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ABSTRACT

The Cost-Constrained Traveling Salesman Problem (CCTSP) is a variant of the

weil-known Traveling Salesman Problem (TSP). In the TSP, the goal is to find a tour of a

given set of cities such that the total cost of the tour is minimized. In the CCTSP, each city

is given a value, and a f'med cost-constraint is specified. The objective is to find a subtour

of the cities that achieves maximum value without exceeding the cost-constraint. Thus,

unlike the TSP, the CCTSP requires both selection and sequencing, As a consequence,

most results for the TSP cannot be extended to the CCI'SP. We show that the CCTSP is

NP-hard and that no K-approximation algorithm or fully polynomial approximation scheme

exists, unless P = NP. We also show that several special cases are polynomially solvable.

Algorithms for the CCTSP, which outperform previous methods, were developecl

in three areas: upper bounding methods, exact algorithms, and heuristics. Extensive

computational studies were undertaken to evaluate and compare algorithms. These

computational studies also examined the sensitivity of performance to problem

characteristics. We found that a bounding strategy based on the knapsack problem

performs better, both in speed and in the quality of the bounds, than methods based o:, the

assignment problem. Lil:ewise, we found that a branch-and-bound approach using the

knapsack bound was supeI__arto a method based on a common branch-and-bound method

for the TSP. In our study of heuristic algorithms, we found that, when selecting nodes for

inclusion in the subtour, it is important to consider the "neighborhood" of the nodes. A

node with low value that brings the subtour near mary other nodes may be more desirable

than an isolated node of high value. We found two types of repetition to be desirable:

repetitions based on randomization in the subtour building process, and repetitions

encouraging the inclusion of different subsets of the nodes. By varying the number and

type of repetitions, we can adjust the computation time required by our method to obtain

algorithms that outperform previous methods in both speed and solution quality.
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,_ Chapter 1

INTRODUCTION

This research addresses the "Cost-Constrained Traveling Salesman Problem,"

named for its similarity to the well-known Traveling Salesman Problem. In its general

form, the problem is: given a set of tasks which require varying amounts of a limited

resource, select a subset of the tasks and a sequence of performing this subset such that

maximum value is obtained without exceeding the resource limit. The resource may be of

any nature, but typically is time or money. Similarly, the tasks may be of any nature. The

key characteristics are: the resource is limited; each task has a f'med value; the tasks may be

viewed as sequential; completion of a task requires some amount of the limited resource;

and the resource requirement for a task may depend on the previous task.

Although the Cost-Constrained Traveling Salesman Problem is very similar in

nature to the Traveling Salesman Problem, there is a fundamental difference. The Cost-

Constrained Traveling Salesman Problem requires both selection and sequencing of tasks,

while the Traveling Salesman Problem requires sequencing only. In the Traveling

Salesman Problem, the goal is not to select and sequence tasks to make optimal use of a

limited resource. Rather, it is to sequence a fixed set of tasks in order to minimize use of

an unlimited resource. The traveling salesman wishes to tour a fixed set of cities and the

cost of this tour depends on the order in which the cities are visited. The goal is to find a

tour m an ordering of the cities -- that minimizes the total cost. In the Cost-Constrained

Traveling Salesman Problem, the traveling salesman is given a fixed cost-constraint, or

budget. The goal is to find a maximal subsequence of cities -- a subtour u to visit

without exceeding the cost-constraint. The problem may be further complicated if some

cities have different values than others. In another version of the Travelhig Salesman

Problem, the problem is worded as "Can the set of tasks be completed given the resource

constraint?" The answer is simply "yes" or "no." If the answer is "no," no attention is



given to optimizing the number or value of tasks which can be completed within the given

constraint. Henceforth, we will refer to the tasks as nodes, the resource requirements as

costs, and the resource limit as the budget.

While an abundance of literature is available on the Traveling Salesman Problem'

very little work has been done on the cost-constrained version. We make use of previous

work on both the Traveling Salesman Problem and the Cost-Constrained Traveling

Salesman Problem as much as possible. However, the departure of the cost-constrained

version from the Traveling Salesman Problem is significant enough to limit severely the

applicability of Traveling Salesman Problem results. This is particulm'ly wae for theoretical

results pertaining to approximation algorithms.

A point of interest is that the Cost-Constrained Traveling Salesman Problem was, in

fact, the original version of the Traveling Salesman Problem. The earliest known reference

to the Traveling Salesman Problem is a book published in Germany in 1831 by B. F.

Voigt, The Traveling Salesman, how he should be and what he should do to get

Commissions and to be Successful in his Business. By a veteran Traveling Salesman

[Vo]. In this book, the author does not state that the objective is to minimize the cost of

visiting ali of the cities, but rather, "The most important aspect is to cover as many

locations as possible ..." [HW]. In subsequent work on the Traveling Salesman

Problem, which doesn't really appear until the mid-1900's, the problem is changed to the

current Traveling Salesman Problem formulation.

The first fore chapters of this dissertation are introductory in nature. Chapter 2

provides a brief review of basic concepts in combinatorial optimization. Its main intention

is to introduce terminology that is used in later chapters. This is followed by a formal

description of the Cost-Constrained Traveling Salesman Problem, including alternate

formulations, extensions, and applications. The theoretical complexity of the problem is

also discussed. Chapter 4 contains a synopsis of relevant previous work.

The remaining chapters focus on algorithms for the Cost-Constrained l'raveling

Salesman Problem. Chapter 5 presents several special cases that can be solved with very

efficient polynomial algorithms. This is followed by a discussion of the evaluation



framework that was used for computational evaluation of the algorithms presented in

subsequent chapters. Chapters 7 through 9 address upper bounding methods, exact

algorithms, and heuristic algorithms, respectively. Previous methods are discussed as well

as new. Extensive computational experiments are used for evaluation and comparison of

methods.

Finally, we conclude with a summary of results, as well as a discussion of open

questions and promising areas for future research. In addition to the reference list, a

bibliography is included. The reference list contains only those works which are
L

specifically discussed in this dissertation. The bibliography contains additional citations of

relevant work, including the textbooks that were the basis for Chapter 2.

, ,!i _
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Chapter 2

REVIEW OF COMBINATORIAL OPTIMIZATION

In combinatorialanalysis, one is often concerned with the existence of a particular

type of arrangement of a finite number of objects. Combinatorial optimization looks for the

best arrangement of these objects. This is analogous to the distinction in combinatorics

between recognition problems and optimization problems. In recognition problems, the

existence of a particular type of arrangement is questioned. In optimization problems, the

optimal arrangement is sought. For example, the recognition version of the Traveling

Salesman Problem is:

TSP(recognition): Given a set of nodes {1,2,...,n} and a non-negative

cost matrix C= [cij ], does there exist a tour, starting and ending at node 1,

with total cost B or less?

In other words, is there a permutation /i,z = (n:(1),n:(2),...,zc(n)) with

n:(1) = 1 and

n-1

CTr(i),n(i+l) + Crr(n),n(1) < B ?
i=1

The optimization version is:

TSP(optimization): Given a set of nodes {l,2,...,n} and a non-negative

cost matrix C = [cii] find a tour, starting and ending at node 1, with

minimum cost.

In other words, find a pemautation/I n = (n:(1),nr(2),...,n:(n)) with n:(1)= 1

that minimizes

n-1

Z Cr¢(i),_(i+l) q" C_z(n),z_(1).
i=1

Henceforth, tile notation "TSP" refers to TSP(optimization).

As in the above definitions of TSP, we will denote an arrangement of a set of n

objects by a permutation /in = (n:(1),n:(2),.... ,zr(n))- a one-to-one mapping of the set

: 4



{1,2,...,n} onto itself- where _(i) = j indicates that the object with label j is in the ith

position. Using this same interpretation, we denote an arrangement of a subset of a set of n

objects by a partial permutation _ = (n'(1), n'(2),..., _(m)) -- a one-to-one mapping of the

set {1,2,...,m} _,where m < n, into the set {1,2,...,n}.

For any finite setof objects, there is only a finite number of possible arrangements.

Thus, solving combinatorial problems requires consideration of only a finite number of

possibilities. This number, however, is usually prohibitively large, making total

enumeration impract_,Cal. For example, the number of ways to arrange 25 objects is 25!, or

approximately 1.5× 10zS. Examining each arrangement using a nanosecond computer

would take approximately 5 × 108 years.

A combinatorial problem ir defined by a general description of its parameters and a

statement of the properties the solution is required to _atisfy. An instance of a problem is a

particular set of values for the problem parameters. A recognition problem has two types

of instances, yes instances and no instances. "Yes" instances are those for which a

solution satisfying the specified conditions exists. "No" instances are those for which such

a solution does not exist. Solving a recognition problem means determining whether it is a

"yes" instance or a "no" instance.

We can represent most combinatorial problems by a digraph G = (N,A) and a

matrix C = [cij]. In this representation, N is the set of nodes and A is a set of arcs or

ordered pairs of nodes. Often, A = N × N, i.e., there is an arc from every node to every

other node. In this case, we say G is complete. A sequence or permutation of nodes is

called a path and is represented by a subset of A where arc (i,j) is in the subset if and only

if node j follows node i in the sequence. The cost associated with having node j follow

node i is called the length or arc length of arc (i,j) and is represented by cii. In most cases,

a digraph G which is not complete is equivalent to a complete digraph in which cii = ** for

the arcs (i,j) not in G. The total cost of a sequence or subsequence of nodes is called the

path length. In some cases, there is also a vector V of weights or values on the nodes.

We will now look at some characterizations of algorithms, but first we must define

the "size" of a problem. The size of a problem is the number of bits required to represent



the data of the problem. The size of a graph is characterized by the number of vertices, the

number of arcs, and the logarithm of the maximum arc length, which is proportional to the

number of bits required to encode the data in a computer.

One characterization of an algorithm is the maximum time required to solve a

problem of given size n, usually evaluated in terms of elementary operations (addition,

multiplication, comparison, etc.). This gives a measure of the "worst case" behavior of the

algorithm. This maximum time is a function f(n)of the size of the problem. Since the

measure of time depends on the types of operations, the relative times needed for these

operations, the type of computer, etc., one generally considers the growth rate, or

asymptotic order, of the function f(n). We say an algorithm is of order g(n), or O(g(n)),

if f(n)/g(n) tends to a constant as n _ *,,. Algorithms tiaat are O(n) are called linear;

those that are O(n p) are called polynomial of order p; those that are 0(2 n) are called

exponential; and those that are O(nl) are called factorial. An algorithm for which the

computation time depends polynomially on numerical data not encompassed by tthe size of

the problem is called pseudo-polynomial. Algorithms that are exponential or factorial are,

in many cases, computationally infeasible for large problems_ A common criterion for an

"efficient" algorithm is that it be polynomial. This cri'erion is based on the assumption that

the worst case behavior of an algorithm is typical of problems encountered in practice, and,

therefore, should not be taken as gospel. In practice, many non-polynomial algorithms are

very efficient, and, in some cases, more efficient than polynomial algorithms.

Anot;_er characterization of an algorithm is the "average" time requ!a'ed to solve a

problem of given size n. This is important since, in many cases, the average time required

to solve a problem is much better than tlae worst case. The Simplex Method is a classic

example. Its worst case growth rate tbr solving linear programs is exponential, while its

average growth rate, based both on problems encountered in practice and on randomly

generated problems, appears to be little more than linear.

The storage space required to execute an algorithm may also be of interest. In some

cases, the size of problems that can be solved is limited more b)' storage requirements than

by computation time. We note that, as new generations of computers and storage devices



are developed, the restrictions imposed by storage requirements and computation time

become less and less stringent. However, doubling the computation speed and storage

capacity would not mean that we could solve problems twice as large, unless the algorithm

being used was linear.

Recognition problems generally fall into two classes. The first, called P, is the

class of recognition problems for which polynomial alg_ithms exist. A classic example of
Wb

a problem in this class is the Assignment Problem (AP):

AP(reeognition): Given a set of nodes V = {vl,v2,...,vn}, a set of nodes

U = {ul,u2,...,un}, and a cost matrix C =[cii] where cii is the cost of

ass,.'g_".ingnode vi to node uj, is there an assignment of V to U with cost B

or less?

In other words, is there a permutation ]_n = (zr(1),n:(2),..., n'(n)) for which

tl

___ Ci,_r(i ) _- B,
i=1

where tc(i) = j indicates that node vi is assigned to node uj ?

Before we define the second class, we require some additional definitions.

The class called NP is a larger class of recognition problems that includes P. For a

problem to be in NP, we do not require that every instance can be solved in polynomial

time by some algorithm. We require only that for every "yes" instance of the problem,

there exists a certificate w a proof that it is a "yes" instance- that can be checked for

validity in polynomial time. This certificate is usually a solution that satisfies the specified

criteria of the problem. For example, a certificate for a "yes" instance of TSP(recognition)

is a tour of length B or less. (Note that the existence of a certificate implies nothing about

the existence of an algorithm for finding the certificate.)

We say a problem A1 reduces in polynomial time to a problem A2 if, assuming

there exists a polynomial algorithm for A2 , there exists a polynomial algorithm for A1 that

uses as a subroutine the algorithm for A2. We say a recognition problem A1polynomially

transforms to a recognition problem A2, if, given any instance x of A1, we can construct



within polynomial time (in the size of x) an instance y of A 2 such that x is a "yes" instance

of A1 if and only if y is a "yes" instance of A2.

We can now define the second class of problems referred to above, those that are

"NP-complete". A recognition problem A is NP.complete if A is in NP and ali problems in

NP polynomiaUy transform to A. TSP(recognition) is a classic example of an NP-complete

problem. A problem A is NP-hard if ali problems in NP reduce in polynomial time to A,

but A is not necessarily in NP. TSP(optimization) is an Np-hard problem. If there exists a

polynomial algorithm for any NP-hard problem, then, by the definition of polynomial

reducibility, there exists a polynomial algorithm for all problems in NP. This would mean

that P = NP. The classes P, NP, NP-complete, and NP-hard are referred to as complexity

classes. The question of whether P = NP is a long-standing open question in the field of

combinatorics.

There are two types of algorithms for opt;_mization problems, exact and heuristic.

An exact algorithm is one that is proven to find the true solution to an optimization

problem, that is, a solution whose value is the true optimum. Heuristic algorithms find

solutions that satisfy the constraints of the problem but cannot be guaranteed to be optimal.

Heuristic algorithms are designed to find solutions whose values are, at least, near to the

optimal value. Since there are no known polynomial exact algorithms for NP-hard

problems, heuristics are, in many cases, of great importance. For some problems, there

exist heuristic algorithms for which it is possible to prove that a performance guarantee

exists. These performance guarantees have several forms. For example, a performance

guarantee might state that a given heuristic algorithm for a minimization problem always

finds a solution whose value is not more than twice the optimal value. In general,

however, performance guarantees cannot be obtained. In fact, for some problems (e.g.

TSP), it is possible to prove that a heuristic with a performance guarantee cannot exist,

unless P = NP. Furthermore, in cases where a performance guarantee does exist,

heuristics generally perform better than their guarantee. For these reasons, aeuristics are

usually evaluated on the basis of their empirical performance.

Q
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Chapter 3

PROBLEM DESCRIPTION

In this chapter, we give a more precise definition of the problem under

consideration and discuss several variations. We also look at the complexity of solving the

problem, both exactly and approximately. Finally, we present some extensions and

applications.

3.1 Basic Problem Formulation

Like the Traveling Salesman Problem, the Cost-Constrained Traveling Salesman

Problem can be formulated as either an optimization problem or as a recognition problem.

We defin_ the optimization problem as follows:

CCTSP(optimization): Given a set of nodes {1,2,..,,n}, a non-negative

cost matrix C = [cij], positive values {vl,v2,...,vn}, and a budget B, find a

subtour of maximum value, starting and ending at node 1, whose total cost

does not exceed B.

In other words, find a partial permutation _ = (z_(1),zr(2),...,n'(m)) with

m < n, zt'(1)= 1, and

m-1

__ Crt(i),rt(i+l ) + Cn(m),nr(1) --<B
i=I

that maximizes

m

._Vn(i).
i=1

The corresponding recognition problem is:

CCTSP(recognition): Given a set of nodes {1,2,...,n}, a non-negative

cost matrix C = [cij], positive values {vl,v2,...,vn}, and a budget B, does

there exist a subtour, starting and ending at node 1, whose total cost does

not exceed B and whose value is Q or greater?

9



In other words, for some m <n, is there a partial permutation

= (_:(1),n:(2),...,n:(m)) with zr(1)= 1,
/

m-1

ZClt(i),zt(i+l ) + Cn(m),n(1 ) --<B,
i=1

and

m

Z Vn(i) >- Q?

i=1

In this basic formulation of the Cost-Constrained Traveling Salesman Problem, we

require the subtour to be a closed loop starting and ending at a specified node. Each node

may be visited at most once and the nodes may have different values. Henceforth, the

notation "CCTSP" refers to CCTSP(optimization), as defined above,

CCTSP can also be formulated as a 0-1 integer programming problem. In the

integer programming formulation, we have xij = 1 if node j follows node i in the subtour

and xiy = 0 otherwise. The value of a node is accrued only if the node is contained in the

subtour. The integer programming formulation can be written as

t'l ta

i=1 j=l

Pl n

subjec,,o:£ Eijxij<-8
i=1 j=l

n

_.x U =1
j=2

n

_._xij < 1 for i = 1,2,...,n
j=l

n Pl

ff_.,xij- _xjk =0 forj = 1,2,...,n
i=1 k=l

xij e {0,1} for ali i and ali j

-<Isl- 1 for ali s c {2,3,...,n},
ieS jES

10



where [SI is the cardinality of S. We refer to the last 2 '_-1 inequalities as the subtour

elimination constraims (also referred to in TSP literature as "loop" conditions). Note that if

a solution contains a subtour that does not include node 1, then, letting S be the set of

nodes in this subtour, the last constraint is violated. This prevents solutions containing two

or more disjoint subtours and also prevents solutions with xjj = 1 for some j _ 1.

Furthermore when node i is not included in the subtour, we have
., ,

n e

__ ViXij ' = O.
j=l

As an alternative integer programming formulation, we can define cjj = 0 for all j

and let xjj = 0 if node j is included in the subtour and xjj = 1 if node j is not included in the

subtour. This leads to the formulation

n

max ___vi(l- xii ) (IP2)
i=1

n n

subject to: ____._ CijXij <--n
i=1 j=l

Xll =0

n

_.,xij =1 forj= l,2,...,n
i=1

n

_.,xij = 1 for i = 1,2,...,n
j=l

xij _ {0,1} for ali i and ali j

-<1s1-1 for all S c {2,3,...,n}.
iEsj_S

j_i

3.2 Alternate Formulations

Several alternatives to the basic formulation of CCTSP exist. These include cases

where the starting node and/or ending node are not specified, a closed loop is not required,

_11nodes have equal value, and/or nodes may be visited more than once. We now discuss

these alternate formulations and their relationship to the basic formulation.

11



Suppose that rather than a subtour starting and ending at node 1, we desire a path

starting at node 1 and ending at an unspecified node or at a specified node other than

node 1. We call this problem CCTSP-path. In the case where the ending node is

unspecified, CCTSP-path can be reduced to CCTSP by setting the costs ci'1 = 0 for ali i

and requiring a subtc_ur starting and ending at node 1. If we require the path to end at a
p t

specified node, m, then we reduce the problem to CCTSP by setting cml = 0 and cii = **

for ali i _: m. The conversions can also go the other way. CCTSP can be reduced to

CCTSP-path by creating an artificial node 1' and setting cir = cii and cvi = *_ for ali i.

Note that if node 1' occurs in the path, it will be the endpoint. We either specify node i' as

the ending node or, if the ending node is unspecified, assign a sufficiently large value to v v

assuring that node 1' will be the endpoint of the path. Similar transformations can be

applied for the case where the ending node is specified but the starting node is not.

In the case where a closed subtour is required but the starting node is not specified,

we reduce the problem to CCTSP by creating n instances, each one specifying a different

starting node. The instance with the highest solution value gives the solution to the original

problem. If the starting node is not specified and we desire a path rather than a closed

subtour, we can transform the problem to CCTSP by adding an artificial node. We add

node 0 with value v0 = 0 and let Cio= Coi= 0 for i = 1,...,n. We then solve CCTSP,

requiring that the subtour start and end at node 0. To reduce CCTSP to the case where a

closed subtour is required but the starting node is not specified, we assign a sufficiently

high value to node 1. This assures node 1 will be in the optimal solution, thus giving a

subtour that starts and ends at node 1.

If ali nodes have equal value, then the objective reduces to maximizing the number

of nodes in the subtour. No transformation is required. We can simply set vi = 1 for all i.

When the node values are integer and are not equal, CCTSP is transformed to a problem

where the objective is to maximize the number of nodes in the subtour by creating vi

replicas of node i for each i, resulting in the set of nodes

{11,12,..., lv1,21,22,...2v 2,...ni ,n2,...,nv, }

12



and the cost matrix C', where

ci'kj_ = cii for ali i,j,k,l with i _: j

and

c_ki_= 0 for ali i,k,l.

lt is important to note that this is a pseudo-polynomial transformation rather than a

polynomial laansformation, as it increases the number of nodes from n to

n

_'i.

i-'1

Suppose we have a problem that is like CCTSP, except that nodes may be visited

more than once. We assume that a node's value is acquired if the node _curs at least once

in the subtour and that no additional vahae is acqui!ed for multiple occurrences of the same

node. Thus, the only reason to revisit a node is if doing so results in a cheaper path

between two nodes than the direct path. We note that if the triangle inequality is satisfied,

that is, if

cik <.cij + cjk for all i,j,k,

then there is never anything to be gained by multiple visits to a node, since an indirect path

is never cheal:,er than a direct one. Thus, in this case, an optimal solution exists in which

no node is revisited, and solving CCTSP will give an optimal solution. If we replace cii

with c/_where cbis the length of a shortest path from node i to node j, then the triangle

inequality will always be satisfied. Thus we can replace C with C', assume that each node

may be visited at most once, and solve CCTSP. If (ip,iq) is an arc in the optimal solution

under C' and (ip'is,i,,...,i q) isa shortest route from it, to iq under C, we replace the arc

(it,,iq) in the optimal solution with (it,,is,it,...,iq).

