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1 Introduction

Boltzmann codes have experienced considerable improvements in terms of precision and
speed with respect to the pioneering COSMICS package [1]. In each new public code (CMB-
FAST [2], CAMB [3], CMBEASY [4]), several sophisticated optimisation methods and approxi-
mation schemes have been introduced. Efforts on this side keeps being justified for two
reasons. On the one hand, we need to fit data with higher and higher precision. For in-
stance, the analysis of Planck data requires much more accurate theoretical predictions than

– 1 –



 
J
C
A
P
0
7
(
2
0
1
1
)
0
3
4

for WMAP [5]. On the other hand, a growing number of cosmologists are interested in fit-
ting cosmological data with several extensions of the minimal cosmological model, in order
to probe new physics. This requires running parameter extraction algorithms on computer
clusters, often involving 104 or 105 Boltzmann code executions (for each new model or new
combination of data sets). Hence, any way to speed up Boltzmann codes without loosing
precision is useful.

In front of such needs, a new code, the Cosmic Linear Anisotropy Solving System
(CLASS) [6], has just been released.1 The goal of this project is not just to improve speed and
precision, but also to provide a flexible and user-friendly code that can be easily generalized
to non-minimal cosmological models. In this paper, we do not discuss flexibility issues and
only concentrate on the improved approximation schemes used by CLASS, in the strict context
of minimal ΛCDM cosmology. Extensions requiring extra approximations may be introduced
and discussed case by case in the future. In a companion paper [7], we already discuss the
approximation specific to massive neutrinos and non-cold dark matter relics. A comparison
between the power spectra obtained by CAMB and CLASS for the minimal ΛCDM model, as
well as estimates of the relative speed of the two codes, is presented in [8].

The next three sections describe: a baryon-photon tight-coupling approximation which
can be set to first order, second order or to a compromise between the two (section 2); an
ultra-relativistic fluid approximation which had not been implemented in public distributions
of Boltzmann codes before (section 3); and a radiation streaming approximation consistently
including reionisation (section 4). Appendix A describes the stiff integrator which can be
used by CLASS as an alternative to the Runge-Kutta integrator: without this integrator, it
would have been essentially impossible to launch test runs with no approximation schemes,
to evaluate the error induced by these schemes; moreover, this integrator gives better per-
formances even in the presence of approximations, and is set to be the default integrator in
CLASS. We summarize our full approximation landscape in section 5.

Note that throughout this paper, when discussing CAMB and CLASS, we refer to the
versions available at the time of preparing this manuscript, i.e. the January 2011 version of
CAMB and v1.1 of CLASS.

2 Tight Coupling Approximation (TCA)

Before recombination, when the opacity aneσT is very large, the equations governing the
tightly coupled baryon-photon fluid form a stiff system. Indeed, the opacity defines a confor-
mal time scale of interaction τc ≡ (aneσT )

−1 considerably smaller than that on which most
of the modes actually evolve, namely τH = a/a′ for super-Hubble scales and τk = 1/k for
sub-Hubble scales (see figure 1). Standard integrators like Runge-Kutta algorithms would
be very inefficient in solving such a system. This motivated Peebles & Yu to introduce a
simplified system of differential equations valid in the regime of small τc/τH and τc/τk (tight
coupling approximation or TCA) [9]. The overall idea is that quantities which are vanishingly
small in the limit τc → 0 are solved perturbatively in τc, and these analytical expressions are
used in the numerical code solving the remaining differential equations of the system.

The CLASS user can choose between two integrators for the system of linear perturba-
tions. One of them (ndf15, see appendix A) is optimised for stiff equations, and shows good
performances even in the tight coupling regime. However, by reducing drastically the number

1Available at http://class-code.net.
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Figure 1. (Left) Evolution characteristic conformal time scales in units of Mpc. Before recombination,
the baryon-photon interaction time scale τc = (aneσT )

−1 is much smaller than the Hubble time scale
τH = a/a′. For each mode and in a given range, it is also smaller than the acoustic oscillation time
scale 1/k. (Right) Evolution of the product a c2a (scale factor times baryon adiabatic sound speed),
with an arbitrary normalization of the scale factor, before and during hydrogen recombination (in this
model, the visibility function peaks at τrec = 278Mpc). For τ < 200Mpc, helium recombination leads
to a variation of this product by approximately 10%.

of equations to integrate, any TCA scheme leads to a speed up even in presence of such an
integrator.

Tight coupling equations have already been derived and improved by many authors
after Peebles & Yu’s seminal paper. For instance, the TCA formulas presented in Ma &
Bertschinger [10] are derived to first order in τc (omitting some polarisation terms which
contribute to the photon shear at this order). Lewis et al. implemented the full first-order
solution in CAMB [3], also relaxing Ma & Bertschinger’s assumption that τc ∝ a2. Doran
implemented some improved formulas in CMBEASY which are valid in the Newtonian gauge,
and include a few contributions beyond order one [11].

As we will see below, the first-order TCA formulas provide poor approximations to the
baryon-photon differential energy flux and to the photon shear at large times. This is not
much of a problem if one switches to the exact2 equations early enough. However, a better
scheme would allow to switch off the TCA later, and to save a lot of integration time without
loosing precision.

Here, we will derive the full second-order TCA formulas in the synchronous gauge.
While this work was in preparation, Cyr-Racine and Sigurdson published a paper on exactly
the same topic [12]. We will show that the numerical results from our approach coincide
with those of [12]. Another recent paper discussing the TCA beyond first order and its
implementation in second order cosmological perturbation theory is [14]: this work actually
proposes a systematic way to compute high-order corrections in a given model and at any
order.3

2It should be intended that throughout this section, the word “exact” is intended in the sense “without
using the TCA”. Obviously, our equations are never exact since they rely on a number of common and well-
justified approximations, e.g.: linear perturbations, pressureless CDM, approximate expression for photon-
baryon coupling, baryon pressure neglected in several equations, etc.

3As pointed out by the author of [14], this method can be implemented numerically provided that the
code computing the evolution of thermodynamical variables outputs fully continuous and derivable functions
of time, which is precisely the case with the CLASS version of RECFAST.
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2.1 Full equations

In the following we will adopt the notation of Ma & Bertschinger [10]. The baryon perturba-
tions will be characterized by the energy density contrast δb and the divergence of the fluid
energy flux θb. These quantities satisfy the equations4

δ′b = −θb −
1

2
h′ , (2.1a)

θ′b = −Hθb + c2sk
2δb +

R

τc
Θγb , (2.1b)

with H = aH = a′/a, where a is the scale factor, and we have defined Θγb ≡ θγ − θb and

R ≡ 4ρ̄γ
3ρ̄b

. The quantity Θγb represents the divergence of the energy flux of the photons (θγ)

in the frame comoving with the baryons. Its time-derivative Θ′
γb is often referred to as the

“baryon-photon slip”. The fields h and η represent the metric perturbations. As explained
in [10], the baryon pressure perturbation can be safely neglected in the continuity equation,
but its Laplacian should be kept in the Euler equation (giving raise to the term c2sk

2δb) since it
affects the evolution of very small wavelengths, smaller than the baryon Jeans length. In [10]
and many other references, the baryon sound speed is identified to the adiabatic sound speed

c2a =
kBTb

µ

(

1− 1

3

d lnTb

d ln a

)

, (2.2)

where the evolution of the proton temperature is given by

T ′
b = −2HTb +

2µR

meτc
(Tγ − Tb) , (2.3)

and µ is the mean molecular weight. This approximation has been proved to be inaccurate in
refs. [15, 16], but the difference is only important for computing the matter power spectrum
for k ≫ 10hMpc−1. The current version of CLASS (v1.1) and CAMB (from January 2011) still
relies on the c2s = c2a approximation, while future versions of both codes are likely to switch to
the actual sound speed calculation, as in the CAMB_source5 code. This issue is irrelevant for
the results of this paper, which do not involve very large wavelengths. All numerical results
below have been obtained using c2a instead of c2s, but our formulas can adequately describe
the large k range, provided that a correct sound speed calculation is performed.

Like the adiabatic sound speed, the actual baryon sound speed is expected to decrease
approximately as a−1, except during helium and hydrogen recombination (see figure 1).

The characterization of the photon distribution requires the determination of its different
multipoles δγ , θγ , σγ and Fγl for l ≥ 3. These satisfy the recursive Boltzmann equations
(eqs. (63) in [10]):

δ′γ = −4

3
θγ −

2

3
h′ , (2.4a)

θ′γ = k2
(

1

4
δγ − σγ

)

− Θγb

τc
, (2.4b)

2σ′
γ =

8

15
θγ −

3

5
kFγ3 +

4

15
(h′ + 6η′)− 9

5τc
σγ +

1

10τc
(Gγ0 +Gγ2) , (2.4c)

4We will work in Fourier space and stick to the synchronous gauge in conformal time, which we will denote
by τ . We use the prime to denote derivative with respect to conformal time.

