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Abstract. Starting from astrophysical indications that the fine structure constant might undergo a small
cosmological time shift, we discuss the implications of such an effect from the point of view of particle
physics. Grand unification implies small time shifts for the nucleon mass, the magnetic moment of the
nucleon and the weak coupling constant as well. The relative change of the nucleon mass is about 40 times
larger than the relative change of α. Laboratory measurements using very advanced methods in quantum
optics might soon reveal small time shifts of the nucleon mass, the magnetic moment of the nucleon and
the fine structure constant.

Some recent astrophysical observations suggest that the
fine structure constant α might change with cosmologi-
cal time [1]. If interpreted in the simplest way, the data
suggest that α was lower in the past:

∆α/α = (−0.72 ± 0.18) × 10−5 (1)

for a redshift z ≈ 0.5 . . . 3.5 [1].
The idea that certain fundamental constants might not

be constant on a cosmological time scale was pioneered
by Dirac [2], Milne [3] and P. Jordan [4]. More recently,
time variations of fundamental constants were discussed
in connection to theories based on extra dimensions [5].

In this paper we shall study consequences of a possible
time dependence of the fine structure constant, which are
expected within the framework of the Standard Model of
the elementary particle interactions and of unified theories
beyond the Standard Model.

In the Standard Model, based on the gauge group
SU(3) × SU(2) × U(1), the fine structure constant α is
not a basic parameter of the theory, but is related to the
coupling parameters αi (αi = g2

i /(4π), where gi are the
coupling constants of the SU(3), SU(2) or U(1) gauge
interactions.

If the three gauge coupling constants are extrapolated
to high energy, they come together at an energy of about
1016 GeV, as expected, if the QCD gauge group and the
electroweak gauge groups are subgroups of a simple gauge
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group, e.g. SU(5) [6] or SO(10) [7]. Thus the scale of
the symmetry breaking of the unifying group determines
where the three couplings constants converge [8].

If one takes the idea of grand unification seriously, a
small shift in the cosmic time evolution of the electromag-
netic coupling constant α would require that the unified
coupling constant αun undergoes small time changes as
well. Otherwise the grand unification of the three gauge
forces would work only at a particular time. Thus in case
of a time dependence one should expect, that not only the
electromagnetic coupling α, but all three gauge couplings
g1, g2 and g3 show such a time variation. One might also
consider time changes of other basic parameters, e.g. the
electron mass, but here we shall concentrate on the gauge
couplings.

Of special interest is a time variation of the QCD cou-
pling g3. Taking into account only the lowest order in
αs = g2

3/(4π), the behavior of the QCD coupling constant
is given by:

αs(µ) =
4π

β0 ln
(

Λ2

µ2

) (2)

(µ: reference scale, β0 = −11 + 2
3nf , nf : number of quark

flavors, Λ: QCD scale parameter). According to the exper-
iments one has αs(Q2 = m2

Z)MS = 0.1185(20). A typical
value of the scale parameter Λ is [9]

Λ = 213+38
−35MeV. (3)

If αs is not only a function of the reference scale µ, but
also of the cosmological time, the scale parameter Λ is
time-dependent as well.



640 X. Calmet, H. Fritzsch: The cosmological evolution of the nucleon mass and the electroweak coupling constants

One finds:

α̇s

αs
=

2

ln
(

µ2

Λ2

)
(
Λ̇

Λ

)
. (4)

We note that in this relation the coefficient β0 has can-
celled out.

The relative changes δα
α and δΛ

Λ are related by:
(

δΛ
Λ

)
=(

δαs

αs

)
ln (µ/Λ). Thus a relative time shift of αs (likewise

α2 and α1) cannot be uniform, i.e. identical for all ref-
erence scales, but changes logarithmically as the scale µ
changes. If one would identify a relative shift (δαs/αs) at
very high energies, say close to a scale ΛG ≈ 1016 GeV,
given e.g. in a grand unified theory of the electroweak and
strong interactions, the corresponding relative shift of Λ
would be larger by a factor ln(µ/Λ) ≈ 38.