We have not found a transformation from CCTSP to the variant where nodes may

be revisited. However, we can make a transformation to a similar problem. Let M be a

sufficiently large number (e.g., M > B) and replace cii with cb = cii + M for each i, j. We

allow nodes to be revisited but require that the subtour have cost less than B' = B + mM,

13



where m is the number of distinct nodes in the subtour. Although revisits are allowed dae

costconstraint assures that, in any feasible solution, no nodes will be revisited. Hence,
!

any feasible solution is also feasible for CCTSP. This is not a precise transformation

becauseB" is a function of m, an unspecified variable. In the case where we wish to

maximize the number of nodes rather than the value, we can make a precise polynomial

transformation between CCTSP(recognition) and the corresponding recognition problem

that does allow nodes to be revisited. Suppose we desire to know whether there is a
O

subtour containing m nodes and having cost less than B. We replace cij with c_"i = cii + M

and ask Whether there is a subtour containing m distinct nodes and having cost less than

B' = B + mM. Although we allow nodes to be visited more than once, the cost constraint

assures that any feasible subtour contains at most m arcs and, thus, if it contains m distinct

nodes, no nodes are revisited.
. ,

3.3 Complexity

In this section, we show first that CCTSP(recognition) is NP-complete. We then

show that, for certain types of approximations, a POlynomial algorithm cannot existunless

P=NP.

Theorem 3.1: CCTSP(recognition) is NP-complete.

Proof: In order to show that CCTSP(recognition) is NP-complete, we must show

(a) that the problem is in NP and (b) that ali other problems in NP polynomially transform

to CCTSP(recognition). To show (b), it suffices to show that a problem known to be

NP-complete polynomially transforms to CCTSP(recognition). We will use TSP for this

purpose.

CCTSP(recognition) is in NP if there exists a certificate that can be checked for

validity in polynomial time for every "yes" instance of the problem. By definition, for

every "yes" instance of CCTSP(recognition), there exists a partial permutation

g.m (_z(1),_z(2),.. z_(m)) with m < n Tr(l)= 1

m-I

" Y__,Cn(i),rt(i+l)+ Crr(m).n(1)< B,
i=1

14



and

m

_,_v_(i) >-Q.
i=1

Thus, /lhm is a certificate and it can be validated in polynomial time by verifying that the

above two constraints are satisfied. Hence, CCTSP(recognition) belongs to the class NP.

To conclude our proof, we show that TSP(recognition) polynomiaUy transforms to

CCTSP(recognition). Let vi = 1 for ali i, and Q = n. We then ask:

Is there a partial permutation/_'_ = (_r(1),zr(2),...,Tr(m)) with m _<n, Tr(l) = 1,

m-.1

___Ctr(i),_(i+l) + CrC(m),tr(1 ) _< B,
i=1

and

m

_,v_r(i ) >_n?
i=1

i

A permutation /C_that satisfies these constraints must contain m = n nodes and thus

defines a Traveling Salesman tour of the n nodes with total cost B or less. Likewise, any

Traveling Salesman tour with cost B or less defines a permutation /_n that satisfies the

above conditions. Thus, there exists a polynomial transformation from TSP(recognition)

to CCTSP(recognition), completing our proof that CCTSP(recognition) is NP-complete. In

Note that this proof also shows that the special case of CCTSP(recognition) where

ali nodes have equal value is NP-complete.

Corollary 3.1: CCTSP(optimization) is NP-hard.

Consider now the problem of finding an approximate solution to CCTSP v0iitha

value within K of the optimal solution. We will call an algorithm that finds such a solution

a K-approximation algorithm.

Theorem 3.2: No K-approximation algorithm exists for CCTSP, unless P = NP.

15



Proof: Suppose algorithm A is a K-approximation algorithm for CCTSP and we

wish to solve an instance of TSP(recognition). Let vi = K + 1 for i = 1,...,n. We then

apply algorithm A to the problem:

(CCTSP) Find a partial permutation 717_=(z_(1),_r(2),...,_(m)) with

m-< n, _(1)= 1, and

m-1

' _._C_t(i),n.(i+l ) 4-Cff(m),_(1 ) _ B

i=1

that maximizes

m

_.d Vn(i) '

i=1

If there exists a Traveling Salesman tour with cost B or less, then there exists a feasible

solution to CCTSP containing n nodes and, thus., having value n(K + 1). Note that this is

the maximum value possible. Hence, if the instance of TSP is a "yes" instance, the optimal

value for CCTSP is n(K + 1). By definition, algorithm A will find an apprordmate solution

to CCTSP with value n(K + 1)- K = (n - 1)(K + 1)+ 1 or greater. Thus, the solution must

contain ali n nodes and have value n(K + 1). If the instance of TSP is a "no" instance, there

does not exist a Traveling Salesman tour with cost B or less. Any feasible solution to

CCTSP must contain at most n- 1 nodes and have value (n- 1)(K + 1) or less. We can

answer TSP(recognition) by applying algorithm A to CCTSP. The answer to TSP is "yes"

if and only if the value of the solution found by algorithm A is n(K + 1).. If algorithm A is

polynomial, then we have found a polynomial algorithm which solves TSP(recognition),

an NP-complete problem. Thus, a polynomial K-approximation algorithm cannot exist

unless P = NP. !'!

A fully polynomial approximation scheme for a problem 1-I is an algorithm A such
i

that for anY e > 0 (the accuracy requirement), AE is polynomial in the size of l'I and 1/e

an:.!

IOPT(rl)- ae(rI)[ < e.
OPT(H)
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Theorem 3.3: There is no fully polynomial approximation scheme for CCTSP

unlcss P = NP.

Proof: Suppose A is a fully polynomial approximation scheme for CCTSP.

Consider an instance I of CCTSP where ali nodes have a value of 1 and there are n nodes.

Let e = 1/n. Then Ae is polynomial in the size of I and n. If Ae does not return the

optimal value for an instance I of CCTSP then OPT(l)- A(I) >_1. Also, OPT(1) <_.n So,

[OPT(H)- AE(I'I)[ _ 1/n = e.
ovr(H)

Thus, At must return the optimal value and is a polynomial algorithm for the case of

CCTSP where ali nodes haveequal value. Since CCTSP where all nodes have equal value
L

is an NP-hard problem, the existence of A implies P = NP. 13

Several complexity questions still remain open. Our primary interest in in the

following: Is there any polynomial approximation algorithm for CCTSF ,vith a

performance guarantee? That is, is there any algorithm A and number r such that

[OPT(1)-A(t)l_ r
OPT(I)

for all instances I of CCTSP?

3.4 Extensions

Two extensions of CCTSP are of particular interest. These are (1) the case where

them are time windows on the nodes and (2) the time varying problem. Both extensions

have practical applications, for example, in the area of battlemanagement for strategic

defense systems.

In the flu'st extension, the case of time windows, the limited resource is time.

Rather than a budget, a time window, defined by a start and stop time, is placed on each

node and a starting time for the subtour is specified. A node may be visited only during its

time window. In some cases, it may be desirable to wait some period of time at a node

before continuing the subtour and this is allowed. Baker [Ba] presents a branch and

bound algorithm for a limited version of this problem. Rather than seeking a feasible

17
i



b
J

subtour of maximum value, he seeks a complete tour Satisfying the time window

constraints' If such a tour does not exist, the problem is infeasible: CCTSP is the special

case of this extension where ali the nodes have identical time windows.

Another extension of CCTSP is the time varying problem. Again, the limited

resource is time and a start time for the subtour is specified. The node values and the cost

matrix may change over time and are defined as functions of time, v(t) and C(t). There is

no explicit budget constraint, but an implicit budget constraint may be defined by the time at

which the node values go to zero. CCTSP is the special case where the cost matrix is

constant and the value function is:

for t > B.

3.5 Applications

The Cost-Constrained Traveling Salesman Problem is applicable to a wide variety

of problems. Many problems traditionally treated with TSP are better handled with

CCTSP. This discussion focuses on several applications that have arisen at Lawrence

Livermore National Laboratory (LLNL), and ,one,more light-hearted, application.

Many military applications of CCTSP have arisen at LLNL. One example was a

project involving battle management for a Free-Electron Laser Strategic Defense System.

In this problem, the "traveling salesman" was a laser beam focused by a space mirror, the

tasks were destroying missiles, the resource was time, and the budget was the length of the

window of vulnerability. The time required to destroy a naissile depended on the missile's

type and its angular distance from the previous missile destroyed. The goal was to find a

target sequence which resulted in as many missiles being destroyed as possible. This is a

challenging problem since the loss due to a target sequence that is even slightly suboptimal

could be significant. Furthermore, the time required to compute the target sequence was

critical since the problem data would be arriving in real time and time spent computing the

sequence would be time not spent destroying targets. Applications occurring in naval

tactics include task sequencing for mine sweepers and surveillance ships, and target

18



prioritization problems arising in naval air defense. Other military applications arc

countless.

In addition to military applications, many operational applications occur at LLNL.

For example, hazardous waste management requires many waste processing tasks with

sequence dependent set-up times to be s_heduled at a single facility. Any tasks which

cannot be completed within a specified time interval must be contracted to an outside facility

at substantial cost. Thus, it is desirable to select and sequence the tasks to be completed in-

house such that the cost of contracting out the remaining tasks is minimized.

On the lighter side, another application is the "time-constrained shopping spree"--

the event where an individual wins a shopping spree of a specified time-length at a

particular store. If the layout of the store and both the location and value of items is known

ahead of time, the problem of computing an optimal "shopping strategy" is equivalent to

CCTSP.

19



Chapter 4

REVIEW OF PREVIOUS WORK

While a great deal of work has been done on the Traveling Salesman Problem,

relatively little previous work exists for CCTSP. Furthermore, the majority of the result:;

for TSP cannot be extended to CCTSP. This is particularly true for approximation

algorithms since, for TSP, the cost of an optimal solution is being approximated, while for

CCTSP, it is the value of an optimal solution that is being approximated. We begin this

review of previous work by discussing some common algorithms for TSP that are alluded

to in later sections. This is followed by a discussion of selected work on TSP and related

problems. Finally, we give a brief discussion of previous work on CCTSP. More detailed

discussions of previous algorithms for CCTSP are presented in subsequent chapters.

Four common heuristic procedures for TSP are referred to in subsequent chapters.

These are: the nearest neighbor algorithm, the cheapest insertion algorithm, the farthest

insertion algorithm, and the two-opt procedure. The first three of these are tour building

procedures developed in the 1969's and are difficult to attribute to any particular

individuals, while the fourth is a tour improvement procedure developed by Shen Lin in

1965 [Lin].

The nearest neighbor algorithm is a completely myopic procedure, lt begins with a

path consisting of a single node, usually the "home base." At each step, the node not yet in

the path that is closest to the node at the end of the path is added to the end of the path.

When ali nodes have been added to the path, the last node is connected to the starting node

to form a tour. Rosenkrantz, Steams, and Lewis [RSL] proved that, for instances of TSP

that satisfy the triangle inequality, the nearest neighbor algorithm always produces tours

with lengths not greater than

'1log 2 n'] + -_ x optimal tour length.
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Both the cheapest insertion and farthest insertion methods begin with a subtour

consisting of a single node, usually the "home base," and iteratively insert nodes into the

tour. At each step in the cheapest insertion algorithm, the cheapest insertion point and

associated insertion cost is dete_rnined fo:" each node not yet in the tour. The cheapest

insertion point for a node is the piace in the current subtour where inserting the node results

in the minimum cost increase, where the cost of inserting a node p between nodes i and j is

cit,+ Cpi-cii.

The node with the smallest insertion cost is then selected and inserted at its cheapest

insertion point. In the farthest insertion algorithm, for each node not yet in the subtour, its

distance from the current subtour is determined. This distance is the minimum of the

distances from each node in the current subtour. The node which is farthest from the

current subtour is selected and inserted in the subtour at its cheapest insertion point. In

both algorithms, the insertion process continues until a tour including ali nodes has been

generated. Rosenkrantz, Steams, _ad Lewis [RSL] have shown that, for instances of

TSP satisfying the triangle inequality, the cheapest insertion algorithm produces tours

whose lengths, or costs, are not greater than twice the length of an optimal solution, while

for the farthest insertion algorithm they are only able to show that it produces tours whose

lengths are no greater than

(_log 2 nq + 1)× optimal tour length.

In spite of this, their computational experiments show that, in practice, the average

performance of the farthest insertion algorithm is at least as good as that of the cheapest

insertion and nearest neighbor algorithms.

A tour is said to be A-optimal (or A-opt) if it is impossible to obtain a tour with

smaller cost by replacing any Z of its arcs with any other set of A arcs. Making such a
!

replacement when _ = 2 is equivalent to inverting, or reversing, the order of a set of

neighboring nodes in the tour. Thus, a tour that is 2-opt is optimal relative to inversion. A

two-opt routine is a procedure that takes a tour and makes it two-optimal by iteratively

performing profitable inversions, until no further profitable inversions are possible.
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One of th_.early exact algor;,thms for TSP is a branch-and-bound method that uses

the assignment problem for bounding and subtour elimination constraints for branching

.... [Li]. The assignment problem is a straightforward relaxation of TSP obtained by

dropping the constraints that require the solution to be a single tour. An assignment is a

union of directed cycles, hence, either a tour or a collection of subtours. By successively

adding subtour elimination constraints, a single tour is eventually obtained. Garfinkel

[Ga73] developed a branching rule, using subtour elimination, that produces more tightly

constrained subproblems than previous subtour elimination schemes. At each node in the

branch-and-bound tree, an assignment problem is solved. If the resulting assignment is not

a single tour, a subtour is selected for elimination. Let {al,a2,...,a m}.denote the sequence

of arcs in this subtour. The problem is then partitioned into m subproblems where the ith

subproblem includes additional constraints excluding arc ai from the assignment and

requiring the assignment to include arcs al,...,ai_ 1.

As we have already seen, several results pertaining _'_approximation algorithms

have been obtained for TSP. For the special case of TSP where the cost matrix satisfies the

triangle inequality, a number of algorithms with performance guarantees exist. The most

notable of these is Christofides' algorithm [Chi which first solves a minimum spanning

tree problem and then turns the tree into a tour by solving a bipartite matching algorithm.

Christofides' algorithm produces tours whose lengths are not greater than 1.5 times the

optimal tour length. Fortunately, in most cases, these approximation algorithms perform

much better than their guarantees. Another notable theoretical result pertaining to

approximation algorithms is that, for the general TSP (where the triangle inequality is not

necessarily satisfied), unless P = NP, there is no polynomial algorithm A with a

performance guarantee of the form

length A <_r x lengthopt,

where r is a finite constant [SG]. This is proven by showing that such an algorithm could

be used to solve the Hamiltonian Cycle Problem, another NP-complete problem.

Crowder and Padberg [CP] have developed a method of solving TSP to optimality

that has been applied successfully to very large TSP instances. The method, which they
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call branch-and-cut, uses a cutting plane approach coupled with branch-and-bound. The

cutting planes they use are problem specific and are based on previous theoretical results

regarding facets of the traveling salesman polytope. Because of this, their algorithm cannot

be applied to CCTSP. If similar theoretical results regarding the CCTSP polytope could be

derived, a similar approach might be developed. Padberg and Rinaldi [PR] applied the

branch-and-cut approach to a variation of the traveling salesman problem having several

side constraints, including a cost-constraint. Their computation times, which range from

100 to 500 seconds for 11-city problems, raise doubts about how promising this approach

might be for CCTSP. However, they were applying the approach to a problem

significantly more complicated than CCTSP and, thus, the results may not be indicative of

what would occur for CCTSP.

A problem closely related to CCTSP is the Prize Collecting Traveling Salesman

Problem (PCTSP) [FT], which might be described as the converse of CCTSP. In fact,

CCTSP(recognition) and the recognition version of the PCTSP are identical. In the Prize

Collecting Traveling Salesman Problem, the objective is to find a tour or subtour of

minimum cost, subject to the requirement that at least a specified value be obtained. TSP is

a special case of the Prize Collecting Traveling Salesman Problem. The same observation

does not hold for CCTSP. Furthermore, some of the results for TSP, which cannot be
.

extended to CCTSP, can be extended to the PCTSP. The proof that a polynomial

algorithm with a performance guarantee does not exist unless P = NP is one example. If

one had an exact algorithm for the PCTSP, it could be applied to CCTSP by

'!parametrically" solving a PCTSP formulation. This is done by repetitively solving the

PCTSP, varying the total value requirement each time. CCTSP is solved when a value

requirement V is found such that the cost of the optimal solution to the PCTSP does not

exceed B, but the cost of an optimal solution to the PCTSP when the value requirement is

V + 1 does exceed B. Likewise, a heuristic algorithm for the PCTSP could be applied

parametrically to obtain an approximate solution to CCTSP. However, if there existed a

performance guarantee for the PCTSP algorithm, it would not imply a performance
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guarantee when applied to CCTSP. The converse of these las_ three observations is also

true.

Another related problem is the Minimal Cost-to-Time Ratio Cycle Problem. In this

problem_ each arc is assigned a profit (analogous to the node vlaues in CCTSP) and a travel

time (analogous to the costs in CCTSP). To obtain a minimization problem, the profits are

multipled by - 1 and called costs. The objective is to find a subtour, or cycle, for which the

ratio of total cost to total travel time is minimized. Dantzig, Blattner, and Rao [DBR]

showed that the problem reduces to finding negative cycles within an iterative framework

O(n 3 z/time, where n is the number of nodes and ,' is theand can be solved in log ,

maximum entry in the profit and time matrices. We note that when the travel times are non-

negative and the travel time and cost matrices are symmetric, an optimal solution is the

cycle formed by the arcs (i',.i) and (.],i'), where (i,._)= argmincij/tij. To prove this,

consider any cycle C. The cost-to-time ratio of C is

ECij C-... C'.'.Xc,j ',J X X',J
(i,j)¢C _ (i,j)EC lij > (i,j)eC "i) t_ (i,j)EC Cii

_ tij _ tij - __ tij _ tij t_:i
(i.j)EC (i,j)EC (i,j)EC (i,j)EC

Prior to this dissertation, relatively little research had been done on CCTSP.

Golden, Levy, and Dahl [GLD] published a heuristic algorithm in 1981 for a

generalization of TSP for which CCTSP is a special case. Their algorithm is based on the

cheapest insertion algorithm but uses a linear combination of node value and insertion cost,

rather than insertion cost alone, to select nodes for insertion. No computational

experiments were conducted to determine the quality of the algorithm.

In 1984, Tsiligirides [Tsi] addressed the sport of orienteering and formulated the

problem faced by orienteering competitors as what we called "CCTSP-path" in the previous

chapter. He developed several variations of two heuristic algorithms and compared them

using three test problems and a number of budgets for each. The favored method, called

"Tsiligirides' Stochastic Algorithm" in later papers, is similar to the nearest neighbor

algorithm. Rather than using distance alone, nodes are selected for addition to the path

,"%A



based on the ratio of their value to their distance from the last node in the path. Also, there

is randomization in the node selection process. Thus, the algorithm can be repeated a

number of times and the best solution chosen.

Golden, Levy, and Dahl [GLD] presented another heuristic algorithm for CCTSP

in 1987. Their algorithm was based on an idea which they called "center of gravity." The

algorithm did not include any randomization. However, the algorithm generated a number

of solutions bearing a deterministic relationship to each other. The algorithm compared

favorably with Tsiligirides' stochastic algorithm for the three test problems used by

Tsiligirides. Further computational experiments were not conducted

Later in 1987, Golden, Wang, and Liu [GLW] developed a more complicated

heuristic for CCTSP. Their algorithm was less myopic than the previous algorithms.

When selecting a node for insertion, they took into consideration how the insertion of that

node might affect the future progress of the algorithm. Their algorithm utilized

randomization but also had a deterministic component in the repetition process. Again,

computational experiments were done using the three test problems presented by

Tsiligirides, and their algorithm compared favorably to the previous two in terms of

solution quality, lt required substantially more computation time than the center of gravity

algorithm. No computational experiments were done to determine how close any of these

heuristics came to optimality. This algorithm, as well as the other heuristics for CCTSP,

are presented in greater detail in Chapter 9.

Two exact algorithms for CCTSP, utilizing different branch-and-bound schemes,

were developed in 1988. One, by Laporte and Martello [LM], uses a very simple

branching rule and an upper bounding method based on the knapsack problem. The other,

by Kataoka and Morito [KM], uses an approach similar to the branch-and-bound method

described above for TSP. Bounding is done using a variant of the assignment problem,

and branching is based on subtour elimination. Since the two algorithms were developed at

approxima_::_/the same time, no comparison of the two methods was made. These two

methods are discussed in further detail in Chapter 8.
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Chapter 5

SPECIAL CASES

In this section, we present some special cases of CCTSP that can be solved in

polynomial time. Many special cases of TSP have been shown to be solvable with efficient

polynomial algorithms. The special cases discussed here are a subset of those presented

for TSP in a survey by Gilmore, Lawler, and Schmoys [GLS]. Each one is defined by

placing restrictions on the cost matrix C and, in some cases, requiring the nodes to have

equal value,

5.1 Outer-Sum Matrices

Our definition of an outer-sum matrix is inspired by the constant TSP. A constant

TSP is one for which ali possible tours have the same cost. Berenguer [Be] has shown

that the only cost matrices C for which ali traveling salesman tours have the same cost are

those of the form

cii = a i + bj for ali i, j.

We will call matrices of this form outer-s_tonmatrices. An interpretation of this form is that

each node has associated with it a fixed cost for entering that node and a fixed cost for

leaving it. The cost of traversing an arc is the sum of the cost of leaving its origin and the

cost of entering its destination.