5http://camb.info/sources/.
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F ′
γl =

k

2l + 1

[

lFγ(l−1) − (l + 1)Fγ(l+1)

]

− 1

τc
Fγl , l ≥ 3 (2.4d)

G′
γl =

k

2l + 1

[

lGγ(l−1) − (l + 1)Gγ(l+1)

]

+
1

τc

[

−Gγl +
1

2
(Fγ2 +Gγ0 +Gγ2)

(

δl0 +
δl2
5

)]

, (2.4e)

where we remind the reader that Fγ2 = 2σγ . Finally, the previous hierarchical equations are
truncated at some l = lmax following equation (65) in [10],

F ′
γlmax

= kFγ(lmax−1) −
lmax + 1

τ
Fγlmax

− τ−1
c Fγlmax

. (2.5)

2.2 TCA equations

From eqs. (2.1) and (2.4) one sees that the different time scales in the problem are τc, k
−1

and the time scale of cosmological evolution H. As we will show explicitly in the next section,
it is possible to find a solution (Θ

′tca
γb , σtca

γ ) for the baryon-photon slip and the photon shear
in terms of δb, δγ , θb and θγ , which is valid to any desired order in the small parameter τc.
The knowledge of this solution helps to reduce the full system of equations (2.1) and (2.4)
to just four of them for the low multipoles of the distributions. More concretely, one may
use eq. (2.1a) for δb

′, and eq. (2.4a) to determine δγ
′; the energy fluxes are characterized by

the linear combination of eqs. (2.1b) and (2.4b) in which the coupling term vanishes:

θb
′ +Rθγ

′ = −Hθb + c2sk
2δb +Rk2

(

1

4
δγ − σtca

γ

)

, (2.6)

and finally θγ
′− θb

′ = Θ
′tca
γb . As desired, this scheme allows us to get rid of any coefficient6 in

τ−1
c . For practical reasons it is customary to combine linearly the last two equations in order
to eliminate θγ

′ and get an expression for θb
′ only; then θγ

′ can be found from equation (2.6).
In summary, once Θ

′tca
γb and σtca

γ are known the goal is to solve the closed system formed by
the four equations (2.1a), (2.4a), and

θb
′ = − 1

(1 +R)

(

Hθb − c2sk
2δb − k2R

(

1

4
δγ − σtca

γ

)

+RΘ
′tca
γb

)

, (2.7a)

θγ
′ = −R−1(θ′b +Hθb − c2sk

2δb) + k2
(

1

4
δγ − σtca

γ

)

. (2.7b)

2.3 Perturbative expansion

The aim of this section is to find expressions for Θ′
γb and σγ valid at the nth order in τc

(the zero order is trivial: both species behave as a single perfect fluid, so that Θγb and all
multipoles of the photons beyond δγ and θγ vanish; the first order can be found in [10]). We
first multiply equations (2.4b) and (2.1b) by τc:

τc

[

θγ
′ − k2

(

1

4
δγ − σγ

)]

+Θγb = 0 , (2.8a)

τc
[

− θb
′ −Hθb + c2sk

2δb
]

+RΘγb = 0 . (2.8b)

6The scale τc appears now as a small perturbation.
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To obtain a differential equation for Θγb we can combine the above two equations into

τc

[

Θγb
′ −Hθb + k2

(

c2sδb −
1

4
δγ + σγ

)]

+ (1 +R)Θγb = 0 . (2.9)

This equation involves the photon shear, given by the following equation (see (2.4c)):

σγ =
τc
9

[

8

3
θγ +

4

3
h′ + 8η′ − 10σγ

′ − 3kFγ3

]

+
1

18
(Gγ0 +Gγ2) . (2.10)

Until now, all these equations are exact. In the limit of interest, both of them can be
schematically written as7

ǫy(t)′ + y(t)/f(t) + ǫg(t) = 0 , (2.11)

where ǫ is a small parameter. In our case, ǫ can be chosen to be τ̄c, the opacity at an arbitrary
time around which the expansion is performed.8 The perturbative solution is given by

y(t) =
∑

n=1

ǫnyn(t) , y1 = −fg , yn+1 = −fy′n . (2.12)

Notice that for functions f(t) and g(t) with smooth time variations on the scale τ̄c, the
previous is a perfectly well defined solution. Finally, the most general solution is found by
adding to the previous particular solutions the solution of the homogeneous equation

ǫy(t)′ + y(t)/f(t) = 0 , y = Ce−1/ǫ
∫
f−1dt . (2.13)

Note that in our case f is always positive, which is enough to make this part of the solution
suppressed very fast. Hence, the relevant solution is given by eq. (2.12), which, after absorbing
the small parameter in the function f̃ ≡ ǫf , reads:

y(t) =
∑

n=1

ỹn(t) , ỹ1 = −f̃ g , ỹn+1 = −f̃ ỹ′n . (2.14)

In terms of these functions, the powers of f̃ and its derivatives represent the different orders
of the approximation.

2.4 Second-order approximation

Using the previous expansion in eq. (2.9), the baryon-photon relative velocity reads at or-
der two:

Θγb = f̃Θ
(

− gΘ + f̃ ′
ΘgΘ + f̃Θg

′
Θ

)

+O(τ̄3c ) , (2.15)

with

f̃Θ =
τc

1 +R
, gΘ = −Hθb + k2

(

c2sδb −
1

4
δγ + σγ

)

. (2.16)

We still need to differentiate this equation in order to get a similar approximation for the slip:

Θ′
γb =

(

f̃ ′
Θ

f̃Θ

)

Θγb + f̃Θ
(

− g′Θ + f̃ ′′
ΘgΘ + 2f̃ ′

Θg
′
Θ + f̃Θg

′′
Θ

)

+O(τ̄3c ) . (2.17)

7This is immediate for (2.9). For (2.10) if follows from (2.4e), and we will explicitly verify it shortly.
8In fact, the small dimensionless parameters will be τ̄ck and τ̄cH̄, with H̄ evaluated around the same

time as τ̄c.
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There are several ways to organise and simplify the final result. In order to write the first-
order term in the same form as in the rest of the literature, we need to express g′Θ in a very
peculiar way:

g′Θ = −Hθ′b −H′θb + k2
(

c2s
′
δb + c2sδ

′
b −

1

4
δ′γ + σ′

γ

)

= −2Hθ′b − (H′ +H2)θb + k2
(

(Hc2s + c2s
′
)δb + c2sδ

′
b −

1

4
δ′γ + σ′

γ

)

+
RH
τc

Θγb (2.18)

= 2HΘγb
′ − a′′

a
θb + k2

(

− H
2
δγ + c̄2sδb + c2sδ

′
b −

1

4
δ′γ + 2Hσγ + σ′

γ

)

+
(2 +R)H

τc
Θγb .

Here we defined c̄2s ≡ (Hc2s + c2s
′
): this quantity would vanish if the approximation c2s ∝ a−1

were valid at all times. In the second line, we used eq. (2.1b), while in the third line we
used (2.4b): so these expressions for g′Θ are all exact.

The first-order approximation for Θ′
γb is obtained by replacing the first occurrence of

g′Θ in eq. (2.17) with the last expression of (2.18), in which we neglect the terms 2HΘ′
γb and

(2Hσγ + σ′
γ) which represent contributions of higher order. The final result is:

Θ′
γb =

(

τ ′c
τc

− 2H
1+R

)

Θγb − f̃Θ

[

− a′′

a
θb + k2

(

− H
2
δγ + c̄2sδb + c2sδ

′
b −

1

4
δ′γ

)]

+O(τ̄2c ) . (2.19)

Note that in the previous expression we used the exact relation R′ = −HR.
For the second-order expression for the slip, we go back to eq. (2.17). We replace the

first occurrence of g′Θ by the full expression (2.18), assuming that Θ′
γb and (2Hσγ + σ′

γ) have
been replaced by their first-order approximation. Finally, we replace gΘ, g

′
Θ and g′′Θ in the

last three terms by their zeroth-order approximation. The final result can be written in a
compact form:

Θ′
γb = (1− 2Hf̃Θ)

{(

τ ′c
τc

− 2H
1+R

)

Θγb − f̃Θ

[

− a′′

a
θb + k2

(

− H
2
δγ + c̄2sδb + c2sδ

′
b −

1

4
δ′γ

)]}

−f̃Θk
2(2Hσγ + σ′

γ) + f̃Θ
[

f̃ ′′
ΘgΘ + 2f̃ ′

Θg
′
Θ + f̃Θg

′′
Θ

]

+O(τ̄3c ) . (2.20)

This formula requires an expression for the shear valid at order one. However, to solve
equations (2.1b), (2.4b) consistently to second order, we need the expression for the shear
at the corresponding order. This can be achieved using (2.10). To solve this equation let us
first note that the polarisation multipoles l = 0, 2 obey (cf. (2.4e))

G′
γ0 = −kGγ1 + τ−1

c

[

−Gγ0 + σγ +
1

2
(Gγ0 +Gγ2)

]

,

G′
γ2 =

k

5
(2Gγ1 − 3Gγ3) + τ−1

c

[

−Gγ2 +
1

10
(2σγ +Gγ0 +Gγ2)

]

,

(2.21)

from which we see that, at first order in τ̄c, Gγ2 ∼ Gγ0 ∼ σγ . Thus, it is consistent to consider
these multipoles as O(τ̄c), and write the second order solution to (2.10) following (2.14) as

σγ =
τc
9

[

8

3
θγ +

4

3
h′ + 8η′

]

+
1

18
(Gγ0 +Gγ2)

− 10τc
9

d

dτ

(

τc
9

[

8

3
θγ +

4

3
h′ + 8η′

]

+
1

18
[Gγ0 +Gγ2]

)

+O(τ̄c
3) ,

(2.22)
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where we used the fact that Fγ3 = O(τ̄c
2). Indeed, the high photon multipoles obey at leading

order (cf. (2.4d))

Fγl =
lτck

2l + 1
Fγ(l−1) .

The final step involves an evaluation of (2.21). Again, from (2.4e), one finds that

Gγ1 ∼ Gγ3 ∼ O(τ̄c
2) .

