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Abstract—We analyze the autocorrelation structure for a class
of scene-based MPEG video models at the groups-of-pictures
(GOP) (course grain) and frame (fine grain) levels assuming
an arbitrary scene-length distribution. At the GOP level, we
establish the relationship between the scene-length statistics
and the short-range/long-range dependence (SRD/LRD) of the
underlying model. We formally show that when the intrascene
dynamics exhibit SRD, the overall model exhibits LRD if and
only if the second moment of the scene length is infinite. Our
results provide the theoretical foundation for several empirically
derived scene-based models. We then study the impact of traffic
correlations on the packet loss performance at a video buffer. Two
popular families of scene-length distributions are investigated:
Pareto and Weibull. In the case of Pareto distributed scene lengths,
it is observed that the performance is rather insensitive to changes
in the buffer size even as the video model enters the SRD regime.
For Weibull distributed scene lengths, we observe that for small
buffers the loss performance under a frame-level model can be
larger than its GOP-level counterpart by orders of magnitude.
In this case, the reliance on GOP-level models will result in very
optimistic results.

Index Terms—Buffer design, MPEG, traffic correlations, video
modeling.

I. INTRODUCTION

I N THIS paper, we investigate the correlation structure for
a class of scene-based models that characterize variable bit

rate (VBR) MPEG-coded video streams. Scene-based models
form an important family of video models in which scene dy-
namics are explicitly incorporated. These models are particu-
larly capable of capturing the multiple-time-scale variations in
a VBR video source and, consequently, on providing accurate
estimates of the queuing performance at a buffering node [13].
Several of these models have been proposed in the literature. Ex-
amples are given in [3], [5], [9], [10], [13], [15], [16], [18], and
[19] (also, see [11] for a survey of video models). In principle, a
scene-based model could incorporate both inter- and intrascene
variations. However, intrascene variations are often ignored to
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simplify the construction of the model [5], [10]. Scene-based
models often differ in thepersistenceof the autocorrelations that
are manifested by the intra- and/or interscene components. Such
differences are by no means trivial, as they have significant im-
plications on the design and dimensioning of video buffers.

Most scene-based models have been developed for compres-
sion schemes in which all the frames in the video sequence are
encoded in a uniform manner using the same mode(s) of com-
pression. This results inhomogeneousVBR sequences in which
the fluctuations are primarily attributed to scene dynamics. In
contrast, the MPEG algorithm applies different encoding tech-
niques to produce three types of compressed frames (, , and

) that differ significantly in their bit rate characteristics. The
complete MPEG sequence is obtained by interleaving frames of
different types according to a groups-of-pictures (GOP) pattern,
which specifies the sequence ofand frames between two
successive frames. The GOP pattern is applied repeatedly to a
video sequence, resulting inheterogeneousframe sizes and sig-
nificant periodicity in the traffic pattern.

An important aspect of a video model is the form of its au-
tocorrelation function (ACF). Traffic correlations, in general,
are believed to have profound impact on the queuing perfor-
mance at a buffering node. Supported by extensive statistical
evidence, some researchers have further argued that network
traffic, including VBR video, exhibits persistent correlations
that can only be captured through LRD models [1], [4], [6],
[17]. Other researchers, while acknowledging the presence of
LRD in network traffic, argue that forfinite buffers, long-term
correlations have minor impact on the queuing performance [7],
[8], [20]. Hence, they argue, the traffic can be sufficiently repre-
sented by Markovian models, which are typically easier to ana-
lyze than LRD models.

In this paper, we focus our attention on a general class of
scene-based video models, which includes SRD and LRD
models, and we try to answer some of the important questions
related to the impact of correlations on the design of video
buffers. The goal of this paper is neither to provide a new video
model nor to advocate any of the existing ones. Instead, we
aim at studying some generic statistical aspects that pertain to
many of these models. As such, fitting of real data, which is an
essential aspect of model construction, is not discussed in this
paper, as this has been extensively addressed in the literature.
To formally assess the impact of traffic correlations on the
performance at a video buffer, we first analyze the ACF in a
class of scene-based video models. Our analysis is then used
in studying the impact of correlations on the dimensioning
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Fig. 1. Video buffer for smoothing the traffic at the sender.