Theorem 5.1: For CCTSP where C is an outer-sum matrix, the cost of a subtour

depends only on the subset of nodes included in the subtour and not on the order in which

these nodes are visited. If S is the subset of nodes contained in a subtour, the cost of the

subtour is

____(ai+bi).
ieS
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Proof: We can divide the cost of each arc (i,j) into the cost of starting at node i

(ai) and the cost of ending at node j(bj). We know that there are exactly IsIarcsin the

subtour and that each node in S is the starting point of exactly one arc and the endpoint of

exactly one arc. Thus, the cost of the subtour is

____(ai +bi ) . n
iEs

Theorem 5.2: For CCTSP where C is an outer-sum matrix and ali nodes have

equal value, an optimal solution is to cycle through the first m nodes, where the nodes are

labeled such that

a2 + b2 < a3 + b3 <...<an+b n .

and m satisfies

m m+l

_(ai + bi) < B < _,_(ai + bi).
i=1 i=1

Proof: By Theorem 5.1 and the definition of m, the cost of a subtour containing

nodes 1,2,...,m is less than or equal to B. Thus, the proposed solution is feasible.

Furthermore, any subtour with a greater value contains node 1 and at least m other nodes.

By Theorem 5.1 and the definitibn of m, the cost of such a tour must be greater than B.

Thus, there are no feasible tours with a greater value. FI

In the general case, since the cost of a subtour depends only on the subset of nodes

included in the subtour and not on the order in which they are visited, the problem reduces

to

max _ vi
i_S

subjectto: _.,(ai+bi)< B-(al +lh)
ieS

S_ {2,3,...,n}.

This is equivalent to the knapsack problem,
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(KP) max _ vixi_
i=1

n

subject to: _ CiXi _<n
i=I

Xi = 0 or 1 for ali i,

which is known to be NP-hm'd [PS]. When the costs ci and the budget B are integer, KP

can be solved in O(nB) time using a dynamic programming algorithm [Dan]. However,

-ince this algorithm is pseudopolynomial --it depends on the magitude of B J its

computational efficiency is highly dependent on the scale of the problem.

5,2 Small Matrices

A matrix C is called small if there exist n-dimensional vectors a and b such that

= min{ai,b j}. These matrices havethe property that, for each node, there is a costcij

associated with entering that node and a cost associated with leaving it. When traversing an

arc, one chooses whether to incur the cost of leaving its origin or to incur the cost of

entering its destination, rather than incurring both. We will assume that all of the elements

of a and b are distinct and define di as the ith smallest of the 2n distinct values of a and b.

Thus, d1 < d2 <...< d2,t. Note that {dl,d2,...,d2n } = (al,a2,...,a2n}u{bt,b2,...,b2,t }.

We will show that CCTSP where C is a small matrix and ali nodes have equal value can be

solved in O(n2) time,

Theorem 5.3: For CCTSP with a small matrix C, suppose D _ {dl_d2,...,d2n}

is the set of arc lengths tor the arcs that comprise a subtour containing node 1. Then either

(i) For some node i, both ai _ D and bi _ D,

or (ii) D _ {al,a2,,..,an} and a1 e D,

or (iii) O _ {bl,b2,...,bn} and bi _ O.

Proof: Suppose D _ {al,a2,...,an}. If node 1 is in the subtour, then the subtour

uses some arc (1,k) with arc length Clk = min{al,bk}. This means that al e D.
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Suppose D _ {bl,b2,...,bn}. If node 1 is in the subtour, then the subtour uses

some arc (k,1) with arc length ck1 = min{ak,bl }. This means that bt _ D.

Suppose D rf,,{al,a.z,...,an} andD _: {bl,b2,...,b,_}. Then, viewing the subtour as

a continuous loop, at some point in the subtour, an arc with cost bi must be followed by

one with cost ai for some/and j. But this means that arc (k,i) is followed by arc (j,l),

which means i = j. Thus, both ai __D and bi _ D. I'1

Theorem 5.4: Let D* be the D with maximum cardinality that satisfies the

conditions of q ileorem 5.3 and satisfies

C(D*)= _.ddi <B.

Then there exists a feasible subtour containing ]D*[ nodes, and there do not exist any

feasible subtours containing more than Io'1_odos

Proof: First let us show that there exists a feasible subtour containing [D*{nodes.

Suppose D* satisfies condition (i). Let DObe the set of nodes with neither ai or bi

in D*, Da be the set of nodes with only ai in D*, Db be the set of nodes with only bi in

D*, and D2 be the set of nodes with both ai and bi in D*. Note that

IDol+lD01+2IDzl--Io'[n and IOol+lool+lool+lozl-,,. Thu ,IO01Io l.Construct a

subtour as follows: start at any node in D2, visit the nodes in Da in any order, go to a

node in D0(choose node 1 if 1 e Do), visit the nodes in Db in any order, and complete the

tour by alternating between nodes in D2 and DO until the nodes in/92 are exhausted,

finally, re_,urning to the starting node. This subtour contains node 1 and has a cost no

greater than C(D*).

Suppose D* satisfies condition (ii). Let Da be the set of nodes with ai in D*.

Visit the nodes in Da in any order. This subtour contains node 1 and has a cost no greater

_a, C(D').

Finally, suppose D* satisfies condition (iii). Let Db be the set of nodes with bi in

D*. Visit the nodes in Db in any order. This subtour contains node 1 and has a cost no

greater than C(D* ).
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Now let us show that there is no feasible subtour containing more than [D*[ nodes.

Let D be the set of arclengths for the arcs that comprise a subtour containing node 1 and

IDI> ID'I. By Theorem 5.3 and the definition of lO'l, the cost of the subtour is greater than

B.r'!

Thus, in order tosolve CCTSP where C is a small matrix and all nodes have equal

value, we need only find D* as defined in Theorem 5.4. Let

k

ki = argmax _._dj < B-(ai + bi)£
j=l

dj _ ai

alchi

k

ka = arg_aax __dj < B-a 1:-,
d iE{az,a 3.....,a,_}

k

kb = arg_nax Z di < B- b1
j=l

djE{b2,b3 ..... bn ]

and

D i= {dl,d2,...,dki}u {ai,bi} foralli_ {l,2,...,n}

Da = ({al,d2,...,dk, }n {a1,a2,...,an}) u {al}

Ob= }.
l

Th n,D*=argmax{lOol,lD l,ID l,ID21,...,ID l}. Th_s_ computations can be made in

o(:)t o.
5.3 Circulant Matrices

In this section, we show that the problem CCTSP-path where ali nodes have equal

value can be solved using the nearest neighbor rule (add the nearest (cheapest) unvisited

node to the end of the path) when C is a circulant matrix. A circulant matrix is a matrix of

the form
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I

Co Cl C2 .,. Cn_ 1

Cn-1 CO C1 ... Cn_ 2

C= Cn_ 2 cn_ 1 c 0 ... Cn_ 3 •

: . . .,

C! C2 C3 ... Co

The cells (i,j) such that (j - 1)= k(mod n) all have the same value ck. We call these cells

the kth snipe of C. Garfinkel [Ga77] has shown that the assignment given by the kth

stripe yields gcd(k,n) subtours each containing n/gcd(k,n) nodes.

I_fme k(0), k(1),..., k(n- 1) such that ck(0) _<CkO) <...< ck(n_l) and let

go = gcd(k(O), n) "

gi+, = god(k(/+ 1),gi).

The arcs from stripes k(O), k(1),..., k(i) yield a subgraph with gi connected components,

each containing n/gi nodes (see Gilmore, Lawler, and Schmoys [GLS]). Suppose we

desire a connected component containing m nodes. If we use only the arcs from stripes

k(O), k(1),..., k(i), we know that we can only obtain connected components with at most

n/gi nodes in them. Thus, at best, we can produce gi disjoint components of which

Theorem 5.5: If C is a circulant matrix, a lower bound on the cost of connecting

m nodes is

(m I ,,.
Proof: Connecting m nodes requires a minimum of m- 1 arcs. To obtain a lower

bound, we assume exactly m- 1 arcs are used. As previously stated, using only arcs from

stripes k(O), k(1),..., k(i)results, at best, in [rngi] disjoint components. Thus, at least

gi - 1 arcs must come from snipes k(i + 1),..., k(n- 1), leaving m- gi arcs that

can come from stripes k(O), k(1),..., k(i). Applying these bounds iteratively results in the

lower bound given above. []
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Corollary 5.1' If C is a circulant matrix and al! nodes are of equal value, an

upper bound on the optimal value of CCTSP-path is rh where rh solves

max m
l<m<n

subject to

(m - I_g oq3ck(o, + (I_go" l- I_g l l)c_(l,+...+(I_gn_2" I- I_gn_ 1q)ck(n_l) < B.

Theorem 5.6: If C is a circulant matrix and ali nodes are of equal value, the

nearest neighbor rule yields an optimal solution to CCTSP-path.

Proof: Starting at node 1 and applying the nearest neighbor rule results in a

sequence as follows, where a always refers to the last node in the current path:

0) Repeatedly add node a + k(0) (modn) to the path until the next addition

will result in a cycle or will exceed the budget.

1) Add node a+k(il)(modn ) to the path where iI = min(i >01 gil _: go).

Repeat from Step 0 until the next addition will result in a cycle or will

exceed the budget.

j) Add node a + k(ij)(modn)to the path where i/= min(i > 0 Igii_ gi/,l ).

Repeat from Step 0 until the next addition will result in a cycle or will exceed

the budget.

The end result of this sequence is a path containing rh nodes and having cost

(rh-I_g 01)Ck(o) + ([_go 1-[_gl ])ck(1)+.. .([@g_ _ l-V@ 1)

where rh is as defined in Corollary 1. []
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5.4 Upper Triangular Matrices

A matrix C is upper triangular if i > j implies cq = 0. We will show that solving

CCTSP, where C is an upper triangularmatrix, is as easy as computing shortest paths.

Theorem 5.7: Fl_rCCTSP where C is an upper triangular matrix, the cost, or

length, of a subtourcontaining node m is at least as great as the length of the shortest path

from node 1 to node m.

Proof: Since: a subtour containing node m must contain a path from node 1 to

node m, and the cost matrix C is non-negative, the cost of a subtour containing node m

must be at least as great as file length of the shortest path from node 1 to node m. []

Theorem 5.8 For CCTSPwhere C is an upper triangular matrix, if there exists a

path zrfrom node 1 to node m with cost less than or equal to B, then there exists a feasible

subtour n:' containing nodes 1 through m.

Proof: Let zr' start at node 1 and follow the same path as zr until node m is

reached. From node m, visit the remaining nodes in the set {1,2,3,...,m} in order of

decreasing index, returning to node 1 at the end. The portion of _' from node 1 to node m

has a cost no greater than that of n:. The remaining portion of n' has a cost of 0. Thus, n:'

is a feasible subtour. []

Theorem 5.9: An optimal solution to CCTSP, where C is an upper triangular

matrix, is to follow the shortest path from node 1 to node m, and then visit the rernaining

nodes in the set {1,2,...,m} in order of decreasing index, returning to node 1 at the end,

where m is the maximum index for which the shortest path from node 1 to node m has

length less than or equal to B.

Proof: By Theorem 5.8 and the definition of m, the proposed solution is feasible.

Any solution having a greater value must contain a node with index greater than m + 1, but

by Theorem 5.7 and the definition of m, such a solution cannot be feasible, ri
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Theorem 5.10: If C is an upper triangular matrix, then the length of the shortest

path from node 1 to node j is less than or equal to the length of the shortest path from node

1 to node j+ 1.

Proof: Because of the special structure of C, the path obtained by taking the

shortest path from node 1 to node j and then visiting node j + 1 has a length equal to the

shortest path from node 1 to node j + 1. n

Corollary 5.2: Solving CCTSP, where C is an upper triangular matrix, requires

computing at most O(log n) shortest paths.
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Chapter 6

EVALUATION FRAMEWORK

In this chapter, we describe the evaluation framework used in computational

evaluation of the algorithms presented in the following three chapters. The performance

measures used are defined first, and include both speed and solution quality. This is

followed by a description of the types of test problems used in the evaluations. The test

problems used encompass many different problem characteristics. This was done as an

effort to uncover sensitivities of an algorithm's performance to problem characteristics.

6.1 Performance Measures

Algorithms are evaluated based on two performance measures: solution quality and

computation speed. Exact algorithms are evaluated on computation time alone. Statistical

tests are used in evaluating the difference between two algorithms.

The quality of a solution generated by an upper bounding method or a heuristic

algorithm is measured in terrns of its closeness to optimality. For upper bounding

methods, the measure used is

vB-% error = 100 x

Vopt

where UB is the upper bound obtained by the algorithm and Vopt is the value of an optimal

solution obtained by an exact algorithm. For heuristic algorithms, the solution quality is

measured by

vop,-vho% error = 100 x

vo ,

where Vheuris the value of the solution obtained by the heuristic. For problems which are

too large to obtain an optimal solution with one of our exact algorithms (the test problems

with 50 or more nodes), Vopt is replaced with the value of the best known solution,
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obtained by applying several heuristics to the problem. The solution quality of an

algorithm is generally reported as an average over a number of test problems sampled from

the same population.

In comparing two algorithms, the Wilcoxon Signed Rank Test [B,J], a

nonparametric statistical test, is used to check whether there is a significant difference in the

quality of solutions they produce. The null hypothesis is that there is no difference in the

performance of the two algorithms. The alternate hypothesis is that one algorithm produces

solutions with a smaller error than the other. The null hypothesis is rejected if the

probability, under the null hypothesis, of observing differences at least as large as the

differences obtained in the computational experiments is less than 5%.

The computation speed of an algorithm is the amount of CPU time (reported in

seconds) required to execute the algorithm. Input and output are not included in the CPU

time. As with solution quality, CPU times are generally reported as an average over a

number of test problems sampled from the same population. Computational experiments

were conducted on a SUN 4/330 workstation, w:,lich has a 25 MHz SPARC processor and

is rated at 16 MIPS and 2.5 MFLOPS. The resolution of the CPU clock on this machine is

16.67 milliseconds.

6.2 Test Problems

In our computational experiments, we desired test problems which would stress an

algorithm, as well as ones that might represent an average case. The key factors which

might affect an algorithm's performance are the structure of the cost matrix, the relative

values on the nodes, and the percentage of nodes in an optimum solution. Computational

experiments were conducted using test problems representing 18 different combinations of

problems characteristics. These characteristics, which we discuss below, are: class,

distribution, node values, and budget. In our experiments, we specifically looked for

sensitivities to problem characteristics, both in the performance of a specificalgorithm and

in the comparison between two or more algorithms.

Our test problems can be divided into two classes: Euclidean and non-Euclidean.

In Euclidean problems, the nodes correspond to points in a plane and can be.represented by
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x-y coordinates. The cost matrix is the matrix of Euclidean distances between the nodes

and, therefore, is symmetric and satisfies the triangle inequality. Non-Euclidean problems

do not necessarily have a geometric representationl The cost matrix may be any n × n non-

negative matrix. However, in ali the non-Euclidean problems we generated, thecost

matrices were symmetric. Furthermore, we applied a shortest-path algorithm to the cost

matrices (treating costs as distances) and replaced them with the matrices of shortest-path

costs. This results in matrices that satisfy the triangle inequality. Doing this is analogous

to allowing indirect paths to be..,taken (which may result in multiple visits to a node) when it

is advantageous to do so.

For both Euclidean and non-Euclidean problems, test problems are generated using

three different distributions: uniform, clusters, and outliers. For Euclidean problems, the

distribution refers to the distribution of nodes in the x-y plane. Cost matrices for uniform

problems are generated by distributing nodes uniformly in a circle of radius 100, and

calculating the resulting distance matrix. (We Chose to use a circle rather than a square or

rectangle because it seemed better suited to the following two types of problems.) Clusters

refers to a problem where uniform clusters of nodes are uniformly distributed. The

problems are generated by first generating cluster points and corresponding cluster sizes.

The cluster points are uniformly distributed in a circle of radius 100. The cluster sizes, that

is, the number of nodes in a cluster, are uniformly distributed between 1 and 0.4n- 1 for

problems with less than 50 nodes and between 1 and 0.2n-1 for problems with 50 or

more nodes. The cost matrix is then generated by distributing the appropriate number of

nodes uniformly in a circle of radius 20 centered at each cluster point, and calculating the

resulting distance matrix. In outlier problems, 80 percent of the nodes are uniformly

distributed within a circle of radius 100. The remaining nodes are uniformly distributed in

the ring formed by this circle and a concentric circle of radius 200. Again, the cost matrix

is the resulting distance matrix. For ali problems, entries in the distance matrices are

rounded up to integer values.

In non-Euclidean problems, the entries in the cost matrix are directly generated.

This is done in such a way as to be analogous to the Euclidean distributions. For uniform
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problems, symmetric entries in the cost matrix are integers uniformly distributed between 1

and 200. The matrix is then replaced by the matrix of shortest paths. For clusters, first

cluster sizes are generated as defined above. A matrix of distances between cluster points

is then generated with symmetric integer entries uniformly distributed between 1 and 200.

Then, for each cluster, an (m+ 1)x(m+ 1) sub-matrix is generated with integer entries

uniformly distributed between 1 and 40, where m is the cluster size. These distances are

combined in a single matrix. An example where there are two clusters of two is

[025 0 - -

15 10 - -

- - 30

- - - 10 0

- - - 0 35

The matrix is then replaced by the matrix of shortest paths, and the rows and columns

corresponding to the cluster points are thrown out. For the above matrix, this results in

10 0 95
115_

C= 105 95 0

12511535 3051

.For problems with outliers, first a (0.8n + 1)x (0.8n + 1) matrix is generated with integer

entries uniformly distributed between 1 and 200. This matrix is then combined with a
, .

(0.2n + 1)x (0.2n + 1) matrix with integer entries uniformly distributed between 201 and

400, as shown below for n - 5.

0 30 105 175 65 -

30 0 45 60 120 -

105 45 0 110 140 -

175 60 110 0 20 - i

, 65 120 140 20 0 310

. - - - - 310 0
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This matrix is then replaced by the matrix of shortest paths, and the row and column where

the two original matrices Overlapped are thrown away.

For each cost matrix, two different sets of node values are used: one where ali

nodes have equal values, and one where the node values are integers uniformly distributed

between 1 and 10. For uniform problems, three additional sets of values are used: integers

uniformly distributed between 1 and 100, integers uniformly distributed between 1 and 3,

and integers obtained by rounding down a variable that is exponentially distributed with a

mean of 5 and then adding 1 (vi = 1+ Lx.J, where x ~ exp(1/5)).

Each problem (defined by a cost matrix and node values) is solved using several

budgets. The budgets are defined as a fraction of the cost of a complete tour, obtained

using a heuristic algorithm for TSP. The farthest-insertion algorithm in combination with a

two-opt routine was used to obtain an approximate TSP solution. Generally, the budgets

used were 0.25, 0.50 and 0.75 times the cost of the approximate TSP solution.

Due to the large number and variety of test problems used, in the following three

chapters, only highlights of the computational results will be presented. Detailed results are

available in Appendix C.
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Chapter 7

UPPER BOUNDS

Bounding methods are methods which can be used to establish a range within

which the optimal value for a problem must lie. For a minimization problem, lower

bounding methods are used to generate lower bounds on the value of any feasible solution.

Thus, if a feasible solution is found with a value equal to a lower bound, it must be

9ptimal. The value of a solution found by a heuristic algorithm is used as an upper bound.

Similarly, for maximization problems, upper bounding methods are used to generate upper

bounds on the Value of any feasible solution. A heuristic algorithm is used to find a lower

bound. Bounding methods generate an optimistic estimates of the optimal value. A good

bounding method generates a bound which is close to the optimal value.

Bounding methods generally work by calculating the optimal solution to a

relaxation of the original problem. For example, if the problem is

max z(x), subject tox _ S, (1)

an upper bound may be calculated by solving the relaxation

maxz(x), subject to x _ T, where S c T. (2)
F

Since S c T, the solution tc (2) must be greater than or equal to the solution to (1).

Bounds that are close to the optimal value are called tight. Given two upper bounding

methods F1 and F2, if, for any problem instance, the bound generated by F1 is never

greater than the bound generated by F2, then we say that method F1 dominates F2.

Suppose that the problem to be solved is (1), bounding method F1 is

max z(x), subject to x _ T1, where S c T1,

and bounding method F2 is

max z(x), subject to x _ T2, where S c T2.

If T1 c T, then F1 dominates F2.

AtA
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Bounding methods and the bounds generated by them have several uses. One type

of heuristic algorithm is one that enumerates increasingly good feasible solutions, stopping

when a solution is found with a value within some specified percentage of the bound. This

type of algorithm can be dangerous, unless we can guarantee that a feasible solution exists

within that percentage of the upper bound, Often, as with Christofides' algorithm [Chi for

TSP, heuristic algorithms are based on bounding methods. This is especially true for those

heuristics which have performance guarantees. As we will discuss later, branch-and-

bound algorithms are often used for combinatorial optimization problems, and their success

is highly dependent on the use of good bounding methods. Another use for bounds is in

the evaluation of heuristics. In order to empirically evaluate a heuristic, based on the

closeness of its solution value to the optimal value, we must know the optimal value for the

problem. However, heuristic algorithms are of most interest in cases where the true

optimurn cannot be obtained, lr, these cases, we may choose to evaluate heuristics by

comparing their solution values to bounds on the optimal solution.

We present several methods for obtaining upper bounds for CCTSP. Some of

these methods can be shown to dominate others. However, methods which generate looser
i

bounds may still be of interest. Generally, computing a tighter upper bound is more

difficult and requires greater time. lt is sometimes desirable to generate an upper bound

quickly and easily rather than make itas tight as possible.

7.1 Knapsack Bounds

One method of computing an upper bound for CCTSP is to solve the following

relaxation of formulation IP1 (defined in Section 3.1):
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n li

max vixij )
i=1 j=l

n n

subject to: _ _._ c,ijxij _ B

i=1 j=l

n

_.,xi i < 1 i = 2,3,...,n
j=l

n

_._Xlj = 1
j=2

X ii "- 0 for ali i

xij E {0,1} for ali i and ali j

An upper bound on F1, and hence on CCTSP, can be found by solving the linear

programming relaxation of F1 using a greedy algorithm. For each node i, let

=rain ci'
Wi j_-i { J J

and relabel the nodes such that

v2/w 2 >_v3/w 3 >_...>_.vn/w ,.