This allows us to find the perturbative solution to (2.21)

Gγ0 =
5σγ
2

− 25

4
τcσ

′
γ +O(τ̄c

3) , Gγ2 =
σγ
2

− 5

4
τcσ

′
γ +O(τ̄c

3) . (2.23)

From the previous expression and (2.22) we find

σγ =
8τc
45

(2θγ + h′ + 6η′) +O(τ̄2c ) , (2.24)

which implies

σ′
γ =

8τc
45

(2θ′γ + h′′ + 6η′′) +
8τ ′c
45

(2θγ + h′ + 6η′) +O(τ̄2c ) . (2.25)

Finally, the shear at second order is found from (2.22) to be

σγ =
8τc
45

[

(2θγ + h′ + 6η′)

(

1− 11τ ′c
6

)

− 11τc
6

(2θ′γ + h′′ + 6η′′)

]

+O(τ̄3c ) . (2.26)

The last missing items are the zero-order expressions for gΘ, g
′
Θ and g′′Θ appearing in equa-

tion (2.20). Noticing that equation (2.7a) implies

θ′b =
1

1 +R

(

−Hθb + k2c2sδb + k2R
1

4
δγ

)

+O(τ̄c) ,

θ′′b =
1

1 +R

(

(R− 1)Hθ′b −H′θb + k2
(

(c2s)
′δb + c2sδ

′
b −

RH
4

δγ +
R

4
δ′γ

))

+O(τ̄c) ,

we can write these last terms as

gΘ = −Hθb + k2
(

c2sδb −
1

4
δγ

)

+O(τ̄c) , (2.27a)

g′Θ = −Hθ′b −H′θb + k2
[

(c2s)
′δb +

(

1

3
− c2s

)(

θb +
1

2
h′
)]

+O(τ̄c) , (2.27b)

g′′Θ = −Hθ′′b − 2H′θ′b −H′′θb

+k2
[

(c2s)
′′δb − 2(c2s)

′

(

θb +
1

2
h′
)

+

(

1

3
− c2s

)(

θ′b +
1

2
h′′

)]

+O(τ̄c) . (2.27c)

The derivation given in [12] follows different steps, but since it is still a second-order TCA,
the results should be identical under the approximation c2s ∝ a−1 used in [12], at least up to
terms of order three or higher. For the shear, our expressions are indeed exactly identical.
For the slip, there are so many ways to write the result and so many terms involved that the
comparison is not trivial. However, by coding the two formulas in CLASS and comparing the
evolution of Θγb in the two cases, we found that the two expressions agree very well, since
numerically the difference appears to be at most of order O(τ̄c

3).
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2.5 Implementation of various schemes in CLASS

We implemented various TCA schemes in CLASS, which can be chosen by setting the
flag tight_coupling_approximation to different values. We always start integrating the
wavenumbers very deep inside the tightly-coupled regime. Hence, in contrast to [12], we
do not need to include terms in τc in the initial conditions. We always use the set of
equations (2.1a), (2.4a), (2.7a), (2.7b) with different expressions for the slip Θ

′tca
γb and the

shear σtca
γ :

1. First-order expressions (2.19), (2.24), with the approximations τc ∝ a2 and c2s ∝ a−1,
used e.g. in ref. [10]. This corresponds to the scheme used by CLASS when the label
tight_coupling_approximation is set to first_order_MB.

2. First-order expressions (2.19), (2.24) with the only approximation c2s ∝ a−1, like in
CAMB. This scheme is used by CLASS when the same flag is set to first_order_CAMB.

3. Exact first-order expressions (2.19), (2.24) when the flag is set to first_order_CLASS.

4. Second-order expressions from [12] when the flag is set to second_order_CRS.

5. Second-order expressions from eqs. (2.20), (2.26) for the flag second_order_CLASS.

6. Finally, second-order expression for the shear, but a reduced expression for the slip,
involving only the leading order-two terms:

Θ
′tca
γb = (1− 2Hf̃Θ)

{(

τ ′c
τc

− 2H
1 +R

)

Θγb − f̃Θ

[

− a′′

a
θb + k2

(

− H
2
δγ + c2sδ

′
b −

1

4
δ′γ

)]}

−f̃Θk
2

[

2Hσγ + σ′
γ −

(

1

3
− c2s

)(

f̃Θθ
′
b + 2f̃ ′

Θθb

)]

. (2.28)

This option is taken when the flag is set to compromise_CLASS, and is chosen to be the
default option in CLASS. Notice that the last scheme does not have a term h′′, which is
advantageous from the computational point of view.9

To justify the compromise scheme, notice that it encapsulates the leading order in (2.27)
for subhorizon modes (note that θb has an extra momentum dependence with respect to the
other perturbations, and each time derivative adds one more power of k in this regime). Thus,
from eq. (2.20) we learn that eq. (2.28) implements the leading second order correction for the
modes with a big comoving momentum. It is precisely for these modes that the first order
approximation fails first, which explains the success of the compromise scheme. To check
that the approximation is indeed correct, we implemented this scheme for several modes k
assuming ΛCDM. As illustrated in the next subsection, this scheme is nearly as good as the
full second-order one, being at the same time much more compact and requiring many less
floating point operations.

2.6 Comparison at the level of perturbations

In figure 2, we compare these different approximations for a fixed wave number (chosen to be
k = 10−2Mpc−1), and in figure 3 for a fixed conformal time τ (chosen to be the time when
the TCA is switched off in the previous example).

9In order to compute h′′ one should use one more Einstein equation that in the standard case, and compute
the δT

i
i component of the stress-energy tensor, i.e. the pressure perturbation for all species.
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Figure 2. Evolution of Θγb (left) and σγ (right) for the mode k = 10−2 Mpc−1, using the various
TCA schemes listed in section 2.5. In each case, the quantities are represented as points when the
TCA is switched on, and as continuous lines of the same color when exact equations take over. The
TCA is switched off at τ = 1Mpc in the reference case, and at τ = 194Mpc in all other cases. We show
a single set of points for cases which are indistinguishable by eye, namely: first_order_CAMB and
first_order_CLASS; and also, second_order_CRS and second_order_CLASS. The default scheme
compromise_CLASS is also hardly distinguishable from the second_order_CLASS.
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Figure 3. Comparison of Θγb(k) (left) and σγ(k) (right) at the time when the TCA is switched off
(τ = 194Mpc in this case), for the different schemes listed in section 2.5. All cases are compared
to the full second-order scheme second_order_CLASS. For Θγb, we show a single curve for the cases
first_order_CAMB and first_order_CLASS, since they are indistinguishable by eye. For σγ , all
schemes using the first-order shear expression are indistinguishable; this is also true for all cases
using the second-order shear expression (despite the fact that θγ and metric perturbations are slightly
different in each individual case).

Scrutinising first the various first-order schemes, we see a significant difference at late
time between the first two (MB and CAMB), showing that τc ∝ a−1 is a bad approximation. How-
ever, there is no sizable difference between the second one (CAMB) and the third one (CLASS) in
which the approximation c2s ∝ a−1 is relaxed. We reach the same conclusion when comparing
second-order schemes with or without the same approximation. This is not a surprise, since
we are only considering scales larger than the baryonic Jeans length at any time. When study-
ing very small wavelengths, the CLASS user is free to choose one of the TCA schemes where
the full evolution of c2s is automatically taken into account (namely, first_order_CLASS
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or second_order_CLASS), but as mentioned before, in this limit, an accurate sound speed
computation should also be implemented in order to relax the c2s = c2a approximation.

Figures 2 and 3 show that all first-order schemes provide poor approximations for the
slip and the shear near the end of the tightly coupled regime, and hence, inaccurate initial
conditions at the time at which the full equations are turned on. As expected, second-order
schemes work much better. We find a very good agreement between second_order_CRS and
second_order_CLASS: this validates both the results of [12] and our results. The residual
difference is likely due to the fact that our two independent derivations lead to expressions
in which some higher-order terms (of order O(τ̄3c )) appear in different ways.

These two schemes also agree to a very good extent with compromise_CLASS, which is
much more straightforward to code, and computes the baryon-photon slip with approximately
ten times less operations. In particular, with this scheme, the code does not even need to
compute the quantities h′′, τ ′′c and H′′, which are not so obvious to obtain with few operations
and good accuracy. Hence, this method is set to be the default TCA in CLASS.

2.7 Comparison at the level of temperature/polarisation spectra

First, let us specify which precision parameters in CLASS govern the evolution of perturbations
in the early universe and the TCA switching time:

• Two parameters define the time at which initial conditions are imposed during the
tightly-coupled stage. Each wave-number starts being integrated (with one of the TCA
schemes) as soon as one of the two conditions

(τc/τH) ≥ start_small_k_at_tau_c_over_tau_h

or
(τH/τk) ≥ start_large_k_at_tau_h_over_tau_k

is fulfilled. The second condition means that at initial time, wavelengths should be
sufficiently far outside the Hubble scale; the first condition, which over-seeds the second
one for the smallest wave numbers, means that the initial time should not be too close
to recombination.

• Two parameters define the time at which the TCA is turned off for each wave number.
This happens when one of the two conditions

(τc/τH) ≥ tight_coupling_trigger_tau_c_over_tau_h

or
(τc/τk) ≥ tight_coupling_trigger_tau_c_over_tau_k

is fulfilled. CLASS imposes that the TCA switching time should always be chosen after
the initial time, which means that the four parameters above should satisfy simple
inequalities.

• One parameter defines the time (common to all wave numbers) at which the source
functions (leading to the computation of temperature and polarisation Cl’s) start being
sampled and stored. This happens when the condition

(τc/τH) = start_sources_at_tau_c_over_tau_h

is satisfied. This time can eventually be chosen during the tight-coupling regime for
the smallest wave numbers.
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no-tca tca1 tca2 tca3

tight_coupling_trigger_tau_c_over_tau_h 4.1 · 10−4 7 · 10−3 8 · 10−3 9 · 10−3

tight_coupling_trigger_tau_c_over_tau_k 6.1 · 10−5 3 · 10−2 5 · 10−2 8 · 10−2

Table 1. Four settings for the precision parameters governing the time at which the TCA is
switched off.
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Figure 4. Impact of precision parameters governing the TCA switching time, for temperature (left)
and E-polarisation (right). We show the power spectrum of the three settings tca1, tca2 and tca3

compared to the reference spectrum no-tca (see table 1 for precision parameter values).