of video buffers. Fig. 1 depicts one scenario for which our
analysis is directly applicable (other scenarios exist as well).
In here, variable-size video frames are generated on the fly and
are fed into a fixed-bandwidth channel. For constant-quality
video, the variations in the frame sizes can be quite significant.
They can be reduced using rate-controlled encoding at the
expense of variable quality. To limit its impact on video quality,
rate control is applied in conjunction with sender-based traffic
shaping (buffering). Therefore, the encoder still generates
variable-size frames (i.e., near-VBR stream) that are fed into
the buffer. Depending on the network bandwidth (), the buffer
may occasionally overflow, causing further degradation in the
video quality at the receiver. One of our objectives here is to
study the impact of traffic correlations on the performance at
this buffer.

The contributions of this paper are as follows. First, we derive
the GOP-level ACF for a general class of scene-based models
with an arbitrary scene-length distribution and frame-size sta-
tistics. The only restrictions we impose on this class are that in-
terscene and intrascene variations are mutually independent and
that scene lengths constitute an i.i.d. process. Such assumptions
are satisfied by many existing scene-based models (for which
the ACF has not been previously reported). From the derived
ACF, we establish the relationship between the scene-length dis-
tribution of a model and its SRD/LRD structure. Our results in-
dicate that when the intrascene dynamics exhibit SRD (as often
the case), the overall video model is LRD only if the second mo-
ment of the scene length is infinite. Using the explicit relation
between the ACF and the scene length distribution, one can de-
termine an appropriate fit for this distribution without the need
to directly measure scene lengths.

Based on our generic GOP-level MPEG model, we introduce
a frame-level counterpart that incorporates the three types of
MPEG frames. We derive the ACF for this frame-level model.
Our results indicate that due to the repetitive application of the
GOP pattern, the pseudo-periodic frame-level ACF never drops
off to zero. The nonzero-convergence result can be extended to
other types of media streams that are interleaved in a determin-
istic manner (e.g., the interleaving of audio and video packets
in MPEG-2).

Lastly, we study the impact of correlations in a scene-based
model on the packet loss performance due to buffer overflow
at the encoder. Two popular families of scene-length distribu-
tions are examined: Pareto and Weibull. In each family, we vary
the level of correlations in the model and observe the resulting
impact on the packet loss rate. We make several important re-
marks on this impact as inferred from both GOP- and frame-
level models and with the assumption of finite- and infinite-
buffer capacities.

II. GOP-LEVEL AUTOCORRELATIONS

In this section, we investigate the ACF for a scene-based
video model at the GOP level. While the GOP notion is spe-
cific to MPEG video, our “GOP-level” analysis applies, in gen-
eral, to VBR sequences in which frame sizes are homogeneous,
i.e., produced by the same compression approach. For example,
it applies to JPEG and H.261 video sequences, among others.
Without loss of generality, we present our ideas in the context
of MPEG video.

Consider an MPEG-coded video sequence. Let be a
random variable (rv) that models the “size” of theth GOP in
this sequence (i.e., the number of bits in that GOP). Letbe a
discrete rv that models the length of theth scene (measured in
the number of GOP’s). We assume that scene lengths are i.i.d.
with common probability mass function and cumulative
distribution function . Let be a generic rv that describes
the length of an arbitrary scene. Intuitively, GOP’s that belong
to the same scene are relatively close in size, while GOP’s
belonging to different scenes may have significantly different
sizes. Accordingly, we model by the sum of two random
components:

(1)

where “a.s.” refers to equality in thealmost surelysense. The
rv accounts for the average impact of scene dynamics on the
bit rate. In essence, it represents the average GOP size within a
given scene. If two GOP’sand belong to the same scene, then

; otherwise, and are i.i.d. The rv represents
the difference between the size of theth GOP and the mean
GOP size in the underlying scene. By construction, .
We assume that and are mutually independent.

The random processes and
constitute two sequences of auto-

correlated and identically distributed rv’s. We assume that both
processes are second-order stationary, and we denote their cor-
responding ACF’s at lag by and , respectively.
Furthermore, we let and be the variances of and

, respectively. The above formulation encompasses several
scene-based models, including the ones in [5], [9], [10], [15],
[16], and [18].

