byp + 1 GOP’s. Thus

08 — exp(- (k1) ]

Ui =5 3 0, Blokox(e) + )

0.6 — — — —  synthetic 7

Autacorrefation

N
1 .
+ ‘_;1 n(i, k)o% px (1 +p) + m?] 04 1

(17) 02

which concludes the derivation of the ACF for the proces
{Uyin=1,2---}.

B. Asymptotic Behavior of Frame-Level ACF O w0 150 200 250 300 850 400 480 500
Lag k (in GOPs)

From the analytical form of;;, one can examine its asymp-
totic behavior, shedding light on the LRD/SRD structure. Alig. 4. ACF for GOP-level model with shifted exponential scene distribution

k — o0, p — o0, andpx(p) — 0, so that (3 = 1/49).
m N average ACF for the synthetic traces is plotted in Fig. 4 along
; : ) L . .
N limy, oo 277(17 k) — with its theoretical counterpart. There is a clear match between
lim py(k) = i=21 ) (18) the two plots. _ _ o
k=00 v Next, we consider a subgeometric scene-length distribution
of the form

The limit of ¥ | #(i, k) ask — oo alternates between the
three values given in (13). Substituting the valueg&aids?; in Pr[S > k] = op/@, k=12
(18), it is easy to see thHin .., pr (k) alternates between the _ _
following three values, depending on hénapproaches infinity: for some0 < « < 1. In this case, the ACF can be written
recursively, as follows:
Npr -1 .
J j=1,23 (19)

N (ox /m? +1) =1 px(k+1) = px (k) -
wherer, n5, andnj are the three values in (13), respectively.
In general£t, &3, and¢ are nonzero, which justifies the per-while a closed-form expression fé#[S] = 57, a¥* is not
sistent, periodic autocorrelation that are observed in empiriealailable, it is easy to show that
MPEG sequences. However, using (13) it can be shown that 9 9
&+ (N/M — )¢ + (N — N/M)é = 0, i.e., the sum of = — = 41 (22)
the autocorrelation over a GOP period converges to zero, as ex- (In ) (In @)
pected. Settingar = 0.8, we have40.17 < E[S] < 41.17. Thus,

E[S] =~ (2/(ln «)?) + 0.5 = 40.67. Fig. 5 depicts the theo-

IV. V ALIDATION OF ANALYTICAL RESULTS retical and empirical ACF’s under a subgeometric scene-length

In this section, we demonstrate the validity of our analytic&liStribution. At small and large lags, the plots match very well.
expressions using three numerical examples. For simplicity, fiéintermediate lags, there is a slight difference that is attributed
ignore the noise process (the interscene variations). Our valié@the large variance of the empirical autocorrelation and to
tion approach is based on comparing the analytical ACF agaifé#€r approximations in the generation of subgeometrically dis-
the sample ACF of synthetically generated VBR sequences f{puted random numbers.
the first two examples, we investigate the ACF at the GOP levelOUr last example is related to the frame-level ACF. Here, we
assuming gamma distributed GOP sizes with mean of 500 d#f the same shifted exponential scene-length distribution as
standard deviation of 100. in the first example. We se¥V = 12, M = 3, ¢; = 5/22,

Inthe first example, we use a shifted exponential scene-length = 3/22, andcp = 1/22. The analytical and empirical
distribution: ACF’s are shown in Fig. 6 for lags in the range 450-500. This

range is chosen arbitrarily, and is representative of the behavior

Pr[S > k] =Pr[S > k] = P*D k=12 ... at large lags. The two ACF’s almost match at all examined lags

(20) (similar trend is also observed at small lags). Note that although

the scene-length distribution is exponential, the deterministic

Note that in this casé andS$ have the same distribution. We seinterleaving of three, drastically different processes (one for
8 =1/49, so thatE'[S] = 50. Ten synthetic traces were genereach frame type) induces strong correlations that determine the
ated, and their sample ACF’s were computed and averaged. Blsgmptotic shape of the ACF. These correlations do not die out

& avk

< E[S] <
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Sub-geometric

1 ; ; : | ; ; For Pareto distributed scene lengths, our analysis is based
on the work of Jelenkovic and Lazar [12] on the subexponen-
tial asymptotics of Markov-modulated random walks (see also
plke1) = plk) - OS] - [13]). As discussed in [13], Pareto distributions belong to the
class ofregularly varyingdistributionsk,,, which have recently
been the focus of several investigations. Consider a model with
Pareto distributed scene lengths:

54
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Fs(x)é Pr[SSx]:l—xia, z > lando > 1.
Since we assume that scene changes constitute a renewal
process, our model is similar to the Markov renewal process
that was studied in [13], with the exception that in [13] a
4-state discrete Markov chain governs the transitions between
“regimes” (i.e., video scenes). In contrast, we consider a
O e Y X 0 4 %0 continuous and unbounded state space with transitions that
are independent of the current state. In the discrete case, if the
g:gm fut.oﬁC@F _fOB g)‘e GOP sequence with a subgeometric scene-lengiBene-length distribution is regularly varying, the asymptotic
behavior of the queue length is given by [13]
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>
T

7; IS the stationary probability of being in state A is the
steady-state arrival rate at renewal times, @&rid the mean drift
rate while in staté (arrival rate minus service rate). As before,

px(x) is the GOP-level ACF at lag. It is assumed that the
02 ] buffer capacity is infinite and that the system is “weakly stable,”
i.e.,d; > 0 for at least one staté In our case, because of the

i | infinite sample space of the gamma distribution, the system is
-06 = synthetic 1 indeed weakly stable. Furthermore, because in our model tran-
sitions at scene boundaries are independent of the scene levels,

=
[N
T

ﬂ ﬂ where@ is the steady-state queue length at renewal instants,

o

Autacorrefation

—0.8F —  thEOTELIC 4 . L. .
o 7; in (23) is just the p.d.f. of the GOP size. Hence (23) becomes
_11150 45;5 4é0 46;5 4;0 4;5 4;30 455 4S‘)0 4EI)5 500 o0

Lag k {in frames)
g / (1 = C)° fr(u) du
Fig. 6. ACF at the frame level based on a shifted exponential scene-lengthPr Q >z < px(xz), asx — oo
distribution (¢ = 1/49, N = 12, M = 3). [ I~ E[S|(C - E[A]) (=),

(24)

to zero as the lag goes to infinity, but instead they converge\%erefF is the gamma p.d.f. of the GOP size. For simplicity, we
¢ = 0.8912, & = 0.710, andgg = —0.3776. takec to be integer valuedy > 2. Substituting the expressions
for E[S] = a/(a — 1), E[A] = w/A, and fr(u) in (24), as

V. IMPACT OF CORRELATIONS ONBUFFER PERFORMANCE 7 — oo We have

Inthis section, we investigate the impact of traffic correlations 00
on the queuing performance at a video buffer. The scenario we / (u—C)*e M (A\w)¥ A du
consider was depicted in Fig. 1, where a VBR streamis fed into a Pr[Q > z] ~ a4
buffer with a drain rat€. We study two families of scene-length p— (C—w/A)(w—1)!
distributions: Pareto and Weibull. While other distributions may
also be used, lately these two distributions have been receivinith some manipulations, it can be shown that the above equa-
much attention (see [9]). For each family of distributions, wgon reduces to
examine the effect of varying the correlations persistence on the
queuing performance. In line of the findings in [6] and [10], we (a —xc wZl (w + a—j—1) (C)\)j

A) ; gl

px ().

take the GOP size to be gamma distributed with scale and shap e ( C w/ -1 px ()
parameters\ andw. For simplicity, we takew to be integer h

valued. =W\ w, C, a) - px(k )
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Fig. 7. Probability of buffer overflow when scene lengths are Pareto ) . .
distributed & = 0.03, w = 25, load= 83%). Fig. 8. ACF for subgeometrically distributed scene lengths.
where rise to a subgeometric model. For a finite £[S?] < oc and
the corresponding video model is SRD (Proposition 1).nAs
U(A, w, C, ) increases the correlations become more persistent, amd-as
wel . h oo, the model approaches the LRD regime. Fig. 8 depicts the
A (a—De ™ &N (w+a—j— DYCN

: . . GOP-level ACF forn = 1, 2, 3 anda = 0.8. Increasingx
=0 (w—j— 1)l slows down the speed of convergence of the ACF. Note that for

the underlying family of scene distributions, the ACF is obtained
The above expression directly relates the ACF of the GOP-levetursively using

model to the queuing performance. For Pareto distributed scene

lengths, the ACRx () can be easily computed as follows: a vk
px(k+1) = px(k) - B[S

aX*(C —w/A)

k=1,2,---

_ pyld B C><>Pr[SZu]d ozt
px (@) =Pr[S > z] = /w E[9] YT whereE[S] = n!(—1n «)™. We use simulations to evaluate the