In order to show the impact of these parameters, we take the set of precision parameters
defined in the file cl_permille.pre of the CLASS public distribution, which corresponds
to an accuracy of at least 0.1% on each temperature and polarisation Cl, and uses the
compromise_CLASS scheme. We then vary the two trigger parameters mentioned above, as
described in table 1. The first setting, called no-tca, corresponds to switching off the tight
coupling approximation immediately after setting the initial conditions, so that no TCA is
ever used. This leads to reference temperature/polarisation spectra with respect to which
all the other results of this section are compared. The settings called tca1, tca2 and tca3

introduce from 0.02% to 0.08% of error with respect to the no-tca case, as illustrated in
figure 4.

In figure 5, we stick to the precision setting tca3 and compare the different TCA
schemes. The first_order_CAMB and first_order_CLASS results are indistighuishable, con-
firming the fact that the approximation c2s ∝ a−1 is sufficient in practice. Our second-order
results and those derived from [12] are also in perfect agreement. As expected, the results
from the compromise_CLASS scheme are essentially as good as the full second-order results,
while the first-order results are roughly ten times less accurate. We also show on this plot
the error produced by the first_order_CLASS scheme with tca1 precision settings, which
is similar to that produced by the compromise_CLASS scheme with tca3 precision settings.
Hence, in order to estimate the usefulness of going beyond the first order TCA, we can
compare the performances of the code in these two cases.
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Figure 5. Impact of TCA schemes on temperature (left) and E-polarisation (right). For the var-
ious TCA schemes discussed in section 2.5, we show the power spectrum with accuracy settings
tca3 compared to the reference spectrum no-tca (see table 1 for precision parameter values). We
show a single curve for cases which are indistinguishable by eye, namely: first_order_CAMB and
first_order_CLASS; and also, second_order_CRS and second_order_CLASS. The default scheme
compromise_CLASS is also hardly distinguishable from the second_order_CLASS. The faint line shows
for comparison the first-order results with accuracy tca1: the error is then comparable to compro-

mise_CLASS with tca3.

precision no-tca tca1 tca3

TCA scheme (irrelevant) first_order_class compromise_class

rk 1069s 19.4s 17.8s
ndf15 16s 14.9s 14.6s

Table 2. Execution time of the perturbation module, in seconds, with several TCA settings and with
the two integrators (Runge-Kutta and stiff integrator ndf15). The last two columns lead to roughly
the same level of accuracy.

In table 2, we compare running times in the no-tca case and in the previous two cases,
using either the Runge-Kutta or ndf15 integrator. The timings displayed here correspond
to the number of seconds spent by our computer in the perturbation module of CLASS, in
a non-parallel execution. The ndf15 integrator is always better, by a huge amount in the
no-tca case, or by 20 to 30% in the other cases. Being unaffected by the issue of integrating
a stiff system, the ndf15 integrator is not very sensitive to the choice of TCA scheme, with
only a 3% speed up when using the compromise scheme instead of first-order schemes. The
Runge-Kutta integrator is more sensitive, with a 9% speed-up for the compromise scheme.

We conclude that CLASS benefits much more from the implementation of our stiff inte-
grator than from going beyond the first-order TCA. For some particular models, the user may
wish to stick to the Runge-Kutta integrator, in which case the compromise_CLASS scheme
leads to a sizable speed up.
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3 Ultra-relativistic Fluid Approximation (UFA)

All massless neutrinos and ultra-relativistic relics can be treated as a single species, labeled
as “ur” in CLASS. The code assumes that these species are fully decoupled. Hence, they just
free-stream within a given gravitational potential, and can be followed with the collisionless
Boltzmann equation expanded in harmonic space and integrated over momentum [10]. The
solution can be formally written as the sum of spherical Bessel functions jl(kτ) (exhibiting
damped oscillations for τ > l/k), plus a particular solution of the inhomogeneous equations
sourced by metric fluctuations. The fact that one part of the solution has an analytical
expression cannot be directly implemented in the code, because the total perturbations δur,
θur and σur back-react on the metric perturbations through Einstein equations, and affect the
source terms in the Boltzmann equation. We will use this decomposition only as a guideline
for deriving accurate approximation schemes.

3.1 Truncation of the Boltzmann hierarchy

Since the ur species couple only gravitationally to other species, we are only interested in
tracking δur, θur and σur. Higher multipoles must still be included since they couple with
the lower ones, but in all efficient Boltzmann codes, the hierarchy is truncated at some low
multipole value lmax. CMBFAST, CAMB, CMBEASY and CLASS all use the truncation scheme
proposed in Ma & Bertschinger (eq. (51) of [10]) which is designed to minimize artificial
reflection of power from lmax back to lower multipoles. Still, this truncation is not perfect, and
a significant amount of unphysical reflection cannot be avoided for times beyond τ = lmax/k.
This implies that in order to compute an accurate CMB spectrum, lmax should be at least of
the order of 30. The computation of the matter power spectrum P (k) on small scales, up to
some wavenumber kmax, is more problematic: one should further increase lmax proportionally
to kmax in order to get converging results.

3.2 Sub-Hubble fluid approximation

The Ultra-relativistic Fluid Approximation (UFA) implemented in CLASS is based on the
idea that for a given wavenumber, lmax should not necessarily be fixed throughout the whole
time evolution. The code considers two regimes: wavelengths larger or comparable to the
Hubble radius, and wavelengths much smaller than the Hubble radius. The transition between
the two regime occurs for each k when the product kτ (equal to τ/τk and coinciding with
τH/τk during radiation domination) reaches some threshold value that we call here (kτ)ufa.
Typically, (kτ)ufa is chosen in the range from 10 to 50, depending on the required precision.
The full name of this parameter in the code is ur_fluid_trigger_tau_over_tau_k. In the
first regime kτ ≤ (kτ)ufa, the Boltzmann hierarchy can be truncated at some lmax which
can be chosen to be rather small: it is enough to take to lmax ∼ (kτ)ufa, since multipoles
with l > kτ are negligible (according to the spherical Bessel function approximation). In the
second regime kτ ≥ (kτ)ufa, the code still follows the three variables δur, θur and σur, which
are sourced by metric perturbations. But multipoles in the range 2 < l ≪ kτ are suppressed,
leading to an effective decoupling between the first three multipoles and the highest ones.
Hence it is natural to lower lmax down to two in this regime. Ultra-relativistic neutrinos are
then described by a reduced system of equations for δur, θur and σur, i.e. by fluid equations
(of course, this fluid is not assumed to be perfect, since it has anisotropic pressure). In
summary, the UFA approximation consists in lowering lmax from a value close to (kτ)ufa
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down to lmax = 2 deep inside the Hubble radius, at the time when kτ = (kτ)ufa. Such a
scheme offers many advantages:

1. When computing the matter power spectrum, the number of ur equations to integrate
before the approximation is switched on does not need to be scaled linearly with the
highest wave number kmax.

2. The number of ur equations reduces to (lmax + 1) = 3 in the whole region of (k, τ)
space fulfilling the condition kτ > (kτ)ufa; this is precisely the region in which the com-
putation would be time-consuming, since ur perturbations oscillate inside the Hubble
radius.

3. The UFA completely avoids the issue of power reflecting at some large lmax, which would
otherwise affect the evolution of low multipoles periodically due to some spurious wave
travelling back and forth between l = lmax and l = 0. (This behaviour is clearly seen
in figure 6.)

The fluid approximation could in principle be used until present time, but the code allows a
more aggressive approximation, the Radiation Streaming Approximation, to take over from
the UFA after photon decoupling. This new approximation is discussed in the next section.
Hence, the UFA is essentially a way to save computing time during radiation domination and
at the beginning of matter domination.

3.3 Fluid equations

We need to find a closed system for the evolution of δur, θur and σur, valid deep inside the
Hubble radius. The full system of equations in the synchronous gauge (eq. (49) in [10]) reads:

δur
′ = −4

3
θur −

2

3
h′ , (3.1a)

θur
′ = k2

(

1

4
δur − σur

)

, (3.1b)

2σur
′ =

8

15
θur −

3

5
kFur3 +

4

15
(h′ + 6η′) , (3.1c)

F ′
ur l =

k

2l + 1

[

lFur(l−1) − (l + 1)Fur(l+1)

]

. (3.1d)

In appendix B, we use the formal solution of these equations in order to derive an exact inte-
gral relation between σur

′, σur, θur and metric perturbations. We then find an approximate
but more practical form of this relation valid inside the Hubble radius, at leading order in an
expansion in metric perturbation derivatives (h(n)/kn−1, η(n)/kn−1) and in powers of (kτ)−1:

σur
′ = −3

τ
σur +

2

3
θur +

1

3
h′ . (3.2)

Since metric perturbation only evolve over a Hubble time scale inside the Hubble radius, we
expect this expansion to converge, and we will see below that the above relation is indeed
accurate enough for our purpose. In the default version of CLASS, this equation is used for
closing the system of equations when the UFA is switched on. This method corresponds to
the setting ufa_method = ufa_class in the code’s precision parameter structure.

– 15 –



 
J
C
A
P
0
7
(
2
0
1
1
)
0
3
4

3.4 Alternative schemes

Some nearly equivalent schemes can be justified in slightly different ways. Truncating the
Boltzmann equations at lmax = 2 with the usual truncation scheme of Ma & Bertschinger
gives:

σur
′ = −3

τ
σur +

2

3
θur +

1

3
(h′ + 6η′) . (3.3)

This truncation scheme is based entirely on the assumption that Fur l(k, τ) ∝ jl(kτ). So,
the reason for the difference between eq. (3.2) and (3.3) is that (3.2) is based on the full
formal solution, including the leading order contribution to the part sourced by the metric,
while (3.3) is based only on the solution of the homogeneous equation. Equation (3.3) is used
when the user switches to ufa_method = ufa_mb, and amounts to adding an extra term in η′.