Now consider the random process . Its
ACF at lag is given by

(2)

where . Consider the term for
, and an arbitrary . The relationship between

and depends on whether GOP’sand belong to
the same scene. Let be the forward recurrence time that is
associated with the scene length. The pmf of is given by

(3)
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Since is chosen arbitrarily, the two GOP’s belong to the same
scene if . Otherwise, they belong to different scenes (and
are, thus, independent). Consequently

(4)

where is the CDF of . Accordingly, (2) can be written as

(5)

In the absence of the noise process , (5)
reduces to , i.e., the ACF is simply given
by the complementary distribution of.

Equation (5) can be used to construct a simple test for the
LRD/SRD of a video model with a given scene-length distribu-
tion. Recall that a process exhibits LRD behavior if its ACF has
an infinite sum. Taking the sum of from to , we
have

(6)

It is easy to show that

(7)

From (6) and (7), we arrive at the following result:
Proposition 1: The video model is

long-range dependent if and only if at least one of the following
conditions is satisfied:

1) The second moment of the scene length is infinite.
2) The noise process is LRD.

A. Examples

1) Pareto Distribution: Some studies have reported the ap-
propriateness of the Pareto distribution for modeling the scene
duration [9], [13]. The complementary form of this distribution
is given by for , where and
are two positive parameters. Assuming that the noise process is
SRD, then for , is infinite and the model is
LRD. A similar result has been provided for the superposition
of ON/OFF sources in which the ON periods of one or more
sources are Pareto distributed with [2].

2) Frater’s Scene-Length Distribution:In [5], Frateret al.
introduced a model for JPEG video in which the scene duration
has the following distribution:

where , , and are three positive constants. The noise process
was ignored. It is straightforward to show that is finite
for , and is infinite otherwise. In other words, Frater’s

video model is SRD if and only if . Two video sequences
were examined in [5]:Star WarsandFilm. Their corresponding

values were determined to be 2 and 3.8, respectively, implying
that Frater’smodelfor the first sequence exhibits LRD!

In typical scene-based modeling studies, the scene-length
distribution is obtained by directly fitting the empirical scene
lengths. The ACF in this case is obtained empirically using
synthetic sequences. Due to the small number of long scenes
(typically, in the order of few tens), accurate fitting of the
tail of the empirical scene-length distribution is not feasible,
despite the importance of this tail in determining the SRD/LRD
structure of the model. We remedy this issue by providing an
alternative modeling approach for the scene-length distribution.
Ignoring the noise process, we have . Thus,
for , we have

(8)

from which we obtain the scene-length pmf in terms of the ACF:

(9)

To obtain we set in (8), which results in

(10)

Accurate modeling of the scene length can proceed by first ob-
taining an adequate fit for the empirical ACF (which can be done
relatively with high accuracy), and then using this fit to derive
the corresponding scene-length distribution based on (9).

III. FRAME-LEVEL AUTOCORRELATIONS

GOP-level modeling is sufficient for evaluating the queuing
performance when the buffer size is relatively large. In this case,
the drastic differences between the three types of MPEG frames
are absorbed by the buffer. However, when the buffer is small
(e.g., drains in less than a GOP time), these differences will
have profound impact on performance, and a frame-level model
is needed to study this impact. In this section, we extend our
generic GOP-level model to characterize the frame-level varia-
tions, and we derive the resulting ACF.

Consider the process that represents the
GOP sequence. Let be its marginal distribution. A GOP pat-
tern is characterized by two parameters: the-to- frame dis-
tance ( ) and the -to- frame distance ( ). Not all MPEG
sequences involve a repetitive GOP pattern. In fact, some en-
coders allow a new GOP to start before the completion of the
previous one, typically in response to a large frame (i.e., the start
of a high-action scene). However, for tractability purposes, we
restrict our work to MPEG sequences that conform to repetitive
GOP’s, and many sequences do so in practice.