Let

m= kl___w i <B .
i=1

Then an optimal solution to the linear programming relaxation of F_ is

xij =1 for/< m and j= arp,grinii'n{cij}

,/(')B-_jw i forj = argminlCm+ ' -}
Xm+l'J = Cm+l' j_'m+l t ,_i=1

and xij =0 otherwise.

Note that this is equivalent to solving the linear programming relaxation of the following

knapsack problem, where the weights wi are as defined above:
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?1

max vl + _., viYi (KP)
i=2

', n

subject to: _., wiyi < B- w1
i=2

Yi _ {0,1} forall/.

In the case where all nodes have equal value, with the possible exception of node 1,

the problems F1 and KP can be solved exactly. The optimal solution is as described above,

except Xm+l.j = 0 for ali j.

Laporte and Martello [LM] describe a more general upper bounding method based

on the knapsack problem, They show that the problem K.P where

wj = otminfcij}+(1-ot)min_c#} forallj
i¢_j _ k_:j t J

provides an upper bound for CCTSP for any specified value of a with 0 < a < 1.

Computing this bound is equivalent to solving the following relaxation, Fz, of IPp, which

I =x 2 and thenis derived by replacing each xij in iP1 with otx1 +(1-ct)x 2 where xij
2

dropping the constraint x/_ = xij as well as the subtour elimination constraints.

/I ?1

m xEEvix
i=lj=l

n ?1

i=1 j=l

n

EX_j _1 i = 2,3,...,n
j=l

Ft

2xj -1
j=2

?i n

xq - x./k = 0 j = 1,2,...,n
i=1 k=l

k
Xii "- 0 for ali i, k

xijt__ {0,1} for all i, j, k
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We note that the value of _ that results in the tightest bound is p 9blem specific.

For example, let v = (I, 1,...,1), B = 6, and

"** 2 2 2 2 "** 1 1 1 1

1 ** 2 2 2 2 ** 2 2 2

CI= 1 2 ** 2 2 and C2= 2 2 ** 2 2 .

1 2 2 ** 2 2 2 2 ** 2

1 2 2 2 ** 2 2 2 2 **

Using values of 0 and 1/2 for o_gives upper bounds of 3.5 and 4 respectively for matrix

6'1, and bounds of 5 and 4 respectively for matrix 6'2. In both cases, the optimal solution

to CCTSP has a value of 3. Experiments by Laporte and Martello indicate that, on the

average, setting o_= 1/2 provides the best bounds.

Since KP is, itself, an NP-hard problem, Laporte and Martello obtain an upper

bound for CCTSP by computing an upper bound to KP using the method of Martello and

Toth [MT]. To compute this bound, assume the nodes are labeled such that

v2/w z > v3/w 3 >...> vn/w n

and that

l l+l

Ewj <B<Ewj.
j=l j=l

Node l + 1 is either included in the optimal subtour or not included. This gives bounds

UB 1 and UB2 respectively, where

3;1+1 (l+l Vi ,

j=l ,

UB 2 = _vj + B- wj vr+2
j=l j=l Wl+2

An upper bound on KP is then

UB = max{UB1, UB2}.
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Henceforth, we will refer to the upper bounding method defined by Laporte and

Martello as the KP-bound (KPB). We now describe an upper bounding method which is

an improvement on KPB. This improved bound, which we call the IKP-bound (IKP),

dominates KPB.

We first note that, provided the optimal solution contains more than two nodes,

xij + xji < 1 for ali i,j. Thus, we let the weights on the nodes be

wj = i_j,k_jtmin_C i.J+ (1- ot)cjk} for ali j.
i_k

This is equivalent to adding the constraint

2 1
xij + xji <-1 for ali i,j

to F2. When C is a symmetric matrix, this always results in larger weights, and, hence,

tighter bounds, than KPB. Furthermore, if C is symmetric, then, for the weights defined

above, the optimal value of tz is 1/2. On the other hand, when C is symmetric, the weights

def'med by Laporte and Martello result in

= tx min c i, (1 tz)min_c ik} = min_c.'k } for all j
Wj i_j { _ }+ -- k;tj'" k,j t J

regardless of the value of tr.. Henceforth, unless otherwise stated, we will set a = 1/2.

We also note that a node cannot be in a feasible solution unless it is "reachable"

from node 1. The set of reachable nodes is

{ }P

s = ytcfj+ B u {I}
1

where c_ is the length of the shortest path (treating costs as distances) from node i to

nodej. The node weights are, then,

wj = i,k_sxjtr°hn_o:cij + (1- cz)Cjk} for j _ S,
i,k

wj=., for j_ S.

A second improvement is obtained by computing a tighter bound on the knapsack

problem. In the method of Martello and Toth, the fractions

45



andB-Zwj-1

used in computing UB 1 and UB2, respectively, may be greater than i. With this in mind,

we replace UB 1 and UB 2 with

UB1= vt,l + _.,vi + B- wl,l - _ wj vk..__.L
j=l j=l ) Wk+l

k k+l

where k(< l) satisfies _ wj < B- wt+1 < Y_wj
j=l j=l

and UB 2 = E vj + E vj + B- w.i - Z wj vg+.-....!l
j=l j=l+2 j=l+2 Wk+l

k l k+l

where k(>_.l + l) satisfies E wj < B- Z wj < Z wj.
j=l+2 j=l j=/+2

Since the weights wj were calculated assuming the optimal solution contains more

than two nodes, the case where it contains exactly two nodes must also be considered. To

account for this case, we let

k = argmax{vilcli + cii < B}.
tsl

We then have

UB = max{v 1+ vk,UB1,UB2}.

We make two additional observations. First, in the case where ali nodes have equal

values, the knapsack problems associated with KPB and IKP can be solved exactly.

Second, when a = 0, the knapsack problems associated with KPB and IKP are equivalent

to F1.
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An even tighter bound (TICU)can be computed by specifying the nodes preceding

and following node 1 in the subtour. Let r and s denote the nodes preceding and following

node 1, respectively, and let

,s={j,,+,Clj Cjl <-

and T = {(r,s)lqs + c_ + ct1 <-B}

where c_ is the length of the shortest path (treating cost" as distances) from node i to

node j. Then

wj(r,s)= rain _otcij +(1-O_)Cjk } forj _ S\r,sieS\r t

kES\.

i*k

wl(r,s)= min {aqr +(1-a)Csk}+Crl +Cls
i,k_S\r,s

wj(r,s)=** forj _ {1}uS\r,s

and

UB(r,s) = max(v,. + vr + vs, UB1, UB2 )

where UB 1 and UB 2 are calculated as in IKP. Again, the case where the optimal solution

contains exactly two nodes must also be considered. Accounting for this case, we have

UB = max (v 1+ vk,UB(r,s))
(r,s)_T

where

k = argmax{vilCli +c d <_B}.
tsl

Computing TKP requires O(n 3 logn)tkne, while KPB and IKP require only O(n 2).

7.2 The Parametric Assignment Bound

An upper bound on the number of nodes which can be in any feasible solution to

CC"TSP can be found by solving a parametric assignment problem. For the case where ali

nodes have equal value, this results in an upper bound on the value of an optimal solution

to CCTSP. For cases where nodes do nJt have the same value, we can still use the

parametric assignment problem to derive an upper bound on the value of an optimal

4
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solution. We first obtain a bound m on the number of nodes in an optimal solution. We

then sum the values of the m most valuable nodes. Henceforth, we will refer to the bound

based on the parametric assignment problem as the parametric assignment bound (PAB).

The bound PAB is designed for problems where all nodes have equal values, but, as noted

above, can also be applied to the general problem. However, we do not expect the bound

to be very good in the case where nodes do not have equal values.

To compute PAB, we use the following relaxation, F3, of IP1, assuming all nodes

have equal value.

rl /Pi

max _ _]_xij (F3)
i=1 j=l

Pl n

subject to: _ _.cijxij <_B
i=1 j=l

tl

_._xii <-1 for i = 2,3,...,n
j=l

tl

_., xij < 1 for j = 2,3,...,n
i=1

n

_._Xlj = _ Xil = 1
j=2 i=2

Xii "" 0 for ali i

xij _ {0,1} for ali i,j

This is equivalent to forming a bipartite graph with n nodes on each side and finding a

maximum cardinality assignment subject to the cost constraint.

We define the parametric assignment problem (PAP) as the problem where n- m

nodes from each side may be assigned, without cost, to dummy nodes on the opposite

side.
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n Pi

zm = rain _, _._cijxij (PAP)
i= j=l

n+l

subject to: _xij = 1 for i = 1,2,...,n
j=l

n+l

EXij = 1 for j = 1,2,...,n
i=1

n gl

Z",J=Zx.=
j=2 i=2

n+l n+l

Z Xn+l,J = Z Xi,n+l = n - m
j=l i=1

Xii = 0 for i = 1,2,...,n

xij _ {0,1} for ali i,j

Several efficient algorithms (e.g. the Hungarian Method [PS]) are available for solving

assignment problems such as PAP.

Suppose the optimal value of F3 is m*. Then, zm <_-B for m < m*, and zm > B for

m > m*. Thus, we can solve F3 by adjusting the parameter m in PAP until we find m*

such that Zm. <-B and Zm.+1 > B. This gives an upper bound on the number of nodes in

any feasible solution to CCTSP. An upper bound on the value of any solution to CCTSP

is

PAB = _ vi,
i=1

where the nodes are labelled sucb that v2 < v3 <... <-vn. In the case where ali nodes have

equal value, this reduces to PAB = m*.

Note that the constraints for F 1 are a subset of the constraints for F3. Thus, in the

case of CCTSP where ali nodes have equal value, PAB dominates both KPB and IKP

when ct = 0. However, this is not necessarily the case for other values of a.

7.3 The Cost.Constrained Assignment Bound

We now present an upper bounding method which uses a relaxation of the

formulation IP2 (defined in Section 3.1). We replace the objective function



tel

m Ev,Cl-x,).
i=1

with

n ?1

maxV-EEpj .j
i=1 j=l

where

{0 ifi_j
V = vi and PO=

i=1 vi if i= j.

We force node 1 to be in the solution by setting cll = **, and set cii = 0 for ali i _: 1.

Dropping the subtour elimination constraints and the cost constraint leads to a standard

assignment problem. We drop the subtour elimination constraints but retain the cost

constraint. We call this formulation the cost-constrained assignment problem (CAP).

Since CAP is a relaxation of CCTSP, its solution provides an upper bound, the cost-

constrained assignment bound (CAB), for CCTSP.

/1 n

CAB =max V- _,EPijxij (CAP)
i=1 j=l

n

subject to: _., x ij = 1 for j = 1,2,...,n
i=1

?1

_., xij = 1 for i = 1,2,...,n
j=l

: Xij e {0,1} for ali i,j

Note that any feasible solution to CAP is also a feasible solution to F2 and F3. Thus, CAB

dominates IKP and PAB.

Since CAP is, itself, an NP-hard problem, we compute an upper bound on CAP

using the method of Lagrange multipliers [Fi]. Incorporating the cost constraint into the

objective function with a Lagrange multiplier, _, >_.0, results in the following assignment

problem:
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nn )z(_,)- max V-_.,Zpijx(_.)ij-Z cijx(_,)ij-B CAP(A,)
i=lj=1 i=I

n

subject to: ___x(Z)i i = 1 forj = 1,2,...,n
i=1

tl

__x(Z)i.i=l for i = 1,2,...,n
j=l

x(_)ij _ {0,1} for ali i,j.

We can simplify the objective function m

n _

z(Z) = V + ZB- min 2_(p/j + Zcij)x(Z)i j =V + ZB-min(px + 2,cx).
i=1 j=l

For a fixed value of 2,, CAP(Z) is a standard assignment problem. To obtain the best
I

upper bound on CAP, we desire Z° such that

Our upper bound on CCTSP is then

CABR, = z(r)

where z(Z°)is the optimal value of CAP(/_ °). Note that, while CAB dominates IKP and

PAB, this is not necessarily the case for CABL

As shown by Everett [Ev],

_ n

i=1 j=l

is menotonicaily decreasing in Z, where x*(Z) is an optimal solution to CAP(Z).

However, since the feasible region of CAP(Z) is nen-convex, there may be "gaps" in the

Z°
value of cx°(/q,) as ,2,increases. If there exists a such that cx°(Z °) = B,then

z(Z)Z

and x ° (Z) solves CAP. However, in most cases, this does not occur.
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We can replace the objective function in CAP(X) with

z'(A)=rrfin_(lpij+cij)x(_,)ij
i=1 j=l '_'

We then have

)=v+zs- Zz'(Z)

Using z'(&) instead of z(A,) results in the cost matrix

o• C12 ... Cl n

1

C2i _'v2 "" C2n1p+c ....._.

1

Cnl Cn2 ... _Vn

where only the diagonal elements depend on _,. This facilitates reoptimization when the

value of _ is changed.

Let ,6 be the basis associated with an optimal solution x* (Z) to CAP(Z), and let u

and w be the optimal dual variables associated with 1]. Then, according to the

complementary slackness theorem [Mu]

+ wj < I-_ vi for ali i, j, i = j, i # 0ui

_cii for ali i, j, i _: j

1 v

i if (i,j)¢ ,6, i=j

and ui + wj = ciy if (i,j) _ ft, i _ j .

Define a second set of variables u* and w* such that

,, {_i if (i,J) _ fl, i = Jui + w'i = if (i,j) _ j6, i # j.

Suppose we increase I/A, by A. Let

p *

Ui = Ui + Al,ti

P

and wj = wj + Aw_.
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Then,

- + )viif i-j
lc/j ' if (i,j) _ ft, i _ j

Thus, the solution x* (_) remains optimal as long as

ui + wj + A(.u; + w; ) <_cij for all i, j, i _:j

and ui+w i +A(u_+w_)<ll+A)vi foralli
,%¢v /

or, equivalently, as long as the increase in 1/_, does not exceed

f , /A. = min .ro.in. cO- ui -wj rain _- vi - ui - wi

| _,J,_J U_ + Wj _ Ui + Wi -- Vi

(f+_;>o .;+_;-_,>o

Similarly, suppose we decrease 1/_, by A. Let

t

t/i = Ui - Au i

t *

and wj = wj Awj.

l_ien:

u/' + wj

I[.cij if (i,j) _ ft, i _ j

Thus, the solution x* ()_) remains optimal as long as

( ")Ui+Wj-AU_+w j <Cii foralli, j,i_j

( )and ui + wi - A u_ + w] <_ - A vi for alli,

or, equivalently, as long as the decrease in 1/_ does not exceed

/ 1 m m 1

A- min ._.".n. ui + wj -cii min "-£vi ui wi

I L,j,t_j U_ + Wj l Vi -- Ui -- Wi

[f+_;<0 _,-.;-_;>o
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Let

1 1

,_- =------_+A+ and ;_+= l_A,-_

Then, x*(_,)isan optimal solution to CAP(_, ') for ali ,_' in the interval (,_,,/_+).

We now present a method for finding _'. We start with X1 and _2 such that

cx*()_l)>B andcx*()_2)<B, where x*(,_)is the optimal solution to CA?()_).

',_ Equations which canbe used to compute initial values of _1 and _2 are given in Appendix

A. After solving CAP(Z1) and CAP(_,2), we compute A,_ and g_. We let

_,3 = (,;I,_"+ X2)//2 and solve CAP(X3). If cx*(;_3)< B, we replace _2 with _3. If

cx*(X3) > B we replace X1 With /q,3. We continue this process until we find _1 and /_2

such that _,_ > X2. Typically, we will find A,_ = _,_. We then select any X' in the

overlapping region of the intervals (X1,X) and (g2,g2). Associated with this value of/q,'

are two optimal solutions, x_(X*)=x*(_,l)andx;(X*)=x*(X2), to CAP(,,q,*),with

cx;(_.)__an_cx_(_')__
Theorem 7.1" The value A," found by the above method solves

z(A,*) = min z(A,), where z(A,) is the optimal solution to CAP(g ),;t

- ()Proof: Suppose _ > X*. Since B-cx_ g* > 0, we have

z(_-)-_,_-_(_x, _)>__,_- (_x;(z,),_cx;(z'))
-v-_x_(_'),_(_-cx;(_.))_v-_x_(_.),_.(_-cx_(_.))-z(_')

Similarly, suppose _, < A,'. Since cx_(_,')- B > 0, we have

z(_, ) = V+ ZB-min(px + Xcx) 2 V+ A,B-(px_(_,*)+ ,gcx_(g*))

= v- px_(Z')-_(cx_(_,')-B)>v- px_(._')-_'(cx_(z')-_) - z(Z').

Thus, z(X') = rain z(Z ). []

This method of computing an upper bound is based on the ideas of Gensch [Ge].

However, Gensch's method of finding _,' contains substantial errors and lacks efficiency.
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Furthermore, Gensch claims that x_(_,*) actually solves CAP. A counterexample to this

claim is presented in Appendix B.

Kataoka and Morito [KM] present a method of computing an upper bound where

CAP is solved exactly. They use a branch-and-bound algorithm where the bounds are

computed by solving the linear programming relaxation of CAP and branching is done by

selecting a fractional xii and setting it tO 0 and 1 on alternate branches. Their method of

solving the linear programming relaxation also uses the Lagrangian relaxation CAP(_,), but

their method of finding _,', x_(_,*), and x_(Tl,*)differs substantially. They solve the linear

relaxation of CAP by taking a convex combination of x_ (/,*) and x_ (_,*) such that the cost

constraint is satisfied with equality.

7.4 Computational Results

Computational experiments were conducted to compare the qaality of the bounds

generated by the previously discussed methods. The parametric assignment method was

only applied to problems in which the nodes had equal values. Table 7.1 shows a selected

set of representative computational results. All problems have 20 nodes and results are

averaged over a sample size of 10. The full set of computational results is given in

Appendix C. In general, the improved knapsack bound (IKP) performed significantly

better, sometimes by a factor of 10, than Laporte and Martello's knapsack bound (KP), the

parametric assignment bound (PAB), and the constrained assignment bound (CABA). The

improved knapsack bound also required less computation time than the two assignment

bounds. The tighter knapsack bound (TKP) generally performed better than the improved

knapsack bound, as expected. However, the difference in performance between IKP and

TKP is not dramatic as it is between KP and IKP, and, in many cases, the difference in

performance is not statistically significant. In addition, TKP required a great deal more

computation time,Taking this into account, IKP should be the favored upper bounding

method for most purposes.

The difference in performance between the upper bounding methods decreases as

the problem budget (B) increases. For small budgets, there is a dramatic difference

between the bounds obtained by IKP and the bounds obtained by KP, PAB, and CAB;l,.



m

+

iPro61em .......

, t_,pe B IKP KP TKP PAB CABS+
Euclidean ().00 0.00 0.03 0.11 0.09

uniform 0.25 11.33 119.00 7.33 104.33 104.33_
Euclidean ...... 0.00 0.00 0.18 0,12 0.12

uniform 0.50 33.72 63.20 30.59 52.67 52.67
Euclidean 0.00 0.0 i 0.27 0.06 0.08

uniform 0.75 16.67 25.50 16.04 23.67 23.67_
Euclidean 0.00 0.00 0.02 0.13 0.10

clusters 0.25 14.72209.68 10.44 189.37216.04J
Euclidean 0.01 0.00 0,11 0.10 0.10

clusters 0.50 58.51 112.84 39.80 102.60 102.60
Euclidean ' 0.00 0.0t3 0.25 0.00 0.03

clusters 0.75 29.58 29.58 29.58 29.58 29.58_
non-Eucl. 0.00 0.0'{) 0.28 0,10 0.13

uniform 0.75 10.76 12.49 10'.76 6.83 6.83
,.

Table 7.1+. Selected computational results comparing the
performance of upper bounding methods using test problems
with 20 nodes. In ali problems, the nodes were given equal
values. Results are averaged over a sample size of 10. The

numbers in larger pnnt are the average percent errors from
optimality of the upper bounds while the numbers in smaller
print are the average computation times. Bold type indicates
that, when compared with IKP, me difference in performance
was statistically significantat the95% level.

These differences are also more dramatic for problems with clusters than for uniform

problems. On the other hand, when the budget is large, the difference in performance

between IKP and the other bounds is smaller for problems with clusters than for uniform

problems. For non-Euclidean problems, while IKP was superior to PAB and CAB_ for

small budgets, PAB and CAB;I,obtained tighter bounds when the budget was large. This,

however, was not true for problems with clusters. In the case of clusters, IKP was always

superior to PAB and CABS.
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Chapter 8

EXACT ALGORITHMS

Finding exact solutions to NP-hard problems, such as CCTSP, is a difficult, time

consuming task and often computationally infeasible. However, algorithms which

guarantee a true optimal solution do exist for most NP-hard problems. These algorithms

generally rely on the processes of recursion and enumeration. As a worst case, an

algorithm may consist of enumerating and evaluating ali possible solutions. The total

number of possible solutions for CCTSP is

1n-1 n- 1 ,,-1 1 = (n- 1 _ = e(n- 1)!
,, i it=(n-1)l_-_(n-l-i)l .= _ 'i=1

= e-(n-2)(n- 1)"-l_]2nr(n - 1) (using Stirling's approximation).

The techniques of dynamic programming and branch-and-bound are often used to

improve on total enumeration. Dynamic progrmamaing can be used to solve many problems

that have a factorial number of feasible solutions with only an exponentially growing

number of computational steps. As we will show, CCTSP is one such problem. Although

branch-and-bound algorithms are equivalent to total enumeration in the worst case, the use

of good branching and bounding techniques can result in algorithms that are relatively

efficient. Unfortunately, even for a very efficient branch-and-bound algorithm, it is rarely

possible to establish any good bounds on the computation time.

In this chapter, we present a dynamic programming algorithm and two types of

branch-and-bound algorithms for CCTSP. The first branch-and-bound algorithm and the

dynamic programming algorithm are closely related. A noteworthy feature of these two

algorithms is that they can also be applied to the two extensions of CCTSP discussed in

Chapter 3. Computational experiments were performed for the branch-and-bound

algorithms only.
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8.1 A Dynamic Programming Algorithm

Dynamic programming is a technique used on problems involving a sequence of

interrelated decisions, where the goal is to determine the combination of decisions that

maximizes overall effectiveness. Many different types of problems can be solved using a

dynamic programming approach. The key characteristics of dynamic programming

problems are:

(i) The problem can be divided into stages with a policy decision required at each

stage.