Finally, in a more general context, Hu [13] introduced a set of equations modeling a
cosmological viscous fluid, and suggested that this fluid could approximate the evolution
of free-streaming neutrinos with the parameter choice (w, c2s, c

2
vis) = (1/3, 1/3, 1/3). In this

limit, Hu’s fluid equations are identical to our UFA equations except for the shear derivative:

σur
′ = −3

a′

a
σur +

2

3
θur +

1

3
(h′ + 6η′) . (3.4)

The coefficient −3a′

a reduces to −3/τ deep inside the radiation dominated regime, but
becomes different around the time of equality. This equation is used when the user
switches to ufa_method = ufa_hu. Below we will compare the performances of equa-
tions (3.2), (3.3), (3.4) and show that the first one is slightly more precise (as expected
from the rigorous mathematical proof of appendix B).

Finally, when the user selects ufa_method = ufa_none, no UFA scheme is employed,
and the truncation multipole lmax remains the same throughout the evolution.

3.5 Comparison at the level of perturbations

In figure 6, we compare the evolution of δur and σur for a given mode, obtained either by
solving the full Boltzmann equation up to a very high lmax ∼ 3000, or with lmax = 46
with/without the default UFA. In absence of approximation, one can see some spurious
evolution appearing periodically (here, around kτ ∼ 100 and kτ ∼ 200): this corresponds
to the propagation of an unphysical wave between the multipole boundaries l = lmax and
l = 0. Using the default UFA scheme ufa_class, we reproduce accurately the phase, the
amplitude and, to a lesser extent, the zero-point of the oscillations. For the clarity of the
figure, we do not show the results from alternative approximation schemes. We checked that
the ufa_mb scheme also reproduces the correct phase and amplitude, but introduces a larger
error in the zero-point of oscillations. Finally, the ufa_hu scheme reproduces the phase, but
not the correct amplitude of the oscillations.

3.6 Comparison at the level of CMB/matter power spectrum

In figure 7, we show the impact of the UFA on the CMB and matter power spectrum.
We take the precision parameters of the file cl_permille.pre, and play with the values of
lmax and (kτ)ufa, called l_max_ur and ur_fluid_trigger_tau_over_tau_k in the code. We
first compute some reference spectra with lmax = 3000 (to remove any truncation effect),
and such a large value of (kτ)ufa that the UFA is never used. All other results from this
section are compared to these spectra. We then fix both lmax and (kτ)ufa to 18 and vary
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Figure 6. Evolution of δur (left) and σur (right) for the mode k = 10−1 hMpc−1 over the range
10 < kτ < 200, i.e. well inside the Hubble radius and throughout the radiation dominated stage. In
the “exact” case, the full Boltzmann equation for ur is truncated at lmax ∼ 3000, with no impact of
the truncation on the result. In the “no approx.” case, the truncation is performed at lmax = 46. In
the “CLASS” case, we use the UFA scheme ufa_class and set lmax = 46 as long as kτ ≤ (kτ)ufa = 50,
or lmax = 2 afterward.

UFA scheme (fixed lmax and (kτ)ufa) ufa_none ufa_class

rk 29.7s 27.0s

ndf15 16.7s 15.2s

Table 3. Execution time of the perturbation module in seconds, with the precision parameters of the
file cl_permille.pre, plus lmax = (kτ)ufa = 18. Using an ultra-relativistic fluid approximation leads
simultaneously to a 10% faster execution and to more accurate results.

only the ur_fluid_approximation parameter. We show the error induced by each UFA
scheme for the temperature and matter power spectrum in figure 7 (results for temperature
and polarisation are very similar). The results from the ufa_none case are very unstable
and depend a lot on the choice of lmax and (kτ)ufa) values. With the present choice, they
correspond to a twice larger error in the CMB spectra than in any UFA scheme; for slightly
different choices they would also induce a larger error in the matter power spectrum. The
three UFA schemes, which do not have such instabilities, are nearly as good as each other
for CMB spectra, while for the matter power spectrum the ufa_class scheme is one order
of magnitude better. Table 3 shows that the UFA approximation allows for a 10% speed up,
while being more accurate for a fixed lmax.

4 Radiation Streaming Approximation (RSA)

After their respective decoupling time, the photons gradually free-stream like neutrinos (ex-
cept around the time of reionisation at which their coupling to baryons is enhanced). In
principle, it would be possible to look for a fluid approximation for photons, like we did for
neutrinos in the previous section. However we can go further than that, since during this
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Figure 7. Power spectra (for temperature CMB anisotropies and for matter) obtained with various
implementations of the UFA, compared to those obtained in a reference run. In the four cases
displayed here, we use lmax = 18 as long as kτ ≤ (kτ)ufa = 18. The curves labeled “MB”, “HU”,
“CLASS” correspond to the three possible implementation of the UFA discussed in the text; the last
curve uses no UFA and a standard truncation scheme at lmax = 18 until the time at which the next
approximation RSA takes over (see section 4): in this case the code is at the same time a bit less
precise and 10% slower. We do not show the results for the polarisation spectrum CEE

l , that look
very similar to those for CTT

l .

period the universe is dominated by matter and eventually Λ/Dark Energy: in this case
photons and massless neutrinos almost behave like test-particles in an external gravitational
field, and we do not need to catch their evolution with high accuracy (which was not the case
for the ur species during radiation domination).

Like for massless neutrinos, in all efficient Boltzmann codes, the Boltzmann equation for
photons is truncated at some low multipole value lmax using the truncation scheme proposed
in Ma & Bertschinger (eqs. (65) in [10]). If lmax is not large enough, the spurious reflec-
tion of power induced by the truncation propagates to the final results, because radiation
perturbations still play a small role during the free-streaming regime. More precisely:

• the photon density fluctuation, velocity and shear perturbations appear in Einstein
equations;

• the photon density fluctuation and shear appear in the temperature/polarisation source
functions;

• the photon velocity appears in the evolution equations of baryons (since the baryon-
photon coupling is not negligible during reionisation).

In order to avoid propagating such an error, one can either increase lmax, or find a way
to infer the photon density, velocity and shear from some analytic Radiation Streaming
Approximation (RSA), in which case the integration of Boltzmann equations can be stopped
soon after photon decoupling. Mathematically, this analytic approximation should coincide
with the particular non-oscillatory solution of the inhomogeneous Boltzmann equations. Once
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the damped oscillations accounted for by spherical Bessel functions becomes negligible (i.e.
when kτ ≫ l), the analytic approximation will coincide with the true solution. Before
that time, it will provide a correct approximation to the true quantities averaged over a
few oscillations. In summary, the RSA has a double goal: to avoid unphysical oscillations
created by the Boltzmann truncation, and to avoid wasting time in integrating the Boltzmann
equations over many such oscillations.

The RSA does not need to be accurate at very late time (end of matter domination,
Λ/Dark Energy domination), since by then radiation fluctuations are always completely neg-
ligible with respect to matter fluctuations. However, it should be reasonably accurate soon
after photon decoupling, i.e. during matter domination, when the energy density in radiation,
Ωr ≡ Ωγ + Ωur, is smaller than one but not yet much smaller. The advantage of a better
approximation is two-fold. First, it can be switched on earlier. Second, before switching on
the approximation, we can use a smaller value of lmax, since high multipoles will not have
time to grow.

The same treatment can be applied to ultra-relativistic species, which are identical to
photons in this regime, except for the fact that they remain collisionless during reionisation.
When the RSA is turned on for photons, it is better to follow ultra-relativistic species in the
same way as photons, rather than with the fluid formalism described in section 3. The RSA
then removes three more differential equations, and cures the fact that the UFA turns out
to be inaccurate at late time. Hence, the default version of CLASS treats ultra-relativistic
species first with exact equations, then with the UFA (inside the Hubble radius and until
photon decoupling), and finally with the RSA (inside the Hubble radius and after photon
decoupling).

An expression for the RSA was discussed in the Newtonian gauge by Doran [11]. Soon
after, a somewhat simpler RSA (neglecting reionisation) was also introduced in the CAMB

code, which uses the synchronous gauge. Here, we will derive an approximation comparable
to that of Doran [11], but valid in the synchronous gauge.

4.1 Relativistic relics (massless neutrinos)

We start with the simplest case, that of ultra-relativistic species ur. We combine the first
two equations of (3.1) into

δur
′′ +

k2

3
δur = −2

3
h′′ +

4

3
k2σur . (4.1)

Inside the Hubble scale (i.e. when kτ ≫ 1) we can assume in first approximation that
|σur| ≪ |δur| and neglect the shear in the RSA. Also, since we are looking for a smooth
(non-oscillatory) particular solution of this inhomogeneous equation, we can assume that
|δ′′ur| ≪ k2|δur|. We conclude that the RSA for δur is simply

δur = − 2

k2
h′′ . (4.2)

Note that in the synchronous gauge, h′ coincides with −2δ′
cdm

, where δcdm is the cold dark
matter density contrast. Deep inside the matter-dominated regime, δcdm ∝ a ∝ τ2, so h′ is
linear in τ , and h′′ is a constant. The RSA for δur is therefore nearly static. Concerning θur, its
value in the RSA is given by the exact energy-conservation equation δ′ur = −4

3θur− 2
3h

′ = 0,
namely

θur = −1

2
h′ . (4.3)
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In practice, we must extract h′ and h′′ from the Einstein equations in the synchronous gauge,
that read

2k2η − a′

a
h′ = 8πGa2δρtot , (4.4a)

2k2η′ = 8πGa2[(ρ̄+ p̄)θ]tot , (4.4b)

h′′ + 2
a′

a
h′ − 2k2η = −8πGa2δptot . (4.4c)

Here we do not need the fourth equation sourced by the shear. The difficulty comes from
the fact that in order to infer δur we should compute h′′, and for doing that we need to
combine the first and third equation, i.e. we need to know δρtot, which depends itself on δur.
Fortunately, we can notice that if we omit δur in the computation of δρtot, we make a tiny
error, since during matter domination |δρur| ≪ |δρcdm|. Hence, it is good enough to evaluate
the first Einstein equation with δur set to zero. The same is not true for the second equation,
since the synchronous gauge is comoving with cdm, so one has θcdm = 0 by construction. As
a result, neglecting θur in the computation of θtot and η′ leads to a significant inaccuracy in
the solution for η. Hence, we introduce the following scheme:

1. We compute δρtot assuming δur = 0, and obtain 2k2η − a′

a h
′ from the first Einstein

equation.