Denote the size of theth frame in the MPEG sequence
by . Suppose that this frame belongs to theth GOP. If the
MPEG sequence starts with a complete GOP (i.e., the first
frame is ), then . However, this makes the process

nonstationary, precluding any analysis of
the correlation structure. Instead, we will allow the first GOP
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Fig. 2. Bit-rate variations in frame-level model (N = 6; M = 3).

to be incomplete by randomly selecting the first frame in the
sequence from any location in the GOP pattern, and continuing
thereafter according to that pattern. This will have no effect
on the long-term behavior of the model, but will ensure its
stationarity. Accordingly, .

We use the following model for :

if the th frame is an frame
if the th frame is a frame
if the th frame is a frame.

(11)

The constants , , and are obtained empirically as fol-
lows: , , and

, where , and are the average (em-
pirical) frame sizes for , , and frames, respectively; and

is the average size of a GOP. Note that
, ensuring that the sum of frame

sizes in the th GOP is equal to . According to this model,
frames (also, frames) that belong to the same GOP have the
same size. So if theth frame is of type , then represents
the averagesize of frames within the corresponding GOP.
An example of the resulting sample path based on this model is
shown in Fig. 2.

It should be emphasized that the above frame-level model is
indeed an approximation. In real video sequences, the ratio of
the average size of, say, frames in a GOP and the size of that
GOP varies from one GOP to another. However, this variation is
observed to be relatively small as illustrated in Fig. 3, which de-
picts the time-varying coefficients , , and as a
function of for the MPEG coded sequenceLecture[14]. Here,

, , is the ratio of theaveragesize of type-T
frames in the th GOP and the size of that GOP. The sample
mean and standard deviation for each of these coefficients are
shown in Table I. While a more elaborate frame-level charac-
terization is possible, the attractiveness of (11) is that the coef-
ficients , , and can, in principle, be estimateda priori.
Furthermore, a detailed frame-level characterization would not
lend itself to the type of analysis presented in this paper.

According to the model in (11), the marginal distributions
for the sizes of the three frame types are given in terms of

as follows: , , and
. Let , , and be three generic rv’s

that indicate the sizes of arbitrary, , and frames, respec-

Fig. 3. Time-varying coefficientsc (j), c (j), andc (j).

TABLE I
SAMPLE MEAN AND STANDARD DEVIATION

OF THE TIME-VARYING COEFFICIENTS(LectureTRACE)

tively. It readily follows that , , and

. Also, ,

, and . Let be the ACF of
at lag

where and is given by

Recall that according to our model, the first frame of an MPEG
stream is selected randomly from theframes of a GOP. There-
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after, the MPEG sequence proceeds according to the repetitive
GOP pattern. Consider for :

where is a discrete rv that reflects the location (and con-
sequently, the type) of theth frame in the GOP pattern. The
sample space of is . Thus, means
that the type of theth frame is the same as the type of the frame
in the th location of the GOP pattern. Because of the repetitive
application of the GOP pattern, the process
constitutes a deterministic Markov chain with transition proba-
bilities if and

or if and , and zero other-
wise. Our previous assumption related to the type of the first
frame can now be stated formally by taking the initial distribu-
tion of the Markov chain to be its stationary distribution, i.e.,

for all . Hence

(12)

Before proceeding with the computation of
, we need to define some related quantities. Let

where and is a positive integer. Note that because
is a multiple of , if then as well.
Define the following two sets:

Next, we define the following function :

• Case 1:
If , then .
If but , then

.

If , then .
• Case 2:

If , then .

If but , then .

If , then .
• Case 3:

If , then .
If but , then

.

If , then .
It can be shown that

if

if but

if (13)

Furthermore, it is easy to verify that .
We now return to the problem of determining

. There are two cases to consider. First,
when , Frames 1 and must belong to the
same (first) GOP, hence

(14)
When , Frames 1 and belong to different GOP’s
and possibly to different scenes. More specifically, the th

frame belongs to theth GOP, where . Thus

(15)

A. Computation of

Case I: : From (12) and (13), and based
on the previous discussion, we have

where, as before, . For and
, . Thus,

Case II: : Starting with (15), this case is further di-
vided into two subcases.

Case II-A: for : In this case, Frames
1 and differ exactly by GOP’s, irrespective of the value
of . Thus, . Accordingly

Finally

(16)
Case II-B: and : In this case, Frames 1

and may differ by either GOP’s or by GOP’s,
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where . More specifically, for
, where , the first and th

frames differ by GOP’s. For , the two
frames differ by GOP’s. Thus

(17)

which concludes the derivation of the ACF for the process
.