impact of correlations on the queuing performance. A disadvan-
for @ > 1 andz > 0. Fig. 7 depicts the buffer overflow ratetage of simulations in this case is that they require extremely
versus the buffer size. As expected, for a given buffer size thg traces to obtain any meaningful results (the more persistent
buffer overflow probability decreases asincreases. Interest- the correlations, the longer the traces). This means that cred-
ingly, for o = 2, 3, 4, the buffer overflow curve flattens fairly jp|e results can only be obtained for relatively large and mod-
quickly despite the fact that the underlying model is SRD. Whilgate |oss rates (above 1. In our simulations, we assume
such behavior is already known for LRD models{ « < 2),  that video frames are packetized into fixed-size packets (e.g.,
its presence under SRD models is surprising. Nonetheless, Agiy cells). We investigate the packet loss rate (PLR) under
large @ (e.g.,«x = 6), the buffer overflow curve starts to getgop- and frame-level models assuming both finite and infi-
steeper and the performance becomes more sensitive to changesyyffer capacities. In the latter case, the PLR is estimated
in the video buffer size. It is worth mentioning that in the Casgy the percentage of packets that arrive at the buffer anddind

of exponentially distributed scene lengths (i.e., a Markovig§} more packets in the queue, whesds the buffer size in the
model), the buffer overflow probability plotted on a logarithmiginite-buffer case.

Fig. 7 would have constant slopes. _ ~ 50 GOP’s. Since&[S] depends omx andn, « is adjusted when-

~ Next, we consider the following class of discrete distribusyery, is varied. For GOP-level results, we ran the simulations

tions: using synthetic traces of length 1 000 000 GOP’s per trace. As

Ve before, GOP sizes are gamma distributed with shape parameter
Pr[§ >kl =a¥" fork=12 .-, andn=1,2, - w = 25 and scale parameter = 0.05. For frame-level re-
(25) sults, we setvV = 12 andM = 3 with each trace consisting of
12 000 000 frames. A sufficient number of independent runs was

where0 < « < 1. This is a special case of the general Weibullsed to ensure tight confidence intervals. To avoid cluttering the

distribution F'(z) = 1 — e=7*", whereg > 0 and0 < » < 1 figures, we only show the average values of these runs.

[in (25) we setd = —Iln o andr = 1/n]. Whenn = 1, the Fig. 9 depicts the PLR under two traffic loads (= 60

scene length distribution is geometric, whereas> 2 gives and 80%) for GOP- and frame-level models and with finite-
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Fig. 9. PLR versus buffer size under Weibull distributed scene lengths.

and infinite-capacity buffers. Based on these figures, several ithree frames. Hence, if the delay requirements of the video ap-
portant observations can be made. First, the degree of corrglecation are such that a delay of three frames at the encoder
tions persistence, which is reflected in the valuepfhas clear is tolerable, a GOP-level model is sufficiently accurate for use
impact on the sensitivity of the PLR to changes in the buffém performance evaluation and capacity planning studies. Oth-
size; the larger the value of the less sensitive is the perfor-erwise, frame-level modeling is needed. Our last remark is re-
mance. This means that for very large buffers, the degree of clated to the infinite-buffer results in Fig. 9(a). Asgoes from
relations persistenatoesmatter. Interestingly, this trend is ob-2 to 3, the PLR increases suddenly by more than an order of
servedor both finite- and infinite-capacity bufferSecond, for magnitude. This trend was not observed at the higher load [Fig.
small buffer sizes (less than 100 packets), the frame-level PORE)]. Our justification of this phenomenon is that at high loads,

is always larger than its GOP-level counterpart. The discrejpuffer overflow is more frequent and is not only caused by the
ancy between the two is more obvious when the buffer capacitgry rare events. In contrast, as we decrease the load, rare events
is finite. Furthermore, this discrepancy is more pronounced (@&g., a high-action scene that lasts for a long period of time) be-
lower traffic loads {/ = 60%), where the difference can reactcome the primary cause of packet loss. Such events are directly
several orders of magnitude. As the buffer size increases, the dédated to the persistence of the autocorrelations, hence the ob-
crepancy between the GOP- and frame-level results fades avsyved trend. The greater impactadt lower loads is analogous
Based on our numbers, a buffer size of 100 packets amouttists increased significance as the buffer size increases.

to a maximum queuing delay d/C = 100/C, whereC is

the link bandwidth in packets/second. Hér= 80% and av-
erage input rate of 500 packets/GOP (1000 packets/second),
C = 1000/U = 1250 packets/second. Thus, the maximum In this paper, we analyzed the ACF for a class of scene-based
delay is 80 ms, which is slightly less than the time to generate@leo models. Our analysis was performed at both GOP and

VI. CONCLUSIONS
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frame levels, and was used to establish the relationship betweejs] D. Heyman and T. Lakshman, “What are the implications of long-range
the SRD/LRD structure of a model and its scene-length distri- ~ dependence for VBR video traffic engineering®zEE/ACM Trans.