(ii) Each stage has a state associated with it.

(iii) The policy decision at each stage determines the state associated with the next

stage.

(iv) Given the current state, an optimal policy for the rernaining stages is

independent of the policy decisions of the previous stages. This is referred to

as "the principle of optimality," and, stated differently, says that knowledge of

the current state is ali the information necessary to determine the optimal policy
henceforth.

The Cost Constrained Traveling Salesman Problem can be viewed as a sequential

decision problem. Each stage consists of visiting an additional node, and the policy

decision to be made is which node, if any, to visit next. The state at each stage is specified

by the set of nodes which have already been visited (S) and the node which was visited last

(l). Thus, if the current state is (S,/) and the policy decision is to visit node k e_S next,

then the state at the next stage is (S + k,k). Given the current state, the optimal sequence of

remaining nodes is independent of the sequence used to get to that state.

We have developed a dynamic programming algorithm for CCTSP based on Held

and Karp's [HK] dynamic programming algorithm for TSP. Their algorithm is based on

the following recursion equations:

Given S _ {2,3,...,n} and l _ S, let C(S,I) be the minimum cost of starting

at node 1 and visiting ali nodes in the set S, terminating at node I. Then
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(a) C({I},I)= qt, for all/ (1)

and (b) C(S,l)=..___mm'sm_t[C((S-l),m)+cml].

The optimal value is then

min .[C({2,3,...,n},1)+ cii].
/E12,3.....ni"

In our algorithm for CCTSP, we use the same definition of C(S,I) and the same

recursion equations. We define

V(S,l)= vi+h.
i_S

Then the optimal value to CCTSP is

Vopt= max V(S,I), (2)
{(S,I)IC(S,I)+ctl <B}

We-know that a partial permutation (1,/2,/3,...,i m) is optimal if and only if

, ({/2, i3,...,ira },/,I) = ar_ max V(S,I) (3)
. {(S,t)tCUS,t)+ctt_B}

and, for 2 < p <m-l,

C({i2,i3,...,ip,ip+l},ip+l) = C({i2,i3,...,ip},ip)+cipip+l. (4)

In the first phase, equation (1) is used recursively to compute the quantities C(S,I) and then

Vopt is computed from (2). In the second phase, equations (3) and (4) are used to compute

an optimal solution.

The fundamental operations employed in the computations are additions and

comparisons. The number of computations in the first phase is on the order of

n-l___k(k_l)kn- 1 = (n - 1)(n- 2)_._| = (n- 1)(n- 2)2n-3
k=2 k=0\

The number of computations in the second phase is at most on the order of

n-1

_k=[n(n-1)/2]-X.
k=2
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Thus, the growth rate of this algorithm is O(2n). Since each number C(S,I) must be

stored, the number of storage locations required is

k=O\

In many cases, the computation time can be significantly improved since it is not

necessary to compute C(S,I) for every possible (S,/). At any point in our computations,

we can divide the states (S,/) into twosets: candidates, those for which C(S,I) < B, and

candidate solutions, those for which C(S,I) + cn < B. If C(S,I) > B, then, for any k _ S,

C(S,l)+Clk > B and C(S,l)+Cll > B.

Thus, any (S,l) that is not a candidate need not be considered in any further computations

and, since it is also not a candidate solution, may be deleted. If the triangle inequality holds

for the cost matrix C, then

C(S,l)+Clk +Ckl > C(S,I)+Cll

and any (S,I) that is not a candidate solation may be deleted. If no candidates remain to be

used in the computation of C(S + k,k), then C(S + k,k) need nos be computed. When no

additional C(S + k,k)s can be computed, the candidate solutions are examined to find Vopt .

If (S,I) is a candidate solution, and (S,k) is a candidate solution, where S' c S, then (S,k)

need not be considered in the computation of Vopt. These observations can greatly reduce
i:

the number of computations required, especially in cases where the optimal solution does

not contain ali n nodes.

8.2 A Branch.and-Bound Algorithm

Brmlch.and-bound algorithms are implicit enumeration techniques which iteratively

reduce the number of feasible solutions that must be examined. They rely on the pr_ess of

repeatedly breaking the set of feasible solutions into subsets (branching), and calculating

bounds on the value of ali feasible solutions contained within them (bounding). During the

branch-and-bound process, the best feasible solution found thus far is called the

incumbent. A heuristic algorithm is often used to generate an initial incumbent. For a
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maximizationproblem,thesetofallfeasiblesolutionsispartitionedintotwo ormore

subsetsand,foreachsubset,anupperboundon theobjectivefunctionisobtainedforthe

solutionswithinthatsubset.Iftheupperboundfora subsetislowerthanthevalueofthe

incumbent,thenthatsubsetcannotcontainanoptimalsolutionandisfathomed--excluded

fromfurtherconsideration.A subsetisalsofathomedifitisshown tocontainno feasible

solutionsorifthebestfeasiblesolutionwithinthesubsethasbeenfound.Inthelatter

case,ifthevalueofthesolutionexceedsthatoftheincumbent,thesolutionreplacesthe

incumbent.A branchingruleisthenusedtoselectone oftheremainingsubsetsand

partitionitfurtherintotwoormore new subsets.The processisrepeateduntiltherearcno

remainingsubsets,i.e.allsubsetshavebeenfathomed.The SL_CCCSSofa branch-and-

boundalgorithmishighlydependentonstartingwithanincurnbcntsolutionthatiscloseto

optimalandon thetightnessoftheboundingfunctionused.

Branch-and-boundmethodsarca common techniqueforsolvingintegerlinear

programs.Forexample,one well-knownbranch-and-boundalgorithmforsolvingsuch

problemsisthatofDakin[Da].Inhismethod,theSimplex(orDual-Simplex)methodis

usedtosolvelinearprogrammingrelaxationsofsubproblemsoftheoriginalproblem.

Thesesolutionsprovidethebe'.mds.Branchingisdonebyselectingafractionalvariablein

thelinearprogrammingsolutionand generatingtwo new subproblems,one wherethe
ma

fractionalvalueiscutofffromabovebytheadditionofaninequalityconstraint,andone

wherethefractionalvalueiscutofffrombelow.Generally,thistypeofbranch-and-bound

algorithm does not exploit _ny special combinatorial structure of the problem and, thus,

could, in principle, be applied to virtually ali linear integer programming problems,

including CCTSP.

We present a branch-and-bound algorithm, based on the method of Laporte and

Martello [LM], that does exploit the structure of the problem. In their algorithm, Laporte

and Martel,_, partition the set of feasible solutions by specifying the initial sequence of

nodes in a subtour. Initially, the specified sequence consists of node 1 only. A subset of

feasible solutions is partitioned by adding a node to the end of the specified initial

sequence. One partition is formed for each node not in the ............. "_'-'_ 1¢
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specified sequence has a value greater than that of the incumbent and can be turned into a

subtour without violating the cost constraint, the incumbent is replaced with the subtour

corresponding to the specified sequence. A subset of feasible solutions is fathomed if the

cost of the sr.,ecified node sequence exceeds the budget, or if an upper bound on the value

of a solution containing the specified sequence is less than the value of the incumbent. A

subset is also fathomed if it is shown that no additional nodes can be added to the sequence

without violating the cost constraint, or if the specified sequence contains ali n nodes.

Upper bounds are computed using the knapsack bound (KPB) described in Chapter 7,

where node 1 is a ,super-vertex," corresponding to the specified initial node sequence.

In our branch-and-bound algorithm, we use the same partitioning method and

fathoming rules as Laporte and Martello, but replace their upper bounding method with the

improved knapsack bound (IKP) presented in Section 7.1. We experimented with using

the tighter knapsack bound (TKP) whenever a subset could not be fathomed based on IKP.

Although doing this resulted in significantly smaller branch-and-bound trees, the excess

time required to compute TKP resulted in an overall increase in computation time. To

generate their initial incumbent solution, Laporte and Martello use two heuristic algorithms,

one based on the nearest neighbor TSP algorithm and one based on the cheapest insertion

TSP algorithm, and select the better solution. In our method, we begin with an incumbent

produced by the new heuristic algorithm for CCTSP presented in the following chapter.

8.3 An Alternate Branch-and-Bound Approach

An alternate branch-and-bound approach is based on the ideas of Gensch [Ge].

This approach uses the cost-constrained assignment problem for computing upper bounds

and uses subtour elimination for branching. Gensch proposed a branch-and-bound

algorithm where upper bounds are computed by solving the cost-constrained assignment

problem (CAP) using Lagrangean relaxation, and, when the resulting assignment consists

of more than subtour, partitioning is done using Garfinkel's procedure for subtour

elimination [Ga73]. Due to a number of errors, including the method of solving CAP

(discussed in Section 7.3), Gensch's algorithm does not guarantee an optimal solution.
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Using the same ideas, Kataoka and Morito [KM] developed a branch-and-bound

algorithm that does guarantee anoptimal solution. They use Lagrangean relaxation to find

an optimal solution tothe linear programming relaxation of CAP° This is then used as the

bounding method in a branch-and-bound algorithm fbr CAP, where partitioning is done by

setting a fractional variable to 0 and 1, respectively. If the solution to CAP has a value

greater than the incumbent but is not feasible for CCTSP, that is, if it contains a subtour

that includes more _hana single node and does not include node 1, partitioning is done by

selecting an arc in this subtour and creating two subproblems, one where the arc is always

used and one where the arc is excluded. Otherwise, the subproblem is fathomed. This

algorithm has two undesirable features: the embedding of a branch-and-bound algorithm

within a branch-and-bound algorithm, and the use of a partitioning scheme that is less

efficient than Garfinkel's subtour eliminationprocedure.

This branch-and-bound procedure can be improved in two ways. First, rather than

solving CAP exactly, an upper bound can be computed using the method discussed in

Section 7.3. Second, using the two assignments, x; ( 2*) and .r; ( 2*), preduced as

byproducts of this upper bounding method, to identify illegal subtours, Garfinkel's subtour

elimination procedure can be used to partitioning the subproblems. This will eliminate

ffl( A*) and/or x;(Z*) from the feasible set of assignments,resulting in tighter upper

bounds at subsequent iterations. If possible, a subtour that appears in both assignments

should be chosen for elimination. Br_ch-and-bound need be applied to CAP only in the

case where both x_(£*)and x_(_.*)contain no illegal subtours. In this case, x;(,q,°) is a

feasible solution to CCTSP, but there may exist other feasible s._lutions with a value

between that of x_(_.*) and the upper bound.

8.4 Computational Results

The computation time required by Laporte and Martello's branch-and-bound

algorithm and by our modified version utilizing the improved knapsack bound were

compared using uniform problems in which the nodes all had equal values. A "timeout"

was set for each algorithm. Laporte and Martello's algorithm was aborted if the

-.,-,,-,e,,,,_-,.,,,u me ,.^,.,.,.,.,_ -_,.,,, -,-,-,-,,,,-,o,,........,-,,,,,- r..... z!g..........................
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computation time exceeded 200 seconds. The computational results are given in Table 8.1.

A sample size of 10 was used and results were averaged over the problems for which both

algorithms completed within the allotted times. Computation times for the improved

method are generally at least 10 times faster and sometimes hundreds of time faster than

Laporte and Martello's method. We note that Euclidean problems required less

.... cPU time (seconds) Sample

Class Ngdes Budget Imp. i L&M Ratio size I

20 0.10 0.00 0.01 10

20 0.20 0.01 0,18 1 1.8 9 10

20 0.30 0.11 2.35 22.00 10

20 0.40 0.65 20.23 31.28 10

Euclidean 20 0.50 4.26 139.29 3 2.71 10

20 0.60 47.45 1231.02 25.94 10

20 0.70 49.30 1067.60 2 1.66 5

20 0.80 26.00 1021.74 39.29 3

20 0.90 4.86 1338.61 275.30 4
, ,,

25 0.10 0.00 0.01 3.00 10

25 0.20 0.04 0.77 17.15 10

Euclidean 25 0.30 0.74 30.65 41.24 10
25 0.40 7.78 497.34 63.92 9

25 0.50 40.27 2123.24 5 2.7 3 3
i ii ii

20 0.10 0.01 0.06 4.88 10

20 0.20 0.30 5.93 19.65 10

20 0.30 12.62 212.40 16.84 10

Non- 20 0.40 39.49 491.26 12.44 10

Euclidean 20 0.50 66.82 763.69 1 1.43 10

• 20 0.60 180.69 2016.82 11.16 10

20 0.70 41.57 1198.24 28.83 5

20 0.80 0

20 0.90 14.68 1135.74 77.35 4

25 0.10 0.02 0.23 10.6 2 10

Non- 25 0.20 1.47 28.53 19.38 10

Euclidean 25 0.30 58.31 1039.14 17.82 9

25 0.40 72.71 1831.64 25.19 2

25 0.50 0
IIII I II

Table 8.1. Computational results comparing Laporte and Martello's

branch-and-bound algorithm and the improved version. Problems were

generated using a uniform distribution and ali nodes had equal value.

Results are averaged over the problems that successfully completed
_tr_th;n th_ _ll_tt_t'] r,_rv_nllt_finn timeb_
li • IIAI& Ikl&_, q_.._IV_ Jr
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computation time than the non-Euclidean problems. This is believed to be an artifact of the

way the problems were generated and attributable to the amount of variability in the cost

matrix rather than to the class of problem. Because of the way the problems were

generated, the non-Euclidean problems showed less variability in their cost matrices than

the Euclidean problems.

The two branch-and-bound approaches were compared by repeating Kataoka and

Morito' s computational experiments using our improved version of Laporte and MarteUo's

branch-and-bound algorithm. Our improved algorithm was applied to problems generated

from the same distributions as those used by Kataoka and Morito. Computation times for

our algorithm were then adjusted to account for the difference in computers. The SUN

4/330 computation times were multiplied by a factor of 10.20, Which was the factor of

difference observed in experiments we conducted comparing the speed of the SUN 4/330

with a machine comparable to the one used by Kataoka and Morito. The adjusted

computation times were then compared with Kataoka and Morito's published computation

times. Results are given in Table 8.2. Unless otherwise stated, the problem parameters are

as follows:

cii ~ unif(30,70)

vi - unif(5,15)

B = 250

n=10.

Computation times are averaged over a sample of 50 problems. The results show Kataoka

and Morito's approach to be much inferior. Although the improvements discussed in the

previous section would improve the performance of this approach, it seems unlikely that

the improvement would be great enough to make this approach competitive. Hence, no

further experimentation was done.
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Problem CPU time (seconds)

parameters K&M [ Imp. ,, Ratio

B=60 17.10 0.00 >1710.00

B = 80 34.24 0.00 >3424.00

B = 100 48.86 0.02 2443.00

B = 150 77.42 0.05 1548.40

B = 200 89.08 0.25 285.60

B = 250 71.40 0.96 74.38

B = 300 46.52 2.27 20.49

B = 350 16.78 3.17 5.30
B = 400 0.54 0.68 0.7 9

i i i

c = 50 7.54 0.02 377.00

40<c<60 102.80 0.89 115.51

30 < c <70 71.40 0.88 81.14

20 _ c <_80 35.94 1.36 26.43

10 <_c _ 90 3.74 3.05 1.23
i i

v = 10 10.28 0.21 48,95

9 < v <11 61.28 0.70 87.51

5 < v < 15 71.40 0.70 102.00

1 <_v <_19 54.18 0.73 74.22

1 < v < 21 55.82 0.67 83.31

10 _ v < 30 72.74 0.68 106.97
20 < v < 40 8,5.36 0.72 118.56

Table 8.2. Comparison of published average

computation times for Kataoka and Morito's branch-and-

bound algorithm with average computation times for our

improved version of Laporte and Martello's branch-and-

bound algorithm. The computation times reported for

the improved algorithm have been adjusted to account for

the difference in computers.
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Chapter 9

HEURISTIC ALGORITHMS

i

Having shown that CCTSP is NP-hard, we now "lower our sights" and consider

heuristic algorithms _ algorithms which find "good" (but not necessarily optimal)

solutions within an acceptable amount of time. The most common technique used in

heuristic algorithms is "neighborhood search," in which a predefined set of operations is

used to iteratively improve an initial solution, until no further improvements can be

obtained with these operations. The resulting solution is "locally optimal" with respect to

the predefined operations. All of the heuristic algorithms that are discussed here use this

technique. They begin with an initial subtourconsisting of one or two nodes and iteratively

improve it, maintaining feasibility throughout the process. Two types of improvements are

possible u changing the set of nodes in a subtour, either by inserting an additional node or

replacing a node with a more desirable one, and rearranging the order of the nodes in a

subtour such that the cost of the subtour is reduced.

We have identified five key characteristics of heuristic algorithms for CCTSP.

These are:

node selection- How is a node selected for insertion into a subtour?

insertion method- Where is the selected node inserted?

recourse- Once inserted, can a node later be deleted?

subtour improvement - Is an attempt made to reduce the cost of a subtour

by rearranging its nodes?

repetition - Is a single subtour generated or are several generated and the
best selected?

Repetition may be based on probabilistic events (e.g., randomization in the node selection

process) or deterministic influences (e.g., starting the search with a different initial

solution).
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In this chapter, we discussprevious heuristic algorithms for CCTSP, along with

some modifications, and then present a new one, which combines the strong points of the

previous algorithms while attempting to avoid their shortcomings. In addition to

comparing the solutions obtained by the algorithms, we also examine the effects of the

individual features of the new algorithm on both solution quality and computation time.

Several modifications of the new algorithm, with progressively decreasing computation

time, are considered and the trade-off between solution quality and computation time

examined.

9.1 Previous Heuristics

As noted in Chapter 4, four heuristic algorithms have been developed previously

for CCTSP. The first two are based on simple TSP algorithms while the second two

incorporate many new ideas. Since the second two algorithms are only applicable to

Euclidean problems, we also present modifications which generali_ them.

Golden, Levy and Dahl [GLD] developed a heuristic for a generalization of

CCTSP that is based on TSP's cheapest insertion algorithm. In their generalization, rather

than the nodes having values, the arcs have both costs and profits. The goal is to find a

subtour that maximizes total profit while not exceeding a specified cost. Their algorithm

varies from the cheapest insertion algorithm for TSP in that the node selection criterion

takes into account profit as well as insertion costs. When we adapt their algorithm to

CCTSP, the node selection criterion at iteration k becomes

- Rkri,
where

P = value of current subtour,

T = cost of current subtour,

ATi = cost of inserting node j at cheapest insertion point,

and Rk = a(P/T) + (1- ct)Rk_ 1, where 0 < ct < 1.

Once selected, a node is inserted into the subtour at its cheapest insertion point and ali

variables are updated. The process is continued until no further nodes can be inserted

without violating the cost constraint. Several subtours can be generated by using different
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values of Ro and o_. In our experiments, we used 0.1, 0.5, and 1.0 for c_and li 10, 25,

and PlT for Ro where PIT is the value/cost ratio Of the best solution generated thus far.

Tsiligirides [Tsl] modified the nearest neighbor algorithm for TSP to incorporate

node values and randomization. In his algorithm, the node selection criterion is

Where last is the last node in the current subtour before returning to node 1. The node to be

inserted is selected randomly from among the top four ,zsing probabilities proportional to

these scores. The selected node is then inserted at the end of the subtour. The process is

continued until no more nodes can be added without violating the cost constraint. This

method of generating a subtour is repeated many times and the highest valued subtour

selected. Tsiligirides suggests 3000 repetitions, a number which we found to be

computationally prohibitive. In our experiments, the process is repeated 100 times. We

found that, in general, exceeding 100 iterations was not productive.

Golden, Levy and Vohra [GLV] developed an algorithm for CCTSP using a new

idea, "center of gravity." An initial subtour is generated using a node selection criteria

based on a linear combination of value, distance from node 1, and distance from the center

of gravity of, initially, ali nodes, and later, the nodes in the current subtour. Nodes are

inserted at their cheapest insertion point. When the cost constraint prohibits the insertion of

additional nodes, a two-opt procedure is applied and more nodes are inserted if possible.

The center of gravity, cg = (_,y), of this subtour (Lo) is then computed, where

x= _vixi/_ viiel_i and y= _viYil_-_vi'ie,/le,

A new subtour is then generated using

vj ldist(node j, cg)

as the node selection criterion, where dist(i,j) refers to the distance between i and j, and

then inserting the selected nodes at their cheapest insertion point. When no additional

nodes can be inserted without violating the cost constraint, an attempt is made to reduce the

cost of the subtour using a two-opt procedure. If possible, more nodes are then inserted.
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The process is repeated, using each time the center of gravity of the previously generated

subtour, until 10 subtours have been generated or until a center of gravity repeats itself.

We note that this algorithm is only applicable to Euclidean problems where nodes are

represented by x-y coordinates and costs are based on a distance function.

We generalize this center Of gravity algorithm to make it applicable to non-Euclidean

problems by using the node which best corresponds to the center of gravity of a set of

nodes in piace of an actual center of gravity. This node is computed as follows:

cg= arg.min _ vjc 2.
j_.S\i

In the node selection criterion, dist(node j, cg) is replaced by cj,cg.

Golden, Wang and Liu's algorithm [GWL], which they call the "Multi-Faceted

Heuristic," incorporates many new ideas. Rather than considering a node's individual

value, a "neighborhood value" is considered for each node. The neighborhood value for a

specific node is an aggregate of its own value and the discounted values of ali other nodes,

where the discount factor depends on the distance of the node from the specified node. The

aggregate value for a node j is

vj + _. vie-#cij ,
i_j

for some discount factor # >_0. The desired value of # depends on the scale of the

problem. In our experiments, we used

I.t = lO/maxcij.

