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1 Introduction

It is remarkable how much physics can sometimes be derived from just a few basic prin-

ciples. For example, the form of all consistent particle interactions is a nearly inevitable

consequence of the twin pillars of quantum mechanics and special relativity. This is made

manifest in the “S-matrix bootstrap,” where simple self-consistency requirements (such as

Lorentz symmetry, locality and causality) completely fix the analytic structure of tree-level

scattering amplitudes. Recently, a similar bootstrap philosophy was applied to cosmological

correlation functions [1] (see also [2–7]). Working under the lamppost of slow-roll inflation

with weak couplings to extra massive particles, this “cosmological bootstrap” allowed for

a complete classification of all scalar three- and four-point functions at tree level.

The standard approach to computing inflationary correlation functions involves follow-

ing the time-evolution of fields during inflation. From this viewpoint, locality is a funda-

mental input, and the interactions between particles lead to complicated time integrals that

encode the manifestly local time evolution. The outputs of this procedure are late-time

correlation functions that live on the (spacelike) future boundary of de Sitter space. These

correlation functions are encoded in the statistics of late-time cosmological observables,

and so form the fundamental observable output of inflation. The bootstrap philosophy is

to focus on these final observable quantities and construct them directly, granting primacy

to principles aside from manifest locality. In particular, the cosmological bootstrap exploits

the approximate de Sitter symmetries — which act as conformal transformations on the

boundary [8–12] — along with consistency requirements on the singularity structure of

correlation functions to reconstruct the output of bulk time evolution without ever talking

about time. Correlation functions instead arise as solutions (with particular singularities)

of conformal Ward identities [1]. (See [13–35] for other studies on conformal correlators

in momentum space.) Although these solutions describe static boundary correlators, they

encode time-dependent processes in the bulk, including the production and decay of very

massive particles [12, 36–56].

One of the main insights of the bootstrap approach is the fact that all correlators can

be reduced to a unique building block — the de Sitter four-point function of conformally

coupled scalars, mediated by the exchange of a massive scalar. Solutions corresponding to

the exchange of particles with spin are obtained by applying a spin-raising operator, S, to

the scalar-exchange solution. Similarly, solutions for massless external fields are derived by

acting with a set of weight-raising operators, W. Finally, the de Sitter four-point functions

lead to inflationary three-point functions when one of the external legs is evaluated on

the time-dependent background (see figure 1). The derivation of these spin-raising and

weight-shifting operators in [1] was somewhat unsatisfactory, involving a combination of

bulk reasoning, boundary considerations, and educated guesswork. In this paper, we will

present a more systematic derivation of these operators (and their generalizations) using

tools of conformal field theory (CFT). This has the advantage of being purely intrinsic to

the boundary, along with placing these operators in a broader context, opening up new

avenues to the cosmological bootstrap [57].
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m2
= 2H2

S = 0

= W · S

Figure 1. Schematic illustration of the spin-raising and weight-shifting procedure studied in this

paper.

Given that late-time correlation functions in de Sitter space are conformally invariant,

it is natural to try to connect the study of cosmological correlators to CFT techniques.

However, most of our understanding of CFTs has been developed in position space, while

the natural habitat of cosmological correlators is Fourier space. If standard CFT results

could be translated to Fourier space, we would learn a great deal about the structure of

inflationary correlators. Moreover, the momentum-space approach can also be useful in

studying CFTs in Lorentzian signature [58–62]. Unfortunately, taking the direct Fourier

transform of position space CFT correlators is quite nontrivial. First of all, CFT correlators

are singular at coincident points and need to be renormalized before the result can be

Fourier transformed. Second, even after renormalization, the explicit Fourier transforms

are technically challenging. In practice, it turns out to be easier to solve the conformal

Ward identities directly in momentum space. However, even this approach quickly becomes

intractable for operators with spin. Fortunately, the weight-shifting approach provides a

more elegant way to proceed. This formalism allows us to generate new solutions to the

conformal Ward identities by acting with differential operators on an initial seed solution.

In this paper, we point out that the relevant spin-raising and weight-shifting operators

used in cosmology are equivalent to similar operators used in the CFT literature [63–65].

The latter are defined most naturally in embedding space [66–68]. We show that the

CFT weight-shifting operators are easily Fourier transformed, thereby bypassing the usual

challenge of relating position space and Fourier space. Moreover, we show that the lift to

embedding space provides an elegant way to derive and generalize the cosmological weight-

shifting operators found in [1]. This new viewpoint clarifies the fact that all inflationary

correlators can be obtained from a unique seed function corresponding to the exchange of a

scalar particle and streamlines its derivation from the boundary perspective. The weight-

shifting approach also makes it clear how the spins of the external fields can be raised to

obtain spinning solutions to the conformal Ward identities. We will present the details in

a separate publication [57], where we show that inflationary tensor correlators can also be

obtained from scalar seeds.

Outline. The plan of the paper is as follows: in section 2, we recall a few relevant results

of the cosmological bootstrap [1]. In particular, we present the de Sitter four-point function

of conformally coupled scalars, arising from the tree-exchange of a generic scalar. This so-

lution is the essential building block from which all other correlators will be derived via the

action of suitable differential operators. In section 3, we briefly review the embedding space
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formalism for CFTs. Experts may skip this part without loss of continuity. In section 4,

we work in embedding space to derive an operator which raises the spin of the particles

exchanged in the correlators introduced in section 2, and then translate this operator to

Fourier space to obtain spin-exchange solutions. In section 5, we use the formalism to derive

a weight-raising operator that transforms the four-point functions of conformally coupled

scalars to those of massless scalars. We then show that the soft limit of these correlators

with weakly perturbed scaling dimension leads to inflationary three-point functions. This

allows for a compact expression for the inflationary bispectrum coming from the exchange of

massive particles. We also present new results for the exchange of (partially) massless fields

of arbitrary spin. Our conclusions are presented in section 6. The appendices contain addi-

tional technical details and derivations: in appendix A, we provide a systematic derivation

of weight-shifting operators in embedding space. In appendix B, we transform these opera-

tors to Fourier space. In appendix C, we present explicit results for the polarization tensors

used in the main text. Finally, appendix D collects important variables used in this work.

Notation and conventions. Unless stated otherwise, we will follow closely the notation

and conventions used in [1]. Generic scalar operators (of dimension ∆) will be denoted by

O. We will use ϕ and φ for operators with ∆ = 2 and ∆ = 3, respectively. When we

need to refer to the corresponding bulk fields, we will use ϕ and φ. The bulk de Sitter

coordinates are xµ and the coordinates on the spatial boundary are xi, with conjugate

momentum ki. The boundary has d spatial dimensions, and we often specialize to d = 3,

corresponding to the four-dimensional de Sitter space that seems to be relevant for our

universe. Our convention for the d-dimensional Fourier transform is

O(~x) =

∫

ddk

(2π)d
e−i~k·~xO~k

. (1.1)

The coordinates in the embedding space formalism are XM , with M = −1, 0, 1, . . . , d, and

the corresponding lightcone coordinates are X± = X0 ±X−1.

2 De Sitter four-point functions

In order to make our discussion self-contained, we begin with a brief review of relevant

results from [1], focusing on the bare minimum of background material required for our

present purposes. All derivations and further details can be found in [1].

2.1 Boundary correlators

In the standard cosmological model, all cosmological correlators can be traced back to the

end of inflation (or the beginning of the hot Big Bang), where they reside on the spacelike

boundary of an approximate de Sitter spacetime (see figure 2). The time dependence of bulk

interactions is encoded in the momentum dependence of these boundary correlators. In par-

ticular, massive particles can be produced and decay during inflation, leaving their imprint

in the nontrivial correlations on the boundary. In the case of single-field slow-roll inflation

with sufficiently weak couplings to additional massive particles, the inflationary correlators

– 4 –
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Figure 2. Illustration of particle creation and decay producing correlations on the future boundary

of the de Sitter spacetime. The momentum dependence of the boundary correlators encodes the

time dependence of the processes in the bulk.

are strongly constrained by the conformal symmetry that the boundary theory inherits from

the isometries of the bulk quasi-de Sitter spacetime. This is a promising arena to attempt

to directly construct — or bootstrap — correlators on the future boundary by exploiting

the large degree of symmetry and the expected analytic properties of tree-level processes.

It is useful to briefly review how the symmetry constraints on late-time correlation

functions arise in inflationary cosmology. The setting is de Sitter space in the inflationary

slicing, which is described by the line element

ds2 =
1

H2η2

(

−dη2 + d~x2
)

. (2.1)

This spacetime has 10 Killing vectors associated with the following generators

Pi = ∂i , D = −η∂η − xi∂i ,

Jij = xi∂j − xj∂i , Ki = 2xiη∂η +
(

2xjxi + (η2 − x2)δj
i

)

∂j .
(2.2)

These transformations include translations (Pi) and rotations (Jij), which preserve the

spatial slices, as well as dilations (D) and special conformal transformations (Ki). We will

assume that any additional matter fields only weakly break these de Sitter symmetries.

This implies that the late-time correlation functions of fields will transform like correlators

in a CFT. To see how these constraints arise, let us consider the evolution of a scalar field

in de Sitter space. At late times, a scalar field behaves as

σ(~x, η → 0) = σ+(~x) η∆+ + σ−(~x) η∆− . (2.3)

We see that the field has two characteristic fall-offs, whose time dependence is fixed by the

mass of the field, m, through the relation

∆± =
3

2
±
√

9

4
− m2

H2
. (2.4)
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From this late-time scaling, we infer that the coefficient functions in (2.3) must transform as

Piσ± = ∂iσ± , Dσ± = −
(

∆± + xi∂i

)

σ± ,

Jijσ± = (xi∂j − xj∂i)σ± , Kiσ± =
(

2xi∆± + 2xix
j∂j − x2∂i

)

σ± ,
(2.5)

where ∆± is the weight of the operator late-time field coefficient σ±. This implies that

correlation functions of σ± — and hence late-time correlation functions of fields in de Sitter

space — obey the same kinematic constraints as conformal correlators. This allows us to

leverage insights from the study of CFT to learn about inflationary correlators.

We will be interested in the correlation functions of the late-time spatial profiles of fields

in de Sitter space, focusing on the case of “light fields,” for which m2/H2 ≤ 9/4. For these

fields, the dominant fall-off at late times is given by ∆−, so that the physically interesting

correlation functions are those of σ−. However, in practice we will compute the correlation

functions of σ+ because these take a slightly simpler form. These correlators are related to

those of σ− by a shadow transform, which in Fourier space amounts to a simple multiplica-

tion by factors of power spectra.1 We will denote the conformal weight of the dual boundary

operators by ∆ ≡ ∆+. The cases of primary interest in this paper are conformally coupled

scalars (with m2 = 2H2 or ∆ = 2) and massless scalars (with ∆ = 3). Though we restrict

our attention to light external fields, we will allow internal fields of arbitrary weights.

In the cosmological context we are interested in correlation functions in Fourier space,

in order to take advantage of the translational invariance of the spatial hypersurfaces.

We should therefore translate the constraints coming from de Sitter/conformal invariance

into momentum space. To illustrate this, let us consider a four-point function of scalar

operators, which in momentum space takes the form

〈O1O2O3O4〉 = F (k1, k2, k3, k4, s, t) × (2π)3δ3(~k1 + · · · + ~k4) , (2.6)

where On ≡ On(~kn) are generic operators of scaling dimensions ∆n. Invariance under

spatial rotations and translations implies that the four-point function F is a function of six

independent variables, which we take to be kn ≡ |~kn|, s ≡ |~k1 +~k2| and t ≡ |~k2 +~k3|. To be

invariant under dilations (D) and special conformal transformations (SCTs), the function

F must satisfy the following conformal Ward identities

D : 0 =

[

9 −
4
∑

n=1

(

∆n − kj
n

∂

∂kj
n

)

]

F , (2.7)

SCT : 0 =
4
∑

n=1

[

(∆n − 3)
∂

∂kn,i
− kj

n

∂2

∂kj
nkn,i

+
ki

n

2

∂2

∂kj
nkn,j

]

F , (2.8)

which are the momentum-space equivalents of the constraints in (2.5). To satisfy (2.7) it

is sufficient to write

F = s∆t−9F̂ , (2.9)

1Conformal primary operators of the same spin that are related by ∆̃ = d − ∆ are so-called shadows of

each other. These operators generate equivalent representations of the conformal group and can be mapped

to each other by means of the shadow transform. For scalar operators in momentum space, the shadow trans-

form is implemented by the map O∆̃(~k) = 〈O∆̃(~k)O∆̃(−~k)〉 O∆(~k). See appendix A of [72] for more details.
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where ∆t ≡ ∑

n ∆n and F̂ is a dimensionless function. The form of F̂ will be determined

by the remaining Ward identity (2.8) and the singularities of tree-level processes.

Once we have understood that cosmological correlation functions obey these symmetry

constraints, we can cast aside the bulk interpretation of these correlators as arising from lo-

cal causal and unitary time evolution, and attempt to reconstruct the corresponding correla-

tion functions by directly solving (2.8). This is the approach that we will take in this paper:

the goal is to provide a systematic purely boundary derivation and interpretation of corre-

lation functions corresponding to bulk tree-level exchange of massive particles. This is both

practically useful — it will allow us to characterize slow-roll inflationary three-point func-

tions in a completely universal way — as well as conceptually interesting, as it provides in-

sight into how bulk time evolution is encoded in the (static) boundary correlation functions.

2.2 Scalar seed functions

As we alluded to before, a case of special interest is the four-point function of the operator

dual to conformally coupled scalars ϕ (with ∆ = 2), mediated by the tree-exchange of

massive scalars σ. In this case the kinematics further simplifies, and the four-point function

can be written as a function of only two kinematic variables. In particular, the s-channel

contribution takes the form

F = s−1F̂ (u, v) , where

u ≡ s

k1 + k2
,

v ≡ s

k3 + k4
.

