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ABSTRACT
Loeb and Zaldarriaga have recently proposed that observations of the cosmic microwave
background radiation (CMBR) brightness temperature fluctuations produced by H I inhomo-
geneities prior to reionization hold the promise of probing the primordial power spectrum to a
hitherto unprecedented level of accuracy. This requires a precise quantification of the relation
between density perturbations and brightness temperature fluctuations. Brightness temperature
fluctuations arise from two sources: (1) fluctuations in the spin temperature, and (2) fluctua-
tions in the H I optical depth, both of which are caused by density perturbations. For the spin
temperature, we investigate in detail its evolution in the presence of H I fluctuations. For the
optical depth, we find that it is affected by density perturbations both directly and through
peculiar velocities which move the absorption features around in frequency. The latter effect,
which has not been included in earlier studies, is similar to the redshift space distortion seen in
galaxy surveys and this can cause changes of 50 per cent or more in the brightness temperature
fluctuations.
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1 I N T RO D U C T I O N

The possibility of probing the Universe at high redshifts using the
H I 21-cm line has been the topic of extensive theoretical investiga-
tion. This is perceived to be the most promising window for studying
the ‘dark ages’, the era between the decoupling of the CMBR from
the primeval plasma at z ∼ 1000 and the formation of the first lu-
minous objects at z ∼ 20 (Hogan & Rees 1979; Scott & Rees 1990;
Madau, Meiksin & Rees 1997; Tozz et al. 2000; Barkana & Loeb
2001; Iliev et al 2002; Miralda-Escude 2003). After decoupling,
the gas temperature Tg is maintained at the CMBR temperature Tγ

through collisions of the CMBR photons with the small fraction of
electrons that survive the process of recombination. The collision
process becomes ineffective in coupling Tg to Tγ at z ∼ 200. In the
absence of external heating at z < 200 the gas cools adiabatically
with Tg ∝ (1 + z)2 while Tγ ∝ (1 + z). The spin temperature Ts is
strongly coupled to Tg through the collisional spin-flipping process
until z ∼ 70. The collisional process is weak at lower redshifts, and
Ts again approaches Tγ . This gives a range of redshifts where Ts <

Tγ . We then have a window in redshift 30 � z � 200, or equiv-
alently in frequency ν = 1420 MHz/(1 + z) where the H I will
produce absorption features in the CMBR spectrum.

In a recent paper Loeb & Zaldarriaga (2003) propose that obser-
vations of the angular fluctuations in the CMBR brightness temper-
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ature Tb arising from the H I absorption can be used to study the
power spectrum of density fluctuations at small scales to a level of
accuracy far exceeding those achievable by any other means. The
enormous wealth of information arises from the fact that observa-
tions at different frequencies which are sufficiently separated will
provide independent estimates of the power spectrum at the same
wavenumber k. These observations will probe the power spectrum
before the epoch of structure formation, and they hold the possi-
bility of revealing the entire primordial power spectrum down to
very small scales. In another recent paper Gnedin & Shaver (2004)
have studied the linear fluctuations in the 21-cm emission from the
pre-reionization era. They show that it should be possible to detect
this signal against the foreground contaminations in the frequency
domain. This signal is expected to constrain the equation of state of
the Universe at high z.

The CMBR brightness temperature is related to Ts and the H I

number density nH as Tb ∝ (1 − Tγ /Ts) nH. Fluctuations in Tb arise
from fluctuations in nH directly and also through fluctuations in Ts

which in turn arise from fluctuations in nH. In calculating the fluctu-
ations in Ts, Loeb & Zaldarriaga (2003) consider only one process,
namely the change in the collision rate arising from fluctuations in
nH. Perturbations in nH will also produce perturbation in Tg, which
in turn will affect Ts. This effect has not been taken into account in
their work.

Density perturbations produce peculiar velocities. This causes the
frequency of the H I absorption features to be shifted by the line-of-
sight component of the peculiar velocity. This effect will rearrange
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the H I absorption features in frequency space where converging
velocity patterns appear as enhancements in the H I number density
and diverging velocity patterns appear as decrements in the H I num-
ber density. It may be noted that this is the familiar linear redshift
space distortion (Kaiser effect, Kaiser 1987) seen in galaxy redshift
surveys. This effect has been studied by Bharadwaj, Nath & Sethi
(2001) in the context of cosmological H I emission from z ∼ 3.5.