B. Asymptotic Behavior of Frame-Level ACF

From the analytical form of , one can examine its asymp-
totic behavior, shedding light on the LRD/SRD structure. As

, , and , so that

(18)

The limit of as alternates between the
three values given in (13). Substituting the values ofand in
(18), it is easy to see that alternates between the
following three values, depending on howapproaches infinity:

(19)

where , , and are the three values in (13), respectively.
In general, , , and are nonzero, which justifies the per-
sistent, periodic autocorrelation that are observed in empirical
MPEG sequences. However, using (13) it can be shown that

, i.e., the sum of
the autocorrelation over a GOP period converges to zero, as ex-
pected.

IV. V ALIDATION OF ANALYTICAL RESULTS

In this section, we demonstrate the validity of our analytical
expressions using three numerical examples. For simplicity, we
ignore the noise process (the interscene variations). Our valida-
tion approach is based on comparing the analytical ACF against
the sample ACF of synthetically generated VBR sequences. In
the first two examples, we investigate the ACF at the GOP level
assuming gamma distributed GOP sizes with mean of 500 and
standard deviation of 100.

In the first example, we use a shifted exponential scene-length
distribution:

(20)

Note that in this case and have the same distribution. We set
, so that . Ten synthetic traces were gener-

ated, and their sample ACF’s were computed and averaged. The

Fig. 4. ACF for GOP-level model with shifted exponential scene distribution
(� = 1=49).

average ACF for the synthetic traces is plotted in Fig. 4 along
with its theoretical counterpart. There is a clear match between
the two plots.

Next, we consider a subgeometric scene-length distribution
of the form

for some . In this case, the ACF can be written
recursively, as follows:

(21)

While a closed-form expression for is not
available, it is easy to show that

(22)

Setting , we have . Thus,
. Fig. 5 depicts the theo-

retical and empirical ACF’s under a subgeometric scene-length
distribution. At small and large lags, the plots match very well.
At intermediate lags, there is a slight difference that is attributed
to the large variance of the empirical autocorrelation and to
other approximations in the generation of subgeometrically dis-
tributed random numbers.

Our last example is related to the frame-level ACF. Here, we
use the same shifted exponential scene-length distribution as
in the first example. We set , , ,

, and . The analytical and empirical
ACF’s are shown in Fig. 6 for lags in the range 450–500. This
range is chosen arbitrarily, and is representative of the behavior
at large lags. The two ACF’s almost match at all examined lags
(similar trend is also observed at small lags). Note that although
the scene-length distribution is exponential, the deterministic
interleaving of three, drastically different processes (one for
each frame type) induces strong correlations that determine the
asymptotic shape of the ACF. These correlations do not die out
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Fig. 5. ACF for the GOP sequence with a subgeometric scene-length
distribution (� = 0:8).

Fig. 6. ACF at the frame level based on a shifted exponential scene-length
distribution (� = 1=49,N = 12,M = 3).

to zero as the lag goes to infinity, but instead they converge to
, , and .

V. IMPACT OFCORRELATIONS ONBUFFERPERFORMANCE

In this section, we investigate the impact of traffic correlations
on the queuing performance at a video buffer. The scenario we
consider was depicted in Fig. 1, where a VBR stream is fed into a
buffer with a drain rate . We study two families of scene-length
distributions: Pareto and Weibull. While other distributions may
also be used, lately these two distributions have been receiving
much attention (see [9]). For each family of distributions, we
examine the effect of varying the correlations persistence on the
queuing performance. In line of the findings in [6] and [10], we
take the GOP size to be gamma distributed with scale and shape
parameters and . For simplicity, we take to be integer
valued.