(2.10)

The ansatz (2.10) automatically satisfies two of the three equations contained in (2.8). After

changing momentum variables, the remaining constraint equation can be written as [1]

(∆u − ∆v)F̂ = 0 , (2.11)

where ∆u ≡ u2(1 − u2)∂2
u − 2u3∂u. In general these equations have many solutions, but

tree-level bulk physics is captured by solutions with a particular singularity structure.

In [1], the solutions of (2.11) were classified, for both contact interactions and tree-level

exchange of massive particles. A large class of contact solutions is extremely simple, and

can be written as [12]

Ĉn = ∆n
uĈ0 , where Ĉ0 =

uv

u+ v
. (2.12)

The seed contact solution Ĉ0 arises from a ϕ4 interaction in the bulk. Repeated application

of the operator ∆u produces the additional solutions Ĉn corresponding to higher-derivative

interactions in the bulk.2

2An important caveat is that this is not the most general possible contact solution. The contact solutions

shown are the ones that come from integrating out scalar particles at tree level. Integrating out higher-

spin particles can produce contact solutions with dependence on additional kinematic invariants. These

additional contact solutions can be generated by acting with the weight-shifting operators introduced in

section 4.2 on the contact solutions in (2.12).

– 7 –
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In the case of tree exchange, the partial differential equation (2.11) can be written as

two ordinary differential equations in u and v separately:

(∆u +M2)F̂ = Ĉn ,

(∆v +M2)F̂ = Ĉn ,
(2.13)

where Ĉn is one of the contact solutions in (2.12) and M2 ≡ (1 − ∆σ)(∆σ − 2), which can

be related to the mass of the exchanged particle via (2.4).3 The replacement of the PDE

in (2.11) with two ODEs in (2.13) can be understood as a manifestation of locality at tree

level. In particular, these differential equations can be derived from the bulk perspective

using the equation of motion that the Green’s function for the exchanged field obeys [1].

The equations (2.13) are second-order ordinary differential equations, so they require

two boundary conditions. It is natural to impose boundary conditions at the singular

points of the differential equation, u = 0,±1. It is easy to see that a generic solution has

the following logarithmic singularities

lim
u→+1

F̂ ∝ log(1 − u) , (2.14)

lim
u,v→−1

F̂ ∝ log(1 + u) log(1 + v) . (2.15)

The limit u → 1 corresponds to a collinear configuration where the momenta ~k1 and ~k2

align. In the standard Bunch-Davies vacuum, this limit should be regular. We therefore

impose the absence of the singularity at u = 1 as one boundary condition. The limit

u, v → −1 cannot be reached for real momenta, but corresponds to an analytic continuation

in the complex plane. In this limit, the four-point function factorizes into a product of

three-particle amplitudes. The correct normalization of this factorization channel (which

depends on whether we are computing the wavefunction or the correlator) provides a second

boundary condition. These two boundary conditions uniquely fix the solutions to (2.13)

given the form of the contact solutions Ĉn.

The final singularity as u → 0 is physically the most interesting; in this limit the

correlation function displays a characteristic non-analyticity

lim
u→0

F̂ ∝ u
1
2

±iµ , µ ≡
√

m2

H2
− 9

4
, (2.16)

where the parameter µ is set by the mass m of the exchanged particle. The limit u → 0 is the

so-called collapsed limit — where two of the momenta nearly add to zero — and the charac-

teristic ringing as we approach this limit is imprinted in inflationary three-point functions,

providing a sharp way to test for the presence of these heavy states in observables. The de-

tailed form of the solutions F̂ can be found in [1], but won’t be needed in our analysis below.

3Explicitly, we have M2 = m2/H2 − 2, where m is the mass of the exchanged field in the bulk. The

coupling to gravity is such that a massless scalar corresponds to m2 = 0. Note that, in the limit M → ∞,

equation (2.13) has a formal solution as a series of contact terms of the form (2.12), which is the EFT

expansion arising from integrating out a heavy particle.

– 8 –
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2.3 Spin-exchange solutions

For scalar exchange, the correlators only depended on the variables u, v (along with an over-

all power of s), but when we consider the exchange of spinning particles, the kinematics are

more complicated. The four-point function will depend on the following additional variables

α̂ ≡ k1 − k2

s
, β̂ ≡ k3 − k4

s
, τ̂ ≡ (~k1 − ~k2) · (~k3 − ~k4)

s2
. (2.17)

To determine the spin-exchange solutions, one approach is to re-solve (2.8), allowing for

an additional dependence of F̂ on α̂, β̂ and τ̂ . This quickly becomes very complicated and

cumbersome. Fortunately, it isn’t necessary to solve the Ward identities for every case sep-

arately. Instead, all spin-exchange solutions can be generated by acting with spin-raising

operators on the scalar-exchange solutions. Written as a sum over helicity contributions,

the spin-S exchange solutions take the following form [1]

F̂ (S) =
S
∑

m=0

ΠS,mD(S,m)
uv F̂ (0) , (2.18)

where we have defined F̂ (0) ≡ F̂ (u, v). In this paper, we use a group-theoretic approach

inspired by known tools of conformal field theory [63, 64, 66–68] to provide a new and more

elegant derivation of the relevant spin-raising operators D(S,m)
uv and polarization sums ΠS,m

(see section 4).

2.4 Inflationary correlators

Our real interest for applications to inflation is in massless external fields φ (with ∆ = 3),

and not conformally coupled fields ϕ (with ∆ = 2). In [1], the dimensions/weights of the

external fields were raised by acting with suitable differential operators on the solutions

for conformally coupled scalars. While this got the job done, the treatment in [1] was

unsatisfactory in a number of ways: i ) different weight-shifting operators had to be found

for each spin-exchange solution separately and ii ) their derivation wasn’t very systematic,

so that explicit results were only shown up to spin two. In this paper, we will provide a

much simpler and more unified derivation of a single weight-raising operator (see section 5).

When this operator acts on a general spin-exchange solution (2.18), it straightforwardly

reproduces the results in [1] for low spins and automatically generalizes them to arbitrary

spin. Weakly perturbing the scaling dimension appearing in the weight-shifting operator,

∆4 = 2 → ∆4 = 2 − ǫ, where ǫ is the slow-roll parameter, and taking the soft limit

k4 → 0 provides an elegant way to obtain inflationary three-point functions for arbitrary

spin exchange. The source functions appearing in these inflationary correlators will be

given explicitly for any mass and spin of the exchange field.

3 CFTs in embedding space

We are interested in exploring the consequences of conformal symmetry on inflationary

correlators, so it is useful to introduce some technical machinery to deal with conformal

– 9 –
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Figure 3. Illustration of the action of Lorentz transformations (and re-scalings) on points living

on the Euclidean section of the lightcone in embedding space.

symmetry in a simple way. Conformal transformations are complicated nonlinear trans-

formations and become particularly involved for spinning operators. At the same time, it

is easy to show that the conformal algebra on R
d is isomorphic to the algebra of Lorentz

transformations on R
1,d+1. This suggests that a suitable embedding of R

d into R
1,d+1,

should make conformal transformations as simple as Lorentz transformations. The em-

bedding space formalism of conformal field theory goes back to Dirac [66], and has found

many powerful applications in the recent CFT literature, e.g. [63, 64]. As we will see, the

formalism is particularly well-suited to describe fields with spin.

In this section, we provide a pedagogical review of CFTs in embedding space, based

mostly on the excellent treatment in [69]. Experts may skip directly to section 4, where

we apply this formalism to derive the weight-shifting operators of interest in cosmology.

3.1 Projective null cone

We begin by describing the embedding of d-dimensional Euclidean space as a slice through

a higher-dimensional lightcone. Consider d+ 2 dimensional Minkowski space, with coordi-

nates

XM , M = −1, 0, 1, . . . , d , (3.1)

where Lorentz transformations act as

XM → ΛM
NX

N . (3.2)

The goal is to find an embedding of Rd into R
1,d+1 on which these Lorentz transformations

become conformal transformations. We first restrict ourselves to points living on the null

cone in the embedding space:

X2 = 0 . (3.3)

This condition is Lorentz invariant and removes one of the coordinates in (3.1). To remove a

second coordinate and obtain a d-dimensional subspace, we define a section of the lightcone

X+ = f(Xi), where X± ≡ X0 ±X−1 are lightcone coordinates and the coordinates Xi are

identified with the coordinates xi on R
d.

We would like to understand how Lorentz transformations act on points living on the

section. In particular, we want to determine for which choice of embedding function f(Xi)

– 10 –



J
H
E
P
1
2
(
2
0
2
0
)
2
0
4

these transformations become conformal transformations. The action of the Lorentz group

on the section is illustrated in figure 3. Each point on the section defines a lightray by

connecting the point to the origin. Let dx be the infinitesimal interval between two nearby

points on the section. The induced metric on the section relates this to the interval ds2.

Since the Lorentz transformation (3.2) is an isometry, it will not change ds2. However, by

itself, the Lorentz transformation will move the interval off the section. To map it back

onto the section, we need to perform an additional rescaling

XM → λ(X)XM . (3.4)

Under the combined action of (3.2) and (3.4), the induced metric on the section transforms

as [69]

ds2 → Ω2(x)ds2 , with Ω(x) = λ(X) . (3.5)

This corresponds to a conformal transformation on R
d if ds2 is flat. One can show that

the latter requirement implies f(Xi) = const. Without loss of generality, we can choose

X+ = 1, so that the Euclidean section of the lightcone is

XM = (X+, X−, Xi) = (1, x2, xi) . (3.6)

As we will show next, correlators in the d-dimensional Euclidean space are lifted to homo-

geneous functions on the lightcone of the (d+ 2)-dimensional Minkowski spacetime, where

the conformal group acts as the Lorentz group.

3.2 Tensors in embedding space

Consider a symmetric, traceless and transverse tensor OM1...MS
defined on the cone X2 = 0.

Under the rescaling X → λX, the tensor transforms as

OM1...MS
(λX) = λ−∆OM1...MS

(X) , (3.7)

i.e. it is a homogeneous function of degree ∆. This implies that the tensor is known

everywhere on the cone if it is known on the section (3.6). The corresponding tensor on

R
d is then defined through the following projection

Oi1i2...(x) = OM1M2...(X)
∂XM1

∂xi1

∂XM2

∂xi2
· · · , ∂XM

∂xi
= (0, 2xi, δ

j
i ) . (3.8)

It is straightforward to show that the scaling transformation (3.7) for OM1M2...(X) implies

a conformal transformation for Oi1i2...(x).

Contracting the tensors with auxiliary null polarization vectors zi and ZM , we can

write them in index-free notation

O(S)(x, z) = Oi1···iS
(x) zi1 · · · ziS , (3.9)

O(S)(X,Z) = OM1···MS
(X)ZM1 · · ·ZMS . (3.10)

In embedding space, any symmetric traceless tensor operator can therefore be written as a

homogeneous function O(S)(X,Z) of the coordinates X,Z ∈ R
d+1,1 such that X2 = X ·Z =
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Z2 = 0, with “gauge invariance” under Z → Z + βX. Together with the scaling (3.7), this

gauge invariance removes exactly two components per index from the tensor in embedding

space, so its independent components match with those of the tensor on the Euclidean

section. Under rescalings of the embedding coordinates, we have

O(S)(λX,αZ) = λ−∆αSO(S)(X,Z) , (3.11)

where ∆, S are the dimension and spin of O(S). Collectively, we refer to [∆, S ] as the weight

of the operator. Conformal correlators in embedding space are simply the most general

Lorentz-invariant expressions with the correct scaling behavior. The projection of these

functions onto the Euclidean section defines the space of conformally-invariant correlation

functions on R
d.

3.3 Conformal correlators

To illustrate the power of the embedding space formalism, we present a few examples of

conformal correlators.

Consider first a set of scalar primary operators Oa ≡ Oa(Xa), of dimension ∆a. Cor-

relators of Oa can only depend on the Lorentz-invariant inner products

Xab ≡ Xa ·Xb , (3.12)

since X2
a = 0 on the lightcone. The scaling in (3.11) then uniquely fixes the two- and

three-point functions of the operators to be

〈O1O2〉 =
1

X∆1
12

δ∆1∆2
, (3.13)

〈O1O2O3〉 =
c123

X
(∆1+∆2−∆3)/2
12 X

(∆2+∆3−∆1)/2
23 X

(∆3+∆1−∆2)/2
31

, (3.14)

which reproduces the classic results in real space [70], if we use that Xab = −1
2(xa − xb)

2.

Similarly, the four-point function of identical scalars, of dimensions ∆a ≡ ∆, is

〈O1O2O3O4〉 =
1

X∆
12X

∆
34

g(U, V ) ,

U ≡ X12X34

X13X24
,

V ≡ X14X32

X13X24
,

(3.15)

where g is an arbitrary function of the cross ratios U and V .

The real benefit of going to embedding space becomes most manifest for operators

with spin. For example, the two-point function of spin-S operators (of dimension ∆) takes

the form

〈O(S)
1 O

(S)
2 〉 =

(

Z1 · Z2 − Z1 ·X2 Z2 ·X1

X12

)S

〈O1O2〉 , (3.16)

where 〈O1O2〉 is given by (3.13) and the relative coefficient in the prefactor is fixed by

transversality. Similarly, the three-point function of two scalars (with dimensions ∆1 and

∆2) and a spin-S operator (with dimension ∆3) is

〈O1O2O
(S)
3 〉 =

(

(Z3 ·X1)(X2 ·X3) − (Z3 ·X2)(X1 ·X3)

(X12X13X23)1/2

)S

〈O1O2O3〉 , (3.17)
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where 〈O1O2O3〉 is given by (3.14). These simple examples already illustrate the power of

the embedding space formalism. The above results are simply the most general Lorentz-

invariant functions that are consistent with the scaling symmetry (3.11) and the transver-

sality of the operators. More general spinning correlators are obtained in the same way and

can be written in terms of a simple basis of tensor structures (see e.g. [63, 68]), although

this will not be needed in this paper. For specific weights, the operators become conserved

and the correlators satisfy additional constraints [68, 71]. We will study these cases in a

separate publication [57].