The node selection criterion uses a linear combination of aggregate value, distance from

center of gravity, and distance from node 1. Each of these components is f'trst scaled such

that the maximum value over all of the nodes is n. The aggregate values are tfien multiplied

by a learning measure (whose original value is 1). Weights of 0.7, 0.2 and 0.1,

respectively, are used in the linear combination. Using this selection criterion, a node is

selected randomly from the top five remaining nodes using equal probabilities. The

selected node is inserted into the current subtour at its cheapest insertion point. If this

results in a violation of the cost constraint, a node is then deleted from the subtour. To
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select this node, the cost reduction (savings) resulting from deletion is computed for each

node in the subtour. From those nodes for which the savings are not less than the current

cost overrun, the one with the highest savings to value ratio is deleted. This node may be

the one that was just inserted. Once deleted, a node is not reconsidered, The process is

continued until no nodes remain for consideration. At this point, a two-opt procedure is

applied to reduce the cost of the subtour. If the cost is reduced, the insertion/deletion

process is repeated. This subtour generation process is repeated 20 times, each time

replacing the center of gravity used with the center of gravity of the tour just generated.

After each iteration, the learning measures are updated as follows:

1 _ (value of subtour t/average subtour value),
LMi = _ teRi

where

Ri = set of subtours generated thus far that include node i.

In addition, the entire process is repeated five times starting with different initial centers of

gravity. To compute these initial centers of gravity, the smallest rectangle, with sides

parallel to the x and y axes, that encloses ali of the nodes is drawn. The five initial centers

of gravity are the center of this rectangle and the centers of each of the four quadrants of the

rectangle. As with the center of gravity algorithm, this algorithm is applicable only to

Euclidean problems.

We generalize the Multi-Faceted Heuristic to make it applicable to non-Euclidean

problems by using the node which best corresponds to the center of gravity of a set of

nodes in place of an actual center of gravity, as we did for the center of gravity algorithm.

The five initial centers of gravity are replaced by the following four points:

Pl =k l
P2 = lJ where c_ = max cii,

P3 = argmax{min(cp_i,Cp2i)},

and ,,l = argmin{c2ti + c22i+ c23i}.
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9.2 A New Heuristic Algorithm

Before presenting our new heuristic algorithm, we will begin by analyzing some of

the characteristics of the previous methods. The methods by Tsiligirides and by Golden,

Levy, and Dahl are myopic in their node selection processes. Tsiligirides' algorithm is also

myopic in its insertion method. The randomization process used in Tsiligirides' algorithm

is biased toward always making the same selection since the probabilities are proportional

to the fourth power of the nodes' value/cost ratio. On the other hand, since the node

selection criterion is dependent on the last node added, when a different selection is made,

the entire future of the algorithm may be changed. In contrast, the Multi-Faceted Heuristic

(MFH) uses equal probabilities in the node selection process. However, since the node

selection criteria are independent of the progress of the algorithm, the randomization only

has the effect of causing local shuffling in a pre-ordered list. Both the center of gravity

algorithm (CofG) and the MFH are somewhat less myopic since they consider distance

from a center of gravity in the node selection process. This, in some sense, causes them to

consider the relationship of the node to the overall tour. On the other hand, the algorithms

are deficient in that they do not consider the actual cost of inserting a node. Furthermore,

the emphasis on the center of gravity of the previously generated solution causes the

algorithm to focus on similar solutions. The procedure of starting with five different initial

centers of gravity, in MFH, counteracts this effect to some extent.

A notable feature of MFH is the use of "neighborhood scores," rather than

individual node scores, in the node selection process. When evaluating a node, the number

and value of nodes nearby are taken into consideration by using an aggregate node value.

We note that, since all nodes are eventually included in a TSP solution, this is not an

important consideration for TSP algorithms. On the other hand, it can be of extreme

importance in solving CCTSP, particularly in problems where nodes occur in clusters.

However, the aggregate values used by MFH are not updated as the algorithm progresses.

Thus, a node may receive undue favoritism for bringing the path close to nodes that have

already been included in the subtour or that have already been excluded from further

consideration. As the remaining budget gets smaller, the amount of aggregation of the
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node values should decrease since it does no good to bring the path close to other nodes if

there is not enough budget remaining to include these nodes. Another favorable feature of

MFH is that it allows a limited amount of recourse. Once inserted, a node may later be

deleted in order to allow insertion of a more desirable node.

We developed an algorithm based on these observations about the previous

methods. ' In our algorithm, aggregate node scores are used in the node selection process,

but are updated as the algorithmproceeds. The aggregate node value for node i is

aggi = vi + _,_vie -gc_j where S = {remaining candidates for insertion}.
j_s

The node selection criterion is

LM i x agg i

insertcosti

where .insertcost i is the cost of inserting node i at the cheapest insertion point in the current

subtour and LM i is the same as in MFH. Nodes are selected randomly from the top five

using equal probabilities. Note that the values given by the node selection criterion change

after each insertion. Thus, the randomization has a greater effect than in MFH.

Initially, our algorithm uses the same insertion process as MFH. The selected node

is inserted in the current subtour at its cheapest insertion point. If this causes the cost to

exceed the budget, the node with the highest savings/value ratio, subject to the condition

that the savings are at least as great as the current cost overrun, is deleted from the subtour.

Once deleted, a node is not reconsidered. When no nodes remain for consideration, a two-

opt procedure is applied to reduce the cost of the subtour. At this point, the procedure

differs from MFH. Regardless of whether the two-opt procedure resulted in cost

reduction, an attempt is thenmade to insert additional nodes. This time deletions are not

allowed. Nodes are selected deterministically using the ratioof value to insertion cost as

the node selection criterion. Nodes are considered only if their insertion does not violate

the cost constraint. When no additional nodes can be inserted, the two-opt procedure is

repeated. An attempt is then made to increase the value of the subtour by swapping nodes.

Nodes are selected for insertion according to their values and inserted at their cheape._t
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insertion points. If the cost constraint is violated after an insertion, the lowest-value node,

subject to the requirement that its deletion reduce the cost to within the cost constraint, is

deleted fromthe subtour. This process is continued until no further improvements can be

made. Figure 9.1 shows a flowchart of this entire procedure,

Our algorithm begins with a tour consisting of node 1 and a specified "focus point."

Repeating the algorithm using different focus points can have a drastic effect on the initial

insertion Costs and, thus, drastically change the course of the algorithm. We repeat the

algorithm with five different focus points for Euclidean problems and four for non-

Euclidean problems. The focus points used in non-Euclidean problems are the same as the

initial centers of gravity used by MFH. In Euclidean problems, the focus points used are

the points nearest the five initial centers of gravities used by MFH. For a given focus

point, 10 iterations of the algorithm are executed.

9.3 Computational Results

Computational experiments were conducted to compare the five heuristic

algorithms. Both the percent error from optimality and the computation time were

recorded. Initially, problems with 20 nodes were used and the results were averaged over

a sample size of 10. Selected representative results are given in Table 9.1. Complete

results are given in Appendix C. Out of 540 test problems, MFI-I found the optimal

solution 510 times, while our new heuristic (NewH) found the optimal solution 524 times.

Tsiligirides' algorithm (Tsl), CofG, and Golden, Levy, and Dahrs algorithm (GLD) were

clearly inferior in solution quality to MFH and NcwH. However, if speed of computation

is essential, CofG might be preferred. Since these experiments did not show a statistically

significant difference between MFH and NewH, further experiments were done with these

tWOalgorithms using 50-node problems, a sample size of 40 for Euclidean problems, and a

sample size of 20 for non-Euclidean problems. Selected results are shown in Table 9.2 and

complete results are included in Appendix C. Overall, NewH appears to outperform MFH.

Next, the effect of individual features of NewH on computation speed and solution

quality were examined. Five versions of NewH were created by dropping the following

individual features:

74



]Selectnode randomlyfrom topfive

( ¢_',_,t_,,,-)-------l_accordingtoaggregatevalue/insertion

Icostandinsert.Updateagg.values.
] Yes

/

r
No

IE)cicic"nodc wi-_higlac-st sawn gs/value,
subject to savings > subtour cost- B.

_pply two-opt routine, l

/

Insert node with highest value/insertion cost,
subject to insertion cost _<B- subtour cost.

Nodes with insertion

Yes cost __B remain?

" Apply two-opt routine. No

Insert

Yes

Subtour No st

cost < B? remain? '

to savings _. _ubtour cost - B.

m i Illl I, --'_ I lm

Figure 9.1. Insert;on procedure for NewrL
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Budget NewH MFH Tsl CofG GLD ....
0.61 0.41 0.20 0.02 0.01

0.25 0.00 0.77 0.27 4.9 5 9.4 0
0.85 0,62 0.74 0.04 0.02 -

0.50 0.00 0.14 4.82 4.87 11.84
i.30 1.24 1.24 0.07 0.03

0.75 0.00 0.10 4.41 6.13 13.53
I

Table 9.1. Selected computational results comparing heuristic

algorithms. The results shown are for Euclidean, uniform

problems with 20 nodes, averaged over a sample size of 10.
Node values are uniformly distributed between 1 and 10.

Numbers in large type are the average percent error from

optimality and numbers in small type are average computation
times. Bold type indicates that the difference in performance
from that of NewH was statistically significant at the 95% level.

I

clusters, equal v's ave. over ali Euclid. types

sample size = 40 sample size = 360

Budget NewH [ MFH NewH .... I MFH
3.66 2.29

0.25 0.00 3.26 0.27 1.40
iii

7.86 7.56

0.50 i! 0.08 1.24 0.86 0.97
, 17.28 20.45

0.75 0.30 _.66 0.63 0.90

Table 9.2. Selected computational results comparing NewH
and MFH. The results shown are for Euclidean problems with

50 nodes. Numbers in large type are the average percent error
from the best known solution and numbers in small type are

average computation times. Bold type indicates that, when

compared with NewH, the difference in performance was

statistically significant at the 95% level.
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aggregate values (agg.)- aggregate values were replaced by individual

node values in the node selection criterion,

learning measure (LM)- the learning measure was dropped in the node

selection criterion,

updating of aggregate values (updat.)- aggregate values were computed as

in MF'H and not updated as the algorithm progressed,

focus points (foc. pts.) - the insertion process was started with a subtour

consisting of node 1 only, and

randomization (rand.) - the highest scoring node, according to the selection

criterion, was always selected.

The experiments were conducted using problems with 50 nodes, a sample size of 40 for

Euclidean problems, and a sample size of 20 for non-Euclidean problems. Selected results

are given in Table 9.3 and complete results in Appendix C. Further experiments were

conducted for the learning measure and aggregate values using problems with 100 nodes

and a sample size of_0. These results are given in Table 9.4. The updating of aggregate

Node ........ no n-o no ..... no no

values B_ NewH agg. LM updat, foc.pts, rand.
3.66 2.75 3__58 2.76 0.77 0.34

equal 0.25 0.16 0.13 0.35 0.13 1.99 2.68
' 7.75 6,63 .... 7.6_/ 6.80 " 1.62 0.75

equal (3.50 0.49 1.10 0.49 1.00 2.50 2.99
i ii

16.62 i5.28 16.49 i5.52 3.37 1.63

equal . 0.75 0.88 1.12 0.65 1.17 2._5 2.8 7
3.57 2.64 -3.5i .....2.68 0.75 0.33

exp. 0.25 0.44 0.04 0.37 0.78 1.60 3.29
7.32 6.19 6.31 6_50 i.56 0.71

exp. 0.50 1.47 1.01 0,72 2.81 4.74 5.44
.... 15.61 ,4.4i 15.49 15.13 3.17 i.59

exp. 0.75 0.84 0.60 1.05 1.66 2.97 2.73
lllmill _m ii I

Table 9.3. Selected computational results showing the effects of
dropping individual features of NewH. The results shown are for

Euclidean problems with 50 nodes and a uniform distribution. Results

are averaged over a sample size of 40. Numbers in large type are the
average percent error from the best known solution attd numbers in

small type are average computation times. Bold type indicates tha.t,
whir, r.nrnp_r_rt w_th Nl_.wbI. the difference in nerformance was

statistically significant at the 95% level.
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Node ,' ...... no no

values iBud_et NewH ag[_. LM
l , l i l16.35 12.91 5.81

equal 0.25 0.96 2.13 0.32
49.66 43.08 49.06

equal 0.50 0.00 2.6 6 1.16
128.7"]'_ 116.20 128.27

equal 0.75 0.94 2.28 1.40
16.17 12.52 15.58

Unif(!,10) 0.25 1.97 1.97 0.73
_7.36 40.87 46.9 i

Unif(1,10) 0.50 1.68 2.83 2.41
- 122.53 111.00 122.32

Unif(1,10) 0.75 0_75 1.39 0.61

Table 9.4. Computational results showing the effects of

dropping the aggregate value and learning measure features of
NewH. The results shown are for Euclidean problems with 100

nodes and a uniform distribution. Results are averaged over a

sample size of 20. Numbers in large type are the average

percent error from the best known solution and numbers in small
type are average computation times. Bold type indicates that,

when compared with NewH, the difference in performance was

statistically significant at the 95% level.

values, use of focus points, and randomization in the node selection process show a

statistically significant beneficial effect on solution quality. The use of focus points and

randomization cause a substantial increase in computation time. We note that the amount of

this increase is determined by the number of focus points used or the number of iterations

conducted. The aggregation of node values had a beneficial effect on solution quality,

except in cases where the node values were distributed exponentially. In those cases, the

effect was negative. Use of the learning measure does not appear to have a significant

effect.

Finally, we experimented with seve.ral versions of NewH, requiring progressively

decreasing computation time, to examine the trade-off between computation time and

solution quality. In the first two variations, we dropped the use of focus points and

randomization, respectively. Next, we dropped both focus points and randomization. "Ihe
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final variation used a straight cheapest insertion algorithm without recourse, where the node

selection criterion was simply the node value to insertion cost ratio, followed by two-opt

and node swapping for improvement. Selected results are shown in Table 9.5 andcomplete

results in Appendix C. The problems were also solved with CofG, since as mentioned

earlier, CofG might be the favored algorithm if speed o,: computation is essential. Our

results show that the faster variations of NewH are preferable to CofG, except for cases

where the nodes values are exponentially distributed. We note that these are the same cases

where using aggregate node values is detrimental and that ali the variations of NewH use
,

aggregate node values, except for cheapest insertion.

Node no no no ]'oc. ch p.

values ..B, NewH foc.pts, rand. no rand insert. CofG
3.54 0.74 0.33 0.09 0.03 0.14

equal 0.25 0.13 2.11 3.18 7.07 7.63 9.90
" 7.65 i.56 0.74 0.17 0.10 0.42

equal 0.50 0.31 2.49 3.65 8.10 14.15 11.54
16.62 15128 16.49 15.52 3.37 1.63

equa! 0.75 0.82 2.80 2.80 7.14 10.99 8.72II II I II

3.46 0.72 0.32 0,09 0.02 0.12

exp. 0.25 0.00 0.6 2 3.11 8.79 7.17 5.07
7.23 1.52 0.70 0.16 0.10 0.30

exp. 0.50 0.90 4.76 5.66 10.90 9.64 7.86
15.70 3.08 1.59 0.37 0.28 0.70

exp. 0.75 0.52 2.60 2.21 5.61 5.50 4.08
Illlll II IIIII

Table 9.5. Selected computational results for experiments

examining the trade-off between solution quality and computation

time. The results shown are for Euclidean problems with 50 nodes

and a uniform distribution. Results are averaged over a sample size of

20. Numbers in large type are the average percent error from the best

known solution and numbers in small type are average computation

- times. Bold type indicates that, when compared with the algorithm to

the immediate left in the table, the difference in performance was

statistically significant at the 95% level.
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Chapter 10
/

: CONCLUSIONS
., ' '

Since relatively little previous research had been done on the Cost-Constrained

Traveling Salesman problem, we undertook a comprehensive study, touching on mzn:i

areas rather than focusing on one specific aspect. In this chapter, we give a brief summary

of our results. This is followed by a discussion of open questions and areas for future

research.

10.1 Summary of Results

The Cost-Constrained Traveling Salesma,:, Problem is a difficult combinatorial

optimization problem with many practical applications. CCTSP is NP-hard, and no K-

approximation algorithm or fully polynomial approximation scheme exists, unless P = NP.

Although, in theory, CCTSP is equivalent to the Traveling Salesman Problem, in practice it

appears to be more difficult. CCTSP requires both selection and sequencing, unlike TSP,

which requires sequencing only. As a consequence, most results for TSP cannot be

extended to CCTSP. We were, however, able to show that several special cases, which

are solvable for TSP using low order polynomial algorithms, are also solvable for CCTSP

using polynomial algorithms of degree 3 or less. These are the cases of outer-sum

matrices, small matrices, circulant matrices, and upper triangular matrices.

Algorithms for CCTSP, which outperform previous methods, were developed in
/

0 li

three areas: upper bounding methods, exact algorithms, and heurlsUcs, Extensive

computational studies were undertaken to evaluate and compare algorithms, These

computational studies also examined the sensitivity of performance to problem

characteristics.

We found that a bounding strategy based on the knapsack problem perfomas better,

both in speed and in the quality of the bounds, than methods based on the assignment
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problem. We note that the preferred method depends primarily on the selection aspect of

CCTSP and, hence, is not related to upper bounding methods for TSP.

Likewise, we found that a branch-and-b0und approach using the knapsack bound

and a very simple branching strategy was superior to a method, analogous to a common

branch-and-bound method for TSP, that uses a constrained assignment problem for

bounding and subtour elimination for branching. In addition, the preferred branch-and-

bound method is easy to implement and can be applied to several extensions of CCTSP as

well as the basic problem.

In our study of heuristic algorithms for CCTSP, we made several observations.

First, when selecting nodes for the subtour, it is important to consider the "neighborhood"

of the nodes. A node with low value that brings the subtour near many other nodes may be

more desirable than an isolated node of high value. Second, an algorithtz. :hat generates
a

many different solutions and selects tire best one results in better solutions than one that

generates a single solution. However, such an algorithm also requires more computation

time. We found two types of repetition to be.desirable: repetitions based on randomization

in the subtour building process, and repetitions focusing the subtour toward different nodes

or areas. We developed a heuristic algorithm that incorporated these features.

Computational experiments show that this method outperforms previous methods in

solution quality. By varying the number and type of repetitions done by our method, we

can adjust the computation time required and obtain algoritl"ms that outperform previous

methods in both speed and solution quality.

t0.2 Open '-i •, _taestlons

One outstanding question about CCTSP relates to its complexity. For the general

., case of TSP, it has been shown that there cannot exist a polynomial algorithm A with a
]
_ performance guarantee of the form

length a < r x lengthopt,

unless P = NP. However, several polynomial algorithms with this type of performance

guarantee have been developed for the case where the triangle inequality holds. No such
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results have been obtained for CCTSP. We conjecture that the first result holds for CCTSP

as weil. That is, we conjecture that there cannot exist a polynomial algorithm A for CCTSP

with a performance guarantee Ofthe form

VA _ r × Vopt,

unless P = NP. However, since CCTSP appears to be more difficult than TSP, we will

not speculate that a polynomial algorithm with aperformance guarantee can be obtained for

the case of CCTSP where the triangle inequality holds, even when the nodes have equal

value.

A great deal of research has been done to characterize the facets of the underlying

polytope of feasible solutions for TSP. Another open question about CCTSP regards the,.

relationship between its polytope of feasible solutions and that of TSP. Using results

regarding the facial structure of TSP polytopes, exact algorithms which can solve ve).'y

large problems have been obtained, Similar results for CCTSP could prove to be very

useful.

10.3 Areas for Future Research

Many areas for future research remain. As mentioned above, results concerning the

facial structure of the CCTSP poly:ope might be very useful. With such results, a branch-

and-cut algorithm similar to that of Crowder and Padberg for TSP [CP] could be

developed. The success of the branch-and-cut method for TSP has been overwhelming.

The variant tackled by Padberg and Rinaldi [PR] with a similar method is much more

complex than CCTSP. While the results of Padberg and Rinaldi generate some doubts

about the efficiency of such a method for CCTSP' it would be premature to draw any

conclusions.

Further refinement of heuristic algorithms for CCTSP coul,t prove to be fruitful.

For example, when considering "neighborhood scores" for nodes, the discount function

used by our method may not be the best. Different parameters in the discount function, or

a different discount function altogether, may improve performance. Also, rather than

considering the distance, or cost, between nodes when aggregating node values, it may
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prove more beneficial to consider how the inclusion of a node affects the cost of including

other nodes. This would require comparing the insertion costs of other nodes, given that

the specified node has been inserted into the tour, with the insertion costs prior to the

inclusion of the specified node. We did not take this into account in our method because it

increases the computation time by a factor of n. However, if it improves performance

substantially, it may be worth the extra computation time. We note that, while our

algorithm found optimal or very near optimal solutions for problems with 20 nodes, since

we did not obtain exact solutions for larger problems, we can say very little about its

performance, relative to optimality, on larger problems. We knnw only that it outperforms

previous heuristic methods.

Finally, another area for future work is the development of algorithms for

extensions or variations of CCTSP. Two extensions which incorporate time dependencies

were discussed in Chapter 3. Other interesting extensions and variations surely exist.
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APPENDIX A: Initial Values of _,_ and _,2 for Computing CABS,

We desire initial values _,a and _,2 such that the optimal solutions to

/ii 1max
i=l \.i=lj=a

li

subject to: _,_x(A)i j = 1 forj = 1,2,...,n
i=1

n

EX(A)iy "-1 for i= 1,2,...,n
j=a

x(_,)ii a {0,1} for all/,j

satisfy cx*(&l) > B and cx*(&2) < B, where q a = *_and cii = 0 for all i _ 1.

First, we consider _1. We will find a _,1 such that

n

vx'(Z,)=Zv,=v
i=1

Provided 'q.a> 0, x*(Xl) will also satisfy

cx* (Xa) = min cx(2t,a)

subject to: vx(ga) = V

x(Zl ) feasible for CAP(g ).

If cx*(,q.a) <_B, then x*(_,l) solves CAP and we need not search for Z*.

If x*(Za)ii = 0 for all i, then vx*(Za) = V. Select 21 such that

0 < _a < mim vi .
i_l,j_l +

i_j cai cii - Caj

To show that x*(£a)ii = 0 for ali i, suppose x*(&a)ii = 1 for some i and x*(&l)aj = 1 (this

holds for some j since cla = **). The change in the objective function resulting from

inserting node i between node 1 and node j is
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vi- (cii+cii- elj) >o,

contradicting the optimality of x* ().1).