It is important to identify and take into account all possible con-
tributions to the brightness temperature fluctuations, if these are to
be used to extract precise information about the power spectrum
and the equation of state of the Universe. In this paper we study two
effects which will contribute to brightness temperature fluctuations,
namely (1) perturbations in the gas temperature produced by den-
sity fluctuations, and (2) the effect of redshift space distortions. To
the best of our knowledge, these effects have not been included in
earlier work.

We next present an outline of the paper. In Section 2, we discuss
the processes involved in determining the brightness temperature
fluctuations and present the relevant equations. In Section 3, we
present our results and discuss their consequences. It may be noted
that we have used (�m0, ��0, �b0h2, h) = (0.3, 0.7, 0.02, 0.7)
whenever specific values have been needed for the cosmological
parameters.

2 C A L C U L AT I N G T H E B R I G H T N E S S
T E M P E R AT U R E F L U C T UAT I O N S

We first consider the evolution of the gas temperature after the re-
combination era (z ∼ 1000) when it becomes largely neutral. This
is governed by the equation

∂Tg

∂z
− 2Tg

3nH

∂nH

∂z
= −9.88 × 10−8

�bh2
(1 + z)3/2(Tγ − Tg). (1)

The third term in the above equation represents the energy trans-
fer from the CMBR to the gas through collisions with the residual
electrons (Peebles 1993). This terms tries to maintain the gas tem-
perature at the CMBR temperature as the Universe expands. The
second term is the change in Tg in adiabatic expansion. If the H I

is uniformly distributed, then nH ∝ (1 + z)3 and in the absence of
CMBR heating we have Tg ∝ (1 + z)2. Collisions are able to main-
tain Tg = Tγ = 2.73 K(1 + z) up to a redshift z ∼ 200 (Fig. 1) after
which Tg ∝ (1 + z)2.
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Figure 1. The evolution of the CMBR temperature, the gas temperature
and the spin temperature as the Universe expands.

We next consider the evolution of the spin temperature Ts which
is defined through the relation

n1

n0
= g1

g0
e−T�/Ts (2)

where n1, n0 are the population densities and g1 = 3, g0 = 1 the
spin degeneracy factors of the excited and the ground states of the
H I 21-cm transition. In this equation T� = hpν e/k B = 0.068 K,
where hp is Planck’s constant, ν e = 1420 MHz is the frequency
corresponding to the 21-cm line and k B is Boltzmann’s constant.
The evolution of the ground-state population density is governed by
two processes, one collisional and the other radiative:(

∂

∂t
+ 3

ȧ

a

)
n0 = n1C10 − n0C01 + n1 A10 + (n1 B10 − n0 B01)Iνe

(3)

where a(t) is the scalefactor, C 01 and C 10 are the collisional excita-
tions and de-excitation rates of the hyperfine levels, A10 is the Ein-
stein spontaneous emission coefficient, B 01 and B 10 are the Einstein
B coefficients and Iν e is the specific intensity of the background ra-
diation at ν e.

In the regime of interest Ts, Tg, Tγ 	 T� and we can use the
approximation e−T�/T = 1 − (T�/T ) throughout. Also, the fact that
in equilibrium the collisional processes and the radiative process are
separately balanced gives us the relations C 01 = 3(1 − T�/Tg)C 10

and B 01 = 3 B 10 = (3λ3
e/2hpc) A10 where A10 = 2.85 × 10−15 s−1

(Rybicki & Lightman 1979). The collisional de-excitation rate can
be written as C 10 = (4/3) κ(1 − 0) nH where the values of κ(1 −
0) are tabulated as a function of Tg (Allison & Dalgarno 1969).
Using these and equation (3) we obtain an equation for the redshift
evolution of Ts:

∂

∂z

(
1

Ts

)
= − 4

H (z)(1 + z)

×
[(

1

Tg
− 1

Ts

)
C10 +

(
1

Tγ

− 1

Ts

)
Tγ

T�

A10

]
(4)

where H(z) is the Hubble parameter. The collisional term tries to set
the spin temperature at the same value as the gas temperature while
the radiative term tries to set it at the CMBR temperature, which
process dominates being decided by the rate coefficients. At high
redshifts the collisional process dominates and the spin temperature
closely follows the gas temperature. At lower redshifts nH falls
substantially, the collisional process loses out to the radiative process
and the spin temperature approaches the CMBR temperature. Fig. 1
shows the evolution of the spin temperature as the Universe expands.