In [63], conformally-invariant spin-S1-spin-S2-spin-S three-point functions were written

as derivatives of scalar-scalar-spin-S three-point functions:

〈O(S1)
1 O

(S2)
2 O

(S)
3 〉 = D 〈O1O2O

(S)
3 〉 , (3.18)

where the differential operator D can be written in terms of spin-raising operators acting

on O1 and O2. Relevant differential operators in this construction are

D11 ≡ (X1 ·X2)Z1 · ∂

∂X2
−(Z1 ·X2)X1 · ∂

∂X2
−(Z1 ·Z2)X1 · ∂

∂Z2
+(X1 ·Z2)Z1 · ∂

∂Z2
, (3.19)

D12 ≡ (X1 ·X2)Z1 · ∂

∂X1
−(Z1 ·X2)X1 · ∂

∂X1
+(Z1 ·X2)Z1 · ∂

∂Z1
, (3.20)

as well as two more operators with 1 and 2 interchanged. Acting with Dab on a correlator

increases the spin at point a by one unit and decreases the dimension at point b by one

unit.4 In appendix A, these weight-shifting operators, and others, will be discussed in more

detail. We will now show how these operators can be utilized to raise the internal spin of

the exchanged particles in cosmological correlation functions.

4 Exchange of spinning particles

A remarkable feature of the cosmological bootstrap is the fact that all spin-exchange solu-

tions can be obtained from the scalar-exchange solution to (2.13) through the action of a

spin-raising operator :

σµ1...µS
σ

= S

In this section, we will use the embedding space formalism to provide a simple derivation

of the relevant spin-raising operator S. This operator is an example of a larger class of

weight-shifting operators, which we discuss in more detail in appendix A.

4This is easy to see by counting factors of X and Z. The detailed form of these operators is fixed by

demanding that their action preserves the Euclidean section of the projective lightcone.
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4.1 Spin-raising operator

Ultimately, our goal is to raise the spin of exchanged particles in the scalar four-point

functions. To understand the origin of the relevant spin-raising operator, however, it is

helpful to first consider raising the spin of an operator in a three-point function. Consider,

for concreteness, the correlator of two scalar operators ϕ (with dimension ∆ϕ = 2) and a

generic scalar operator O (with dimension ∆3). Using the expression for a general three-

point function (3.14), specialized to this case, we have

〈ϕϕO〉 = (X4−∆3
12 X∆3

23 X
∆3
31 )−1/2 . (4.1)

Acting on this correlator with the operator defined in (3.20), we find

〈ϕϕ̃O(1)〉 = − 2

∆3
D32 〈ϕϕO〉 , (4.2)

where ϕ̃ is the shadow of ϕ, which has dimension ∆ϕ̃ = d− ∆ϕ = 1 (for d = 3), and O(1) is

a spin-1 operator. The relation in (4.2) is easily confirmed using the results of section 3.3.

As advertised, the operator D32 raises the spin of the operator at position 3 by one unit

and lowers the dimension at position 2 by one unit. It is straightforward to translate the

operator D32 from embedding space to flat space and then write it in momentum space,

where it can be applied to cosmological correlators. Applying these transformations to the

operator in (3.20), we find (see appendix B)

D32 = zi
3

[

(∆3 + S3 − 1)Ki
32 +

1

2
ki

3K
j
32K

j
32

]

, with Ki
32 ≡ ∂ki

3
− ∂ki

2
. (4.3)

Finally, we preform a shadow transform to raise the dimension of the operator ϕ̃ at position

2. In Fourier space, this simply amounts to multiplication by k2, so that

〈ϕϕO(1)〉 = k2〈ϕϕ̃O(1)〉 = − 2

∆3
k2D32 〈ϕϕO〉 ≡ − 2

∆3
iS12〈ϕϕO〉 , (4.4)

where we have defined the spin-raising operator S12 that implements the combined action

of (4.3) and the shadow transform. For our future uses, it is convenient to use momentum

conservation to write the differential operator (4.3) in terms of ~k1 and ~k2, rather than ~k3.

The differential operator then acts on the fields at positions 1 and 2, which explains the

subscript of S12. Repeated application of iS12 = k2D32 would raise the spin further.

4.2 Raising internal spin

We can use the operator S12 to raise the spin of the exchanged field using the scalar-

exchange solution as a seed. We first show how this works in detail for spins 1 and 2 and

then discuss the generalization to arbitrary spin.

4.2.1 Spin-1 exchange

We first consider the mapping of the scalar-exchange solution to a spin-1 exchange so-

lution. To understand which spin-raising operator to use, it is helpful to first consider

– 14 –



J
H
E
P
1
2
(
2
0
2
0
)
2
0
4

the disconnected contribution to the four-point function coming from spin-1 exchange (see

e.g. appendix A of [1]):

〈ϕϕϕϕ〉(1)
d =

〈ϕ~k1
ϕ~k2

Oi
−~s 〉(Π1)ij〈Oj

~s ϕ~k3
ϕ~k4

〉
〈O~s O−~s 〉 , (4.5)

where the symmetric traceless tensor (Π1)ij contains the polarization structure of the

inverse two-point function of the exchanged field:5

〈Oi
~sO

j
−~s 〉−1 ∝ (Π1)ij〈O~s O−~s 〉−1 . (4.6)

Using the spin-raising operator in (4.4), the expression (4.5) can be written as

〈ϕϕϕϕ〉(1)
d = −(Π1)ij

Si
12〈ϕ~k1

ϕ~k2
O−~s 〉 Sj

34〈O~s ϕ~k3
ϕ~k4

〉
〈O~sO−~s 〉 , (4.7)

where O is a scalar operator of dimension ∆. From this, it is clear that the operator

(Π1)ij Si
12Sj

34 acting in the numerator raises the spin of the exchanged particle. Our goal

is to simplify this operator such that we can pull it outside and have it act on the total

disconnected correlator 〈ϕϕϕϕ〉(0)
d .

We start by simplifying the expression S12〈ϕϕO〉. Since the three-point function de-

pends only on the magnitudes of the momenta, we can write the operator in (4.4) as

Si
12 = (∆ − 1)ki

2

∂

∂k2
+k2s

i
[

(∆ − 2)
1

s

∂

∂s
− 1

k2

∂

∂k2
− 1

2

∂2

∂k2
2

− 1

2

∂2

∂s2
− (k̂2 · ŝ) ∂2

∂k2∂s

]

, (4.8)

where we have used ~s = ~k1 + ~k2, which is the momentum of the exchanged particle. Next,

we change variables from k1, k2 to

u =
s

k1 + k2
, α̂ =

k1 − k2

s
. (4.9)

In these variables, the scalar three-point function has an extremely simple functional de-

pendence [1]: 〈ϕϕO〉 = s∆−2f̂(u), so we can drop any derivatives with respect to α̂ and

derivatives with respect to s act simply on the polynomial prefactor. In simplifying the

answer it is convenient to use ∆uf̂(u) = (∆ − 1)(∆ − 2)f̂(u), where ∆u was defined be-

low (2.11). After some algebra, the operator (4.8) simplifies to

Si
12 =

∆ − 1

2s

[

αiu2∂u − siα̂(u∂u + ∆ − 2)
]

, (4.10)

where we have introduced ~α ≡ ~k1 − ~k2, for later convenience.6 Importantly, this operator

only involves derivatives with respect to u. Similar manipulations let us simplify the

operator S34. All we have to do is replace ~s by −~s, ~α by ~β = ~k3 −~k4 and u, α̂ by v, β̂. The

resulting operator will only contain derivatives with respect to v.

5Note that in Fourier space, the inverse of the two-point function is equivalent to the two-point function

of an operator with the shadow dimension (suitably normalized).
6The magnitude of this vector is not to be confused with α̂ = (k1 − k2)/s, i.e. |~α|/s 6= α̂.
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Having simplified the differential operators, we now turn our attention to the polar-

ization structure of the exchanged operator. For exchange of an operator of weight ∆, the

spin-1 polarization tensor is (see appendix C for a derivation)

(Π1)ij = πij +
1 − ∆

∆ − 2
ŝiŝj , (4.11)

where πij ≡ δij − ŝiŝj is a transverse projector. Substituting (4.10) and (4.11) into (4.7),

we see that we can pull the differential operators outside to obtain

〈ϕϕϕϕ〉(1)
d ∝ (Π1,1Duv + Π1,0∆u) 〈ϕϕϕϕ〉(0)

d , (4.12)

where we have defined the differential operator Duv ≡ (uv)2∂u∂v and the polarization

sums Π1,1 ≡ αiπijβ
j/s2 and Π1,0 ≡ α̂β̂. The differential operator that raises the spin of

the exchanged particle from zero to one therefore is

S(1)
uv ≡ Π1,1Duv + Π1,0∆u , (4.13)

which is precisely the result found in [1].

Thus far, we have only discussed the disconnected contribution to the four-point func-

tion arising from the exchange of a single scalar operator of general conformal weight ∆.

To relate this to the most general exchange four-point function, we note that any four-

point function can be decomposed as a sum over the exchange of various states of different

conformal weights, but fixed spin. Moreover, since the spin-raising operator S(1)
uv in (4.13)

does not depend on conformal dimension, acting with it on the complete scalar exchange

solution F̂ (0) produces the complete spin-1 exchange solution F̂ (1):

F̂ (1) = S(1)
uv F̂

(0) . (4.14)

Indeed, this relation is precisely what was found by other means in [1].

4.2.2 Spin-2 exchange

We can repeat the same exercise for spin-2 exchange, which is algebraically more involved,

but conceptually the same. In this case, the disconnected part of the four-point function is

〈ϕϕϕϕ〉(2)
d =

〈ϕ~k1
ϕ~k2

Oij
−~s 〉(Π2)ij,lm(ŝ)〈Olm

~s ϕ~k3
ϕ~k4

〉
〈O~s O−~s 〉 , (4.15)

where (Π2)ij,lm is the spin-2 polarization tensor. Like in the spin-1 case, we can write this

in terms of the spin-raising operator (4.4) acting on scalar three-point functions

〈ϕϕϕϕ〉(2)
d = (Π2)ij,lm

(

S2
12

)ij 〈ϕ~k1
ϕ~k2

O−~s 〉
(

S2
34

)lm 〈O~s ϕ~k3
ϕ~k4

〉
〈O~s O−~s 〉 . (4.16)

As before, we want to write the spin-raising operators in such way that we can act with

them on the entire disconnected correlator. This proceeds very similarly to the spin-1 case.
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We first focus on S2
12〈ϕϕO〉. Changing variables to u, α̂, ~α and eliminating s-derivatives,

we can write the spin-raising operator as

(

S2
12

)ij
∝ ∆(∆ − 1)

s2

[

δijs2
[

3(1 − α̂2)u∂u + (∆ − 2)(∆ − 3α̂2)
]

− 3αiαju2∂u(u2∂u) + 3(αisj + siαj)uα̂
[

∆ − 3 + ∂u(u2∂u)
]

(4.17)

− 3sisj
(

∆ − 2 + u∂u + α̂2(∆ − 2)(∆ − 4) + α̂2(2∆ − 5)u∂u + α̂2u2∂2
u

)

]

,

where again all derivatives are only with respect to u. As in the spin-1 case, we can get S2
34

from the replacement {~s, u, α̂, ~α} 7→ {−~s, v, β̂, ~β}. Importantly, these differential operators

again have no s-derivatives, so we can pull them outside to act on the full disconnected

correlator 〈ϕϕϕϕ〉(0)
d .

Next, we consider the spin-2 polarization structure, which is given by (see appendix C)

(Π2)ij,lm = (Π2,2)ij,lm − ∆

∆ − 3
(Π2,1)ij,lm +

∆(∆ − 1)

(∆ − 2)(∆ − 3)
(Π2,0)ij,lm , (4.18)

where we have defined the individual helicity components as

(Π2,2)ij
lm = π

(i
(lπ

j)
m) − 1

2
πijπlm ,

(Π2,1)ij
lm = 2 ŝ(iŝ(lπ

j)
m) ,

(Π2,0)ij
lm =

3

2

(

ŝiŝj − 1

3
δij
)(

ŝlŝm − 1

3
δlm

)

.

(4.19)

Combining these expressions together with the simplified expressions for S2
12 and S2

34, and

performing some algebra, then gives

〈ϕϕϕϕ〉(2)
d ∝

(

Π2,2D
2
uv + Π2,1Duv(∆u − 2) + Π2,0∆u(∆u − 2)

)

〈ϕϕϕϕ〉(0)
d , (4.20)

where we have defined the following polarization sums

Π2,2 ≡ 3

2s4
αiαj(Π2,2)ij

lmβ
lβm ,

Π2,1 ≡ 3

s2
α̂β̂ αiπijβ

j ,

Π2,0 ≡ 1

4
(1 − 3α̂2)(1 − 3β̂2) .

(4.21)

We have therefore found an operator that raises the spin of the exchanged particle from

zero to two:

S(2)
uv ≡ Π2,2D

2
uv + Π2,1Duv(∆u − 2) + Π2,0∆u(∆u − 2) . (4.22)

For the same reason as before, we can take this operator and apply it to the full connected

four-point function to obtain the massive spin-2 exchange solution

F̂ (2) = S(2)
uv F̂

(0) , (4.23)

which is the same result as in [1].
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4.2.3 Higher-spin exchange

The spin-raising procedure we have described is completely algorithmic and can therefore

easily be extended to arbitrary spin. In particular, the spin-S exchange solution can be

written schematically as

F̂ (S) = (ΠS)i1...iS , j1...jS

(

SS
12

)i1...iS
(

SS
34

)j1...jS

F̂ (0) , (4.24)

where SS
ab are the spin-S analogues of (4.10) and (4.17), (ΠS)i1..., j1... is the polarization

structure of the spin-S two-point function, and F̂ (0) is the same seed function as before.