In QCD the proton mass, as well as all other hadronic
masses are proportional to Λ, if the quark masses are set
to zero: Mp = const. Λ. The masses of the light quarks mu,
md and ms are small compared to Λ, however the mass
term of the “light” quarks u, d and s contributes to the
proton mass. In reality the masses of the light quarks mu,
md and ms are non-zero, but these mass terms contribute
only a relatively small amount (typically less than 10%) to
the mass of the nucleon or nucleus. Here we shall neglect
those contributions. The mass of the nucleon receives also
a small contribution from electromagnetism of the order
of 1%, which we shall neglect as well.

If the QCD coupling constant αs or likewise the QCD
scale parameter Λ undergoes a small cosmological time
shift, the nucleon mass as well as the masses of all atomic
nuclei would change in proportion to Λ. Such a change
can be observed by considering the mass ratio me/mp.
Since a change of Λ would not affect the electron mass, the
electron-proton mass ratio would change in cosmological
time.

The three coupling constants α1, α2 and αs seem to
converge, when extrapolated to very high energies, as ex-
pected in grand unified theories. However, in the Standard
Model they do not meet at one point, as expected e.g. in
the simplest SU(5)-theory [6].

In models based on the gauge group SO(10) [7] a con-
vergence of the three coupling constants can be achieved, if
intermediate energy scales are considered [10]. In the min-
imal supersymmetric extension of the Standard Model the
three gauge coupling constants do meet at one point [11].

We consider a theory where the physics affecting the
unified coupling constant is taking place at a scale above
that of the unification. The main assumption is that the
physics responsible for a cosmic time evolution of the cou-
pling constants takes place at energies above the unifi-
cation scale. This allows to use the usual relations from
grand unified theories to evolve the unified coupling con-
stant down to low energy. For example, in string theory the
coupling constants are expectation values of fields. They
might have some cosmological time evolution [12]. But,
at energies below the grand unification point, the usual
quantum field theory remains valid.

Whatever the correct unification theory might be, one
expects in general that a cosmological time shift affects
primarily the unified single coupling constant αun, defined
e.g. at the point of unification. In order to be specific, we
shall consider the supersymmetric SU(5) grand unified
theory broken to the gauge group of the minimal super-
symmetric extension of the Standard Model (MSSM) to
derive consequences for low energy physics. As usual the
scale for supersymmetry breaking is assumed to be in the
TeV range. However, our main conclusions will not depend
significantly on this assumption.

The scale evolution of the coupling constants in the
1-loop approximation is given by the well-known relation

1
αi(µ)

=
1

α0
i (µ0)

+
1

2π
bi ln

(
µ0

µ

)
. (5)

The parameters bi are given by bSM
i = (bSM

1 , bSM
2 , bSM

3 ) =
(41/10,−19/6,−7) below the supersymmetric scale and
by bS

i= (bS
1 , b

S
2 , b

S
3 ) = (33/5, 1,−3) when N = 1 supersym-

metry is restored.
Suppose that the coupling constants αi depend not

only on the scale µ, but also on the cosmological time t:
αi(µ, t). Since the coefficients bi are time independent, one
finds

1
αi(µ)

α̇i(µ)
αi(µ)

=
1

αi(µ′)
α̇i(µ′)
αi(µ′)

, i ∈ {1, 2, 3} (6)

i.e. the quantity α−1
i (α̇i/αi) is scale independent.

Since we have to evolve the coupling constants down to
energies below the supersymmetry breaking scale, we have
to take into account the fact that supersymmetry is broken
at low energy. We thus have, replacing the thresholds of
the supersymmetric particles by a simple step function,

αi(µ)−1 =
(

1
α0

i (ΛG)
+

1
2π

bS
i ln

(
ΛG

µ

))
θ(µ − ΛS) (7)

+
(

1
α0

i (ΛS)
+

1
2π

bSM
i ln

(
ΛS

µ

))
θ(ΛS − µ).

Here ΛS is the supersymmetry breaking scale and

1
α0

i (ΛS)
=

1
α0

i (MZ)
+

1
2π

bSM
i ln

(
MZ

ΛS

)
(8)

where MZ is the Z-boson mass and α0
i (MZ) is the value

of the coupling constant under consideration measured at
MZ . We use the following definitions for the coupling con-
stants:

α1 = 5/3g2
1/(4π) = 5α/(3 cos2(θ)MS) (9)

α2 = g2
2/(4π) = α/ sin2(θ)MS

αs = g2
3/(4π).