For Pareto distributed scene lengths, our analysis is based
on the work of Jelenkovic and Lazar [12] on the subexponen-
tial asymptotics of Markov-modulated random walks (see also
[13]). As discussed in [13], Pareto distributions belong to the
class ofregularly varyingdistributions , which have recently
been the focus of several investigations. Consider a model with
Pareto distributed scene lengths:

and

Since we assume that scene changes constitute a renewal
process, our model is similar to the Markov renewal process
that was studied in [13], with the exception that in [13] a
4-state discrete Markov chain governs the transitions between
“regimes” (i.e., video scenes). In contrast, we consider a
continuous and unbounded state space with transitions that
are independent of the current state. In the discrete case, if the
scene-length distribution is regularly varying, the asymptotic
behavior of the queue length is given by [13]

as (23)

where is the steady-state queue length at renewal instants,
is the stationary probability of being in state, is the

steady-state arrival rate at renewal times, andis the mean drift
rate while in state (arrival rate minus service rate). As before,

is the GOP-level ACF at lag. It is assumed that the
buffer capacity is infinite and that the system is “weakly stable,”
i.e., for at least one state. In our case, because of the
infinite sample space of the gamma distribution, the system is
indeed weakly stable. Furthermore, because in our model tran-
sitions at scene boundaries are independent of the scene levels,

in (23) is just the p.d.f. of the GOP size. Hence (23) becomes

as

(24)

where is the gamma p.d.f. of the GOP size. For simplicity, we
take to be integer valued, . Substituting the expressions
for , , and in (24), as

we have

With some manipulations, it can be shown that the above equa-
tion reduces to
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Fig. 7. Probability of buffer overflow when scene lengths are Pareto
distributed (� = 0:05, w = 25, load= 83%).

where

The above expression directly relates the ACF of the GOP-level
model to the queuing performance. For Pareto distributed scene
lengths, the ACF can be easily computed as follows:

for and . Fig. 7 depicts the buffer overflow rate
versus the buffer size. As expected, for a given buffer size the
buffer overflow probability decreases asincreases. Interest-
ingly, for , the buffer overflow curve flattens fairly
quickly despite the fact that the underlying model is SRD. While
such behavior is already known for LRD models ( ),
its presence under SRD models is surprising. Nonetheless, for
large (e.g., ), the buffer overflow curve starts to get
steeper and the performance becomes more sensitive to changes
in the video buffer size. It is worth mentioning that in the case
of exponentially distributed scene lengths (i.e., a Markovian
model), the buffer overflow probability plotted on a logarithmic
scale drops offlinearly with the buffer size, i.e., the curves in
Fig. 7 would have constant slopes.

Next, we consider the following class of discrete distribu-
tions:

for and

(25)

where . This is a special case of the general Weibull
distribution , where and
[in (25) we set and ]. When , the
scene length distribution is geometric, whereas gives

Fig. 8. ACF for subgeometrically distributed scene lengths.

rise to a subgeometric model. For a finite, and
the corresponding video model is SRD (Proposition 1). As
increases the correlations become more persistent, and as

, the model approaches the LRD regime. Fig. 8 depicts the
GOP-level ACF for and . Increasing
slows down the speed of convergence of the ACF. Note that for
the underlying family of scene distributions, the ACF is obtained
recursively using

where . We use simulations to evaluate the
impact of correlations on the queuing performance. A disadvan-
tage of simulations in this case is that they require extremely
long traces to obtain any meaningful results (the more persistent
the correlations, the longer the traces). This means that cred-
ible results can only be obtained for relatively large and mod-
erate loss rates (above 10). In our simulations, we assume
that video frames are packetized into fixed-size packets (e.g.,
ATM cells). We investigate the packet loss rate (PLR) under
GOP- and frame-level models assuming both finite and infi-
nite buffer capacities. In the latter case, the PLR is estimated
by the percentage of packets that arrive at the buffer and find
or more packets in the queue, whereis the buffer size in the
finite-buffer case.

In our experiments, we fix the mean scene length at
GOP’s. Since depends on and , is adjusted when-

ever is varied. For GOP-level results, we ran the simulations
using synthetic traces of length 1 000 000 GOP’s per trace. As
before, GOP sizes are gamma distributed with shape parameter

and scale parameter . For frame-level re-
sults, we set and with each trace consisting of
12 000 000 frames. A sufficient number of independent runs was
used to ensure tight confidence intervals. To avoid cluttering the
figures, we only show the average values of these runs.