It is instructive to write the spin-raising operator as a sum over the different helicity

components

F̂ (S) =
S
∑

m=0

ΠS,mD(S,m)
uv F̂ (0) , (4.25)

where the differential operators at each helicity m are given by

D(S,m)
uv = Dm

uv

S−m
∏

j=1

(

∆u − (S − j)(S − j + 1)
)

. (4.26)

The polarization sums appearing in (4.25) are presented in detail in appendix C. Special-

izing to d = 3 dimensions, they can be written as

ΠS,m = (2 − δm0)(−L̂)m cos(mψ)P̃m
S (α̂)P̃−m

S (β̂) , (4.27)

where P̃m
S (x) ≡ (1 − x2)−|m|/2Pm

S (x) is a modified version of the associated Legendre

polynomial Pm
S (x), and ψ is the angle between k̂1 and k̂3 on the plane perpendicular to ŝ,

given by

cosψ =
cos γ − cos θ1 cos θ3

sin θ1 sin θ3
=
T̂

L̂
. (4.28)

In this expression, we have defined the angles cos γ ≡ k̂1 · k̂3, cos θa ≡ k̂a · ŝ, and the

kinematic invariants:

T̂ ≡ αiπ
ijβj

s2
= τ̂ +

α̂β̂

uv
, (4.29)

L̂2 ≡ αiπ
ijαj βkπ

klβl

s4
=

(1 − u2)(1 − v2)

u2v2
(1 − α̂2)(1 − β̂2) . (4.30)

The overall normalization was chosen such that Π0,0 = 1.

Note that some of the “angles” appearing in (4.27) are slightly unusual. However,

taking the collapsed limit, s → 0, the angular dependence simply becomes

lim
s→0

ΠS,m = (2 − δm0)(−uv)m cos(mψ)Pm
S (cos θ1)P−m

S (cos θ3) . (4.31)

Along with the momentum dependence (2.16), this angular dependence in the collapsed

limit is one of the hallmarks of the exchange of massive particles with spin. The character-

istic angular structure allows both mass and spin spectroscopy to be performed using the

collapsed limit of the four-point function (or the squeezed limit of the three-point function).
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5 Inflationary three-point functions

So far, we have presented results for the four-point functions of ∆ = 2 operators in de

Sitter space. To describe inflationary correlators, however, we further need to raise the

weight of the external operators to ∆ = 3, corresponding to a massless field in the bulk.

This field plays the role of the inflaton in conventional models of slow-roll inflation.

In [1], a set of weight-raising operators was introduced, relating the four-point func-

tions of conformally-coupled and massless scalars. The derivation of these operators, how-

ever, was somewhat unsatisfactory because they had to be found separately for each spin-

exchange solution F̂ (S). Explicit results were therefore only presented for low spins. In this

section, we will show that the embedding space formalism allows for very simple derivation

of a single weight-raising operator:

φφφ φ ϕϕϕ ϕ

= W

Acting with this operator W on the solutions F̂ (S) straightforwardly reproduces the results

in [1] for low spin, and automatically generalizes them to arbitrary spin.

Finally, we will show how to perturb our de Sitter four-point functions to obtain

inflationary three-point functions. We will present explicit formulas for the source functions

appearing in these inflationary correlators for any mass and spin of the exchanged field.

5.1 Weight-raising operator

Recall from (3.15) that, in embedding space, the most general four-point functions of a

∆ = 2 scalar operator, ϕ, and a ∆ = 3 scalar operator, φ, can be expressed as7

〈ϕϕϕϕ〉 =
1

X2
12X

2
34

f(U, V ) , (5.1)

〈φφφφ〉 =
1

X3
12X

3
34

h(U, V ) , (5.2)

where f and h are arbitrary functions of the cross ratios U and V . It is then straightforward

to show that the following relation holds

〈φφφφ〉 = W12W34 〈ϕϕϕϕ〉 , (5.3)

where we have defined

Wab ≡ ηMN

(

∂

∂XM
a

+
Xa,M

3

∂2

∂X2
a

)(

∂

∂XN
b

+
Xb,N

3

∂2

∂X2
b

)

. (5.4)

We see that the operator W12W34 acts as a weight-raising operator. The structure of the

operators in (5.4) acting on the points a and b can be understood as follows: to lower the

7Recently, the momentum space versions of these formulas have been presented in [33].
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conformal weight by one unit, one must reduce the overall power of X by one unit. This is

done by taking derivatives with respect to X. On the projective lightcone, there are only

two possible operators that reduce the weight by one, namely ∂/∂X and X∂2/∂X2. The

specific linear combination of these two operators in (5.4) is the unique combination that

preserves the Euclidean section. More details of the construction of these weight-shifting

operators can be found in appendix A.

5.2 Raising external weight

Our task now is simply to project (5.4) to position space and then transform the result

to momentum space, so that we can act on our solutions for 〈ϕϕϕϕ〉 to produce the

corresponding correlators 〈φφφφ〉. For ∆1 = ∆2 = 2, we find (see appendix B)

W12 =
(k1k2)2

2
~K12 · ~K12 − ~k1 · ~k2 −

(

k2
2
~k1 · ~K12 + 1 ↔ 2

)

, (5.5)

where ~K12 was defined as in (4.3). To apply the above weight-shifting operator to the spin-

exchange four-point function (4.25), it is helpful to express it in terms of the dimensionless

kinematic variables {s, u, v, α̂, β̂, τ̂}. Although this is conceptually straightforward, it is

algebraically somewhat involved. After some work, we can express (5.5) as

W12 =
s2

8u2

[

2(1 − u2(2 − α̂2) + 2u(2 − 3u2 + u4α̂2)∂u + u2(1 − u2)(1 − u2α̂2)∂2
u (5.6)

− 2α̂(1 − u2(2 − α̂2))∂α̂ + (1 − α̂2)(1 − u2α̂2)∂2
α̂ +

v
(

1 − α̂2u2
)2(

1 − v2(1 − β̂2)
)

u2v2
∂2

τ̂

− 4u(α̂u(2β̂ + α̂τ̂uv) + vτ̂) + 2(1 − α̂2u2)
(

u2(α̂β̂u+ vτ̂)∂u + (β̂ + α̂τ̂uv)∂α̂

)

uv
∂τ̂

]

,

where α̂, β̂ and τ̂ were defined in (2.17).

When acting on spinning correlators in momentum space, it will be useful to decom-

pose W12 into helicity components. We do this by commuting it through the polarization

structure as

W12

S
∑

m=0

ΠS,mD(S,m)
uv F̂ (0) =

s2

2

S
∑

m=0

ΠS,mU
(S,m)
12 D(S,m)

uv F̂ (0) , (5.7)

where U
(S,m)
12 is a dimensionless, helicity-decomposed weight-shifting operator. Using the

detailed form of the polarization structure (4.27), we find that this operator is given by

U
(S,m)
12 ≡

(

1 +
u(1 − α̂2u2)

4
∂u

)

(1 − u2)(1 + u∂u) − 2S

u2
+ (S +m)α̂

Pm
S−1(α̂)

Pm
S (α̂)

+
(S −m)[(S +m+ 1)u2α̂2 − S −m+ 3 + 2u(1 − u2α̂2)∂u]

4u2
,

(5.8)

where P 0
−1(α̂) = 1. This agrees with the results of [1] for S = 1, 2, but now holds for

all S. The corresponding operator U
(S,m)
34 is obtained from this expression by swapping the

kinematic variables {u, α̂} 7→ {v, β̂}.
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Using the operators U
(S,m)
12 and U

(S,m)
34 , the general spin-exchange four-point function

of massless scalars can then be written in the following form

F
(S)
∆=3 = s3

S
∑

m=0

ΠS,mU
(S,m)
12 U

(S,m)
34 D(S,m)

uv F̂
(0)
∆=2 . (5.9)

As we will show in the next section, only the longitudinal (m = 0) component con-

tributes to inflationary three-point functions. In that case, the operator in (5.8) can be

written in a slightly simplified form as

U
(S,0)
12 =

(

1 − u2α̂2
)(

∆u − (S − 1)(S + 2)
)

4u2
+

1 − u2

u
∂u+Sα̂

PS−1(α̂)

PS(α̂)
−1+(1−S)α̂2 . (5.10)

This operator acts on the longitudinal part of the ∆ = 2 solution,

F̂
(S)
L ≡ D(S,0)

uv F̂ (0) =
S
∏

j=1

(

∆u − (S − j)(S − j + 1)
)

F̂ (0) , (5.11)

where the operator D(S,0)
uv was defined in (4.26).

5.3 From de Sitter to inflation

Using the operator U
(S,m)
12 defined in (5.8), we are able to efficiently generate ∆ = 3 scalar

solutions to the conformal Ward identities. To apply these results to inflation, we must

take into account that the inflaton field is not exactly massless and has a time-dependent

expectation value φ(t). We assume that the associated breaking of the de Sitter symmetries

is weak and can be treated perturbatively. As explained in [17, 73], inflationary three-point

functions to leading order in slow-roll can then be obtained from our de Sitter four-point

functions by the following procedure:

• First, perturb the scaling dimensions of the external fields, ∆ = 3 7→ 3 − ǫ, where

ǫ ≪ 1 is the slow-roll parameter.

• Second, take the soft limit of one of the external momenta (which we take to be

k4 → 0), and expand the result in powers of ǫ.

From the bulk point of view, this amounts to evaluating one of the external fields φ

on its time-dependent background value φ(t). For shift-symmetric inflaton interactions,8

this gives a three-point vertex with a coupling proportional to φ̇. In slow-roll inflation,

this coupling is almost constant and can be related to the slow-roll parameter ǫ. This

allows us to identify the soft limit of the perturbed de Sitter four-point function with the

corresponding three-point function in slow-roll inflation.

8For non-derivatively coupled interactions, like φ4, the expectation values will generically contain loga-

rithms and not be de Sitter invariant. However, the breaking of de Sitter symmetry is mild and the violation

of de Sitter symmetry is given by local terms. These cases have been analyzed carefully in [1, 8, 24, 34].
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Since the weight-shifting operator changes the weight by precisely one unit, it makes

sense to perturb the conformal dimensions of the seed to ∆ = 2 − ǫ. To apply the weight-

raising operator to the perturbed seed correlator, we need the generalization of (5.4) to

general ∆:

Wab ≡ ηMN

(

∂

∂XM
a

+
Xa,M

2∆ − 1

∂2

∂X2
a

)(

∂

∂XN
b

+
Xb,N

2∆ − 1

∂2

∂X2
b

)

. (5.12)

Note that, due to the transversality of the polarization tensors, all of the polarization

sums (4.27) except the longitudinal component, m = 0, vanish in the soft limit. This is

easily seen from the L̂ dependence of (4.27), which vanishes as u, α̂ → 1 (or v, β̂ → 1).

Repeating the derivation in section 5.2 for ∆ = 2 − ǫ, and expanding for small ǫ, we obtain

the following weight-shifting operator for the longitudinal mode of the four-point function

U
(S,0)
34 → U

(S,0)
34 −ǫ

[

3 − 2(S − 1)vβ̂ − (4 + (2S − 3)β̂2)v2

2v2
+
S(1 + vβ̂)

2v

PS−1(β̂)

PS(β̂)

]

, (5.13)

where U
(S,0)
34 is given by (5.10), and we have only kept the correction at linear order in ǫ.

In the soft limit k4 → 0 (or v, β̂ → 1), the unperturbed weight-raising operator U
(S,0)
34

vanishes identically (i.e. independent of the correlator it acts on) and we simply get

U
(S,0)
34

k4 →0−−−−−→ −ǫ , (5.14)

independent of spin. This means that, at order ǫ, we can simply take the seed function to

be that of the unperturbed dimension ∆ = 2 operators, F̂
(S)
L (u, 1), evaluated at v = 1, and

multiply it by −ǫ. The corresponding inflationary bispectrum is then obtained by applying

the operator U
(S,0)
12 and summing over permutations (to account for the fact that the four-

point function was evaluated for the s-channel exchange). Putting everything together, the

inflationary bispectrum for spin-S exchange can then be written as9

B(S)(k1, k2, k3) = −ǫk3
3PS(α̂)U

(S,0)
12 F̂

(S)
L (u, 1) + perms. , (5.16)

where U
(S,0)
12 and F̂

(S)
L were defined in (5.10) and (5.11), respectively, and PS is a Legendre

polynomial that arises from the polarization sum ΠS,0. This formula holds for any S,

generalizing the result of [1] to all spins.

5.4 Partially massless exchange

As a new application of the weight-shifting technology developed in this paper, we construct

the inflationary bispectra arising from the exchange of partially massless (PM) fields. These

9The bispectrum function, B(S), is the correlator of the sub-leading fall-off dual to ζ and is hence related

to the observed bispectrum by

〈ζ~k1
ζ~k2

ζ~k3
〉 =

3
∏

a=1

(

H2

2M2
plǫk

3
a

)

B(S)(k1, k2, k3) , (5.15)

where H is the Hubble scale during inflation and Mpl is the (reduced) Planck mass. The prefactor arises

from the shadow transform.
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PM fields are unitary spinning representations that exist on (anti) de Sitter space, but have

no flat-space counterparts [50, 74–79]. They occur at special values of the mass-to-Hubble

ratio,
m2

H2
= S(S − 1) − T (T + 1) , (5.17)

where S is the spin and T ∈ {0, · · ·, S − 1} is the “depth” of the field. The corresponding

dual operators have integer dimensions ∆σ = 2 + T . At these special points, the theory

possesses an additional gauge invariance that projects out modes with helicity ≤ T . The

tight structure of PM representations is reflected in the simplicity of their mode functions,

which leads to simple analytic expressions for the associated correlation functions.