We suppose that the unified coupling constant αun un-
dergoes a time shift αun(ΛG) → α′

un(ΛG) : α′
un − αun =

δαun. According to (6) and to the convergence of the three
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coupling constants at the unification point ΛG = 1.5×1016

GeV with αun = 0.03853, one finds:

1
α1(µ)

α̇1(µ)
α1(µ)

=
1

α2(µ)
α̇2(µ)
α2(µ)

=
1

αs(µ)
α̇s(µ)
αs(µ)

. (10)

Furthermore one derives from (9)

1
α2(µ)

α̇2(µ)
α2(µ)

=
3
8

1
α(µ)

α̇(µ)
α(µ)

=
1

αs(µ)
α̇s(µ)
αs(µ)

. (11)

We note that the electroweak mixing angle θ, i.e. the
quantity sin2 θ, will also be time dependent, but only for
µ 
= ΛG. At µ = ΛG it is given by the symmetry value
sin2 θ = 3/8. The factor 3/8 in (11) arises from the fac-
tor 5α/(3 cos2 θ) by taking the time dependence of sin2 θ
explicitly into account.

Using µ = MZ as the scale parameter in (3), we obtain
at µ = MZ , using αs(MZ) = 0.121 [13]:

α̇

α
=

8
3
α

αs

α̇s(µ)
αs(µ)

=
8
3
α

αs

1
ln
(

µ
Λ

) Λ̇
Λ

≈ 0.0285 · Λ̇
Λ
. (12)

Using the scale invariance of α−1α̇/α, we obtain

α̇

α
(µ = 0) =

α̇

α
(µ = MZ)

α(µ = 0)
α(MZ)

(13)

≈ 0.93 · α̇
α

(µ = MZ).

The result is:

Λ̇

Λ
= R

α̇

α
(µ = 0) (14)

the coefficient R is calculated to R = 37.7±2.3. The uncer-
tainty of R is given, according to (12), by the uncertainty
of the ratio α/αs, which is dominated by the uncertainty
of αs.

We should like to emphasize that the relation (14) is
independent of the details of the evolution of the coupling
constants at very high energies, in particular it is inde-
pendent of the details of supersymmetry breaking. The
Landau pole of (7) for i = 3 corresponds to

Λ = ΛS exp
(

2π
bSM
3

1
αun

)(
ΛG

ΛS

)(
bS
3

bSM
3

)

. (15)

We find

Λ̇

Λ
= −3

8
2π
bSM
3

1
α

α̇

α
. (16)

i.e. there is no dependence on ΛS . If we calculate Λ̇/Λ
using the relation above in the case of 6 quark flavors,
neglecting the masses of the quarks, we find R ≈ 46.

This shows that the actual value of R is sensitive to the
inclusion of the quark masses and the associated thresh-
olds, just like in the determination of Λ. Furthermore
higher order terms in the QCD evolution of αs will play

a role. For this reason the systematic uncertainty in the
value of R is certainly larger than the error given above.
We estimate:

R = 38 ± 6 (17)

taking into account both the experimental error in the de-
termination of αs(MZ) and the systematic uncertainties.

The time change of Λ implies a time change of the pro-
ton mass and of all nuclear mass scales, as well as of the
pion mass, which would change in proportion to Λ1/2, ac-
cording to the chiral symmetry realtion M2

π = const.mqΛ
(mq: light quark mass average). We obtain

Ṁ

M
=

Λ̇

Λ
= R

α̇

α
≈ 38 · α̇

α
. (18)

Thus the change of the nucleus mass amounts to about
0.3 MeV, if we base our calculations on the time shift of
α given in [1]. At a redshift of about one the mass of the
nucleon as well as the masses of the nuclei were about 0.3
0/00 smaller than today.