We next shift our attention to the effect of H I density
perturbations �H(x, z) = [nH(x, z) − n̄H(z)]/n̄H(z). These will
produce fluctuations in the gas temperature. If the gas were
undergoing adiabatic expansion, the fluctuations in the gas tem-
perature �g(x, z) = [Tg(x, z) − T̄g(z)]/T̄g(z) would be related
to �H through �g = (2/3) �H. This will be modified because
of the energy that is pumped into the gas from the CMBR and
�g = 0 during the era when Tg = Tγ . We define a function g(z) =
∂�g/∂�H. such that �g(z) = g�H(z). Using this in equation (1)
we obtain

dg

dz
= 9.88 × 10−8Tγ

�bh2Tg
(1 + z)3/2g +

(
2

3
− g

)
1

�H

∂�H

∂z
. (5)

The first term on the right-hand side arises from the coupling of the
gas to the CMBR and it tries to set g(z) → 0 while the second term
corresponds to adiabatic expansion and it tries to make g(z) → 2/3.
The quantity g(z) is expected to evolve from g(z) = 0 to g(z) = 2/3
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Figure 2. The evolution of the functions g(z) and s(z) defined in the text.

as the Universe expands and the contribution of the heat pumped
into the gas decreases.

An interesting feature is that g(z) depends on the growth rate of
density fluctuations. For example, it follows from equation (5) that
a static density perturbation which does not evolve in time will not
produce fluctuations in the gas temperature. Here we assume that
�H follows the dark matter perturbation and grows as �H ∝ a(z).
The result of integrating equation (5) is shown in Fig. 2. We see that
g(z) ∼ 0.3 in the redshift range of interest (30 � z � 100).

We finally come to the fluctuations in the spin temperature
�s(x, z) = [Ts(x, z) − T̄s(z)]/T̄s(z) produced by density perturba-
tions. From equation (4) we see that fluctuations in Ts can arise from
changes in Tg and from changes in the collision rate. The changes
in collision rate C 10 = (3/4) κ(1 − 0) nH will come about directly
through changes in nH and also through changes in Tg which will
affect the value of κ(1 − 0). Taking into account both these effect we
have �C 10 = (1 + (2/3) d ln κ/d ln Tg) C 10�H. Defining a function
s(z) = ∂�s/∂�H. such that �s(z) = s�H(z) and using equation (4)
we obtain

ds

dz
= −s

1

�H

∂�H

∂z
+ 4

H (z)(1 + z)

{[
Ts

Tg
(s − g)

+
(

Ts

Tg
− 1

)(
1 + d ln κ

d ln Tg

)]
C10 + s

Ts

T�

A10

}
. (6)

Here again, the evolution of s(z), like that of g(z), depends on the
time evolution the density fluctuations. Fig. 2 shows the evolution of
s(z) under the assumption �H ∝ a(z). We find that s(z) > 0 for z >

90, i.e. a positive density perturbation causes the spin temperature
to increase, and the effect is opposite at z < 90.

During the era when Ts < Tγ the H I along a line-of-sight n reduces
the CMBR brightness temperature at the frequency ν by an amount

Tb(n, ν) = (Ts − Tγ )τ

1 + z
. (7)

Here τ is the optical depth of the 21-cm H I absorption given by

τ = 3nHhpc2 A10a2(z)

32πkBTsνe

∣∣∣∣∂r

∂ν

∣∣∣∣ (8)

where r is the comoving distance to the H I whose 21-cm absorption
is redshifted to ν.