We are interested in the inflationary three-point functions arising from the exchange of

PM fields. As we have seen above, these bispectra only depend on the longitudinal modes

of the exchanged particle, which for a PM field isn’t a propagating degree of freedom. This

does not mean, however, that the corresponding bispectra are trivial. Higher-spin particles

have a nontrivial constraint structure, where the non-propagating degrees of freedom are

fixed in terms of the propagating ones. In particular, the longitudinal modes mediate

Coulomb-like potentials, which lead to distinct imprints in the inflationary bispectra. In

order to probe all degrees of freedom of the PM field, we would have to measure inflationary

trispectra. Nonetheless, as we will see below, the Coulomb potentials generate bispectrum

shapes with striking features that uniquely characterize the presence of a PM field in the

spectrum.

The general features of PM exchange are substantially simpler to describe than those

of massive exchange. Recall that the longitudinal part of the ∆ = 2 correlator coming from

spin-S exchange is given by (5.11). We can write this in a slightly more illuminating form

by redefining T ≡ S − j to obtain

F̂
(S)
L =

S−1
∏

T =0

[

∆u − T (T + 1)
]

F̂
(0)
∆σ

, (5.18)

where we have added the weight dependence of the seed as a subscript to avoid confusion.

Notice that the differential operators appearing on the right-hand side are precisely those

appearing in the differential equation describing the exchange of a PM particle of depth T :

[

∆u − T (T + 1)
]

F̂
(0)
∆σ=2+T = Ĉ0 . (5.19)

It is important to emphasize that a given PM seed F̂
(0)
∆σ

will only have the right conformal

weight to satisfy (5.19) for a particular depth. Since (5.18) includes the left-hand-side

of (5.19) for all depths though, this means that at every PM point, one of the operators

in (5.18) will reduce the seed exchange function to a contact solution through (5.19). This

contact solution is then acted on by the operators in (5.16). It is for this reason that the

PM-induced bispectra are so simple.

Cleanly disentangling the effects of PM exchange is somewhat subtle. In the case

of massive particle exchange, there are characteristic non-analytic features that cannot

be mimicked by contact interactions and therefore are unambiguously attributed to the
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exchange. In the present case, however, the resulting bispectra will be rational functions of

momenta, and so it is less obvious which parts to ascribe to particle exchange. In practice,

this subtlety can be managed by explicitly subtracting off all possible contact solutions.

After performing this subtraction, the leftover shape is a sharp signature of the exchanged

PM particle.

Spin-2 exchange. Let us first consider the special case S = 2. There are then two

(partially) massless points with corresponding dual operators having ∆σ = 3 and ∆σ = 2.

The former is the ordinary graviton (m2 = 0) and the latter is the PM state that saturates

the Higuchi bound (m2 = 2H2). We will discuss these two cases in turn.

• Graviton. — For a ∆σ = 3 state, the exchange equation (2.13) becomes (∆u −
2)F̂ (0) = Ĉ0, with the simplest contact term on the right-hand side. Comparing this

to the longitudinal coefficient function in (5.11), we find

F̂
(2)
L = ∆u(∆u − 2)F̂ (0) = Ĉ1 . (5.20)

Plugging this solution into (5.16), we obtain the corresponding bispectrum.10 We

wish to isolate the part of this result that can unambiguously be attributed to massless

spin-2 exchange. In other words, we want to see whether any parts of this correlator

can be mimicked by contact terms, and then subtract off these pieces.

The relevant contact contributions to the bispectrum are

Bc = −ǫk3
3

3

∑

n

anU
(0,0)
12 Ĉn(u, 1) + perms. (5.21)

To identify the parts that are degenerate with the PM-induced bispectrum, we con-

sider the limit kt ≡ ∑

a ka → 0. In this limit, the exchange bispectrum has a leading

singularity scaling as k−3
t . This singularity can be removed by adding the contact

interaction Ĉ1, with a1 = 15 in (5.21) (and all other coefficients zero). After this

subtraction, the bispectrum still has a k−1
t singularity, which cannot be removed by

another contact term. The part of the bispectrum that is cleanly associated with the

exchange of a graviton therefore is

Binf = 3ǫ





∑

a 6=b

kak
2
b +

8

kt

∑

a>b

k2
ak

2
b − 3

∑

a

k3
a



 . (5.22)

Up to a local term,
∑

a k
3
a, arising from the gauge transformation from spatially

flat gauge to comoving gauge, this is precisely the famous bispectrum of single-field

slow-roll inflation [80].

• PM graviton. — The exchange equation for a ∆σ = 2 state is

∆uF̂
(0) = Ĉ0 . (5.23)

10In [1], a different exchange solution was utilized, with an unphysical contact term. The goal there was

to mimic the number of derivatives of the bulk Lagrangian for graviton exchange. We see here that such a

choice was unnecessary; one can just as well use a more physical exchange solution as a seed.
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Although the exchange solution is slightly different than for the graviton, after plug-

ging it into (5.16), we still obtain a bispectrum with a k−3
t singularity. As before,

we can subtract this singularity, together with the subleading k−2
t term, by adding

a suitable choice of contact terms. In this case, we must take a0 = 24 and a1 = 15

in (5.21), with all the other coefficients vanishing.

This time, however, there is no leftover bispectrum! This means that the bispectrum

due to the exchange of a PM graviton can be represented completely by a certain

mixture of equilateral non-Gaussianity coming from inflaton self-interactions. This,

however, does not rule out the possibility that inflaton correlators with PM exchange

involve transcendental functions and therefore give shapes that are non-degenerate

with contact diagrams. This is because our seed functions — the four-point functions

of conformally coupled scalars with PM exchange — were rational functions.

Higher-spin exchange. The story becomes richer for higher spins, especially because

there are now multiple PM points. Let us first describe a few qualitative features of these

bispectra, before presenting details for the special cases S = 4 and 6.11 Acting on the

PM seed function F̂
(0)
∆σ

as in (5.18) yields the longitudinal part of the exchange correlator,

which we then feed into (5.16) to produce the inflationary bispectrum. To isolate the part

which is an unambiguous signature of PM exchange, we adopt the following procedure:

• The bispectrum will have a leading singularity for kt → 0 that can be removed

by adding a contact interaction. In other words, part of the bispectrum shape is

indistinguishable from equilateral non-Gaussianity. After removing those terms, the

resulting shape will have a singularity scaling as k1−S
t (for any depth).

• The exchange of a PM field of depth T = S−2 can be absorbed completely by a sum

of contact terms, with no exchange contribution remaining.12 These fields therefore

do not produce a distinct bispectrum shape. Their imprint will only appear cleanly

in the four-point function.

• After fixing the singularity for kt → 0, we still have the freedom to choose some

contact terms to remove the least soft pieces of the bispectrum in the squeezed limit,

so that

lim
k3→0

〈φ~k1
φ~k2

φ~k3
〉 ≃ 1

(k1k3)3

(

k3

k1

)p

PJ(cos θ) + · · · , (5.24)

where θ is the angle between ~k1 and ~k3, and the power p depends on S and T in a

nontrivial way. This subtraction can be done without changing the overall singularity

in kt. If there is any freedom left, we try to remove the highest possible Legendre

polynomial PJ .

11Since we require a coupling to two identical ∆ = 2 scalars in the relevant seed function, only particles

of even spin can contribute to the bispectrum of an uncharged inflaton.
12We do not have a deep explanation for this fact, but it is interesting to speculate that it has something

to do with the fact that the corresponding operator obeys a double-conservation condition [81–83], which

somehow behaves differently from the other multiple-conservation conditions that dual PM operators satisfy.
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We now illustrate this procedure for PM fields of spin 4 and 6.

• Spin-4: a spin-4 field has four PM points. Carrying out the procedure described

above at each of them, we are able to pick various contact terms in (5.21) to isolate

the parts of the inflationary bispectra due to the exchange of PM fields. We tabulate

the necessary contact term coefficients and the resulting scalings in the squeezed

limit (5.24) below:

T a0 a1 a2 a3 (p, J)

0 0 0 2394 63 (2, 4)

1 6880 9128 2178 63 (3, 4)

2 4320 7128 1746 63 —

3 2880 3708 1098 63 (3, 0)

We see that there is a rich structure of scalings and angular dependences of the final

inflationary bispectra. In particular, the depth-2 PM point has no unambiguous sig-

nature in the inflationary bispectrum. The other PM points lead to distinct behaviors

in the squeezed limit.

• Spin-6: finally, we consider the exchange of a spin-6 field, with five PM points.

A novelty of this situation is that, to perform the subtraction, we must introduce

contact terms arising from integrating out intermediate spin-2 particles:

Bc = −ǫk3
3

∑

n

bnP2(α̂)U
(2,0)
12

[

(∆u − 2)∆uĈn(u, 1)
]

+ perms. , (5.25)

where α̂ = (k1 − k2)/k3. The coefficients an and bn in (5.21) and (5.25) are fixed

by the same requirements as above. Their precise values are not very illuminating,

so we don’t display them. Instead, we present the final squeezed-limit scalings and

angular dependences of the inflationary bispectra:

T 0 1 2 3 4 5

(p,J) (2 ,6) (3 ,6) (4 ,6) (4 ,2) — (4 ,2)

Again, this displays an interesting range of scalings, with the depth-4 point being

degenerate with a set of contact interactions.

In summary, just like the famous graviton-induced bispectrum (5.22), PM fields gener-

ate new, distinct shapes of non-Gaussianity, which can be written as polynomials in the

momenta divided by some overall power of the total energy kt. These shapes uniquely

characterize the presence of PM fields of various depths in the early universe. Whether

consistent interacting theories of those PM fields (beyond gravity and gauge theory) exist

remains an open problem (but see [84, 85]).
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6 Conclusions

In this paper, we have presented a highly streamlined and much more universal derivation

of the spin-raising and weight-shifting operators that appeared in the original work on

the cosmological bootstrap [1]. This was facilitated by the existence of a corresponding

set of weight-shifting operators in conformal field theory [64, 66, 68], which when Fourier

transformed can be applied in the cosmological context. Our treatment highlights the

power and elegance of the bootstrap method by making manifest that a single seed function

(corresponding to the correlator of conformally coupled scalars) can be transformed into all

correlators of interest through the application of only two simple spin-raising and weight-

raising operators. This provides explicit results for inflationary bispectra arising from tree-

level exchange of massive particles of arbitrary spin. The more systematic approach has

also allowed us to characterize the effects from the exchange of (partially) massless fields

of arbitrary spin, whose signatures have a rich structure with some surprising features.

While we have restricted our application of the weight-shifting technology to reproduc-

ing and generalizing the operators found in [1], many new applications have now opened up:

• It is straightforward to use our formalism to raise the spin of the external fields. In

that case, the different tensor structures arise from the unique scalar seed because

there is more than one way to raise the spin and weight of the external fields. These

different ways lead to distinct answers which can be combined into the known tensor

structures of spinning correlators.

• An interesting special case is correlators involving conserved tensors. For example,

the stress tensor is dual to a bulk graviton and therefore part of any inflationary

model. Correlation functions of conserved tensors a further constrained, because in

addition to the conformal Ward identities discussed here, they must obey the Ward-

Takahashi identities associated with current conservation. The interplay between

these two differential constraints underlies the rich structure present for correlation

functions of conserved operators. The weight-shifting formalism is a powerful way to

study these correlation functions, and allows for a systematic classification similar to

the one provided here for scalars.

• When the exchanged particles are massless, the spin-raised correlators are not guar-

anteed to be local. In flat space, the requirement of local four-point interactions is a

powerful constraint on the space of consistent interactions between massless particles

with spin [86, 87], making almost all theories, other than the familiar gauge theories

and gravity, inconsistent. Similar considerations should restrict the theory space of

viable interactions of massless fields in de Sitter space.

The tools that we have developed in this paper provide the first steps toward unraveling

the intricate web of relations between these directions, and we will present our findings on

these issues in a separate publication [57].
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A Weight shifting in embedding space

In the main text, we have utilized the spin-raising operator S12, cf. (4.10), and the weight-

raising operator W12, cf. (5.4). In this appendix, we wish to place these operators in a

broader context and describe how they (and other useful operators) arise naturally from

more formal conformal representation theory considerations. Our discussion is meant to

be self-contained, although we do assume some familiarity with basic aspects of conformal

field theory (see e.g. [69, 88]). For more details, readers are encouraged to consult [64].

A.1 General preliminaries

The general philosophy is fairly simple to state: given a solution to the conformal Ward

identities (2.7) and (2.8), we would like to find differential operators that act on this solution

to generate new solutions with different quantum numbers (either conformal weight or

spin).

The most natural thing to look for would be a conformally-invariant operator that

accomplishes this. Such operators do exist, but only in very special situations [89]. We

can see this by considering the action of a putative operator, D, on a conformal primary

of weight ∆ and spin S, which would be of the form

DO(S)
∆ = Õ

(S′)
∆′ , (A.1)

where the operator Õ
(S′)
∆′ transforms in some new representation of the conformal group,

with weight ∆′ and spin S′. Asking D to be conformally invariant is a strong constraint.

First of all, it implies that the operator commutes with all conformal generators. In partic-

ular, this means that the operator is translationally invariant. It therefore cannot depend

on coordinates and a differential operator with n derivatives must then change the weight

as follows

∆ 7→ ∆′ = ∆ + n . (A.2)
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Second, if the operator is conformally invariant it cannot change the quadratic Casimir

eigenvalue of the representation, and therefore must satisfy

∆(∆ − d) + C2(S) = (∆ + n)(∆ + n− d) + C2(S′) , (A.3)

where we have substituted for ∆′ on the right-hand side and C2(S) denotes the SO(d)

quadratic Casimir of the spin-S representation.13 Their precise values are not important;

the point is that if we fix the spin representations that the operator D maps between,

the constraint (A.3) becomes a linear equation for ∆, which is only solved for one specific

value.14 This means that — given a particular target weight and spin representation —

we are generically unable to find a conformally-invariant differential operator that maps us

there from a given starting point.

The loophole to this argument is fairly intuitive, we must relax our requirements and

search instead for differential operators that themselves transform in some representation

of the conformal group. We therefore are in search of conformally-covariant (as opposed

to invariant) differential operators. The construction of such weight-shifting operators was

performed systematically in [64], and here we wish to review their construction. Special

cases of weight-shifting operators were constructed earlier in [63].