Now we consider )-2. We will find a ).2 such that x* ().2) minimizes cx().). Let

D be the matrix of shortest pathlengths between each pair of nodes. If C satisfies the

triangle inequality, then D = C. The minimum possible value of cx().) is

dmin= di[ + d/-1, where i' = arg.min(dli + dil ).
l

Let

_ext= rrfin (dl,+djl)
dlj+djl>dminX -

and let Xmin be the solution formed by taking the shortest path form node 1 to node i',

followed by the shortest path from node i to node 1, and setting xii = 1 for ali nodes i not

in this subtour. (Note that no node may appear twice in this subtour since that would

contradict the definition of i'. Thus, Xmin asa valid solution to CAP().).)

Select ).2 such that.

V vi
).2 > and ).2 > -- for all i, j.

d.next- dmin cii

To show that cx*().2)= drain, first suppose x*().2) contains a subtour that does not

include node 1. The change in the objective function resulting form replacing each xij in

this subtour with x, = 1 is

().2%- v,) > 0,
1,1

Z"(;t a )q in tubtom

contradicting the optimality of x*().2). Thus x*().2) consists of a single subtour

containing node 1 and some number of self loops (xa = I). Suppose cx*().2) > drain The

change in objective function resulting from replacing x*(g2) with xminis

).2(CX*().2)) -- rX* ().2) + VXmin -- ).2 drain >- ).2 dnext- V +0- ).2dmin

=Z2(dno  -d m)-V>O,

contradictingtheoptimalityof x*(Z2). Thus, cx*(Z2)= drrfm.If drain> B, then CAP is

infeasible. If dmin = B, then x*().2) solves CAP and we need not search for ).*.
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APPENDIX B: A Counterexample to Gensch's claim

Gensch [Ge] claims that the solution x_(Z*) found when computing CAB2.

actually solves CAP. The following counterexample to this claim consists of four nodes in

the x-y planeand uses the Euclideandistance function for arc costs.

 00> c-, oi
4 (1,2) 1 1 2.2 1.4

In figure B.1, we plot each feasible solution to CAP(/_) according to its value and cost.

Those points below the line Cost = 3 are feasible solutions to CAP. We also indicate the

optimal solution(s) to CAP(Z) for each valueof Z and the optimal solutionto CAP. In this

counterexample, thevalue of xi(Z*) is 8, while the optimal value for CAP is 8.5.

,,m,,

=I
i i ,l| i i.

iitz-o
.... III

= - iii

Cost ' OptimalSolution.......
X, • _ _ Z E (0,1.69)

t i i= _ i

" " Z e (1.69,2.48)
m

;.,. i .

1,

0 2 4 6 8 10 12 14

Value

Figure B.I: Feasible solutions to CAP(li,) are plotted according to value

and co,_t. The optimal solution(s) to CAP(Z) for each value of Z and the

optimal solution to CAP are indicated. For this problem Z" = 2.48.

95



APPENDIX C: Detailed Computational Results

This appendix contains complete tables of compuational results. Below is a listing

of the abbreviations and terms used in the tables.

Problem Type (see Section 6.2)

Uniform, Clusters, Outliers: Refers to the method by which the cost matrix is

generated (as described in Section 6.2).

v ~ equal: All nodes are given equal values.

v~ uni(1,10): Node values are integers uniformly distributed between 1 and 10.

v-. uni(1,3): Node values are integers uniformly distributed between 1 and 3.

v ~ uni(1,100): Node values are integers uniformly distributed between 1 and 100.

v ~ exp: Node values are exponentially distributed with a mean of 5 and rounded up to

integer values.

B: Defines the budget as a fraction of the approximate cost of a complete TSP tour.

Algorithms- Upper Bounding Methods (see Section.s 7.1- 7.3)

KP: The knapsack bound by Laporte and Martello.

IKP: The improved knapsack bound.

TKP: The tighter knapsack bound.

PAB: The parametric assignment bound.

CABS,: The cost-constrained assignment bound.

Algorithms - Heuristic Algorithms (see Sections 9.1 - 9.2)

NewH: The new heuristic algorithm.

MFH: The Multi-Faceted Heuristic by Golden, Wang, and Liu.

Tsi: The heuristic algorithm by Tsiligirides.

CofG: The center of gravity algorithm by Golden, Levy, and Vohra.

GLD - the heuristic algorithm by Golden, Levy, and Dahl.
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Algorithms- Variations of NewH (see Section 9.3)

no agg.: NewH without aggregated node values.

no LM: NewH without the learning measure.

no updat.: NewH without the updating of aggregated node values.

no foe. pts.: NewH without the use of focus points.

no rand.: NewH without randomization in the node selection process.

no foe. no rand.: NewH without the use of focus points and without randomization.

chp. insert.: Cheapest insertion algorithm followed by two-opt and node swapping.

97



I I ,i

Problem ]type B IKP KP , TKP PAB CABS,
Uniform 0.00 0.00 0.03 0.11 0.09

v-equal 0.25 11.33 119.00 7,,33 104.33 104.33
Uniform 0.00 0.00 0.18 0.12 0. i2

v-equal 0.50 33.72 63.20 30.59 52.67 52.67
Uniform 0.00 0.01 0.27 0.'06 0.08

v-equal 0.75 16.67 25.50 16.04 23.67 23.67II I

Uniform 0.01 0.00 0.03 -- 0.08

v- uni(1,10)0.25 26.03 136.29 7.23 _ 110.25
Uniform 0.01 0.00 0.19 "' -- 0.11

v - uni(1,10) 0.50 39.65 60.30 37.99 n 51.65
Uniform ' 0.01 0.00 0.27 m 0.07

v - uni(1,10) 0.75 14.90 18.56 15.02 ,-- 17.50
II

Uniform 0.00 0.00 0.02 -- O.11

v- uni(1,3) 0.25 30.81 141.63 7.74 109.74
i ii

Uniform 0.00 0.00 0.19 _ 0.12

v ~ uni(1,3) 0.50 37.37 59.82 33.91 49.19
ii

Uniform 0.00 0.00 0.27 -- 0.09

v ~ uni(1,3) 0.75 14.99 20.69 14.59 18.46
i liri i

Uniform 0,00 0.01 0.03 _ 0.10

v - uni(1,100) 0.25 39.99 157.78 12.81 _ 123.70
Uniform 0.00 0.00 .... 0.20 _ ' 0.14

v,-- uni(1,100) 0.50 45.65 67.38 41.26 54.57
i

Unifoma 0.00 0.01 0.28 _ 0.09

y--,uni(1,!O0) 0.75 14.40 16.75 14.45 n 16.13I I

Uniform 0.00 0.00 0.03 -- 0.09

v,- exp 0.25 31.03 173.63 4.58 _ 139.70i

Uniform 0.00 0.00 0.20 _ 0.13

v~exp 0.50 44.62 60.19 41.35 _ 51.34
Uniform 0.01 0.00 0.27 _ 0.10

v~exp 0.75 10.36 13.34 10.05 _ 12.22
I iii

Table C-I. Computational results comparing the performance of upper bounding

methods using Euclidean test problems. Ali problems have 20 nodes and results are

averaged over a sample size of 10. The numbers in larger print are the average percent

errors from optimality of the upper bounds while the numbers in smaller print are the

average computation times. Bold type indicates that, when compared with IKP, the

difference in performance was statistically significant at the 95% level.
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I

Froblem

type B IKP KP TKP PAB CABg
Clusters ' 0.00 " 0.00 0.1}2 0.13 0.10

v-equal 0.25 14.72 209.68 10.44 189.37 216.04
Clusters 0.01 0.00 O.11 O.10 O.10

v-equal 0.50 58.51 112.84 39.80 102.60 102.60
Clusters 0.00 0.00 0.25 ...... 0.00 0.03

v ~ equal 0.75 29.58 29.58 29.58 29.58 29.58I IIII I II I I

Clusters 0.00 0.00 0.(}2 -- O.11

v ~ uni(1,10)0.25 14.65 261.91 8.78 m 233.76
Clusters 0.00 0.00 0.12 " -- 0'.11

v ~ uni(l,10) 0.50 48.89 97.36 29.86 _ 94.16
Clusters "0.0'1 0.00 0.25 --' 0.03

v ~ uni(1,10) 0.75 25.66 25.66 25.66 -- 25.66
Outliers 0.00 0.00 0.04 0.12 0.09

v ~ equal 0.25 26.61 112.98 16.01 101.31 141.31
Outliers 0.01 0.00 " 0.20 0.12 0.13

v-equal 0.50 23.41 49.13 21.91 35.32 35.32
Oufliers 0.01 0100 0.27 0.11 01i2

v ~ equal 0.75 6.93 14.46 8.11 9.36 9.36
Outliers 0,00 0.00 0.04 -- O.10"

v ~ uni(1,!0) 0.25 46.38 142.15 22.61 --- 128.24
Outliers 0.0'I 0.00 0.22 ..... --' 0.14

v ~ uni(1,10) 0.50 25.73 41.66 23.87 m 31.39
Outliers 0.00 0.00 0127 " -- 0. i4

v ~ uni(1,10) 0.75 8.77 1.1.65 8.94 _ 9.88
II I II

Table C-1 (cont.). Computational results comparing the performance of upper

bounding methods using Euclidean test problems. Ali problems have 20 nodes and results

are averaged over a sample size of 10. The numbers in larger print are the average percent

errors from optimality of the upper bounds while the numbers in smaller print are the

average computation times. Bold type indicates that, when compared with IKP, the

difference in performance wa_ statistically significant at the 95% level.

b! ,q
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Problem

type B IKP KP TKP PAB _ CAB_
Uniform 0.01 0.00 0.09 O.12 O.11

v ~ equal 0.25 26.83 7 6.12 21.06 5 4.01 5 4.01
Uniform 0.01 0.00 0.26 0.11 0.13

v-equal 0.50 14.17 27.11 12.08 16.27 17.70
Uniform 0.00 ' 0.00 0.28 0.10 0.13

v--equal 0.75 10.76 12.49 10.76 6.83 6.83
Uniform 0.00 0.00 0.10 _ 0.11

v ~ uni(1,10) 0.25 38.32 83.60 26.76 _ 73.46
Uniform 0.00 0.00 0.26 _ 0.15

v ~ uni(1,10) 0.50 15.99 24.19 14.55 _ 15.79
Uniform 0.01 0.00 0.28 _ 0.14

v ~ uni(1,10) 0.75 8.64 8.94 8.52 _ 7,23 _
Uniform 0.01 0.00 0,10 _ 0.10

v ~ uni(1,3) 0.25 32.64 80.78 25.26 _ 55.82
Uniform 0.00 0.00 0.26 _ 0.13

v ~ uni(1,3) 0.50 15.61 27.15 13.58 _ 18.10
i

Uniform 0.00 0.00 0.29 _ 0.13

v ~ uni(1,3) 0.75 8.78 9.59 8.78 _ 6.60

Uniform 0.00 0.00 O.10 _ O.13

v ~ uni(1.100) 0.25 36.97 88.26 26.38 _ 62.15
Uniform 0.00 0,00 0,27 _ O.15

v ~ uni(1,100) 0.50 20.20 29.89 18.26 _ 19.01
Uniform 0.01 0.0{) 0.28 _ 0,13

v ~ uni(1,100) 0.75 9.27 9.32 9.17 8.36
Uniform 0.00 0.00 0.10 _ 0.11

v~exp 0.25 43.52 91.68 31.06 _ 78.70
Uniform 0.01 0.00 0.27 _ O.14

v~exp 0.50 14.77 21.30 13,31 _ 13.88
Uniform 0.00 0.00 0.29 _ 0.14

v-exp 0.75 6.16 6.48 6.16 _ 5.08

Table C-2. Computational results comparing the performance of upper bounding
methods using non-Euclidean test problems. Ali problems have 20 nodes and results are

averaged over a sample size of 10. The numbers in larger print are the average percent
errors from optimality of the upper bounds while the numbers in smaller print are the
average computation times. Bold type indicates that, when compared with IKP, the
difference in performance was statistically significantat the 95% level.
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Problem ..............

type B IKP KP TKP PAB CAB).
" 6.04 ' . 'Clusters 0.00 0.00 0 11 O.12

v-equal 0.25 41.49 348.76 24.47 326.60 126.60
Clusters .... 0.01 0,00 0.15 ' 0.04 0.07

v-equal 0.50 40.86 81.84 36.14 80.67 74.67
- Clusters ' 0.00 0.00 0.26 0101 0103

__v - equal 0.75 23.84 23.84 23.84 24.60 23.84
Clusters '" 0,00 0.00 ' 0.04? _ 0.13

v ~ unifl,lQ) 0.25 43.08 _330,05 21.82 --- 133.78
Clusters ....... 0.01 0.00 0.16 -- 0.07

v- uni(l,lO) 0.50 37.71 73.27 32.45 --- 69.74
Clusters ....0,00 0,00, 0.26 ...._ 0.0'3

v ~ uni(1,10) 0.75 23.50 23.50 23.50 --- 23.50
Outliers 0.00 0.00 '0.14 0.'!3 ..... 0.13

v-equal 0.25 28.43 58.95 24.79 44.73 44.73
OutlJ_rs " 0.00 0.00 0.27 0.12 0.i'6

v ~ equal 0.50 8.65 16.13 9.28 6.88 6.88
Outliers ..... 0,01 0.00 0.27 0.i2' 0.15

v-equal 0.75 8.22 8.77 8.77 3.33 3.33
Outliers 0.00 0':b0 Oi.15 ---- 0.13

v- uni(1,10) 0.25 32.26 57.31 27.20 --- 44.54
Outliers 0:'00 0.00 0.26 -- 0:I 7

v- uni(1,10) 0.50 8.74 12.78 8.74 _ 6.82
" Outliers ' " 0.01 '"0.00 0.27 _ 0,18....

v ~ uni(1,10) 0.75 4.64 4.73 4.73 2.83
I I IIII II I II

Table C-2 (cont.). Computational results comparing the performance of upper

bounding methods using non.-Euclideantest problems. Ali problems have 20 nodes and
results are averaged over a sample size of 10. The numbers in larger print are the average
percent errors from optimality of the upper bounds while the numbers in smaller print are
the average computation times. Bold type indicates that, when compared with IKP, ff.e
difference in performance was statisticallysignificant at the 95%level.
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Problem

type B NewH MFH Tsi CofG GLD
Uniform 0.62 0.43 0.22 _02 ........0.00

v - equal 0.25 0.00 0.00 0.00 5.67 7.67
Uniform 0'.86 0.65 0.81 0.03 0.02

v-equal 0.50 0.00 0.00 4.76 8.85 10.65
Uniform 1.33 1._3 1.34 0.07 0.04

y--equal 0.75 0.00 0.00 3.17 9.50 10.13
Uniform 0.61 0.41 0.20 0.02 0.01

v ~ uni(1,10) 0.25 0.00 0.77 0.27 4.95 9.40
Uniform 0.85 0.62 "0.74 0.04 0.02

vTuni(1,10) 0.50 0.00 0.14 4.82 4.87 11.84
Uniform 1.30 1.24 1.24 0.07 0.03

v ~ uni(1,10) 0.75 0.00 0.10 4.41 6.13 13.53
I I I I

Uniform 0.62 0.42 0.21 0.02 0.01

v~ uni(1,3) 0.25 0.00 0.00 0.00 12.54 4.85
" [ ii , .......

Unitbma 0,86 0.65 0.77 0.03 0.02

v .- uni(1,3) 0.50 0.00 0.00 2.63 7.17 12.86
Uniform 1.28 1.15 1.27 0.07 0.04 •

v ~ uni(1,3) 0.75 0.00 0.40 4.25 3.37 12.90
I I I I I I'li I

Uniform 0.62 0.42 0.20 0.02 0.01

v - uni(1,100) 0.25 0.00 0.00 0.58 12.05 4.87
Uniform 0.85 0.64 0.7] 0.04 0.02

v~ uni(1,100) 0.50 0.36 0.52 2.06 6,.31 16.63
Uniform 1.27 1.14 1.20 0.06 0.04

v- uni(1,100) 0.7.5 0.72 0.29 5.07 1.16 18.62
Uniform 0.61 0.42 0.19 .....0.02 0.00

v -exp 0.25 0.38 0.38 0.75 7.04 9.44
Uniform 0.85 0.65 0.66 0.03 0.02

v -exp 0.50 1.13 1.45 4.42 1.85 20.98
Uniform 1.23 0.99......I.I1 0.06 0.03

v-exp 0.75 0.00 0.20 7.11 1.97 17.75
III II II I I

Table C-3. Computational results comparing the performance of heuristic algorithms

using Euclidean test problems. Ali problems have 20 nodes and results are averaged over a

sample size of 10. The numbers '.'n larger print are the average percent errors from

optimality while the numbers in smaller print are the average computation times. Bold type

indicates that, when compared with NewH, the difference in performance was statistically
significant at the 95% level.
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Problem

type B NewH MFH Tsi CofG GLD
Clusters 0.62 0.44 0.21 0.02 0.(_0-_ _-

v ~ equal 0.25 0.00 0.00 1.43 5.00 6.19
Clusters 0.86 0.66 0.63 0.03 0.02

0.50 0.00 0.00 6.82 4.06 14.01v - equal ....
• Clusters 1.44 1'.'43 1.28 0.08 0.03

v ~ equal 0.75 0.00 0.00 5.11 2.69 6.98
Clusters 0.62 0.42 0.20 (J.02 0.01

v--uni(1,10) 0.25 0.00 0.00 0.65 1.05 8.69
Clusters 0.85 0.62 ' 0.60 0.04 0.02

v- uni(1,10) 0.50 0.16 0.16 6.30 3.12 27.48
Clusters 1.41 1.33 1.20 0.06 0.04

v- uni(1,10) 0.75 0.00 0.00 5.72 4.96 10.91
Outliers 0.65 0.46 0.28 0.02 0.01

v - equal 0.25 0.00 0.00 0.00 3.93 11.4 3

] Outliers ..... 1.03 0.83 0.98 0.05 0.03
v ~ equal 0.50 0.00 0.00 2.39 4.70 4.82
Outliers i.62 1.51 1.47 0.09 0.04

.....v ~ equal 0.75 0.00 0.00 1.70 4.68 4.61
Outliers 0.65 0.43 0.26 0.02 0.01

v ~ uni(!,lO) 0.25 0.00 0.00 1.60 7.13 15.65
Outliers 1.01 0.81 0.86 0,04 0.03

v ~ uni(1,10) 0.50 0.14 0.14 3.95 3.97 13.04
Outliers 1.55 1.46 1.31 0,07 0.03

v ~ uni(1,10) 0.75 0.67 0.28 6.04 2.68 6.28

Table C-3 (cont.). Computational results comparing the performance of heuristic

algorithms using Euclidean test problems. Ali problems have 20 nodes and results are

averaged over _ sample size of 10. The numbers in larger print are the average percent

errors from optimality while the numbers in smaller print are the average computation

times. Bold type indicates that, when comp_ed with NewH, the difference in performance

was statistically significant at the 95% level.
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Problem .....

type B NewH MFH Tsi CofG GLD ......
Uniform 0.57 0,61 0.57 0.02 0.03

v-equal 0.25 0.00 0.00 1.00 11.58 9.10
Uniform 1.00 126 1,38 0.04 0.04

v-equal 0.50 0.71 0.7,1 0.62 8.25 8.96 .....
Uniform 1.42 2.08 1.65 0.07 0.05

v-equal 0.75 0.00 0.00 1.67 3.37 3.95
Uniform 0.56 0.59 0.52 0.02 0.02

v ~ uni(1,!O) 0.25 0.00 0.29 1.20 12.30 12.03
Uniform 0.95 1.23 1.25 0.03 0.04

v- uni(1,10) 0.50 0.10 0.00 3.10 4082 12.73
Uniform 1.40 1.99 1.54 0.06 0.05

v ~ uni(1,10) 0.75 0.00 0.19 3.51 2.54 7.10
I_ II II I

Uniform 0.57 0.61 0.54 0.02 0.02

v~ uni(1,3) 0.25 0.00 0.91 2.03 15.39 12.10
i i IIII I

Uniform 0.95 1.26 1.28 0.04 0.04

v ~ uni(1,3) 0.50 0.00 0.00 2.05 3.32 11,56
Uniform 1.38 1.93 1.58 0.06 0.06

v ~ uni(1,3) 0.75 0.00 0.00 4.01 2.89 7.24
Ill

Uniform 0.57 0.57 0.53 0.03 0.02

v- uni(1,100) 0.25 0.00 0.00 0.35 7.27 13.83
Uniform 0.95 1.17 J.20 0.03 0.05

v- uni(1,100) 0.50 0.02 0.22 2.96 5.69 16.86
....Uniform ....1.37 1.99 1.50 0.05 0.06

v~ uni(1,100) 0.75 0.09 0.03 3.38 2.42 9.75
I

Uniform 0.5.6 0.54 0.44 0.02 0.02

v ~exp 0.25 0.66 0.37 1.74 3.58 13.74
Uniform ' 0.96 1.26 1.12 0.04 0.05

v - exp 0.50 0.00 0.10 3.7 3 2.02 15. O0
Uniform 1.38 1.9_i 1.48 0'.06 0.05

v-exp 0.75 0.11 0.38 3.55 1.99 6.23
I M II

Table C-4. Computational results comparing the performance of heuristic algorithms

using non-Euclidean test problems. All problems have 20 nodes and results are averaged

over a sample size of 10. The numbers in larger print are the average percent errors from

optimality while the numbers in smaller print are the average computation times. Bold type

indicates that, when compared with NewH, the difference in performance was statistically
significant at the 95% level.
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Problem

type B NewH MFH Tsi CofG GLD
Clusters 0,45 0.41 0.30 0.02 0.01

v ~ equal 0.25 0.00 0.00 2.50 10.3 2 8.10
Clusters ' 0.76 0.94 0.94 0.03 0.03

v -.equal 0.50 1.67 0.00 3.81 12.92 12.34
Clusters 1,11 1.47 1.59 0.04 0.05

v-equal 0.75 0.00 0.00 1.34 2.59 7.02
Clusters 0.45 0.42 0.29 0.02 0.01

v ~ uni(1,10) 0.25 0.00 0.00 0.19 1.97 14.5 4ii i[.