2. Using the fact that during matter domination |δptot| ≪ |δρtot|, we notice that
∣

∣

∣

∣

h′′ + 2
a′

a
h′ − 2k2η

∣

∣

∣

∣

≪
∣

∣

∣

∣

a′

a
h′ − 2k2η

∣

∣

∣

∣

, (4.5)

and hence to very good approximation

h′′ = −2
a′

a
h′ + 2k2η . (4.6)

We then infer the following RSA for δur from eq. (4.2):

δur =
4

k2

(

a′

a
h′ − k2η

)

. (4.7)

This formula is practical since η is one of the variables that we integrate over time, and
h′ has been inferred in the previous step.

3. We impose the free-streaming solution for θur (eq. (4.3)) and set σur = 0.

4. We use the remaining Einstein, continuity and Euler equations to evolve the system.

4.2 Photons

For photons, the solution is a bit more complicated since the baryon-photon coupling cannot
be neglected during reionisation. We then need to find the particular non-oscillatory solution
of (cf. (2.4))

δ′′γ +
k2

3
δγ = −2

3
h′′ +

4

3
k2σγ −

4

3τc
(θb − θγ) . (4.8)

Once again we will neglect the shear and search for a particular solution slowly varying with
time (|δ′′γ | ≪ |k2δγ |). In order to deal with the coupling term, we expand the solution in
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powers of τ−1
c . The zeroth-order solution is exactly similar to that of massless neutrinos,

eqs. (4.7), (4.3). The first-order solution should satisfy

k2

3
δγ = −2

3
h′′ − 4

3τc

(

θb +
1

2
h′
)

, (4.9)

in which h′′ can be replaced using eq. (4.6). This approximation turns out to work out
very well, unlike the zeroth-order solution. The velocity is then given by the exact energy-
conservation equation

θγ = −1

2
h′ − 3

4
δ′γ . (4.10)

We take the derivative of the previous result for δγ , assuming that h′′ is time-independent,
and using once more eq. (4.6). We obtain:

θγ = −1

2
h′ +

3

k2τc

[

− τ ′c
τc

(

θb +
1

2
h′
)

+

(

θ′b +
1

2
h′′

)]

, (4.11)

in which h′′ can be replaced using eq. (4.6). However the exact expression of θ′b depends
again on θγ . Like before, we use a perturbative scheme in τ−1

c and replace θ′b above by its
expression at first-order in τ−1

c .

4.3 Summary of RSA equations

In summary, the RSA consists in neglecting δγ and δur in the evolution of δρtot in the first
Einstein equation, which allows us to obtain h′, and then in imposing

δγ =
4

k2

(

a′

a
h′ − k2η

)

+
4

k2τc

(

θb +
1

2
h′
)

, (4.12a)

θγ = −1

2
h′ +

3

k2τc

[

− τ ′c
τc

(

θb +
1

2
h′
)

+

(

− a′

a
θb + c2bk

2δb −
a′

a
h′ + k2η

)]

, (4.12b)

σγ = 0 , (4.12c)

δur =
4

k2

(

a′

a
h′ − k2η

)

, (4.12d)

θur = −1

2
h′ , (4.12e)

σur = 0 . (4.12f)

This scheme is set to be the default one in CLASS, as long as the precision variable radia-

tion_streaming_approximation remains set to rsa_MD_with_reio. For comparison, some
cruder schemes can be used: if the same variable is set to rsa_MD, the code will use the above
expressions at zero order in τ−1

c (i.e, with δγ = δur and θγ = θur). If it is set to rsa_none,
the radiation perturbations are just set to zero.

4.4 Comparison at the level of perturbations

In figure 8, we show the evolution of δγ , θγ , θb and η between recombination and present
time, for a particular wavenumber k = 0.1Mpc−1. We compare two RSA schemes with the
exact evolution obtained by integrating all multipoles at all times. We always keep the UFA
approximation of section 3 turned off. We see that immediately after switching on the RSA,
our approximation for δγ (and also for δur, which is not shown) matches accurately the exact
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Figure 8. Evolution of the quantities δγ (top left), θγ (top right), θb (bottom left), η (bottom right)
for the mode k = 0.1Mpc−1, as a function of conformal time (in Mpc), between a time chosen soon
after photon decoupling (or slightly before reionisation in the θb plot) and today. The red curves show
the result of an exact integration with no truncation or approximation. In the blue curves, the RSA
is turned on around η = 470Mpc, just before the solutions become unphysical due to the Boltzmann
equation truncation at l_max_g=12, l_max_pol_g=12, l_max_ur=28. For comparison, in green, we
show the result for δγ when the terms in τ−1

c are neglected in the RSA, and those for θb and η when
the radiation multipoles are all set to zero instead of using a free-streaming solution.

evolution averaged over a few oscillations. This would not be the case with several simpler
RSA schemes which assume full matter domination and an exact linear growth of h′(τ). In
the models used for the figures, reionisation takes place at z∗ = 10 and τ = 4458Mpc. It
induces a clear feature in δγ and θb (having impact on η) which is well captured by the terms
proportional to τ−1

c in the full rsa_MD_with_reio scheme.

4.5 Comparison at the level of temperature/polarisation spectra

The precision parameters governing the evolution of perturbations in the late universe are:

• two parameters defining the time at which the RSA is switched on. For each wavenum-
ber, we stop evolving photon and ur perturbations when the two conditions

kτ = τ/τk ≥ radiation_streaming_trigger_tau_over_tau_k

and
τc/τ ≥ radiation_streaming_trigger_tau_c_over_tau

are satisfied (i.e., photons are sufficiently decoupled, and the wavelength is sufficiently
deep inside the sub-Hubble regime). In principle, it would be possible to switch on
the RSA at different times for photons and ur species, but for simplicity we did not
consider this option.

• l_max_g, l_max_pol_g and l_max_ur define the number of photon temperature, photon
polarisation and ur multipoles which are integrated until the RSA is switched on.
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precision setting: reference no-rsa rsa

l_max_g 3000 18 18

l_max_pol_g 3000 18 18

l_max_ur 3000 50 50

radiation_streaming_trigger_tau_over_tau_k ∞ ∞ 100

radiation_streaming_trigger_tau_c_over_tau ∞ ∞ 2

ur_fluid_trigger_tau_over_tau_k ∞ ∞ ∞

Table 4. Three settings for the parameters governing the Boltzmann truncation and RSA. All other
parameters are fixed with the file cl_permille.pre of the public CLASS distribution: in particular,
radiation_streaming_approximation is set to rsa_MD_with_reio. The reference run never uses the
UFA and RSA, and cannot be affected by the Boltzmann truncation. The second and third settings
share the same truncation multipoles, and differ only by using the RSA or not.
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Figure 9. Temperature and matter spectra for the runs rsa and no-rsa, normalized by reference
spectra. Corresponding precision parameter settings are described in table 4. Using the RSA with
such settings leads to equally accurate CMB spectra, and to a very small error on the matter power
spectrum. The running time is however reduced considerably.

In order to compute some reference spectra to be used throughout this section, we fix the
precision parameters according to the file cl_permille.pre, increase l_max_g, l_max_pol_g
and l_max_ur to 3000, and choose such large values of the trigger parameters that the UFA
and RSA are never employed. We wish to compare these reference spectra with those from
runs with/without the RSA, in which l_max_g, l_max_pol_g and l_max_ur are kept fixed to
reasonable values. We choose l_max_g and l_max_pol_g to be equal to 18. Since we do not
want to use the UFA approximation in this comparison (in order to focus only on the impact
of the RSA), we fix l_max_ur to a larger value, namely 50. This setting, called no-rsa in
table 4, leads to a 0.01% error both in the temperature multipoles and in the matter power
spectrum for k ≤ 1hMpc−1, as shown in figure 9. Finally, in the run called rsa, we switch on
the default RSA scheme, with the trigger values specified in table 4. With such settings, the
error in the temperature (and also polarisation) multipoles remains as small as without the
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Runs with/without a RSA: no-rsa rsa

rk 55.8s 33.6s

ndf15 84.4s 14.5s

Table 5. Execution time of the perturbation module in seconds, with the precision parameters of the
file cl_permille.pre, modified as described in table 4.

RSA, while the error in the matter power spectrum grows moderately to 0.04% (see figure 9).
However, the running time is reduced considerably, as shown in table 5: with the Runge-
Kutta integrator, the RSA leads to a 66% speed up. Note that the ndf15 remains much
better than the Runge-Kutta integrator when the RSA is employed (by a factor 2) while
it experiences difficulties in following oscillatory solutions in absence of a RSA. However,
the combination of our RSA scheme and ndf15 integrator leads to very nice performances
(speed-up by a factor 4 with respect to Runge-Kutta without any RSA).

In CAMB, the RSA is somewhat cruder, since it neglects reionisation and uses an ex-
plicit cosmology-dependent relation giving h′ an h′′ in terms of ρ̄b, ρ̄cdm, δb, δcdm and k, valid
only deep in the matter-dominated regime. We present in a companion paper the compar-
ison between the matter power spectrum P (k) computed by CAMB and CLASS. In order to
get an accurate P (k) with CAMB, one is forced to deactivate the RSA approximation (called
late_rad_truncation), precisely for the above reasons. Our scheme does not lead to a
significant error on the P (k), and is more model-independent: it involves only metric pertur-
bations and does not need to be modified in the presence of other components playing a role
during matter domination (e.g. with warm dark matter or early dark energy).