A.2 Some group theory

Some representation-theoretic considerations are helpful in order to understand what

weight-shifting operators should exist. These details are not essential and readers who

are willing to take the existence and transformation properties of weight-shifting operators

on faith can skip to the next subsection to see them constructed explicitly.

It is useful to consider conformally-covariant differential operators that transform in

finite-dimensional representations of the conformal algebra.15 The content of these finite-

dimensional representations, W , can be understood by thinking of them as analytically con-

tinued SO(d+ 2) representations; they decompose under dilations × SO(d) as a direct sum

W =
j
⊕

i=−j

Wi , (A.4)

where the dilation eigenvalue of the subspaces Wi runs from −j to j and is analogous to

the spin quantum number, Jz, for SO(3) representations.

We now consider the tensor product of W with another irreducible conformal represen-

tation, which we denote by V∆,S , where ∆, S label the weight and spin of the lowest-weight

13More generally, any SO(d) representations can appear in (A.1). This does not change the argument. In

what follows, we will often restrict to spin-S representations for notational simplicity, but nothing depends

on this choice.
14An example is that ∂µJµ transforms like a scalar, but only for ∆J = d − 1.
15Note that these finite-dimensional representations are not unitary — as they represent a non-compact

algebra — but this does not affect their usefulness. These representations should be thought of as a tool to

generate operators with the kinematic transformation properties we desire. Imposing unitarity of the final

results will require additional information beyond kinematics that will have to be input at a later time in

some situations.
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state. The goal is to decompose the tensor product W ⊗ V∆,S into irreducible representa-

tions of the conformal group. This is equivalent to finding the conformal primary operators

that appear in the product representation. A straightforward way to accomplish this is

to use the state-operator correspondence and think of the representation W as being gen-

erated by the conformal primary operator w
(Sw)
−j (0) with weight ∆w = −j and spin Sw

and think of the representation V∆,S as being generated by the conformal primary O
(S)
∆ (0).

Since W is finite-dimensional, w
(Sw)
−j (0) will have a finite number of descendants — we can

only take so many derivatives before the resulting states are guaranteed to be null.

Primary operators appearing in W ⊗V∆,S can be constructed by considering products

of w and O of the form [64]

ÕS′

∆′ = ∂i1 · · · ∂imw
(Sw)
−j (0) ⊗O

(S)
∆ (0) + c1 ∂i1 · · · ∂im−1w

(Sw)
−j (0) ⊗ ∂imO

(S)
∆ (0) + · · · , (A.5)

where m can range from 0 to 2j and the ellipses denote all other ways of distributing the m

derivatives on both operators. The various coefficients can be fixed uniquely by demanding

that the expression (A.5) is a primary operator, i.e. that it is annihilated by the special

conformal generator. We are being somewhat schematic about the spin representations,

but the spin representations appearing in (A.5) should also be decomposed into irreducible

components. Note that this involves both the indices carried by the derivatives as well as

possible SO(d) indices of the operators w and O.

Each of the resulting primary operators constructed in this way will have weight

∆′ = ∆ − j + m and will transform in some definite SO(d) representation. Once we

have decomposed (A.5) like this, we can interpret the result as a differential operator act-

ing on O
(S)
∆ by recalling that w transforms in a finite-dimensional representation of the

conformal group, which therefore has a finite basis, eA. We can write (A.5) as

ÕS′

∆′ = eA ⊗
(

∂i1 · · · ∂imwA(0) ⊗O
(S)
∆ (0) + c1 ∂i1 · · · ∂im−1wA(0) ⊗ ∂imO

(S)
∆ (0) + · · ·

)

≡ eA ⊗ DAO
(S)
∆ .

(A.6)

The operator DA is a weight-shifting operator: it changes the conformal weight and/or

spin representation of the operator O and transforms in a finite-dimensional representation

of the conformal group.

The preceding discussion was very abstract, so we now proceed to construct some par-

ticularly useful weight-shifting operators explicitly. It should be noted, however, that there

are, in principle, an infinite number of such operators. Any finite-dimensional representa-

tion of the conformal group can be used to construct a set of weight-shifting operators. It

could be that some more exotic possibilities are also of use in cosmology.

A.3 Vector representation

One of the most important sets of weight-shifting operators arises from the finite-

dimensional vector representation of the conformal group, WM (which has j = 1), where

M is an embedding space index with d + 2 components. Decomposing this SO(d + 1, 1)

– 30 –



J
H
E
P
1
2
(
2
0
2
0
)
2
0
4

representation into SO(1, 1) × SO(d) representations as in (A.4), we find

−−−−−−−−→
SO(1,1)×SO(d)

(

•
)

−1
⊕ ( )

0
⊕ (

•
)

1
, (A.7)

where • denotes the trivial spin representation, and the subscripts are the dilation weight.16

This is just a pictorial way of representing the information that a d+1+1 split of the vector

WM contains two scalars, W−1 and W0, and one d-dimensional vector, Wi. Equivalently,

the lowest-weight state in the representation is a scalar, w−1(0), with weight ∆w = −1.

This scalar satisfies the differential equation

∂(i∂j)T
w−1(0) = 0 , (A.8)

where the notation (· · · )T denotes the symmetric trace-free part.

By considering products of these operators with a primary of interest, like in (A.6),

we can see what kind of weight-shifting operators they correspond to.

• Weight −1: the lowest-weight state has weight ∆ = −1. The corresponding weight-

shifting operator will shift the weight of the representation by ∆ 7→ ∆−1. This state

is a scalar under SO(d), so it does not change the spin representation.

• Weight 0: the first descendent state transforms as a vector under SO(d) and has

weight ∆ = 0. The weight-shifting operators associated with this state leave the

weight invariant, but change the spin representation. To see how the spin for example

of a spin-S representation is changed, we decompose the tensor product

S
T ⊗ = S − 1

T ⊕ S + 1
T ⊕ S

T

. (A.9)

Acting on spin-S representations there are therefore three weight-shifting operators:

one which shifts the spin down by one unit, one that shifts the spin up by one unit,

and a third operator that projects onto a mixed-symmetry representation.17 (For

more general spin representations the story is similar, but the details can be more

complicated.)

• Weight 1: finally, the highest-weight state is a scalar with weight ∆ = 1 and the

corresponding weight-shifting operator will shift the weight of the representation by

∆ 7→ ∆ + 1.

Operators in embedding space. The vector representation therefore gives rise to a

set of differential operators that shift the dimension and spin of CFT operators O(X,Z),

which we denote by

Dαβ
M : [∆, S] 7→ [∆ + α, S + β] . (A.10)

16The dilation weights of the various operators can be obtained by noting that the representation must

shorten at the second level of descendents, with the spin-2 state becoming null. For a discussion of the

shortening of conformal representations, see [90].
17We will not utilize weight-shifting operators that generate mixed-symmetry representations, because

our principal interest is in d = 3 dimensions, where mixed-symmetry representations can all be dualized to

symmetric tensor representations. However, these operators may be useful for some calculations.
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In principle, these operators can be constructed by solving the differential equation (A.8)

and then building states of the form (A.6). However, in practice, the formal representation-

theoretic arguments we have just reviewed are more useful to catalog which weight-shifting

operators should exist, and then construct them directly in embedding space.

The benefit of working in embedding space is that it is easy to implement the cor-

rect conformal transformation properties of the weight-shifting operators. For example,

weight-shifting operators coming from the vector representation will carry an uncontracted

embedding space index. It is then algorithmic to construct weight-shifting operators: the

above list completely catalogs the possible operators, our task is to find embedding space

expressions with the correct conformal dimensions and spin weights.

One additional subtlety needs to be addressed: we must ensure that the resulting

expressions preserve the Euclidean section of the projective lightcone. This is not automatic

because embedding space tensors are invariant under the shift Z 7→ Z + βX and subject

to the constraints

X2 = X · Z = Z2 = 0 . (A.11)

We must then make sure that these combined constraints are preserved by the differential

operators we construct. This turns out to be a strong enough requirement to uniquely fix

the embedding space expressions for each weight-shifting operator.

The weight-shifting operators in the vector representation were constructed explicitly

in appendix C of [64]. Here, we summarize their results. The algorithm involves first

making an ansatz that has the correct weights:18

D−0
M = XM , (A.12)

D0−
M = a1

∂

∂ZM
+ a2ZM

∂2

∂Z2
+ a3XM

∂2

∂X · ∂Z + a4XMZ · ∂

∂X

∂2

∂Z2
, (A.13)

D0+
M = b1ZM + b2XMZ · ∂

∂X
, (A.14)

D+0
M = c1

∂

∂XM
+ c2XM

∂2

∂X2
+ c3ZM

∂2

∂Z · ∂X + c4Z · ∂

∂X

∂

∂ZM
(A.15)

+ c5XMZ · ∂

∂X

∂2

∂Z · ∂X + c6ZMZ · ∂

∂X

∂2

∂Z2
+ c7XM

(

Z · ∂

∂X

)2 ∂2

∂Z2
.

We now wish to fix the various coefficients in the operators above. First, we require that the

action of the weight-shifting operators preserves invariance under the shift Z 7→ Z + βX.

This implies
(

X · ∂

∂Z

)

DMf∆,S(X,Z) = 0 , (A.16)

where f∆,S is any homogeneous polynomial of spin S and weight ∆ that is invariant under

the shift of Z [64, 68]. The latter can be written as

f∆,S(X,Z) = (X · Y )−∆−S
(

PMQNCMN

)S
, (A.17)

18Note that Z raises the spin by one, X lowers the weight by one and derivatives do the opposite. The

action of the operators X · ∂X = −∆ and Z · ∂Z = S can be absorbed into the constants, while X · ∂Z = 0

is one of the constraints we will impose, so this operator does not appear.
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where CMN = ZMXN −ZNXM and Y, P,Q are arbitrary constant vectors. Second, we also

have to ensure that the constraints (A.11) are preserved. This is somewhat tricker to enforce

because there are many possible ways to extend the operators away from the lightcone.

In practice, we only need to impose this constraint on a small number of polynomials in

order to completely fix all of the free coefficients. The following set of polynomials, which

all have weight ∆ and spin S, does the job [64]

g1(X,Z) = X2f∆+2,S(X,Z) , (A.18)

g2(X,Z) = SMXNCMNf∆+2,S−1(X,Z) , (A.19)

g3(X,Z) = ZMXNCMNf∆+2,S−2(X,Z) , (A.20)

g4(X,Z) = SMSNCMOC
ONf∆+2,S−2(X,Z) , (A.21)

where S is an arbitrary constant vector. It is straightforward to check that these polyno-

mials all vanish after imposing (A.11). Finally, we act with the weight-shifting operators

before imposing the constraints, then impose the constraints and demand that the result

vanishes. This completely fixes all the remaining free coefficients and we find

D−0
M = XM , (A.22)

D0−
M =

(

(∆ − d+ 2 − S)δN
M +XM

∂

∂XN

)

(

(d− 4 + 2S)
∂

∂ZN
− ZN

∂2

∂Z2

)

, (A.23)

D0+
M = (S + ∆)ZM +XMZ · ∂

∂X
, (A.24)

D+0
M = c1

∂

∂XM
+ c2XM

∂2

∂X2
+ c3ZM

∂2

∂Z · ∂X + c4Z · ∂

∂X

∂

∂ZM
(A.25)

+ c5XMZ · ∂

∂X

∂2

∂Z · ∂X + c6ZMZ · ∂

∂X

∂2

∂Z2
+ c7XM

(

Z · ∂

∂X

)2 ∂2

∂Z2
,

where the coefficients cn in (A.25) are given by

c1 =

(

d

2
− ∆ − 1

)

(∆ + S − 1)(d− ∆ + S − 2) , c5 =
d

2
+ S − 2 ,

c2 = −1

2
(∆ + S − 1)(d− ∆ + S − 2) , c6 =

d

2
− ∆ − 1 ,

c3 = −
(

d

2
− ∆ − 1

)

(∆ + S − 2) , c7 = −1

2
.

c4 = −
(

d

2
− ∆ − 1

)

(d− ∆ + S − 2) ,

(A.26)

The operators defined in this way preserve the Euclidean section of the projective lightcone

and shift the weights of the operators they act on (as indicated by the superscripts of Dαβ
M ).

Bi-local operators. The weight-shifting operators constructed in this way satisfy all of

our requirements — they are conformally covariant and change the quantum numbers of

representations — but it is natural to ask if we can do better. It would be preferable to have

some objects that are actually conformally invariant. From the arguments in section A.1,

we don’t expect to be able to accomplish this with operators that act at a single point, but
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nothing prevents us from combining pairs of weight-shifting operators into singlets that

are bi-local. In particular, it is useful to introduce the following combinations of operators

that act at two points (labeled by 1 and 2) by contracting their embedding space indices

S++
12 ≡ D0+

1 · D0+
2 , (A.27)

S−−
12 ≡ D0−

1 · D0−
2 , (A.28)

W++
12 ≡ D+0

1 · D+0
2 , (A.29)

W−−
12 ≡ D−0

1 · D−0
2 . (A.30)

Defined in this way, the operators S±±
12 raise (lower) the spins at points 1 and 2, while the

operators W±±
12 raise (lower) the dimensions. In the main text, we have used the operator

W++
12 ≡ W12 to raise the weight of external fields from ∆ = 2 to ∆ = 3.

The operators S±±
12 and W±±

12 act in the same way at both points, but nothing requires

us to combine the operators in this way. In fact, an extremely useful combination is the

operator

D12 ≡ D0+
1 · D−0

2 = (∆1 + S1)Z1 ·X2 + (X1 ·X2)Z1 · ∂

∂X1
(A.31)

= −(Z1 ·X2)Xa · ∂

∂X1
+ (Z1 ·X2)Z1 · ∂

∂Z1
+ (X1 ·X2)Z1 · ∂

∂X1
,

which raises the spin by one unit at point 1 and lowers the dimension by one at point 2.