In QCD the magnetic moment of the proton µ = gp ·
e/2Mp is related to the magnetic moments of the con-
stituent quarks. Although it is not possible to calculate
the magnetic moment of the proton with high precision,
the moment scales in proportion to Λ−1 in the chiral limit
where the quark masses vanish. Thus, we have

µ̇p

µp
= − Λ̇

Λ
= −R

α̇

α
. (19)

The gyromagnetic ratio gp will not be time dependent,
since the proton mass scales like µ−1

p , however the ratio of
the magnetic moments µp/µe will be time-dependent:

˙(
µp

µe

)/(
µp

µe

)
= − Λ̇

Λ
= −R

α̇

α
. (20)

The present astrophysical limit on the proton-electron
mass ratio µ = Mp/me obtained at a redshift of z = 2.81
is [14]

−1.7 × 10−5 <
∆µ

µ
< 2 × 10−4. (21)

Using (18) and (1), one would expect:

∆µ

µ
≈ −3 · 10−4 (22)

a result, which violates the bound (21), but in view of the
large errors on the astrophysical side we do not regard this
as a serious disagreement, rather as a sign that astrophys-
ical data might soon clarify whether a time change of the
nuclear mass scale following (18) is indeed present.

A clarification of the situation could come from lab-
oratory experiments. Assuming an age of the universe of
the order 14 Gyr, the various astrophysical limit can be
used to derive relative changes of the various quantities,
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e.g. α̇/α or Λ̇/Λ, per year, assuming for simplicity a linear
time evolution. The constraint on |∆µp/µp| given above
(21) leads to [14]:∣∣∣∣ µ̇p

µp

∣∣∣∣ < 1.5 × 10−14 yr−1. (23)

Direct laboratory measurements provide the constraint
[15]: ∣∣∣∣ α̇α

∣∣∣∣ ≤ 3.7 × 10−14 yr−1. (24)

Using advanced methods in quantum optics, it seems
possible to improve the present laboratory limits for a time
variation of α and of the nucleon mass by several orders
of magnitude. A time variation of α could be observed by
monitoring the atomic fine structure in a period of several
years. Monitoring the rotational and/or vibrational transi-
tion frequencies of molecules, e.g. diatomic molecules like
H2 or CO would allow to set stringent limits on a time
variation of the nucleon mass.

According to our estimates, the largest effect is ex-
pected to be a cosmological time shift of the nucleon mass,
observed e.g. by monitoring molecular frequencies. Due to
the relation (19) similar effects (same amounts, opposite
sign) should be seen in a time shift of µp, observed by
monitoring hyperfine transitions. These effects should be
about 40 times larger than a time shift of α (see (14)), ob-
served e.g. in monitoring fine structure effects. In quantum
optics one may achieve a relative accuracy in frequency
measurements of the order of ∆ω/ω ≈ 10−18, which would
allow to improve the present limits significantly or ob-
serve effects of time variation. We note, however that the
present continuously operated atomic frequency standards
(H, Cs, Hg+) are using transitions between ground states
hyperfine energy levels, given by the interaction of a nu-
clear magnetic moment with the magnetic moment of the
valence electron [15]. In a relative comparison the time de-
pendence of the nuclear magnetic moments drops out. In
order to see an effect, following (19), a comparison with a
frequency standard independent of the nuclear magnetic
moments is necessary.

It is quite possible that future laboratory experiments
find positive effects for time variations of Mp, µp and α.
If a time variation is observed, the actual amount of time
variation, say the value of Ṁ/M , would be an important
parameter to connect particle physics quantities with the
cosmological evolution.

Finally we should like to mention that the link between
the various coupling constants of the Standard Model dis-
cussed here implies that nuclear physics scales, including
the pion mass, change as well. For this reason the con-
straints on a time variation of α derived from an analysis
of the natural reactor at Oklo (Gabon, Africa) [16] cannot
be taken seriously. In fact, it is a bound on the product
αMπ under the additional assumption that other nuclear
physics and strong interaction parameters do not change.

The product αMπ would change, according to the relation
(14) as α̇/α+Λ̇/(2Λ) ≈ 21α̇/α, since Mπ is proportional to√
mΛ (m: light quark mass). This would lead to a bound

about an order of magnitude stronger than the present
bound on the time variation of α. However other nuclear
physics parameters, change as well. A more detailed anal-
ysis of the nuclear physics aspects of a time change of Λ
is needed in order to see whether there is a disagreement
here.

Furthermore we expect a small cosmological time shift
of the n − p mass difference. This would affect the cos-
mic nucleosynthesis of the light elements. An analysis of
nucleosynthesis will be made elsewhere.
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