. . . . L Networking vol. 4, pp. 301-317, June 1996.
bution. As a byproduct of this relationship, an efficient pro- [9] D.P.Heyman and T. V. Lakshman, “Source models for VBR broadcast-

cedure for fitting the scene-length distribution was provided,  video traffic,” IEEE/ACM Trans. Networkingvol. 4, pp. 40-48, Feb.
which only requires fitting of the ACF. At the frame level, our 1996. _ et .
Its indicate that the repetitive application of the GOP at[_10] D. P. Heyman, A. Tabatabai, and T. V. Lakshman, “Statistical analysis
resu_s Indica ) p pp ) p and simulation study of video teleconferencing traffic in ATM net-
tern induces strong periodic components in the ACF. In fact,  works,” IEEE Trans. Circuits Syst. Video Technalol. 2, pp. 49-59,

we showed that the frame-level AQIBes notonverge to zero Mar. 1992. -
he f | infinitv. Thi h . . [11] M. Izquierdo and D. Reeves, “A survey of statistical source models for
as the frame lag goes to Infinity. IS, somenhow surprising, variable bit-rate compressed video,” Center Adv. Comput. Commun.,

result can be extended to composite processes in which two North Carolina State Univ., Raleigh, Tech. Rep. 97-10, June 1997.

drastically different submodels are interleaved in a determinfl2] P. R. Jelenkovic and A. A. Lazar, "Subexponential asymptotics of a
. o f di d vid Markov-modulated random walk with queuing application, Appl.
istic manner (e.g., composition of audio and video streams).  pyg vol. 35, no. 2, June 1998.

The impact of correlations on the performance at a video buffen3] P. R. Jelenkovic, A. A. Lazar, and N. Semret, “The effect of multiple
was studied via analysis and simulations for video models with ~ time scales and subexponentiality in MPEG video streams on queuing
. L behavior,”IEEE J. Select. Areas Commuwol. 15, pp. 1052-1071, Aug.
Pareto and Weibull scene-length distributions. In the case of 1997,
Pareto scene lengths, we observed that the insensitivity of thes] E. W. Knightly, D. Wrege, J. Liebeherr, and H. Zhang, “Fundamental
packet loss rate to changes in the buffer size extends beyond I|m|t_s arjd tradeoffs of providing deterministic guarantees to VBR video
) S traffic,” in Proc. ACM SIGMETRICS/PERFORMANCE '95 CoMay
the LRD regime of the Pareto distributioh & « < 2) to the 1995, pp. 98-107.
SRD regime & > 2). Such insensitivity starts to change@s [15] M. Krunz and S. K. Tripathi, “On the characterization of VBR MPEG
becomes large. For Weibull distributed scene lengths, several Steame” inProc. ACM SIGMETRICS 97 CopfJune 1997, pp.
|mp0rta_nt observations ca_n be made based _On the simulation rﬁ_lﬁ] A. A Lazar, G. Pacifici, and D. E. Pendarakis, “Modeling video sources
sults. First, the more persistent the correlations, the less sensi- for real-time scheduling Multimedia Syst. Jvol. 1, no. 6, pp. 253266,
tive the performance to changes in the buffer size. This treng _ 1994 . i
b d der both fini d infini ity buff [17] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the
was observe un er both finite- and In |n|te-capa-C|ty u grs. self-similar nature of Ethernet traffic (extended versiotlEEE/ACM
Thus, for largefinite buffers, the degree of correlations persis- Trans. Networkingvol. 2, pp. 1-15, Feb. 1994.
tence does matter. Second, for small buffer sizes (less than 1¢%] B. Melamed, D. Raychaudhuri, B. Sengupta, and J. Zdepski, "TES-
kets). the frame-level performance is alwavs worse than its based video source modeling for performance evaluation of integrated
packets), the p _ Y ) networks,”|[EEE Trans. Communicationsol. 42, pp. 2773-2777, Oct.
GOP-level counterpart, with the discrepancy being more pro- 1994
nounced when the buffer capacity is finite and the traffic load id19] O. Rose, “Simple and efficient models for variable bit rate MPEG video
| As the buff .. his di fad traffic,” Perf. Eval, vol. 30, pp. 69-85, 1997.
ow. As the butfer size increases, this lISCrepancy lades awayyg) g. Ryu and A. Elwalid, “The importance of long-range dependence of
and a GOP-level model becomes sufficient for analyzing the  VBR video traffic in ATM traffic engineering: Myths and realities,” in
performance. Third, the impact of correlations persistence be-  Proc. ACM SIGCOMM "96 ConfAug. 1996, pp. 3-14.
comes more profound as the traffic load is decreased. Our work
provides important guidelines that can be used in the design and
dimensioning of video buffers and for efficient allocation of ne

work bandwidth.
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