This operator was first derived in [63]. They also constructed an operator that raises the

spin and lowers the weight at the same point, but to construct this operator we have to

consider the adjoint representation, which we do next.

A.4 Adjoint representation

We can repeat the same construction with any finite-dimensional representation of the

conformal group. Another particular useful example is the adjoint representation, which

is the anti-symmetric tensor representation of SO(d + 1, 1); under SO(1, 1) × SO(d), it

decomposes as

−−−−−−−−→
SO(1,1)×SO(d)

( )

−1
⊕

(

• ⊕
)

0
⊕ ( )

1
. (A.32)

We see that the adjoint representation has j = −1 and is generated by a vector primary

state, wi
−1(0). In this case we can again employ representation-theoretic arguments to count

the weight-shifting operators that should exist. We will not be quite as systematic as we

were for the vector representation, but rather we will just construct some useful operators.

• Weight −1: the lowest-weight state is a vector, so the degenerate primary, wi,

carries a SO(d) vector index. Acting on a symmetric tensor representation, the spin

decomposition is the same as in (A.9) and we should be able to find weight-shifting

operators that lower the weight by one unit and either raise or lower the spin by

one unit. In addition, there is an operator that projects onto a mixed-symmetry

representation, but we will not utilize it.
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• Weight 0: at the first level of descendants there are two kinds of weight-shifting

operators. The first kind is associated to the trivial spin representation and does

nothing to either the spin or the conformal weight. These operators are actually ex-

actly the conformal generators: they are conformally-covariant differential operators

that transform in the adjoint and keep us in the same representation. The second

kind of weight-shifting operator at this level doesn’t change the conformal dimension,

but can map us to spin representations appearing in the decomposition

S ⊗ . (A.33)

We will not use these operators because only mixed-symmetry tensors appear in this

decomposition.

• Weight 1: the story at weight 1 is similar to the case at weight −1: there are three

kinds of operators. Two of them raise the dimension by one unit and either spin-up or

spin-down a symmetric tensor operator. The third operator again maps a symmetric

tensor to a mixed-symmetry representation.

Operators in embedding space. Now that we know what type of weight-shifting op-

erators should exist, we can search for them in embedding space like we did for the vector

representation. The difference is that in this case the operators will carry a pair of anti-

symmetric embedding space indices, as they must transform in the adjoint. In practice,

this means that we can construct the adjoint embedding space operators by multiplying

and anti-symmetrizing the vector embedding space operators.

Rather than systematically derive all possible operators, like we did for the vector

representation, we instead only quote some operators which are particularly useful. For

example, the operator that lowers the weight by one and raises the spin by one is

D−+
MN = X[MZN ] . (A.34)

Another semi-trivial example is provided by the conformal generators

D00
MN = JMN = X[M

∂

∂XN ]
+ Z[M

∂

∂ZN ]
, (A.35)

which by itself do not do anything to correlation functions if summed over all points, but

can be useful in tandem with one of the other weight-shifting operators.

There are three other weight-shifting operators that can be built from the adjoint

representation, which we do not construct explicitly because they are not needed in our

analysis. The operators act in the following way: one operator lowers both the weight and

spin at a point by one unit, one operator raises both the weight and spin at a point by

one unit and finally another operator raises the weight by one unit and lowers the spin

by one unit. If desired, these operators can be constructed by antisymmetrizing various

combinations of the operators in the vector representation.
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Bi-local operators. As before, these operators are most useful when paired together

into conformally-invariant combinations. For example, a convenient combination is

H12 ≡ D−+
1 · D−+

2 = (Z1 · Z2)(X1 ·X2) − (Z1 ·X2)(Z2 ·X1) , (A.36)

which lowers the weight and raises the spin by one unit at both points 1 and 2. Another

very useful operator is

D11 ≡ D−+
1 · J2 (A.37)

= (X1 ·X2)Z1 · ∂

∂X2
− (X2 · Z1)X1 · ∂

∂X2
+ (X1 · Z2)Z1 · ∂

∂Z2
− (Z2 · Z1)X1 · ∂

∂Z2
,

which raises the spin and lowers the weight by one unit at point 1, but does nothing at

point 2. This operator was also considered in [63].

B Weight shifting in Fourier space

Cosmological correlation functions naturally live in Fourier space, so we would like to

understand the action of the bi-local weight-shifting operators in Fourier space. This

involves first projecting the weight-shifting operators from embedding space to position

space, and then transforming the result to Fourier space. In this appendix, we will give

details of the weight-shifting operators in Fourier space. We will present results that are

valid for general dimensions.

B.1 Projection to position space

We first consider projecting the embedding space weight-shifting operators to the Euclidean

section of the lightcone. Using XM = (1, x2, xi) and ZM = (0, 2~x · ~z, zi), we can write the

derivatives with respect to the embedding coordinates as

∂

∂XM
=

∂xi

∂XM

∂

∂xi
+

∂zi

∂XM

∂

∂zi
=

(

−∆ − xj ∂

∂xj
, 0 ,

∂

∂xi

)

, (B.1)

∂

∂ZM
=

∂xi

∂ZM

∂

∂xi
+

∂zi

∂ZM

∂

∂zi
=

(

−xj ∂

∂zj
, 0 ,

∂

∂zi

)

. (B.2)

This allows us to write all relevant scalar products in embedding space and scalar products

in position space:

Za · Zb = ~za · ~zb , Za · ∂

∂Zb
= ~za · ∂

∂~zb
,

Xa · Zb = (~xa − ~xb) · ~zb , Za · ∂

∂Xb
= ~za · ∂

∂~xb
,

Xa ·Xb = −(xa − xb)
2

2
, Xa · ∂

∂Xb
= −∆b + (~xa − ~xb) · ∂

∂~xb
,

∂

∂Za
· ∂

∂Zb
=

∂

∂~za
· ∂

∂~zb
, Xa · ∂

∂Zb
= (~xa − ~xb) · ∂

∂~zb
,

∂

∂Xa
· ∂

∂Xb
=

∂

∂~xa
· ∂

∂~xb
,

(B.3)

– 36 –



J
H
E
P
1
2
(
2
0
2
0
)
2
0
4

where a, b label different positions. We will not write out the full position space expressions

for the weight-shifting operators, but they can be obtained straightforwardly by substitut-

ing these scalar products into the embedding space expressions given in appendix A.

B.2 Fourier-transformed operators

Once the weight-shifting operators have been written in position space, it is an algorithmic

(though tedious!) task to transform these operators to Fourier space. In the following, we

record the Fourier space expressions for a variety of useful weight-shifting operators that

act on pairs of points.

• The operator W−−
12 , defined in (A.30), lowers weights at points 1 and 2 by one unit.

In Fourier space, it takes the form

W−−
12 =

1

2

(

∂

∂~k1

− ∂

∂~k2

)

·
(

∂

∂~k1

− ∂

∂~k2

)

≡ 1

2
~K12 · ~K12 , (B.4)

where we have defined the differential operator

~K12 ≡ ∂

∂~k1

− ∂

∂~k2

. (B.5)

• Similarly, the operator W++
12 in (A.29) raises the weights by one at both points 1 and

2. It was used in section 5.1 to change the weight of the external fields from ∆ = 2

to ∆ = 3. In general, this operator takes a very complicated form in Fourier space,

W++
12 ∝D

(A)
1 D

(A)
2 W−−

12 −(~k1 ·~z1)(~k2 ·~z2)
(

δ1δ2(~z1 ·~z2)∇2
~z1

∇2
~z2

+η2
12η

2
21(∂~z1

·∂~z2
)
)

+
[

δ1D
(a)
2 ( ~K12 ·~z1)

(

(~k1 ·~z1)∇2
~z1

−τ1(~k1 ·∂~z1
)
)

−η2
11(~k1 ·~z1)D

(A)
1 ( ~K12 ·∂~z1

)

+δ2(~k1 ·~z1)
(

D
(B)
21 +(~k1 ·~z1)

(

σ2(1+∆2−d)−τ2(~z2 ·∂~z2
)
)

)

∇2
~z1

−δ1η12σ2(~k1 ·~z1)

−δ2

[

σ2(−4+d+2S1)(1−d+∆2)(~k1 ·~z1)+τ1D
(B)
21

]

(~k1 ·∂~z1
)

+(1↔2)
]

, (B.6)

where we have defined

D(A)
a ≡ (~ka · ~za)2∇2

~z1
− (d− 4 + 2Sa)(~ka · ~za)(~ka · ∂~za

) − k2
aσ

2
a ,

D
(B)
ab ≡ δa

(

τa(~z1 · ~z2)(~ka · ∂~za
) + σb(~ka · ~zb)

)

+ ηab(~ka · ~za)(~zb · ∂~za
) ,

(B.7)

and
σ2

a ≡ (∆a + Sa − 1)(d− 2 − ∆a + Sa) ,

η2
ab ≡ (d− 3 − ∆a + Sa)(d− 2∆b) ,

τa ≡ ∆a + Sa − 1 ,

δa ≡ d− ∆a .

(B.8)

Fortunately, this becomes somewhat more manageable when acting on scalars:

W++
12 = (k1k2)2 W−−

12 − (d− 2∆1)(d− 2∆2)~k1 · ~k2

+
(

k2
2(d− 2∆1)

(

d− 1 − ∆1 + ~k1 · ~K12
)

+ (1 ↔ 2)
)

.
(B.9)
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In the main text, this operator played an important role and was denoted W12, i.e. we

dropped the superscripts to avoid clutter.

• The spin-raising operator S++
12 , defined in (A.27), has the following Fourier represen-

tation

S++
12 = (S1 + ∆1 − 1)(S2 + ∆2 − 1)~z1 · ~z2 − (~z1 · ~k1)(~z2 · ~k2) W−−

12

+
[

(S1 + ∆1 − 1)(~k2 · ~z2)(~z1 · ~K12) + (1 ↔ 2)
]

.
(B.10)

This operator raises the spin by one unit at both points 1 and 2, which is useful for

generating spinning correlators [57].

• The operator D12, defined in (A.31), raises the spin at point 1 and lowers the weight

at point 2. In Fourier space, it reads

D12 = (∆1 + S1 − 1)~z1 · ~K12 − (~z1 · ~k1)W−−
12 , (B.11)

where we have dropped an overall factor of i. We have used this operator in the main

text to raise the spin of exchanged fields.

• The operator D11 in (A.37) both raises the spin and lowers the weight at the point 1

and is useful for raising the spin of external fields [57]. In Fourier space, it becomes

D11 =
(

∆2−d+~k2· ~K12
)

~z1· ~K12−(~k2·~z1)W−−
12 −~z2· ~K12 ~z1·∂~z2

+(~z1·~z2)∂~z2
· ~K12 , (B.12)

where we have again dropped an overall factor of i.

• It is often helpful to use the operator H12, defined in (A.36), which raises the spin

and lowers the weight by one unit at both points 1 and 2. Its Fourier representation is

H12 = 2 ~z1 · ~K12 ~z2 · ~K12 − (~z1 · ~z2) ~K12 · ~K12 . (B.13)

• Although we have not made use of it in this work, for completeness let us also give

the expression for the spin-lowering operator S−−
12 , defined in (A.28), which lowers

the spin by one unit at both points 1 and 2:

S−−
12 = D

(C)
1 D

(C)
2 W−−

12 − ρ1ρ2(~z1 · ~z2)∇2
~z1

∇2
~z2

(B.14)

+
[

ρ1D
(C)
2 K12 · (~z1∇2

~z1
− λ1∂~z1

)

+ ρ1ρ2λ1∂~z1
· (λ2∂~z2

− ~z2) + (1 ↔ 2)
]

,

where
D(C)

a ≡ (~ka · ~za)∇2
za

− λa(~ka · ∂~za
) ,

ρa ≡ d− 1 − ∆a + Sa ,

λa ≡ 2Sa + d− 4 .

(B.15)

Finally, we need to highlight that, in momentum space, correlation functions take the form

〈O~k1
· · ·O~kn

〉 = (2π)dδd(~k1 + · · · + ~kn)〈O~k1
· · ·O~kn

〉′ . (B.16)
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We often want to act with weight-shifting operators directly on the primed correlator, with

the delta function removed. In that case, one might be concerned that the momentum space

operators would also act on the delta function, leading to extra terms after integration-

by-parts. This situation is familiar from the Fourier space action of the dilation operator.

However, inspection of the weight-shifting operators presented in this section reveals that

derivatives always appear in the combination ~K12 defined in (B.5), so that they depend on

momentum differences and will therefore pass through the delta function.

B.3 A few simple examples

To illustrate the power of these spinning weight-shifting operators, we give a couple sim-

ple applications. We will present a much more systematic study of spinning correlation

functions in [57].

• As a first example, let us consider spinning up the two-point function of scalar oper-

ators to obtain the two-point function of operators with spin. The scalar two-point

function is given by

〈OO〉 = k2∆−d , (B.17)

where the normalization is arbitrary. We want to act on this object with the spin-

raising operator (B.10). Momentum conservation implies that ~k1 = −~k2, so that the

spin-raising operator simplifies to

S++
12 = (1 − S − ∆)2 ~z1 · ~z2 + (1 − S − ∆)

[

(~k · ~z1)~z2 · ∂~k
+ (~k · ~z2)~z1 · ∂~k

]

+
(~k · ~z1)(~k · ~z2)

2
∂~k

· ∂~k
.

(B.18)

Acting with this operator repeatedly on 〈OO〉 generates the two-point function of

spinning operators

〈O(S)O(S)〉 = (S++)S〈OO〉

∝ [(k̂ · ~z1)(k̂ · ~z2)]S

kd−2∆
P

(∆−S−d/2,d/2−2)
S

(

1 − ~z1 · ~z2

(k̂ · ~z1)(k̂ · ~z2)

)

, (B.19)

where P
(a,b)
S is the Jacobi polynomial.