We are interested in the angular fluctuations of the brightness
temperature Tb(n, ν). H I density fluctuations will produce fluctu-
ations in Tb(n, ν) through the fluctuations in the spin temperature
discussed earlier. Density fluctuations will also directly affect Tb

through variations in the optical depth which we now calculate. The
relation between the comoving distance r and the frequency ν is
given by

r =
∫ 1

ν
νe(1−v/c)

c da

a2 H (a)
(9)

where v is the line-of-sight component of the peculiar velocity of
the H I which produces the absorption. Density perturbations will,
in general, be accompanied by velocity perturbations and these will
move around the H I absorption features in frequency. Here we as-
sume that the H I traces the dark matter and that we can use linear
perturbation theory to relate the peculiar velocity to the density per-
turbations. Incorporating the effect of both the density fluctuations
and the peculiar velocity we have

τ = 3n̄Hhpc3 A10

32πkBTsν2
e H (z)

[
1 + �H − 1

H (z)a(z)

∂v

∂r

]
. (10)

Here we have dropped terms of order v/c in the final expression.
Also, we have retained terms only to linear order in v. There is also
the effect of our own motion which we have not included. These
effects are not expected to be important. The term involving the
derivative of the peculiar velocity is the dominant effect, particularly
at the small scales of interest here.

Combining the effects of the fluctuations in the optical depth and
in the spin temperature we can write the fluctuations in the CMBR
brightness temperature as

δTb(n, ν) = T̄

[(
1 − Tγ

Ts

)(
�H − 1

Ha

∂v

∂r

)
+ Tγ

Ts
s�H

]
(11)

where

T̄ = 2.67 × 10−3K
�bh2

0.02

(1 + z)1/2

�
1/2
m0 h

. (12)

It is convenient to express this in Fourier space where

�H(x, z) =
∫

d3k

(2π)3
e−ik·x�(k, z) (13)

and the Fourier transform of the peculiar velocity is given by
v(k, z) = −iH (z) a(z) k�(k, z)/k2. Using this we express the fluc-
tuations in brightness temperature as

δTb(n, ν) = T̄

∫
d3k

(2π)3
e−ikrµ�(k, z)

×
[(

1 − Tγ

Ts

)
(1 + µ2) + Tγ

Ts
s

]
(14)

where µ is the cosine of the angle between the comoving wavevector
k and the line-of-sight n.

We now calculate the angular power spectrum of the bright-
ness temperature fluctuations resulting from the density fluctuations
�(k, z). The statistical properties of �(k, z) are specified through
the 3D power spectrum defined as

〈�(k, z)�(k′, z)〉 = (2π)3δ3
D(k − k′)P(k, z) (15)

where 〈. . .〉 denotes ensemble average and δD() is the Dirac delta
function.

The angular power spectrum is calculated by decomposing the
angular dependence of δTb into spherical harmonics with expan-
sion coefficients alm(ν) and using these to calculate the angular
power spectrum Cl(ν)=〈|alm|2〉. The angular power spectrum can be
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expressed in terms of the 3D power spectrum as

Cl (ν) = 4πT̄ 2

∫
d3k

(2π)3
P(k, z)

[(
1 − Tγ

Ts

)
Jl (kr ) + Tγ

Ts
s jl (kr )

]2

(16)

where jl(kr ) are the spherical Bessel functions and

Jl (kr ) =
[
− l(l − 1)

4l2 − 1
jl−2(kr ) + 2(3l2 + 3l − 2)

4l2 + 4l − 3
jl (kr )

− (l + 2)(l + 1)

(2l + 1)(2l + 3)
jl+2(kr )

]
. (17)

3 R E S U LT S A N D D I S C U S S I O N

In this paper we have investigated in detail the CMBR fluctuations
produced by H I prior to the epoch of reionization. As proposed by
Loeb & Zaldarriaga (2003), this holds the promise of allowing the
power spectrum of density fluctuations to be probed to a high level
of precision.

H I density perturbations produce fluctuations in the decrement of
the CMBR brightness temperature by two means: (1) through fluc-
tuations in the optical depth, and (2) through fluctuations in the spin
temperature. The effect of changes in the optical depth in response
to a positive density perturbation (curve A of Fig. 3) is such that it
reduces Tb and enhances the decrement in the brightness tempera-
ture. This effect is maximum at z ∼ 80. This effect is enhanced by
peculiar velocities.

The change in brightness temperature produced by H I density
perturbations through changes in the spin temperature varies with
z (curve B of Fig. 3). Density perturbations increase the spin temper-
ature and the brightness temperature in the redshift range z > 100.
Here the collisional process is very efficient and Ts closely follows
Tg. A positive density perturbation increases Tg which causes Ts to
also increase. The effect of density perturbations on the brightness
temperature acting through changes in the optical depth and through
the spin temperature have opposite signs. The effect of changes in
the optical depth is larger and the brightness temperature decrement
is enhanced by a positive density perturbation (curve C of Fig. 3).