5 Conclusions

In figure 10, we summarise the different approximations used by the code in the (k, τ) plane
when computing the Cl’s up to 3000 and the P (k) up to 1hMpc−1. The figure corresponds
to the precision settings of the file cl_3permille.pre. Exact equations are used only in the
band corresponding to Hubble crossing for each mode, as well as in the super-Hubble region
with non-tightly-coupled photons, in which all quantities evolve very slowly and integration
is very fast.

With these approximations, for ΛCDM, the perturbation module only spends a sig-
nificant time in the region corresponding to Hubble crossing for each mode, and to the
sub-Hubble evolution before photon decoupling. At early times, stiff equations are avoided
thanks to the Tight-Coupling Approximation. Well-inside the Hubble radius and until pho-
ton decoupling, the different modes oscillate and integration is time-consuming: however,
the number of equations is kept small (of the order of 30 in total) thanks to the UFA. Af-
ter photon decoupling, the code only needs to integrate over 4 equations with very smooth
solutions, and the time spent by the code in the RSA region is negligible.

Other approximation schemes can be introduced in more general cosmological models.
The case of massive neutrinos and non-cold dark matter relics is discussed in a companion
paper. More exotic cases may require further approximations which can be introduced and
discussed case-by-case (CLASS is coded in such way that introducing a new approximation is as
structured, codified and simple as introducing new species [6]). However, the fact that CLASS
uses an original stiff integrator means that for several purposes (as for the generalisation of
TCA), new approximation schemes are not even strictly necessary.
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Figure 10. Summary of regions in (k, τ) space where the various approximations are used. The
precision settings are taken from the cl_3permille.pre precision file which ensures a 0.3% precision
on the Cl’s till l = 3000. The full set of exact equations is used only in the white region.
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A Stiff integrator

The standard numerical method for solving Ordinary Differential Equations (ODEs) is to use
an adaptive step size Runge-Kutta solver. While this method is fast and accurate in simple
cases, it may fail completely (or take a very large number of steps) when the problem is stiff.
Stiffness occurs when at least two times scales of evolution in the problem differ substantially.
A well known example is the Boltzmann equation in cosmology. If a distribution is kept in
equilibrium by the (rapid) interaction with a background species, and we are interested in the
evolution of the distribution on cosmological time-scales, a Runge-Kutta solver will oscillate
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around the equilibrium solution by means of very small time steps related to the time-scale
of the interaction.

This problem exists, for instance, in the early universe where baryons and photons are
strongly coupled. One solution is to substitute the equilibrium solution into the equations and
thereby reducing the system of equations and removing the stiffness: this is the basic principle
of the Tight Coupling Approximation (TCA) discussed in section 2. This approximation
removes the stiffness of the Boltzmann equation in the vanilla scenario.

However, stiffness may easily be reintroduced by trying to incorporate new physics into
the code. The proper TCA approximation should then be derived and implemented in the
code, which would require a great deal of familiarity with the code from the user. In CLASS,
however, the user can just take advantage of the implemented stiff solver.

The ndf15 algorithm is a variable order (1-5) adaptive step size solver based on the
Numerical Differentiation Formulas of order 1 to 5. The step size is adaptive but quasi-
constant, meaning that the formulas used are based on a fixed step size. Each time the step
size changes, the code will update the backward differences by interpolation to reflect this
new step size. The algorithm is described in [17].

Whereas Runge-Kutta methods are explicit, meaning that the next step can be com-
puted directly from the previous step by elementary operations, ndf15 is a fully implicit
method. This means that at each time step, we must solve a system of algebraic, possibly
non-linear equations, which is accomplished by Newton iteration. This requires a numerical
computation of the Jacobian and the solution of systems of linear equations. As it is evident,
all this can make each step very expensive, so a number of strategies must be implemented:

• Reusing Jacobians:

The Jacobian usually changes more slowly than the solution itself, so an attempt is
made to reuse the Jacobian - it will only be recomputed if Newton iteration is too slow.

• LU decomposition:

The same linear system must be solved repeatedly with different right hand sides, so
we should of course store an LU decomposition. Because the system of equations can
be large, O(100), we need sparse matrix methods for this.

• Backward Interpolation:

Since the method stores a matrix of backward differences, it is fast to infer the value
and the derivatives of the solution at points before the current point by interpolation.
We only need the values of some of the components to calculate the source functions,
so we do not need to interpolate the rest of them.

When the number of equations is larger than about 10, it is advantageous to use sparse
matrix methods, and if the system is somewhat larger, the difference in execution time can
differ by orders of magnitude. Usually sparse matrix methods are developed in order to save
both time and memory, but for our purposes only execution time matters. We created a
small sparse matrix package for our purpose based on [18]. Some important features of this
package are:

• Column Pre-ordering:

The matrices which appear are of the general form I − cJ where I is the identity
matrix, J is the Jacobian and c is some constant. Since the Jacobian is close to being
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structurally symmetric (if yi couples to yj , it will often be the case that yj couples
to yi), it is advantageous to use the Approximate Minimum Degree column ordering
of the matrix C = JT + J . Using this pre-ordering reduces the number of non-zero
elements in the corresponding L and U factors by a factor of a few, which leads to a
sizable reduction in the time needed to solve the linear systems.

• LU re-factorisation:

If we have already calculated a LU factorization for some Jacobian, which is structurally
identical to the current Jacobian, we can use information saved during the factorisation
of the former to factorise the new matrix in a fraction of the time. Specifically, we store
the pivot ordering and the reach of all the sparse right hand sides used in forming the
LU-decomposition.

• Fast Jacobian Calculation:

If the same pattern of the Jacobian is found repeatedly, we can use this pattern to speed
up the calculation. Taking advantage of the sparsity of the Jacobian, we can group the
columns together and form the Jacobian using only a fraction of the usual n function
evaluations, n being the number of equations.

The CLASS user can choose to use the Runge Kutta or ndf15 integrator by switching the
precision parameter evolver to either rk (=0) or ndf15 (=1, default setting). To illustrate
the power of ndf15 in stiff situations, ndf15 was less than 10% slower when the TCA was
turned off as early as in the reference run used in figure 2. As a comparison, the standard
Runge-Kutta integrator was more than 10000 times slower than ndf15 for the same model.
This particular run represents an extreme case, but throughout this work we have presented
various examples in which the ndf15 performances are very good.

B Derivation of fluid equations for ultra-relativistic relics

The goal of this appendix is to establish the validity of the approximate shear derivative
equation (3.2), which allows to treat collisionless species as an imperfect fluid governed by
may less equations. In the future, our results could be used for computing higher order terms
in (3.2), or more generally for understanding various properties of the linear perturbations
of ultra-relativistic species. A discussion similar in spirit was presented in [19] for massive
neutrinos, although the goal of that paper was to introduce a sharp truncation at l = 3, while
we are searching for a truncation scheme that would take into account the transfer of power
to higher l’s.

B.1 Formal solution

Sticking to the notations of Ma & Bertschinger, the perturbations of ultra-relativstic species
is described by a function F (k, µ, τ) obeying to the collisionless Boltzmann equation

∂τF (k, µ, τ) + ikµF (k, µ, τ) = S(k, µ, τ) , (B.1)

where S stands for the gravitational source terms. The most general formal solution can be
written as

F (k, µ, τ) = F 0(k, µ)e−ikµτ +

∫ τ

0
e−ikµ(τ−τ̃)S(k, µ, τ̃)dτ̃ . (B.2)
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The initial function F 0(k, µ) depends on the considered gauge and type of initial conditions.
For instance, in the synchronous gauge, F 0 = 0 for the growing ADiabatic (AD), Baryon
Isocurvature (BI) and Cold Dark Isocurvature (CDI) modes; F 0 has a non-zero monopole
term for Neutrino Isocurvature Density (NID) initial conditions; and a non-zero dipole term
for Neutrino isocurvature Velocity (NIV). These statements can be checked from ref. [20].
Hence, in all cases, we can write

F 0(k, µ) = CNID(k)− ikµCNIV(k) . (B.3)

More fundamentally, the fact that F 0 only has monopole and dipole contributions can be
justified by the fact that neutrinos were initially in thermal equilibrium, forming a fluid with
no anisotropic pressure or higher momenta. By causality, this remains true at any time after
decoupling on super-Hubble scales. So, we are sure that the above form of F 0 is completely
universal. In the synchronous gauge, the source reads

S = −2

3
h′ − 4

3
(h′ + 6η′)P2(µ) . (B.4)

Thanks to a few integration by part, it is possible to absorb the µ dependence, in order to
be able to write this solution in Legendre space. The result is

F (k, µ, τ) = F 0(k, µ)e−ikµτ

+
2

k2

∫ τ

0
eikµ(τ̃−τ)

{

2k2η′(τ̃) + h′′′(τ̃) + 6η′′′(τ̃)
}

dτ̃

− 2

k2
{

h′′ + 6η′′ − ikµ(h′ + 6η′)
}

+
2

k2
e−ikµτ

{

h′′ + 6η′′ − ikµ(h′ + 6η′)
}

τ=0
. (B.5)

The last bracket contains the initial value of (h′ + 6η′) and (h′′ + 6η′′). The former vanishes
for all types of initial conditions excepted NIV; the latter is non-zero for AD, NID and NIV.
All initial condition terms in the first and last lines can be grouped and represented by two
coefficients α and β:

α(k)− iµβ(k) ≡ F 0(k, µ) +
2

k2
{

h′′ + 6η′′ − ikµ(h′ + 6η′)
}

τ=0
(B.6)

=

{

δur +
2

k2
(h′′ + 6η′′)

}

τ=0

− 4iµ

k

{

θur +
1

2
(h′ + 6η′)

}

τ=0

, (B.7)

with e.g. (α, β) = (20/(15 + 4Rur), 0) for adiabatic initial conditions (as can be checked
from [20]), Rur being the fractional contribution of ultra-relativistic species to the background
density. It is now easy to expand the full solution in Legendre coefficients, using the definition
F (µ) =

∑

l(−i)l(2l + 1)FlPl(µ) and the fact that plane waves can be expanded in terms of
spherical Bessel functions:

Fl(k, τ) = α(k)jl(kτ) + β(k)j′l(kτ)

+
2

k2

∫ τ

0
jl
(

k(τ − τ̃)
){

2k2η′(τ̃) + h′′′(τ̃) + 6η′′′(τ̃)
}

dτ̃

− 2

k2

{

(h′′ + 6η′′)δl0 +
k

3
(h′ + 6η′)δl1

}

. (B.8)

The terms in the first line show how initial conditions propagate to later times, by just free-
streaming. The other terms show how perturbations adjust themselves to the power injected
in the system at any time by metric perturbations.