• As a simple higher-point example, we construct the three-point correlation function

between the stress tensor and two ∆ = 2 scalars in d = 3 dimensions from a scalar

seed. It is well-known that this correlation function is completely fixed by conformal

invariance, and here we indeed reproduce this result. We start with the three-point

function of ∆ = 3 scalar fields:

〈φφφ〉 = log(kt/µ)
∑

a

k3
a −

∑

a 6=b

k2
akb + k1k2k3 , (B.20)

where kt ≡ k1 + k2 + k3. By applying the D12 operator we can lower the weights of

two of the scalars to ∆ = 2, while spinning up the third one to S = 2. Explicitly, we
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find

〈Tϕϕ〉 = D13D12〈φφφ〉

=
9(k1 − k2 + k3)2

2k1k2
t

(~k1 · ~z1)2 +
36(k1 + k3)

k2
t

(~k1 · ~z1)(~k2 · ~z1) (B.21)

+
18(2k1 + k2 + k3)

k2
t

(~k2 · ~z1)2 .

Since the correlation function of any spinning operator with two scalars is uniquely

fixed by conformal invariance, this answer is guaranteed to be conserved, because

the spin-2 operator has ∆ = 3. It can be checked that this agrees with the results

of [22], who derived this correlation function in momentum space by directly solving

the conformal Ward identity differential equations. Finally, we can use the weight-

raising operator W++
23 to raise the scalar weights to ∆ = 3, which also yields a result

that agrees with [15, 22].

C Polarization tensors

Our derivation of the spin-exchange solutions to the conformal Ward identities in sec-

tion 4.2 required explicit expressions for the polarization tensors of spinning operators in a

conformal field theory. Fortunately, these can be obtained from the two-point functions of

spinning operators (B.19) in a relatively straightforward way. In this appendix, we describe

this construction and provide explicit formulas for the relevant polarization sums.

We being by considering the two-point function of spin-S operators

〈O(S)O(S)〉 =
(−2)SS!

(∆̃ − 1)S

[(k̂ · ~z1)(k̂ · ~z2)]S

kd−2∆̃
P

(∆̃−S−d/2,d/2−2)
S (ω) , (C.1)

where the weight appearing, ∆̃ = d− ∆, is the shadow dimension to that of the exchanged

operator — because we are interested in the inverse of the two-point function — and the

argument of the Jacobi polynomial is

ω ≡ 1 − ~z1 · ~z2

(k̂ · ~z1)(k̂ · ~z2)
. (C.2)

The polarization tensor used in the main text is then defined as

(ΠS)i1···iS
j1···jS

=
1

(S!(d−2
2 )S)2

Di1
z1

· · ·DiS
z1
Dz2

j1
· · ·Dz2

jS

(

kd−2∆̃〈O(S)O(S)〉
)

, (C.3)

where Di
z is the Todorov operator that strips off the null vectors zi from the index-free

form of the two-point function:

Di
z =

(

d

2
− 1 + ~z · ∂

∂~z

)

∂

∂zi
− 1

2
zi ∂2

∂~z · ∂~z . (C.4)

To see the equivalence of the projector (C.3) with the more familiar expressions, we should

work in something closer to the helicity basis. This amounts to decomposing ΠS into a set

of irreducible components. We first show how this works for spins 1 and 2, before turning

to the general case.
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• Spin 1: specializing (C.3) to the case of spin one, we get

(Π1)i
j = δi

j − (d− 2∆)

(d− ∆ − 1)
k̂ik̂j . (C.5)

Introducing the projector

πi
j ≡ δi

j − k̂ik̂j , (C.6)

this can be split into transverse and longitudinal components

(Π1)i
j = πi

j +
(1 − ∆)

(1 − d+ ∆)
k̂ik̂j , (C.7)

which is (4.11).

• Spin 2: in the case of spin two, we decompose the projector in the orthonormal basis

of projectors for traceless two-index tensors

(Π2,2)ij
lm = π

(i
(lπ

j)
k) − 1

d− 1
πijπlm , (C.8a)

(Π2,1)ij
lm = 2k̂(ik̂(lπ

j)
m) , (C.8b)

(Π2,0)ij
lm =

d

d− 1

(

k̂ik̂j − 1

d
δij

)(

klkm − 1

d
δlm

)

. (C.8c)

Using this, the spin-2 version of (C.3) becomes

(Π2)ij
lm = (Π2,2)ij

lm +
∆

d− ∆
(Π2,1)ij

lm +
∆(∆ − 1)

(d− ∆)(d− ∆ − 1)
(Π2,0)ij

lm , (C.9)

which is (4.18).

• Spin S: for general spins, the polarization tensors can be constructed by methods of

harmonic analysis [91], but we can get an intuitive understanding of the answer as fol-

lows: after normalizing the highest-helicity projector to 1, for each lower-helicity state

there will be a pole at each of the partially-massless weights that projects out that

mode. The numerator for each helicity mode is given by the same polynomial with

∆ → d − ∆. The unitary/non-unitary states between the partially-massless points

fixes the relative signs between adjacent helicity components. The final answer is

(ΠS)i1···iS
j1···jS

=
S
∑

m=0

(∆ − 1 +m)S−m

(d− ∆ − 1 +m)S−m
(ΠS,m)i1···iS

j1···jS
. (C.10)

The polarization tensor contracted with null vectors ~z1 and ~z2 takes the form [91]

ΠS,m(~z1, ~z2) ≡ zi1
1 · · · ziS

1 (ΠS,m)i1···iS
j1···jS

zj1
2 · · · zjS

2 (C.11)

=
(d− 3 + 2m)(−1)mS!

(S −m)!

(

d−2
2

)

S

(d− 3)S+m+1

[

2(k̂ · ~z1)(k̂ · ~z2)
]S
C

d−3
2

m (ω) ,
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where C
d−3

2
m is the Gegenbauer polynomial. The explicit polarization tensors

can be obtained by stripping off the auxiliary null vectors with the help of the

operator (C.4). These polarization tensors satisfy

orthonormality : (ΠS,m)i1···iS
j1···jS

(ΠS,m′)j1···jS

l1···lS
= δmm′(ΠS,m)i1···iS

l1···lS
, (C.12)

completeness : 1 =
S
∑

m=0

ΠS,m , (C.13)

transversality : 0 = k̂jm · · · k̂jS (ΠS,m)i1···iS
j1···jS

. (C.14)

It is also useful to know the harmonic extension of (C.11), which can be contracted

with non-null vectors. Contracting with generic vectors ~w1 and ~w2 leads to [91]

ΠS,m(~w1, ~w2) = 2S−m (m+ d/2 − 1)S−m

(2m+ d− 2)S−m

(

S

m

)

LS,m(~w1) Πm,m(~w1, ~w2)LS,m(~w2) ,

(C.15)

where we have defined

LS,m(~w ) = 2m−S

(

d/2 + S − 1

S −m

)−1

(w2)
S−m

2 C
d/2+m−1
S−m (k̂ · ŵ) , (C.16)

Πm,m(~w1, ~w2) = (−2)mm!
(d/2 − 1)m

(d− 3)2m
(π(11)π(22))

m
2 C

d−3
2

m

(

− π(12)

√
π(11)π(22)

)

. (C.17)

By design, LS,m(~w ) = (k̂ · ~w)S−m when w2 = 0. The tensors π(ab) in (C.17)

correspond to πij of (C.6) contracted with the auxiliary vectors:

π(ab) = ~wa · ~wb − (k̂ · ~wa)(k̂ · ~wb) . (C.18)

In the s-channel exchange studied in section 4, the polarization tensor was associated

to the internal momentum ~s = ~k1 + ~k2. To obtain the polarization sums used in

the main text, we therefore let ~w1 → ~k1 and ~w2 → ~k2, and write the result in

terms of cos θi ≡ k̂i · ŝ and ψ (the angle between k̂1 and k̂3 projected on the plane

perpendicular to ŝ). To take the limit d → 3, we make use of the following limits of

the Gegenbauer polynomials

lim
d→3

C
d/2−m−1
S−m (z) =

21−m

(3
2)m−1

(−1)m

(1 − z2)m/2
Pm

S (z) , (C.19)

lim
d→3

m

d− 3
C

d−3
2

m (cosψ) = cos(mψ) ×







1 m = 1, 2, · · ·
1
2 m = 0

. (C.20)

This gives

lim
d→3

ΠS,m(k̂1, k̂3) =
S!

(2S − 1)!!
(2 − δm0)(−1)m cos(mψ)Pm

S (cos θ1)P−m
S (cos θ3) ,

(C.21)

which is the polarization sum used in (4.31).
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D Notation and conventions

Symbol Meaning Reference

~k Three-momentum vector Section 2.1

ki Spatial component of ~k Section 2.1

~ka Momentum of the a-th leg Section 2.1

ka Magnitude of ~ka, ka ≡ |~ka| Section 2.1

k̂a Unit vector, k̂a ≡ ~ka/ka Section 4.2

kt Sum of momentum magnitudes, kt ≡ ∑N
a=1 ka Section 5.4

s Exchange momentum, s ≡ |~k1 + ~k2| Section 2.1

t Exchange momentum, t ≡ |~k2 + ~k3| Section 2.1

u Momentum ratio, u ≡ s/(k1 + k2) Eq. (2.10)

v Momentum ratio, v ≡ s/(k3 + k4) Eq. (2.10)

~α Difference of momentum vectors, ~α ≡ ~k1 − ~k2 Section 4.2

~β Difference of momentum vectors, ~β ≡ ~k3 − ~k4 Section 4.2

α̂ Dimensionless difference of momenta, α̂ ≡ (k1 − k2)/s Eq. (2.17)

β̂ Dimensionless difference of momenta, β̂ ≡ (k3 − k4)/s Eq. (2.17)

τ̂ Angular variable, τ̂ ≡ ~α · ~β/s2 Eq. (2.17)

T̂ Angular variable, T̂ ≡ τ̂ + α̂β̂/(uv) Eq. (4.29)

L̂ Angular variable Eq. (4.30)

γ Angle between k̂1 and k̂3, cos γ ≡ k̂1 · k̂3 Eq. (4.28)

θa Angle between k̂a and ŝ, cos θa ≡ k̂a · ŝ Eq. (4.28)

ψ Projected angle between k̂1 and k̂3, cosψ ≡ T̂ /L̂2 Eq. (4.28)

ΠS,m Polarization sum Eq. (4.27)

X Embedding space coordinate Section 3.1

Z Embedding space null vector Section 3.2

XM Component of X Section 3.1

ZM Component of Z Section 3.2

Xab Dot product, Xab ≡ Xa ·Xb Section 3.2

U Cross ratio, U ≡ X12X34/X13X24 Section 3.3

V Cross ratio, V ≡ X14X32/X13X24 Section 3.3

O(S) Index-free spin-S operator, O(S) ≡ OM1···MS
ZM1 · · ·ZMS Section 3.2

σ Generic bulk scalar field Section 2.1

ϕ Conformally-coupled scalar field Section 2.2

φ Massless scalar field Section 2.4

O Operator dual to σ Section 2.1
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Symbol Meaning Reference

∆ Scaling dimension (conformal weight) Section 2.1

ϕ Operator dual to ϕ (∆ = 2) Section 2.2

φ Operator dual to φ (∆ = 3) Section 2.4

∆t Total conformal weight, ∆t ≡ ∑

n ∆n Section 2.1

M Mass parameter Section 2.2

S Spin of exchanged particle Section 4.2

m Helicity of exchanged particle Section 4.2

T Depth of partially massless field Section 5.4

F Scalar four-point function Eq. (2.6)

F̂ Dimensionless four-point function, F̂ ≡ s9−∆tF Eq. (2.9)

Ĉ Contact four-point function Eq. (2.12)

F (S) Four-point function from spin-S exchange Eq. (4.25)

F
(S)
L Longitudinal part of four-point function Eq. (5.11)

B(S) Bispectrum from spin-S exchange Eq. (5.16)

Bc Contact contributions to the bispectrum Eq. (5.21)

Binf Bispectrum of slow-roll inflation Eq. (5.22)

ǫ Slow-roll parameter Section 5.3

θ Angle in the squeezed limit Eq. (5.24)

∆u Differential operator, ∆u ≡ u2(1 − u2)∂2
u − 2u3∂u Eq. (2.11)

Duv Differential operator, Duv ≡ (uv)2∂u∂v Eq. (4.12)

~Kab Vector differential operator, ~Kab ≡ ∂~ka
− ∂~kb

Eq. (B.5)

W++
ab Weight-raising operator Eq. (B.6)

W−−
ab Weight-lowering operator Eq. (B.4)

Wab Weight-raising operator, Wab ≡ W++
ab Eq. (5.5)

U
(S,m)
ab Helicity-decomposed weight-shifting operator Eq. (5.8)

S++
ab Spin-raising operator Eq. (B.10)

S−−
ab Spin-lowering operator Eq. (B.14)

Sab Spin-raising operator, Sab ≡ S++
ab Eq. (4.4)

D(S,m)
uv Helicity-decomposed spin-raising operator Eq. (4.26)

D12 Operator that raises spin at 1 and lowers weight at 2 Eq. (3.20)

D11 Operator that raises spin at 1 and lowers weight at 1 Eq. (3.19)

H12 Operator that raises spin and lowers weight at 1 and 2 Eq. (B.13)
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Symbol Meaning Reference

d Boundary space dimension Section B.2

zi Auxiliary null vector, z2 = 0 Section 3.2

(ΠS)i1···iS
j1···jS

Polarization tensor Eq. (C.3)

Di
z Todorov operator for zi Eq. (C.4)

πij Spin-1 projector Eq. (C.6)

δab Kronecker delta Ref. [92]

PS Legendre polynomial Ref. [92]

Pm
S Associated Legendre polynomial Ref. [92]

Cλ
m Gegenbauer polynomial Ref. [92]

P
(a,b)
S Jacobi polynomial Ref. [92]

(·)n Pochhammer symbol Ref. [92]
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