In the redshift range z < 100 positive density perturbations lower
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Figure 3. The fluctuations of the CMBR brightness temperature (in units
of T̄ ) in response to H I density perturbations. (A) The response of (1 −
Tγ /T s) through changes in the optical depth, ignoring the effect of peculiar
velocities. Peculiar velocities will enhance this effect. (B) The response of
sTγ /Ts through changes in the spin temperature. (C) The total response for
µ2 = 2/3. (D) The same as (B) without the gas temperature fluctuations.

the spin temperature which enhances the brightness temperature
decrement. In this regime the collisional process slowly loses out to
the radiative process and Ts → Tγ . A positive density perturbation
enhances the collision rate which pulls the spin temperature down
toward the gas temperature. The two processes which contribute
toward brightness temperature fluctuations both act to enhance the
decrement. Curve C of Fig. 3 shows the combined effect of both
these processes for the value µ2 = 2/3. We find that the response
of the brightness temperature to density perturbations peaks at z ∼
55. This is somewhat smaller than the value obtained by Loeb &
Zaldarriaga (2003). Curve D of Fig. 3 shows the contribution to
brightness temperature fluctuations arising from the spin tempera-
ture if the effect of density perturbations on the gas temperature is
not taken into account (e.g. Loeb & Zaldarriaga 2003). We find that
including the gas temperature makes a significant change, partic-
ularly at z > 100 where there is a qualitative difference between
curves B and D.

We have calculated the angular power spectrum Cl(ν) of the
brightness temperature fluctuations for the COBE normalized
� CDM model (Bunn & White 1996). The power spectrum has been
suppressed beyond the arbitrarily chosen value k = 14 h Mpc−1 us-
ing a Gaussian cut-off. Our results are in qualitative agreement with
those of Loeb & Zaldarriaga (2003). We find that the signal peaks
at z ∼ 50 (Fig. 4) where the product of the growing mode of density
perturbations and the response of brightness temperature to density
perturbations is maximum.

To gauge the effect of peculiar velocities, we have calculated
Cl(ν) without incorporating this effect. This is easily done by re-
placing Jl(kr ) with jl(kr ) in equation (16). The results are shown in
Fig. 4. We find that the peculiar velocities increase

√
Cl by more than

50 per cent.
We have also quantified the effect of gas temperature fluctuations.

We find that for z < 100 the values of
√

Cl are ∼10 per cent lower
if the gas temperature is not taken into account, and the effect is
reversed at z > 100 where

√
Cl is ∼30 per cent higher.

The ability to probe the dark matter power spectrum using the
Cl(ν)s will be restricted to scales k < k J where k J is the Jeans
wavenumber. This has a nearly constant value ∼500 h Mpc−1 in
the redshift range of interest. The H I power spectrum on scales
smaller than the Jeans length-scale is interesting in its own right.
The H I perturbations will undergo acoustic oscillations on these
scales. The spin-temperature fluctuations and the peculiar velocities
produced by density perturbations will be quite different from the
situation considered here. On scales slightly larger than the Jeans
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Figure 4. The angular power spectrum of the CMBR brightness fluctuations
at various redshifts with and without the effects of peculiar velocities.
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lengthscale (2π/k J) the density fluctuations are mildly non-linear
with rms values in the range 0.7 > σ > 0.1, and the Z’eldovich
approximation may give a better description (e.g. Hui & Gnedin
1997).

The low-frequency cut-off imposed by the Earth’s ionosphere
restricts observations to frequencies more than ∼10 –20 MHz. Ex-
tracting the H I signal from the contaminations arising from the
Galactic and extragalactic foregrounds is going to be a big challenge.
The foregrounds are mostly continuum sources whose contribution
varies slowly with frequency. It will be necessary to combine both
the angular fluctuations and the frequency domain properties of
the CMBR brightness temperature fluctuations in order to detect it
(e.g. Shaver et al. 1999; Di Matteo et al. 2002; Oh & Mack 2003;
Di Matteo, Ciardi & Miniata 2004).
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