Clusters 0,74 0.89 0.87 0.02 0.04

v ~ uni(1,10! .... 0.50 0.t30 0.15 0.85 9.16 11.65 _
Clusters 1.04 _ 1.59 1.42 0.04 0.05

' v- uni(1,10) 0.75 0.00 0.00 0.82 2.07 6.06
Outliers 0.65 0.74 0.79 0.03 0.02

0.25 0.00 0.00 0.00 13.62 12.90v ~ equal
Outliers 1.20 1.63 1.49 0.04 0.05

v ~ equal 0.50 0.00 0.00 1.25 5.63 4.26
Outliers 1.67 2.45 1.72 0.07 0.05

v ~ equal 0.75 0.00 0.00 1.05 0.00 2.13
Outliers 0.64 0.71 0.74 0.03 0.03

v ~ uni(1,10) 0.25 0.00 0.48 2.93 8.48 19.75
Outliers 1.19 1.59 1.38 0.05 0.05

v- uni(l,lO) 0.50 0.00 0.29 3.06 2.64 7.09
Outliers .... 1.56 2.35 1.65 0.07 0.05

v ~ uni(1,10) 0.75 0.00 0.00 2.28 0.96 5.84

Table C-4 (cont.). Computational results comparing theperformance of heuristic

algorithms using non-Euclidean test problems. Ali problems have 20 nodes and results are

averaged over a sample size of 10. The numbers in larger print are the average percent

errors from optimality while the numbers in smaller print are the average computation

times. Bold type indicates that, when compared with NewH, the difference in performance

was statistically significant at the 95% level.
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Problem. Euclidean problems non.Euclidean problems

type B NewH MFH NewH [ MFH
Uniform 3.66 2.19 4.28 4.42

v-equal 0.25 0.16 1,48 1.63 1.80
Uniform 7.75" 7.45 10.84 13.60

v ~equal 0.50 0.49 1.36 1.19 1.19
Uniform 16.62 19.51 20,66 26.54

v ~ equal 0.75 0.88 1.29 0.44 0.64
Uniform 3.59 2.12 4.12 4.15

_v- uni(1,10) 0.25 0.29 0.98 2.40 1.40
Uniform 7.48 6.89 10.05 12.76

v ~ uni(1,10) 0.50 1.05 1.14 1.21 1,34
Unifo_'rn 15.95 18.17 ..... 19.56 25.64

v ~ uni(1,10) 0.75 0.97 1.20 0.53 0.73
I I IIIII

Uniform 3.62 2.22 4.25 4.30

v ~ uni(1,3) 0.25 0.32 1.20 2.22 1.62
Uniform 7.59 ' 7.01 10.43 13.04

v ~ uni(1,3) 0.50 0.82 1.14 1.09 1.42
Uniform 16.16 ' 18.69 19.96 25.80

v - uni(1,3) 0.75 0.57 1.02 0.59 0.73
II I III

Uniform 3.58 2.04 4.13 4.12

v~ uni(1,100) 0.25 0.07 0.96 2.29 2.03
Uniform 7.41 6.71 9.90 12.46

v~ uni(1,100) 0.50 1.39 0.47 1.41 1.90
Uniform 15,69 17.77 19.12 25,06

v ~ uni(1,100) 0.75 0.84 0.85 0.33 0.71
Uniform 3.57 2.00 4.11 3.87

v~exp 0.25 0.44 0.66 2.94 1.59
Uniform 7.32 6.31 9.66 12.14

v~exp 0.50 1.47 0.72 1.10 1.37
Uniform 15.61 18.03 19.04 24.97

v ~ exp 0.75 0.84 0.83 0.27 0.44

Table C-5. Computational results comparing the performance of NewH and MFH using

50-node test problems. Results for Euclidean problems are averaged over a sample size of

40 and results for non-Euclidean problems are averaged over a sample size of 20. The
numbers in larger print are the average percent errors from the best known solution while

the numbers in smaller print are the average computation times. Bold type indicates that,

when compared with NewH, the difference in performance was statistically significant at
the 95% level.
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Problem Euclidean problems non.Euclidean problems
type B NewH MFH NewH MFH

v ~ ual 0.25 0.00 3.26 0.61 1.06
. 10.54

v t).50 0.08 1.24 0.00 0.32

v 0.75 0.03 0.66 0.00 0.00
2.17

v ~ uni(1,10) 0.25 0.04 2.61 0.57 2.73
7 14

v~ uni(1,10) 0.50 0.50 1.19 0.11 0.36
21.51

v~ uni(1,10) 0.75 0.63 1.16 0.06 0.07
.75

v 0.25 0.51 0.64 0.94 0.56

v 0.50 0.87 0.61 0.11 0.11

v 0.75 0.16 0.53 0.00 0.00

v ~ uni(1,10) 0.25 0.63 0.80 0.68 0.89
5 14

v~ uni(1,10) 0.50 1.03 0.90 0.15 0.26

v~ uni(1,10) 0.75 0.43 0.53 0.05 0.30

Table C-5 (cont.). Computational results comparing the performance of NewH and
MFH using 50-node test problems. Results for Euclid-.an problems are averaged over a
sample size of 40 and results for non-Euclidean problems are averaged over a sample size
of 20. The numbers in larger print are the average percent errors from the best known

solution while the numbers in smaller print are the average computation times. Bold type
indicates that, when compared with NewH, the difference in performance was statistically
significant at the 95% level.
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Problem no no no no no

type B NewH agg. LM updat, foc.pts, rand.
Uniform 3.66 2.75 3.58 2.76 0.77 0134

v ~ equal_ 0.25 0.16 0.13 0.35 0.13 1.99 2.68
i i iiii

Uniform 7.75 6.63 7.67 6.80 1.62 0.75

v ~ equal 0.50 0.49 1.10 0.49 1.00 2.50 2.99
Uniform 16.62 15.28 16.49 15.52 3.37 1'".63

v ~ equal 0.75 0.88 1.12 0.65 1.17 2.6 5 2.8 7
Uniform 3.59 2.68 3.53 2.71 0.76 0'1'34

v ~ uni(1,10) 0.25 0.29 0.23 0.27 0.61 1.43 2.33
Uniform ' 7.48 6.31 7.38 6.60 1.55 0.74

v ~ uni(1,10) 0.50 1.05 1.39 0.70 1.40 2.29 3.29
Uniform 15.95 14.70 15.96 15,21 3.26 1.61

v ~ uni(1,10) 0.75 0.97 1.02 0.94 1.22 2.48 2.84
I I I

Uniform 3.62 2.72 3.56 2.73 0.77 0.34

v~ uni(1,3) 0.25 0.32 0.33 0.39 0.00 1.63 2.55
Uniform 7.59 6.47 7.50 6.64 1.55 0.74

v ~ uni(1,3) 0.50 0.82 0.85 0.74 1.14 2.73 2.55
ii

Uniform 16.16 14.82 15.96 15.18 3.31 1.61

v ~ uni(1,3) 0.75 0.57 1.09 0.46 1.11 2.17 r 3.15
II IIIq I

Uniform 3.58 2.65 3.51 2.69 0.76 0.33

v ~ uni(1,100) 0.25 0.07 0.24 0.15 0.05 1.64 2.62
iii

Uniform 7.41 6.19 7.27 6.54 1.5'3 0.72

v ~ uni(1,100) 0.50 1.39 1.18 1.40 1.67 3.32 ' 4.01
Uniform ' 15.69 14.30 15.65 15.10 3.18 1'.53

v ~ uni(1,100) 0.75 0.84 0.64 0.92 1.1 4 2.53 3.33

Unfi0rm 3.57 2.64 3.51 2.68 0.75 0'.33

v~exp 0.25 0.44 0.04 0.37 0.78 1.60 3.29
Uniform 7.32 6.19 7.22 6.50 1.56 0171

v~exp 0.50 1.47 1.01 1.67 2.81 4.74 5.44
Uniform 15.61 14.41 15.49 15.13 3.17 1'.59

v ~ exp 0.75 0.84 0.60 1.05 1.66 2.97 2.73

Table C-6. Computational results showing the effects of dropping individual features of
NewH using Euclidean test problems. Ali problems have 50 nodes and results are

averaged over a sample size of 40. The numbers in larger print are the average percent

errors from optimality while the numbers in smaller print are the average computation

times. Bold type indicates that, when compared with NewH, the difference in performance
was statistically significant at the 95% level.
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]Problem no no no no no

type B Ne w H agg. LM u pdat. foc. pts. rand.
3'66 " tj".34Clusters 2.76 3.59 2.77 0.79

v ~ equal 0.25 0.00 O.12 0.00 0.00 O.14 O.7 0
- Clusters 7.86 6.64 7.73 .....6189 1,66 0.76

v ~ equal 0.50 0.08 0.78 0.33 0.48 2.54 2.43
Clusters 17.28 15.40 17.29 ....16.28 3.57 1.74

v ~ equal 0.75 0.03 O.67 0.30 O.67 2.11 16,.97_Clusters 3.61 2.7.2 3.53 2.72 0.77 .34

v ~ uni(1,10) 0.25 0.04 0003 0.04 0.14 1.03 1.54
Clusters ' 7.62 6.42 7.52 ' 6.77 1.60 0.73

v ~ uni(1,10) 0.50 0.50 0.73 0.49 0.74 2.83 2.63_
Clusters 16.')7 1'5.21 16.70 15.92 3,36 1.67

v ~ uni(1,10) 0.75 0.63 0.57 0.74 0.89 2.63 2.23
Outliers 4.53 3.58 4.45' '3.62 0.98 0.42.

v ~ equal 0.25 0.51 0.98 0.36 0.60 1.62 4.01)
Outliers 13.09 11.72 13.01 11.92 2.68 i.30

v ~equal 0.50 0.87 1.09 0.67 0.79 2.23 3.34
Outliers 25.27 24.38 25.2_ 24.36 5.15 2.57

v ~equal 0.75 0.16 0.37 0.32 0.16 0.69 1.39
Outliers 4.43 3.50 4.35 3.54 0.96 0.42

v ~ uni(1,10) 0.25 0.63 0.33 0.38 0.84 2.19 3.40
"'Outliers 12.55 11.26 12.58 11.76 2.65 1.26

v ~ uni(1,10) 0.50 1.03 0.80 1.18 0.95 2.69 3.22
.....Outliers 24.70 ' 23.31 24.71 24.21 5'.11 2.55

v ~ uni(1,10) 0.75 0.43 0.30 0.28 0.4.4 0.93 1.46

Table C-6 (cont.). Computational results showing the effects of dropping individual

features of NewH using Euclidean test problems. Ali problems have 50 nodes and results

are averaged over a sample size of 40. The numbers in larger print are the average percent

errors from optimality while the numbers in smaller print are the average computation

times. Bold type indicates that, when compared with NewH, the difference in performance

was statistically significant at the 95% level.
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Problem ......no' n o n o n o no

type B NewH agg. LM updat, foc.pts, rand.
Uniform 4.28 ' 3.46 4.23 3.53 1.11 0.40

v ~ equal 0.25 1.63 2.67 1.47 1.85 3.8 6 5.9 3 _
Uniform 10.84 " 9.68 10.70 9.95 2.77 1.04

v ~ equa1 0.50 1.19 1.45 1.86 1.58 2.79 3.73
Uniform 20.66 19.60 20.30 19.35 ........ 5.13 2.05

v-equal 0.75 0.44 0,32 0.54 0.64 1.30 1.75 _
I II ii ii _

Uniform 4.12 3.29 4.07 3.43 1.06 0.39

v~ uni(1,10) 0.25 2.40 2.62 2.48 2.115 4.71 5.82
Uniform 10.05 8.8'7 9.95 9,51 _ 2.58 1.02

v~ uni(1,10) 0.50 1.21 1.06 1.24 1.36 2.18 3.25 _
Uniform 19.56 18._6 19.36 1932 ...... 4.88 2.04

v ~ uni(l,10) 0.75 0.53 0.20 0.59 0.49 0.97 1.30I .... IIII I i| --

Uniform 4.2.'3 3.4'1 4.18 3.51 1.09 0.41

v ~ uni(!,3 ) 0.25 2.22 1,73 1.22 1.63 3.32 6.40 _
Uniform 10.43 9.36 10.23 9.79 ..... 2.63 1.00

v ~ uni(1,3) 0.50 1.09 0.82 0.93 1.48 2.08 2.91 _
uniform 19.9'6 i-8.99 19.69 i'9.01 "5.00 2.02

v~ uni(1,3) 0.75 0.59 0.63 0.96 0.80 1.52 1.75
Uniform 4.13 3.3'0 4.10 3.43 1.07 0.40

v ~ uni(1,100) 0.2.5 2.29 1.72 2.13 1.69 3.63 6.65 _
Uniform 9.90 8.78 9.95 9.34 2.59 1.00

v~ uni(1,100) 0.50 1.41 0.97 1.51 1.73 2.70 3.66
Uniform 19.1'2 ' i-8.04 18.97 19.36' 4.85 1.91

v ~ uni(1,100) 0.75 0.33 0.40 0.43 0.52 1.00 1.75
i I I

Uniform 4.11 3.17 4.06 3.44 1.06 0.39

v ~exp 0.25 2.,94 1.71 2.71 3.78 4.37 8.41
Uniform 9.66 8._5 9.81 9.46 2.49 1.01

v ~ exp. 0.50 1.10 0.66 1.06 1.83 2.05 2.54 _
Uniform 19.04 i7._i7 18.97 i8.47 4.81 1.79

v~exp 0.75 0.27 0._2..4 0.25 0.67 0.62 0.91

Table C-7. Computational results showing the effects of dropping individual features of

NewH using non-Euclidean test problems. Ali problems have 50 nodes and results are

averag,_l over a sample size of 20. The numbers in larger print are the average percent

errors from optimality while the numbers in smaller print are the average computation

times. Bold type indicates that, when compared with NewH, the difference in performance

was statistically significant at the 95% level.
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Problem no no no no no

type B NewH agg. LM updat, foc.pts, rand.
Clusters 3.51 2.71 3',43 2.80 0.95 0.33

v ~ equal 0.25 0.61 1.92 0.53 0.53 0.53..... 1.57
Clusters 8.46 6.98 " 8.40 7.48 2.26 0.84

v ~ equal 0.50 0.00 1.51 0.00 0.28 0.44 0.7 6 L
Clusters 16.48 14.29 16.45 15.62 4.21 1.60

v ~ equal 0,75 0.00 0.12 0.00 0.00 0.00 0.23
Clusters ' 3.47 2.72 3.39 2.76 0.94 0.33

v ~ uni(1,10) 0.25 0.57 0.21 0.40 0.35 0.79 3.01
Clusters 8.33 7.07 .... 8.24 7146 2.22 0.81

v ~ uni(1,10) 0.50 0.11 0.38 0.05 0.41 0.34 1.14
Clusters i'6.25 15.09 16:aC 15.56 4.0'7 1.56

v ~ uni(1,10) 0.75 0.06 0.11 0.15 0.1 1 0.23 0.63
Oudiers 10.94 10.16 " 10.90 10.13 2.79 1.13

v-equal 0.25 0.94 1.39 0.85 1.10 1.39 2.87
Outliers 23.35 22.46 22.93 22.80 5.91 2.24

v-equal 0.50 0.il 0.11 0.11 0.21 0.11 0.43
Outliers 26.39 25.70 25.98 25.76 6.55 2.51

v--equal, 0.75 0.00 0.00 0.00 0.00 0.00 0.00
Outliers 10.82 9.70 10.60 10.00 2.75 1.06

v ~ uni(1,10) 0.25 0.68 0.69 0.92 1.14 1.88 3.32
Oudiers 23.14 '_22.43 23.15 22.57 5.84 2.16

v - uni(1,10) 0:50 0.15 0.21 0.17 0.25 0.25 0.55
Outliers 26.10 25.38 26.46 25.52 6.50 2.62

v ~ uni(1,10) 0.75 0.05 0.08 0.08 0.11 0.20 9.4 2

Table C.7 (cont.). Computational results showing the effects of dropping individual

features of NewH using non-Euclidean test problems. Ali problems have 50 nodes and

results are averaged over a sample size of 20. The numbers in larger print are the average

percent errors from optimality while the numbers in smaller print are the average

computation times. Bold type indicates that, when compared with NewH, the difference in

performance was statistically significant at the 95% level.
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Problem no no no foc. chp.

type /_ NewH foc.pts, rand. no rand. insert. CofG
Uniform 3.54 0.74 0,33 0.09 0,03 0.14

v - equal 0.25 0.31 2.11 3.18 7.0 7 7.63 9.90
Uniform 7.65 1.56 0.74 0.17 0.10 0.42

v - equal 0.50 0,31 2.49 3.65 8.10 9.2 0 11.54
Uniform 16.63 3.41 1.65 0.37 0.35 1.10

v-equal 0.75 0.82 2.80 2.80 7.14 10.99 8.72
Uniform " 3.49 0.72 0.33 0108 0.03 O.i2

v- uni(1,10) 0.25 0.36 0.93 2.64 6.50 4.37 10.96
Uniform 7.42 1.52 0,73 ' 0.16 0.09 0.37

v ~ uni(1,10) 0.50 1.09 2.37 3,56 7.83 11.70 8.66
Uniform " 16.07 3.24 1.65 0.37 0.26 0"93

v ~ uni(1,10) 0.75 0.85 1.97 2.54 5.82 8.97 5.41
Uniform 3.51 0.74 0.33 0.09 0.02 0.13

v- uni(l,3) 0.25 0.50 1.67 2.77 5.91 9.33 13.10
ii

Uniform 7'13,9 1.49 0.72 0.17 0.10 0.44

v~ uni(1,3) 0.50 0.91 2.70 2.71 7.89 13.64 10.36
Uniform 16.50 3.31 ' '1164.... 0.36 0.24 0.92

v - uni(1,3) 0.75 0.28 1.38 2.20 5.73 10.60 7.34
Uniform 3.48 0.72 0.32 ' 0.09 ' 0.02 0.11

v ~ uni(1,100) 0.25 0.07 1.50 2.47 6.17 8.22 10.05
Uniform 7.33 1.47 0.72 0.17 0.09 0.31

v ~ uni(1,100) 0.50 1.43 3.22 4.00 9.20 11.33 7.18
Uniform 15'.97 3.22 1.53• 0.33 0.24 0.61

v -, uni(1,100) 0.75 0.53 1.76 3.42 6.21 8.04 5.09
Uniform 3.46 0.72'i 0.32 0.09 0.02 0.12

v ~ exp 0.25 0.00 0.62 3.11 8.7 9 7.17 5.07
' Uniform "7123 1.52 0.70 0.16 0.10 0.30

v ~ exp 0.50 0.90 4.76 5.6 6 10.90 9.64 7.86
Uniform 15.70 3.08 1.59 0.37 0.28 0.70

v ~exp 0.75 0.52 2.60 2.21 5.61 5.50 4.08

Table C-8. Computational results for experiments examining the trade-off between

solution quality and computation time. Results are for Euclidean test problems with 50

nodes and are averaged over a sample size of 20. The numbers in larger print are the

average percent errors from optimality while the numbers in smaller print are the average

computation times. Bold type indicates that, when compared with the algorithm to the

inmaediate left in the table, the difference in performance was statistically significant at the
95% level.
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Problem .... no no no foc. chp.

t_,pe B NewH foc.pts, rand. no rand. insert. CofG
Clusters 3.57 0.76 0.33 0.09 .... 0.03 0.11

v ~ equal 0.25 0.00 0.00 0.29 2.7 3 4.83 10.36
Clusters 7.53 1.60 0.72 0.16 0.09 0.38

v ~equal 0.50 0.00 3.2 4 2.67 8.41 13.7 2 11.38 i

Clusters 17.43 3161 1.77 0.36 0.25 0.97

v ~equal 0.75 0.12 1.55 1.57 6.41 11.27 8.23
" Clusters 3.54 0._/5 0.33 0.09 0.'02 0.12

v ~ uni(1,10) 0.25 0.00 0.97 0.82 2.40 9.79 14.79
Clusiers 7.30 1.54 0.69 o. 17 0.09 0.37

v ~ uni(1,10) 0.50 0.46 2.96 2.73 8.73 15.37 5.96
Clus_ers 17.10 3'139 1.68 0.35 0.26 0.86

v ~ uni(1,10) 0.75 0.35 2.11_ 2.00 5.37 7.36 3.56
Outliers 4.50 0.97 0.42 0.11 0.04 0.24

v ~ equal 0.25 0.81 2.56 4.47 8.98 1t3.81 7.86
Outliers" 13137 2,69 1.30 0.29 01i9 0.78

v ~ equal 0.50 0.68 2.4 4 3.15 5.7 2 9.8 7 8.68
Outliers 25.67 5.17 2.60 0.53 0.54 1.61

v ~ equal 0.75 0.11 0.31 1.07 2.55 2.46 1.81
Outliers 4.41 0".95 0.42 0.11 0.04 0.20

v ~ uni(1,10) 0.25 0.37 2.35 3.44 9.00 10.27 7.57
Outliers 12.74 2.68 1.27 0.30 0.20 0.65

v ~ uni(1,10) 0.50 1.33 3.25 3.22 6.48 8.46 7.02
Outliers 25.00 5115 2.57 0.56 0.47 1.31

v~ uni(1,10) 0.75 0.42 0.65 1.32 2.93 2.24 7.48
....... ii

Table C-8 (cont.).. Computational results for experiments examining the trade-off

between solution quality and computation time. Results are for Euclidean test problems

with 50 nodes and are averaged over a sample size of 20. The numbers in larger print a_e

the average percent errors from optimality while the numbers in smaller print are the

average computation times. Bold type indicates that, when compared with the algorithm to

the immediate left in the table, the difference in performance was statistically significant at
the 95% level.
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