– 28 –



 
J
C
A
P
0
7
(
2
0
1
1
)
0
3
4

B.2 Sub-Hubble approximation

Well inside the Hubble radius, the above formal solution can be approximated by a simpler
expression. The results of this subsection are never used in our UFA scheme or in CLASS,
but we present them for completeness, and also because the approximation performed in the
next subsection will follow the same logic.

The second line of the solution contains a convolution between a function which varies
smoothly over a Hubble time (at least for kτ ≫ 1), and a Bessel function jl(x) with x ≡
k(τ − τ̃) which oscillates over τk = 1/k. Bessel functions jl(x) peak near xpeak = l + 1/2 (in
fact this statement is accurate only for very large l; for instance, j1(x) peaks near xpeak = 2
and j2(x) near xpeak = 3.5). The integral on τ̃ ∈ [0, τ ] corresponds to x ∈ [0, kτ ]. The goal
of this subsection is to find an approximation for this convolution for small l values.

As long as kτ ≤ 1, it is difficult to find a low-l approximation for the convolution; the
result is a function oscillating over a characteristic time τk = 1/k. In this regime, the integral
brings an extra oscillatory contribution to the term α(k)jl(kτ) + β(k)j′l(kτ); this explains
while around Hubble crossing, the numerical solution for Fl(k, τ) exhibits irregular oscillatory
patterns, with very different peak amplitude between two consecutive periods.

However, when kτ ≫ 1, the integral runs over a large range x ∈ [0, kτ ]. For low l, this
means that the convolution picks up significant contributions only near x = xpeak ≪ kτ . Near
this value, the slowly-varying argument can be approximated as a constant, to be evaluated
around τ̃ = (kτ − xpeak)/k, i.e. in very good approximation near τ , since kτ ≫ xpeak. So, we
can write:

∫ τ

0
jl
(

k(τ − τ̃)
){

2k2η′(τ̃) + h′′′(τ̃) + 6η′′′(τ̃)
}

dτ̃

−→
{

2k2η′(τ) + h′′′(τ) + 6η′′′(τ)
}

∫ τ

0
jl
(

k(τ − τ̃)
)

dτ̃ . (B.9)

Finally, still in this limit kτ ≫ 1, the last integral can be approximated by

1

k

∫ ∞

0
jl(x)dx =

√
πΓ(l/2 + 1/2)

2kΓ(l/2 + 1)
(B.10)

A more accurate approximation scheme would lead to extra contributions involving time
derivatives of the quantity between brackets in (B.9): for instance, the next order term
would be of the type

{

2k2η′′(τ) + h(4)(τ) + 6η(4)(τ)
} γ

k2
(B.11)

with γ being a coefficient of order one. However, since inside the Hubble scale metric per-
turbations vary over a Hubble time τ ≫ τk, we can keep only the leading source terms with
the highest power of k:

δur = F0 = αjl(kτ) + βj′l(kτ) +
4

k

√

π

2
η′ , (B.12)

4

3k
θur = F1 = αjl(kτ) + βj′l(kτ)−

2

3k
h′ , (B.13)

2σur = F2 = αjl(kτ) + βj′l(kτ) +
π

k
η′ . (B.14)

In the code, we do not use directly these asymptotic approximations, and try instead to close
the system of differential equations with a trunction at order two, like for a viscous fluid.
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B.3 Exact truncation formula

First, in order to manipulate more compact equations, we define:

Gl(k, τ) ≡ Fl(k, τ)−
2

k2

{

(h′′ + 6η′′)δl0 +
k

3
(h′ + 6η′)δl1

}

. (B.15)

Since j′l(x) = jl−1(x)− l+1
x jl(x) and Gl contains a term jl(kτ), we suspect that it obeys ap-

proximately to a similar relation. We use equation (B.8) for computing exactly the difference
G′

l − kGl−1 +
l+1
τ Gl, which would vanish if only the term αjl(kτ) was contributing. We use

the identities

j′′l (x) = j′l−1(x)−
l + 1

x
j′l(x) +

l + 1

x2
jl(x) (B.16)

and jl(0) = δl0. We find

G′
l − kGl−1 +

l + 1

τ
Gl = β

l + 1

kτ2
jl(kτ) +

2

k2
{

2k2η′(τ) + h′′′(τ) + 6η′′′(τ)
}

δl0

+
2

k2

∫ τ

0
K(τ, τ̃)

{

2k2η′(τ̃) + h′′′(τ̃) + 6η′′′(τ̃)
}

dτ̃ (B.17)

where we defined

K(τ, τ̃) ≡ kj′l
(

k(τ − τ̃)
)

− kjl−1

(

k(τ − τ̃)
)

+
l + 1

τ
jl
(

k(τ − τ̃)
)

(B.18)

This expression simplifies to

K(τ, τ̃) = − l + 1

τ

(

τ̃

τ − τ̃

)

jl
(

k(τ − τ̃)
)

(B.19)

This trunction scheme is not pratical in general. However, the goal of the UFA is to find a
way to close the system at low l not at all times, but only deep inside the Hubble radius.

B.4 Sub-Hubble truncation formula

In the limit kτ ≫ 1, equation (B.17) can be simplified for two reasons. First, the Bessel
function varies over a time scale τk = 1/k ≪ τ , so

j′l(kτ) ≫
jl(kτ)

kτ
(B.20)

Hence, in this limit, the last term in the identity (B.16) can be omitted, which implies that
the first term (proportional to β) in eq. (B.17) is always negligible, even in the presence of
isocurvature modes. Second, we can devise an approximation for the convolution, by noticing
once more that it involves metric perturbations wich vary smoothly over a Hubble time (at
least for kτ ≫ 1), and the quantity kτ−x

x jl(x) with x ≡ k(τ− τ̃) which oscillates over a period
of order τk = 1/k.

When kτ ≫ 1, the integral runs over a large range x ∈ [0, kτ ]. For low l, this means
that the convolution picks up significant contributions only near x = xpeak ≪ kτ , while in
this range kτ−x

x jl(x) ≃ kτ
x jl(x). Near τ̃ = (kτ − xpeak)/k ≃ τ , the slowly-varying metric

perturbations can be treated as a constant term. So, we can write:
∫ τ

0

(

τ̃

τ − τ̃

)

jl
(

k(τ − τ̃)
){

2k2η′(τ̃) + h′′′(τ̃) + 6η′′′(τ̃)
}

dτ̃

−→
{

2k2η′(τ) + h′′′(τ) + 6η′′′(τ)
}

∫ τ

0

(

τ̃

τ − τ̃

)

jl
(

k(τ − τ̃)
)

dτ̃ (B.21)
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with
∫ τ

0

(

τ̃

τ − τ̃

)

jl
(

k(τ − τ̃)
)

dτ̃ ≃ τ

∫ ∞

0
x−1jl(x)dx . (B.22)

Let us estimate the error made in these approximations. Since we are inside the Hubble
radius with smoothly varying metric perturbations, and since the integral in eq. (B.21) is of
order τ , the leading term in eq. (B.21) is of order (k2τη′). The other terms of order (τη′′′)
and (τh′′′) can be neglected. If instead of considering η′(τ̃) as a constant we perform a Taylor
expansion of this function around τ , we find that the next order contribution to eq. (B.21)
is of order (kτη′′). Finally, an explicit calculation shows that the approximation performed
in (B.22) amounts in neglecting terms of order k−1 with respect to terms of order τ . In
summary, we obtain the following approximate truncation equation:

G′
l − kGl−1 +

l + 1

τ
Gl =

2

k2
{

2k2η′(τ) + h′′′(τ) + 6η′′′(τ)
}

δl0

−4(l + 1)η′
∫ ∞

0

jl(x)

x
dx+O

(

η′′

k
,
η′

kτ

)

. (B.23)

For l = 2, the integral is equal to -1/3, since (j1(x)/x)
′=j2(x)/x and limx→0[j1(x)/x]=

1
3 . So,

G′
2 − kG1 +

3

τ
G2 = 4η′ +O

(

η′′

k
,
η′

kτ

)

. (B.24)

Replacing the Gl’s by the appropriate momenta, we find:

σ′
ur = −3

τ
σur +

2

3
θur −

1

3
(h′ + 6η′) + 2η′ +O

(

η′′

k
,
η′

kτ

)

. (B.25)

The last term 2η′ comes from our approximation for the convolution. Without a full treate-
ment like the one presented here, one would miss this term and obtain the truncation formula
called ufa_mb in the code, based on simply assuming Gl ∝ jl(kτ). However, with this extra
contribution, the two terms in η′ cancel each other, and at leading order we end up with

σ′
ur = −3

τ
σur +

2

3
θur −

1

3
h′ , (B.26)

which is precisely what we call the ufa_class truncation scheme in CLASS.
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