Fig. 9 depicts the PLR under two traffic loads (
and 80%) for GOP- and frame-level models and with finite-
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(a) (b)

(c) (d)

Fig. 9. PLR versus buffer size under Weibull distributed scene lengths.

and infinite-capacity buffers. Based on these figures, several im-
portant observations can be made. First, the degree of correla-
tions persistence, which is reflected in the value of, has clear
impact on the sensitivity of the PLR to changes in the buffer
size; the larger the value of the less sensitive is the perfor-
mance. This means that for very large buffers, the degree of cor-
relations persistencedoesmatter. Interestingly, this trend is ob-
servedfor both finite- and infinite-capacity buffers. Second, for
small buffer sizes (less than 100 packets), the frame-level PLR
is always larger than its GOP-level counterpart. The discrep-
ancy between the two is more obvious when the buffer capacity
is finite. Furthermore, this discrepancy is more pronounced at
lower traffic loads ( %), where the difference can reach
several orders of magnitude. As the buffer size increases, the dis-
crepancy between the GOP- and frame-level results fades away.
Based on our numbers, a buffer size of 100 packets amounts
to a maximum queuing delay of , where is
the link bandwidth in packets/second. For % and av-
erage input rate of 500 packets/GOP (1000 packets/second),

packets/second. Thus, the maximum
delay is 80 ms, which is slightly less than the time to generate

three frames. Hence, if the delay requirements of the video ap-
plication are such that a delay of three frames at the encoder
is tolerable, a GOP-level model is sufficiently accurate for use
in performance evaluation and capacity planning studies. Oth-
erwise, frame-level modeling is needed. Our last remark is re-
lated to the infinite-buffer results in Fig. 9(a). Asgoes from
2 to 3, the PLR increases suddenly by more than an order of
magnitude. This trend was not observed at the higher load [Fig.
9(c)]. Our justification of this phenomenon is that at high loads,
buffer overflow is more frequent and is not only caused by the
very rare events. In contrast, as we decrease the load, rare events
(e.g., a high-action scene that lasts for a long period of time) be-
come the primary cause of packet loss. Such events are directly
related to the persistence of the autocorrelations, hence the ob-
served trend. The greater impact ofat lower loads is analogous
to its increased significance as the buffer size increases.

VI. CONCLUSIONS

In this paper, we analyzed the ACF for a class of scene-based
video models. Our analysis was performed at both GOP and
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frame levels, and was used to establish the relationship between
the SRD/LRD structure of a model and its scene-length distri-
bution. As a byproduct of this relationship, an efficient pro-
cedure for fitting the scene-length distribution was provided,
which only requires fitting of the ACF. At the frame level, our
results indicate that the repetitive application of the GOP pat-
tern induces strong periodic components in the ACF. In fact,
we showed that the frame-level ACFdoes notconverge to zero
as the frame lag goes to infinity. This, somehow surprising,
result can be extended to composite processes in which two
drastically different submodels are interleaved in a determin-
istic manner (e.g., composition of audio and video streams).
The impact of correlations on the performance at a video buffer
was studied via analysis and simulations for video models with
Pareto and Weibull scene-length distributions. In the case of
Pareto scene lengths, we observed that the insensitivity of the
packet loss rate to changes in the buffer size extends beyond
the LRD regime of the Pareto distribution ( ) to the
SRD regime ( ). Such insensitivity starts to change as
becomes large. For Weibull distributed scene lengths, several
important observations can be made based on the simulation re-
sults. First, the more persistent the correlations, the less sensi-
tive the performance to changes in the buffer size. This trend
was observed under both finite- and infinite-capacity buffers.
Thus, for large,finite buffers, the degree of correlations persis-
tence does matter. Second, for small buffer sizes (less than 100
packets), the frame-level performance is always worse than its
GOP-level counterpart, with the discrepancy being more pro-
nounced when the buffer capacity is finite and the traffic load is
low. As the buffer size increases, this discrepancy fades away,
and a GOP-level model becomes sufficient for analyzing the
performance. Third, the impact of correlations persistence be-
comes more profound as the traffic load is decreased. Our work
provides important guidelines that can be used in the design and
dimensioning of video buffers and for efficient allocation of net-
work bandwidth.
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